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1 Introduction 

Fundamental analysis is popular in practitioners (e.g., Wermers et al., 2012), while one 

cornerstone of the Market Efficiency Hypothesis (EMH) is that fundamental analysis should “not 

work” (Bartram and Grinblatt, 2017). Two specific questions require answers before concluding 

whether fundamental analysis works. The first one is how to estimate the fundamental 

(fundamental value, fair value, or intrinsic value). The second one, perhaps of more interest to 

the practitioners, is how to make the best use of the information revealed by fundamental 

analysis. The extant Accounting and Finance literature on the first one is almost purely empirical 

(e.g., Lewellen, 2010), ‘…however, empirical research is (or should be) informed by theory, 

because the interpretation of empirical analysis is impossible without theoretical guidance 

(Richardson et al., 2010, page 411)’. Perhaps because the fundamental research efforts are 

unobservable, the second question has rarely been scrutinized by the literature (e.g., Wermers et 

al., 2012; Bartram and Grinblatt, 2017; Yan and Zheng, 2017). Our paper is a first, necessarily 

simple, step toward filling the gap of modeling fundamental analysis into portfolio selection and 

endorsing fundamental analysis from a theoretical perspective. 

Our question is not trivial, but seriously under-research. Most academic studies gauge the 

fundamental and simply compare the performance of the portfolios sorted by the fundamental 

signal (see, e.g. Bartram and Grinblatt, 2017). Although this approach suits their academic 

purpose, it probably is less desired in industry. The fundamental investor (e.g., active managers 

in Wermers et al., 2012, or more generally the arbitrageurs in Grossman and Stiglitz, 1980) who 

have information about the fundamentals, are prone to maximize their potential reward from 

fundamental analysis results. However, the mainstream literature neglects this need, and the 

optimal trading strategy is unknown. This insight stems from Treynor and Black (1973) and 

Black and Litterman (1992). Departing from their old-school discrete settings, our analysis is 

tamed in a modern continuous-time framework with the new perspective of fundamental analysis. 

We resist the temptation to add another paper on designing a ‘superior mousetrap’ to 

empirically capture the fundamental for three reasons. Firstly, even if we ignore the critique of 

data-snooping and make room for it, our contribution in this regard will be marginal, given the 

large number of existing papers. The ‘anomaly’ literature has identified more than 330 predictors 
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of future returns and a large portion of them are accounting variables, although most of them are 

sample/model sensitive (Green et al., 2013; Harvey et al., 2016; McLean and Pontiff, 2016).  

Secondly, despite numerous papers on the first moment, there is scarce discussion on the 

second moment, which is much more attainable in practice (e.g. Campbell and Shiller, 1987, 

1988a, b; Campbell, 1991). We focus on the second moment of the fundamental and sidestep for 

now the thorny issues of forecasting the first moment, as the forecast of the first moment is likely 

to be inaccurate and time-varying, which is clear in an Arrow-Debreu world. 

Finally, even if some investors accurately observe the first moment of the fundamental, 

they can at most predict one future moving direction of security prices by using the captured 

fundamental values only, but not when the security prices start to revert to their fundamentals 

and how to maximize the profit. There are various reasons why the ‘asset bubble’ may persist 

(e.g. Shleifer and Vishny, 1997). Fundamental investors can reap their profit from fundamental 

analysis from either the mean-reverting market price or the distributions of dividends, takeovers, 

private buyouts or asset liquidation, which means that at least both the reversion speed and 

dividend should also have been taken into account. We are the first to explicitly tackle this issue, 

which makes our paper complementary to Bartram and Grinblatt (2017), Yan and Zheng (2017).  

We demonstrate our idea in the most parsimonious model possible under standard 

assumptions. We employ the framework from Treynor and Black (1973) and Sharpe’s Diagonal 

Model (1963): the investor actively allocates her wealth into 𝑛  almost independent risky 

securities and one risk-free asset by minimizing the instantaneous risk of her portfolio while 

holding the instantaneous expected excess return fixed. We assume that the risky security has a 

market price and a fundamental, and model the market price as its fundamental scaled by a 

mispricing multiplier (e.g. Arnott et al., 2014). Whereas the fundamental follows a geometric 

Brownian motion and satisfies the ICAPM (see, e.g. Wang, 1993), the mispricing is governed by 

a geometric mean-reversion process (see, e.g. Pindyck, 1991).  

Our mean-reversion setting is backed up by a large literature arguing that security prices 

mean-revert to their fundamental values in the long term (e.g. Shiller, 1981; Summers, 1986; 

Fama and French, 1988). Guasoni (2006) extends Shiller (1981) and Summers (1986) models to 

the purely continuous random setting and studies a continuous-time version of these models from 

an informed investor, who observe both fundamental and market values. Buckley et al. (2012) 

extend Guasoni’s model for stocks following geometric Brownian motion to constant relative 
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risk-averse investors when mispricing follows a continuous mean-reverting process, and obtain 

more general results which nests those of Guasoni (2006) as a special case of the relative risk 

aversion being one. With the notions of asymmetric information and fads analogous to Wang 

(1993), Guasoni (2006), Buckley et al. (2012), Buckley and Long (2015) model the asset 

dynamics using a Levy process that can be applied to any asset that has a fundamental value and 

the mispricing is simply the difference between the fundamental value and the observed value of 

the asset. Analogically, we model the price as a multiplicative rather than additive process (e.g., 

Arnott et al., 2014), where the mispricing follows a geometric mean-reversion (e.g. Pindyck, 

1991; Dixit and Pindyck, 1994; Metcalf and Hassett, 1995; Epstein et al., 1998; Ewald and 

Zhang, 2006; Ewald and Yang, 2007; Yang and Ewald, 2010). Our model complements the 

recent additive price settings such as the two Brownian motions in Cvitanić et al. (2006), and one 

geometric Brownian motion and one OU process in Buckley et al. (2012, 2014), Buckley and 

Long (2015). The tractability of our model allows us to analytically derive the appraisal ratio 

and information ratio of the optimal portfolio in the Treynor-Black framework. 

We solve the instantaneous mean-variance portfolio choice problem based on quadratic 

utility in the presence of mispricing. Analytical results suggest that investors use fundamental 

analysis to pick up securities with a more volatile mispricing, a less volatile fundamental, a 

higher mean-reverting speed and a larger dividend. The intuition is that a volatile mispricing 

implies many investment opportunities, while a volatile fundamental can only increase the active 

risk and thus has a negative effect on the expected appraisal ratio. The contribution from the 

mean-reverting speed and dividends to the expected appraisal ratio is positive.  

Our numerical experiments reveal that a large realistic domain for parameter values, in 

which the information ratios are higher than the ones of top-percentile portfolio managers. Since 

our model simply maps the features of the fundamental and the mispricing processes into the 

information ratio, the discrepancy between our calibration and those achieved in reality may be 

due to various realistic limits of arbitrage (e.g. Shleifer and Vishny, 1997) such as trading costs, 

costs to produce fundamental information, market participants’ competitions.  

The paper unfolds as follows. In Section 2, we introduce our basic model and derive the 

dynamics of the security price, the appraisal ratio and the expected appraisal ratio. Section 3 

presents the comparative statics analysis of the effects of model parameters on the expected 

appraisal ratio and the results from our numerical experiments. Section 4 concludes. 
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2 Theoretical Modeling  

In this section, we firstly introduce our model for security prices and the details of the two 

stochastic processes that govern the mispricing and the fundamental, respectively. After that, we 

derive the dynamics of the security price, the appraisal ratio and the expected appraisal ratio. 

2.1 The multiplicative security price 

Let 𝑃𝑖(𝑡)  and 𝐹𝑖(𝑡)  denote the market price and the fundamental value of the 𝑖 th security, 

respectively. We assume 

 𝑃𝑖(𝑡) = 𝛼𝑖(𝑡)𝐹𝑖(𝑡) (1) 

where 𝛼𝑖(𝑡) is a non-negative multiplier, which is assumed to be independent of 𝐹𝑖(𝑡) in the 

spirit of Cvitanić et al. (2006), Buckley et al. (2012, 2014), and Buckley and Long (2015). A 

zero 𝛼𝑖(𝑡)  can be explained as the security issuer being in severe financial distress or 

bankruptcy. Intuitively, the mispricing 𝛼𝑖(𝑡) arises from the asymmetric information between the 

fundamental investors, who observe both the market price and some fundamental information, 

and the uninformed investors who lack the aid of fundamental analysis and observe market 

prices only. We explore how good the performance relative to the benchmark the fundamental 

investors can achieve and what affects it, i.e. the magnitude of the information/appraisal ratios 

and the underlying factors.  

This specification for the security price is straightforward. The multiplier 𝛼𝑖(𝑡) measures 

to what extent the security price 𝑃𝑖(𝑡) deviates from its fundamental value 𝐹𝑖(𝑡) at time 𝑡. For 

this reason, we refer to it as the mispricing in the rest of this paper. The security is underpriced or 

traded at a discount relative to its fundamental value at time 𝑡 if 𝛼𝑖(𝑡) < 1, overpriced or traded 

at a premium if 𝛼𝑖(𝑡) > 1, and just priced or traded at par if 𝛼𝑖(𝑡) = 1. This multiplicative price 

form is also used in other papers, see, e.g. Arnott et al. (2014) and the references therein. 

 

2.2 The geometric mean-reversion process for the mispricing 

The mispricing 𝛼𝑖(𝑡) in equation (1) has to be non-negative for the price 𝑃𝑖(𝑡) to be meaningful, 

and the price converges to its fundamental value 𝐹𝑖(𝑡) in the long term. One suitable choice for 

𝛼𝑖(𝑡)  is the geometric mean-reversion process, which satisfies both requirements. Another 
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advantage of this process is that it has a stationary distribution under certain restrictions which 

has been derived in Ewald and Yang (2007) and we will discuss later. 

The geometric mean-reversion process for 𝛼𝑖(𝑡) is 

𝑑𝛼𝑖(𝑡) = 𝜃𝑖(𝜂𝑖 − 𝛼𝑖(𝑡))𝛼𝑖(𝑡)𝑑𝑡 +  𝜍𝑖𝛼𝑖(𝑡)𝑑𝑍𝑖(𝑡), 𝑖 = 1, … , 𝑛 (2) 

where 𝑍1(𝑡), … , 𝑍𝑛(𝑡) are 𝑛 independent Wiener processes and the source of uncertainty in the 

mispricing, 𝜃𝑖 is the mean-reverting speed, 𝜂𝑖 is the mean-reversion level for 𝛼𝑖(𝑡), and 𝜍𝑖 is the 

idiosyncratic volatility due to mispricing. This geometric mean-revision process has been used to 

model commodity prices, irreversible investment, and corporate earnings, etc, in the previous 

literature (e.g. Pindyck, 1991; Dixit and Pindyck, 1994; Metcalf and Hassett, 1995; Epstein et al., 

1998; Ewald and Zhang, 2006; Ewald and Yang, 2007; Yang and Ewald, 2010), and its 

application to describe the mispricing in this study is novel. 

𝛼𝑖(𝑡)  has several nice properties. First, unlike the OU process, the geometric mean-

reversion process is strictly positive and ‘the boundary values 0 and ∞ are inaccessible in the 

language of Merton (Ewald and Yang, 2007, page 11)’, when its stationary distribution exists 

under the assumption 2𝜂𝑖𝜃𝑖 > 𝜍𝑖
2. Second, like the OU process, the geometric mean-reversion 

process automatically adjusts upward if 𝛼𝑖(𝑡) < 𝜂𝑖 and downward if 𝛼𝑖(𝑡) > 𝜂𝑖. As long as the 

mispricing is not a constant (otherwise degenerate to a special case of the OU process), its drift 

term 𝜃𝑖(𝜂𝑖 − 𝛼𝑖(𝑡))𝛼𝑖(𝑡) is quadratic in 𝛼𝑖(𝑡) and its diffusion 𝜍𝑖𝛼𝑖(𝑡) is dependent on the level 

of 𝛼𝑖(𝑡), , which offers it an advantage over the OU process in terms of capturing the non-

linearity and state-dependent diffusion, respectively. Third, while 𝛼𝑖(𝑡) always adjusts toward 

the mean-reversion level 𝜂𝑖, the mean of its stationary distribution is not equal to 𝜂𝑖 in all but 

trivial cases, which makes our model applicable to more general cases. Finally, the mean of the 

stationary distribution is affected by its higher order moments. 

2.3 The geometric Brownian motion for the fundamentals 

Let 𝑟𝑓, 𝑃𝑚(𝑡) and  𝛽𝑖 denote the constant risk-free interest rate, the value of the market index and 

the beta coefficient of the 𝑖 th security, respectively. We assume that dividends are paid 

continuously at a constant fraction 𝛿𝑖 of the fundamental value 𝐹𝑖(𝑡), so that dividends offer an 

alternative way for investors to reap abnormal profits (see, e.g. Bartram and Grinblatt, 2017). 
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The constant fraction 𝛿𝑖 is not limited to stock dividend, as it can also be viewed as takeovers, 

private buyouts or asset liquidation if it is assumed to be one.  

For illustrating reasons, we simply specify the stochastic process for the fundamental 

𝐹𝑖(𝑡) so that it satisfies the intertemporal CAPM of Merton (1973) 

𝑑𝐹𝑖(𝑡)

𝐹𝑖(𝑡)
= 𝑟𝑓𝑑𝑡 + 𝛽𝑖 (

𝑑𝑃𝑚(𝑡)

𝑃𝑚(𝑡)
− 𝑟𝑓𝑑𝑡) −  𝛿𝑖𝑑𝑡 + 𝑣𝑖𝑑𝐵𝑖(𝑡), 𝑖 = 1, … , 𝑛 (3) 

𝑑𝑃𝑚(𝑡)

𝑃𝑚(𝑡)
= (𝜇𝑚𝑡 + 𝑟𝑓)𝑑𝑡 + 𝜎𝑚𝑑𝐵𝑚(𝑡) (4) 

Where 𝑣𝑖 measures the idiosyncratic risk of fundamental returns, 𝜇𝑚𝑡 is the instantaneous excess 

return on the market index, 𝜎𝑚 is the volatility of the market return, 𝐵𝑖(𝑡), 𝑖 = 1, … , 𝑛 and 𝐵𝑚(𝑡) 

are independent standard Brownian motions and the source of uncertainty in the fundamental, 

uncorrelated with 𝑍𝑚(𝑡), the standard Brownian motion that drives the mispricing 𝛼𝑖(𝑡). 

Substituting equation (4) into equation (3) and rearranging equation (3), we have the total 

return on the 𝑖th security over an infinitesimally small interval 𝑑𝑡 

𝑑𝐹𝑖(𝑡)

𝐹𝑖(𝑡)
+ 𝛿𝑖𝑑𝑡 = 𝑟𝑓𝑑𝑡 + 𝛽𝑖𝜇𝑚𝑡𝑑𝑡 + 𝑣𝑖𝑑𝐵𝑖(𝑡) + 𝛽𝑖𝜎𝑚𝑑𝐵𝑚(𝑡) (5) 

We can see that the volatility of fundamental returns can be attributed to two sources of risk: the 

idiosyncratic risk 𝑣𝑖 and the systematic risk 𝛽𝑖𝜎𝑚. 

Moving 𝑟𝑓𝑑𝑡 to the left of equation (5) and taking expectation on both sides, we find that 

𝐹𝑖(𝑡) satisfies the intertemporal CAPM of Merton (1973)  

𝐸 [
𝑑𝐹𝑖(𝑡)

𝐹𝑖(𝑡)
+ 𝛿𝑖𝑑𝑡] − 𝑟𝑓𝑑𝑡 = 𝛽𝑖𝜇𝑚𝑡𝑑𝑡 (6) 

which means that the expected excess return on the fundamental of the security is determined by 

the market risk premium and its exposure to the market risk. The only difference is that, Merton 

(1973) assumes that all dividend payments are in the form of share repurchase and thus the 

expected rate of return on the security is simply 𝐸 [
𝑑𝐹𝑖(t)

𝐹𝑖(t)
]. 

2.4 Asset price dynamics  

This sub-section solves the stochastic differential equation for the market price. 

Given the multiplicative function for 𝑃𝑖(𝑡)  in equation (1) and the two stochastic 

processes for 𝛼𝑖(𝑡) and 𝐹𝑖(𝑡) in equation (2) and equation (5), we can obtain the stochastic 

differential equation for the price 𝑃𝑖(𝑡): 
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𝑑𝑃𝑖(𝑡)

𝑃𝑖(𝑡)
 =  (𝜃𝑖(𝜂𝑖 − 𝛼𝑖(𝑡)) + 𝛽𝑖𝜇𝑚𝑡 − 𝛿𝑖 + 𝑟𝑓)𝑑𝑡 + 𝜍𝑖𝑑𝑍𝑖(𝑡) 

+𝑣𝑖𝑑𝐵𝑖(𝑡) + 𝛽𝑖𝜎𝑚𝑑𝐵𝑚(𝑡)                                             (7) 

For the proof of the above equation, please refer to Appendix A. 

The expected instantaneous return on the security conditional on 𝛼𝑖(𝑡) is 

𝐸[
𝑑𝑃𝑖(𝑡)

𝑃𝑖(𝑡)
] = (𝜃𝑖(𝜂𝑖 − 𝛼𝑖(𝑡)) + 𝛽𝑖𝜇𝑚𝑡 − 𝛿𝑖 + 𝑟𝑓)𝑑𝑡 (8) 

We see that the expected capital gains on the security are due to two sources: the 

mispricing and the change in the fundamental value. The intertemporal CAPM holds when 

𝛼𝑖(𝑡) = 𝜂𝑖 . In other words, if the mispricing stays at its mean-reversion level, no abnormal 

returns can be obtained from investing in this security.  

2.5 The appraisal ratio 

This sub-section derives the appraisal ratio of the representative investor. 

Without loss of generality, we use appraisal ratio and the root of appraisal ratio, 

information ratio to measure the performance of portfolio selection. Following Treynor and 

Black (1973) and Sharpe’s Diagonal Model (1963), we consider the portfolio choice problem 

facing an investor who allocates her wealth into n almost independent risky securities and one 

risk-free asset by solving the instantaneous mean-variance optimization problem based on 

quadratic utility.  

Let 𝑥𝑖𝑡 denote the fraction of the investor’s wealth 𝑉𝑡 allocated to the 𝑖th security at time 

𝑡. The excess return on her portfolio at time 𝑡, denoted by 𝑟𝑝𝑡, is 

𝑟𝑝𝑡 =
𝑑𝑉𝑡

𝑉𝑡
− 𝑟𝑓𝑑𝑡 = ∑ 𝑥𝑖𝑡 (

𝑑𝑃𝑖(𝑡)

𝑃𝑖(𝑡)
+

δ𝑖𝐹𝑖(𝑡)𝑑𝑡

𝑃𝑖(𝑡)
− 𝑟𝑓𝑑𝑡)𝑛

𝑖=1  (9) 

In the above expression, the total return on the 𝑖th security consists of two parts: the 

capital gains 𝑑𝑃𝑖(𝑡)/𝑃𝑖(𝑡) and the dividend yield δ𝑖𝐹𝑖(𝑡)𝑑𝑡/𝑃𝑖(𝑡). We assume the dividends are 

paid continuously as a constant fraction of the fundamental 𝐹𝑖(𝑡) and that is why the dividend 

income over the infinitesimally small interval 𝑑𝑡 is calculated as δ𝑖𝐹𝑖(𝑡)𝑑𝑡.  

Using equation (1) and (7), we partition 𝑟𝑝𝑡 into two parts as follows:   

       𝑟𝑝𝑡 = ∑ 𝑥𝑖𝑡 (
𝑑𝑃𝑖(𝑡)

𝑃𝑖(𝑡)
+

𝐹𝑖(𝑡)

𝑃𝑖(𝑡)
𝛿𝑖𝑑𝑡 − 𝑟𝑓𝑑𝑡)𝑛

𝑖=1   
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= ∑ 𝑥𝑖𝑡 ((𝜃𝑖(𝜂𝑖 − 𝛼𝑖(𝑡)) + 𝛽𝑖𝜇𝑚 − 𝛿𝑖)𝑑𝑡 + 𝜍𝑖𝑑𝑍𝑖(𝑡) + 𝑣𝑖𝑑𝐵𝑖(𝑡)
𝑛

𝑖=1

+ 𝛽𝑖𝜎𝑚𝑑𝐵𝑚(𝑡) + 𝛼𝑖
−1(𝑡)𝛿𝑖𝑑𝑡) 

               = ∑ 𝑥𝑖𝑡
𝑛
𝑖=1 (𝜇𝑖𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖(𝑡)) + (∑ 𝑥𝑖𝑡𝛽𝑖

𝑛
𝑖=1 )(𝜇𝑚𝑑𝑡 + 𝜎𝑚𝑑𝐵𝑚(𝑡)) 

              = ∑ 𝑥𝑖𝑡
𝑛
𝑖=1 𝑟𝑖𝑡 + (∑ 𝑥𝑖𝑡𝛽𝑖

𝑛
𝑖=1 )𝑟𝑚𝑡                                                                         (10) 

where  

𝜇𝑖𝑡 = 𝜃𝑖(𝜂𝑖 − 𝛼𝑖(𝑡)) + (𝛼𝑖
−1(𝑡) − 1)𝛿𝑖                         (11) 

 𝜎𝑖 = √𝜍𝑖
2 + 𝑣𝑖

2                        (12) 

𝑑𝑊𝑖(𝑡) =
𝜍𝑖

𝜎𝑖
𝑑𝑍𝑖(𝑡) +

𝑣𝑖

𝜎𝑖
𝑑𝐵𝑖(𝑡)                                            (13) 

𝑟𝑖𝑡 = 𝜇𝑖𝑡𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖(𝑡)                   (14) 

𝑟𝑚𝑡 = 𝜇𝑚𝑡𝑑𝑡 + 𝜎𝑚𝑑𝐵𝑚(𝑡)                                            (15) 

𝑟𝑚𝑡  is the instantaneous excess return on the market index, 𝑟𝑖𝑡  is the active return on the 𝑖th 

security, 𝜇𝑖𝑡 is the expected active return conditional on 𝛼𝑖(𝑡), and 𝜎𝑖 is the active risk. 

If we take an explicit position 𝑥𝑚𝑡  in the market index, the equation (10) needs to be 

modified to 

𝑟𝑝𝑡 = ∑ 𝑥𝑖𝑡𝑟𝑖𝑡
𝑛
𝑖=1 + (𝑥𝑚𝑡 + ∑ 𝑥𝑖𝑡𝛽𝑖

𝑛
𝑖=1 )𝑟𝑚𝑡 = ∑ 𝑥𝑖𝑡𝑟𝑖𝑡

𝑛+1
𝑖=1  (16) 

where 𝑟(𝑛+1)𝑡 = 𝑟𝑚𝑡  and 𝑥(𝑛+1)𝑡 = 𝑥𝑚𝑡 + ∑ 𝑥𝑖𝑡𝛽𝑖
𝑛
𝑖=1 . Note that the investment in the market 

index is due to two sources: the explicit investment in the market index 𝑥𝑚𝑡 and ∑ 𝑥𝑖𝑡𝛽𝑖
𝑛
𝑖=1 , the 

exposure to the market risk of individual securities. 

Since 𝑟𝑚𝑡  and 𝑟𝑖𝑡, 𝑖 = 1, … , 𝑛  are mutually independent in the standard Treynor-Black 

framework (1973) and Sharpe’s Diagonal Model (1963), the portfolio choice problem amounts 

to making optimal bets on 𝑛 + 1 independent assets, the market index and the 𝑛 active returns 

𝑟𝑖𝑡, 𝑖 = 1, … , 𝑛. Let 𝜇(𝑛+1)𝑡 = 𝜇𝑚𝑡 and 𝜎𝑛+1
2 = 𝜎𝑚

2 . Then the conditional instantaneous mean and 

variance of the excess returns on the portfolio are 𝜇𝑝𝑡 = ∑ 𝑥𝑖𝑡𝜇𝑖𝑡
𝑛+1
𝑖=1  and 𝜎𝑝𝑡

2 = ∑ 𝑥𝑖𝑡
2 𝜎𝑖

2𝑛+1
𝑖=1 , 

respectively.  

Consistent with mean-variance framework based on quadratic utility (e.g. Sharpe, 1963; 

Treynor and Black, 1973), we assume that the investor’s problem is to minimize the 
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instantaneous variance of her portfolio 𝜎𝑝𝑡
2  while holding the instantaneous expected excess 

return 𝜇𝑝𝑡 fixed 

𝑚𝑖𝑛
1

2
∑ 𝑥𝑖𝑡

2𝑛+1
𝑖=1 𝜎𝑖

2, 𝑠. 𝑡.  ∑ 𝑥𝑖𝑡
𝑛+1
𝑖=1 𝜇𝑖𝑡 = 𝜇𝑝𝑡 (17) 

Now our portfolio choice problem is the same as Treynor and Black (1973, equation 7 on 

page 71). We follow their procedures to solve the problem. We have to emphasize that the 

portfolio in our model is rebalanced continuously while Treynor and Black’s model is static.  

The optimal portfolio and its squared Sharpe Ratio is 

 𝑥𝑖
∗ =

𝜇𝑖𝑡

𝜇𝑝𝑡

𝜎𝑝
2

𝜎𝑖
2 , 𝑖 = 1, … , 𝑛 (18) 

 (
𝜇𝑝𝑡

𝜎𝑝𝑡
)

2

= (
𝜇𝑚𝑡

𝜎𝑚
)

2

+ ∑
𝜇𝑖𝑡

2

𝜎𝑖
2

𝑛
𝑖=1  (19) 

The first term on the right-hand side of the above equation measures the influence of 

market wide deviations from fundamentals on investment performance (known as ‘market 

premium’). The second term is the so-called ‘appraisal ratio’, which represents the total 

contribution of security selection and can be viewed as the better/worse performance relative to 

the benchmark buy-and-hold strategy of the market portfolio. Following Treynor and Black 

(1973), we focus on the appraisal ratio rather than the Squared Sharpe Ratio from here onwards 

and denote it by 𝐴𝑅𝑝. Substituting the equation (11) for 𝜇𝑖𝑡 into equation (19), we obtain 

𝐴𝑅𝑝 = ∑
(𝜃𝑖(𝜂𝑖−𝛼𝑖(𝑡))+(𝛼𝑖

−1(𝑡)−1)𝛿𝑖)
2

𝜎𝑖
2

𝑛
𝑖=1  (20) 

2.6 The expected appraisal ratio 

This sub-section derives the expected appraisal ratio of the representative investor. 

We evaluate the appraisal ratio in equation (20) with respect to the stationary probability 

distribution of 𝛼𝑖(𝑡) to eliminate its dependence on 𝛼𝑖(𝑡). The resulting expected appraisal ratio 

reflects the ex-ante investment opportunity when we have no prior knowledge of the level of 

𝛼𝑖(𝑡). In case that it is appropriate to approximate the cross-sectional distribution of the returns 

on the securities using this stationary distribution (Yang and Ewald, 2010), it reveals the ex-ante 

investment opportunity among these securities. 
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As we show in Appendix B, to obtain the expected appraisal ratio, we have to evaluate 

𝐸 [(𝛼𝑖(∞))
−2

], which exists only if 3𝜍𝑖
2/2𝜃𝑖 < 𝜂𝑖. For this reason, we assume 3𝜍𝑖

2/2𝜃𝑖 < 𝜂𝑖 in 

the rest of this paper, and the expected appraisal ratio is 

𝐸[𝐴𝑅𝑝] = ∑ (
𝜃𝑖𝜍𝑖

2

2(𝜍𝑖
2+𝑣𝑖

2)
+

(2(𝜂𝑖−1)2𝜃𝑖
2+3𝜍𝑖

4+(6−5𝜂𝑖)𝜃𝑖𝜍𝑖
2)𝛿𝑖

2

(2𝜂𝑖𝜃𝑖−3𝜍𝑖
2)(𝜂𝑖𝜃𝑖−𝜍𝑖

2)(𝜍𝑖
2+𝑣𝑖

2)
+

(𝜍𝑖
2+(2−𝜂𝑖)𝜃𝑖)𝛿𝑖𝜍𝑖

2

(𝜂𝑖𝜃𝑖−𝜍𝑖
2)(𝜍𝑖

2+𝑣𝑖
2)

)𝑛
𝑖=1      (21) 

For 𝜂𝑖 = 1, the restriction 3𝜍𝑖
2/2𝜃𝑖 < 𝜂𝑖 becomes 3𝜍𝑖

2/2 < 𝜃𝑖  and the above expression 

can be simplified to 

𝐸[𝐴𝑅𝑝] = ∑ (
𝜃𝑖𝜍𝑖

2

2(𝜍𝑖
2+𝑣𝑖

2)
+

(𝜃𝑖+3𝜍𝑖
2)𝛿𝑖

2𝜍𝑖
2

(2𝜃𝑖−3𝜍𝑖
2)(𝜃𝑖−𝜍𝑖

2)(𝜍𝑖
2+𝑣𝑖

2)
+

(𝜃𝑖+𝜍𝑖
2)𝛿𝑖𝜍𝑖

2

(𝜃𝑖−𝜍𝑖
2)(𝜍𝑖

2+𝑣𝑖
2)

)𝑛
𝑖=1  (22) 

In the following analysis, we focus on the case 𝜂𝑖 = 1 and the mispricing 𝛼𝑖(𝑡) mean-

reverts to one. 

3 Comparative statics analysis and numerical experiments 

In this section, we examine how the pivotal parameters listed in Table 1 affect the expected 

appraisal ratio of the optimal portfolio when the mean-reversion level 𝜂𝑖 = 1, according to the 

large literature arguing that security prices mean-revert to their fundamental values in the long 

term (e.g. Shiller, 1981; Summers, 1986; Fama and French, 1988). Given the difficulty in 

quantifying the (probably time-varying) magnitude of the fundamental and the mispricing 

empirically, we take a conservative approach to calibrate our model to a large domain of 

reasonable parameter values, rather than to any one set of parameter values only.  

[Insert Table 1 around here] 

To be specific, we deliberately set the range of the mean-reversion speed of the 

mispricing (𝜃𝑖) from 9.9% to 64.9%, based on the empirical results documented over a sample of 

12024 stocks during the period 2004-2014 in Giannetti and Kahraman (2015, page 16) with the 

measure from  Della Vigna and Pollet (2009). It is perhaps a little bit difficult to quantify the 

average number of stocks held by investors. We adopt 90 from Saap and Yan (2008, page 33), 

who find that the average number of holdings is approximately 90 over a large sample of 2278 

funds during 1984–2002. We start with the case of zero dividends and proceed to the cases of 

non-zero dividends. In the non-zero dividend case, we adopt an average dividend yield of 1.5% 
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from Hartzmark and Solomon (2013, Table 1, page 645) over the sample of all common shares 

of US companies listed on the New York Stock Exchange (NYSE), American Stock Exchange 

(Amex) and Nasdaq Exchange from January 1927 until December 2011, which is also confirmed 

in Harris et al. (2015) using fund data. In order to make sure that we are on the safe side, we 

conservatively set the active risk (𝜎𝑖) at 14% with all possible combinations of the volatilities of 

fundamental (𝑣𝑖) and mispricing (𝜍𝑖), as Cremers and Petajisto (2009, Table 1, page 13) find that 

about 97%(= 1– 48/1678) of the US all-equity mutual funds have an active risk no more than 14% 

in 2002. The information ratios will be higher if we assign a smaller value to active risk. 

We confirm the robustness of our results using many alternative domains and the results 

are available upon request. We do not consider how the trivial parameters affect the expected 

appraisal ratio, as the mean-reversion level (ηi) of the mispricing should be one in the long-run; 

clearly the effect of the number of investable securities (n) is positive; and the effect of the active 

risk (𝜎𝑖) depends on the relative variation between the volatility of the mispricing (𝜍𝑖) and the 

fundamental (𝑣𝑖 ). We have also considered if and only if a fraction of the securities pay 

dividends, and the results are similar and available upon request.  

3.1 Expected appraisal ratios when zero dividends 

This sub-section explores the expected appraisal ratio when no security pays dividends. 

3.1.1 Comparative statics analysis. When no security pays dividends, we have 𝛿𝑖 = 0 for all 𝑖. 

For 𝜂𝑖 = 1, the expected active return 𝜇𝑖 in equation (11) is completely due to the mispricing, 

and the expected appraisal ratio in equation (22) is reduced to 

 𝐸[𝐴𝑅𝑝] = ∑
𝜃𝑖𝜍𝑖

2

2(𝜍𝑖
2+𝑣𝑖

2)
 𝑛

𝑖=1  (23) 

We see that the value added by security selection is determined by the mean-reverting 

speed 𝜃𝑖, the volatility of mispricing 𝜍𝑖 and the volatility of the fundamental value 𝑣𝑖 . Ceteris 

paribus, the expected appraisal ratio is increasing in 𝜃𝑖  and 𝜍𝑖
2 , but decreasing in 𝑣𝑖

2 , which 

means that investors prefer securities with higher mean-reverting speeds, more volatile 

mispricing and less volatile fundamental value. Intuitively, a fast adjustment of mispricing 

allows a quick reaping of benefits from betting on the security. In addition, as 𝜍𝑖
2  rises, the 

probability for the occurrence of more extreme mispricing will increase, which implies better 
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investment opportunities. Finally, the rise in the volatility of fundamental 𝑣𝑖 can only increase 

the active risk and thus has a negative effect on the expected appraisal ratio. 

3.1.2 Numerical experiments. Given the effects of model parameters on the appraisal ratio from 

previous analysis, we are wondering the extent to which the fundamental analysis can be used for 

portfolio selection. We answer this question by conducting several numerical experiments under 

assumed values for parameters. For comparison reasons with existing studies, here we turn to 

information ratios, the square root of appraisal ratios, rather than appraisal ratios themselves. To 

our surprise, our numerical results show that under plausible parameter values, fundamental 

analysis can lead to information ratios well above those achieved by practitioners. 

In the following analysis, we assume independent investable securities for all the 

numerical experiments after extracting the common market component in equation (19), which is 

in consistence with Treynor and Black (1973). We focus our attention on the relationship 

between information ratios, the mean-reverting speed 𝜃𝑖, the volatility of mispricing 𝜍𝑖.   

Figure 1 illustrates how the information ratio varies according to the changes in the mean-

reverting speed θi and the volatility of mispricing ςi, when the active risk σi is fixed at 14% and 

none of the 90 independent and identical securities pays dividends. The two subplots are 

respectively the 3-D and 2-D contours, produced under the two restrictions 3ςi
2/2 < θi and ςi

2 ≤

σi
2. The labels on the plots indicate the levels of the information ratios. 

 [Insert Figure 1 around here] 

From the top graph, we see that the information ratio is no greater than 3 and is increasing 

in both the mean-reverting speed 𝜃𝑖  and the volatility of mispricing 𝜍𝑖 . A larger volatility of 

mispricing 𝜍𝑖  implies not only potentially more extreme values of 𝛼(𝑡)  but also increased 

probabilities for their occurrences, and thus better investment opportunities. A high mean-

reverting speed 𝜃𝑖 allows us to quickly reap the benefits of making bets on the mispricing. The 2-

D contour is convex to the origin, implying that the marginal increase in the information ratio is 

decreasing in both the mean-reverting speed 𝜃𝑖 and the volatility of mispricing 𝜍𝑖. As we move 

down the isoline, more increase in the volatility of mispricing 𝜍𝑖 has to be traded for the same 

decrease in the mean-reverting speed 𝜃𝑖 in order to obtain the same information ratio. 

[Insert Table 2 around here] 
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Table 2 reports information ratios of the optimal portfolio for different combinations of 

the mean-reverting speed θi and the volatility of mispricing ςi, when the active risk σi is fixed at 

14% and none of the 90 independent and identical securities pays dividends. The information 

ratio is calculated as the square root of the expected appraisal ratio in equation (22) and the 

missing values are due to the restrictions of 3ςi
2/2 < θi and ςi

2 ≤ σi
2.  

We see that given the volatility of mispricing 𝜍𝑖, the information ratio is increasing in the 

mean-reverting speed 𝜃𝑖 . For 𝜍𝑖 = 1%  and 𝜃𝑖 = 9.9% , the information ratio is 0.151, which 

increases to 0.386 when 𝜍𝑖 = 1% and 𝜃𝑖 = 64.9%. Given the level of 𝜃𝑖, the information ratio is 

also increasing in 𝜍𝑖. For example, at 𝜃𝑖  = 9.9% and 𝜍𝑖 = 14%, the information ratio increases 

to 2.111. We find in 89.88% (76.79%) of our results, the information ratios is greater than one-

half (one), which is the a good performance can only achieved by the top 25% (10%) of the 

active portfolio managers, according to Grinold and Kahn (2000) and Kahn and Rudd (2003). 

For reasonable magnitude of parameters such as 𝜃𝑖 ≥ 14.9% and 𝜍𝑖 ≥ 3%, all the information 

ratios are greater than one-half. In other words, our results suggest an important role for 

fundamental analysis in term of improving portfolio selection. 

3.2 Expected appraisal ratios when non-zero dividends 

This sub-section explores the expected appraisal ratio when there are non-zero dividends. 

3.2.1 Comparative Statics Analysis. When securities pay dividends at a constant fraction 𝛿𝑖 of 

the fundamental value, the expected appraisal ratio 𝐸[𝐴𝑅𝑝] is shown in equation (22). The 

introduction of dividends not only increases 𝐸[𝐴𝑅𝑝] but also complicates the way that other 

parameters, especially the mean-reverting speed 𝜃𝑖 as we show below, influence 𝐸[𝐴𝑅𝑝]. 

First, we analyze the effect of dividends on the expected appraisal ratio.   

The expected active return in equation (11) can be rewritten as 

 𝜇𝑖𝑡 = (1 − 𝛼𝑖(𝑡)) [𝜃𝑖 +
𝛿𝑖

𝛼𝑖(𝑡)
] (24) 

The above equation indicates that given the level of 𝛼𝑖(𝑡) and the mean-reverting speed 

𝜃𝑖, the growth of dividends increases the contribution from dividends to the optimal portfolio. 

More importantly, note that the effect of dividends to the expected active return is similar to 

increasing the mean-reverting speed by the amount of 𝛿𝑖/𝛼𝑖(𝑡) , and the way dividends 
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contribute to the appraisal ratio is very similar to mean-reverting speed according to equation 

(22). It does not only analytically blur the effects of the mean-reverting speed 𝜃𝑖 on the appraisal 

ratio, but also weaken the function of the mean-reverting speed to let investors to capitalize 

abnormal returns, which has important influence in latter analysis.  

Based on equation (22), clearly the partial derivative of the expected appraisal 

ratio 𝐸[𝐴𝑅𝑝] with respect to the volatility of the dividend yield 𝛿𝑖 is positive: 

𝜕𝐸[𝐴𝑅𝑝]

𝜕𝛿𝑖
= ∑ (

2(𝜃𝑖+3𝜍𝑖
2)𝜍𝑖

2𝛿𝑖

(2𝜃𝑖−3𝜍𝑖
2)(𝜃𝑖−𝜍𝑖

2)(𝜍𝑖
2+𝑣𝑖

2)
+

(𝜃𝑖+𝜍𝑖
2)𝜍𝑖

2

(𝜃𝑖−𝜍𝑖
2)(𝜍𝑖

2+𝑣𝑖
2)

) > 0𝑛
𝑖=1  (25) 

where 3𝜍𝑖
2/2 < 𝜃𝑖  and the expected appraisal ratio is increasing in 𝛿𝑖 when 𝛿𝑖 > 0.  

However, we find the marginal effects of the mean-reverting speed  𝜃𝑖 on the expected 

appraisal ratio 𝐸[𝐴𝑅𝑝] is decreasing in dividend yield 𝛿𝑖, and vice versa, as the partial derivative 

of the marginal effects of the mean-reverting speed is negative: 

 
𝜕2𝐸[𝐴𝑅𝑝]

𝜕𝜃𝑖𝜕𝛿𝑖
= ∑ (−

2𝜍𝑖
2(2𝛿𝑖(𝜃𝑖+(3+3√2)𝜍𝑖

2)(𝜃𝑖+(3−3√2)𝜍𝑖
2)+(3𝜍𝑖

3−2𝜍𝑖𝜃𝑖)
2

)

(3𝜍𝑖
4−5𝜍𝑖

2𝜃𝑖+2𝜃𝑖
2)2(𝜍𝑖

2+𝑣𝑖
2)

) < 0𝑛
𝑖=1                       (26) 

where it is clear as (𝜃𝑖 + (3 − 3√2)𝜍𝑖
2) > 0 conditional on 3𝜍𝑖

2/2 < 𝜃𝑖 . 

Next, we examine whether the expected appraisal ratio is still increasing in the volatility 

of mispricing 𝜍𝑖 and decreasing in the volatility of the fundamental value 𝑣𝑖, after introducing 

dividends. Although the analytic effects of the volatility of mispricing 𝜍𝑖  on the expected 

appraisal ratio 𝐸[𝐴𝑅𝑝] is no longer clear, we find that the partial derivative of the expected 

appraisal ratio 𝐸[𝐴𝑅𝑝] with respect to the volatility of the fundamental value 𝑣𝑖 remain negative: 

𝜕𝐸[𝐴𝑅𝑝]

𝜕𝑣𝑖
2 = ∑ (−

(𝜃𝑖+3𝑣𝑖
2)𝛿𝑖

2𝑣𝑖
2

(2𝜃𝑖−3𝜍𝑖
2)(𝜃𝑖−𝜍𝑖

2)(𝜍𝑖
2+𝑣𝑖

2)
2 −

(𝜃𝑖+𝑣𝑖
2)𝛿𝑖𝑣𝑖

2

(𝜃𝑖−𝜍𝑖
2)(𝜍𝑖

2+𝑣𝑖
2)

2 −
𝜃𝑖𝑣𝑖

2

2(𝜍𝑖
2+𝑣𝑖

2)
2)𝑛

𝑖=1 < 0                (27) 

where it is clear as (2𝜃𝑖 − 3𝜍𝑖
2) > 0 and (𝜃𝑖 − 𝜍𝑖

2) > 0 conditional on 3𝜍𝑖
2/2 < 𝜃𝑖 . 

Since the appraisal ratio is defined as the expected active return divided by the tracking 

error, without loss of generality we can hold the tracking error fixed and verify that the expected 

appraisal ratio is still increasing in the volatility of mispricing 𝜍𝑖, as the volatility of mispricing 

𝜍𝑖is perfectly negative correlated with the volatility of the fundamental value 𝑣𝑖 as 𝜎𝑖
2 = 𝜍𝑖

2 + 𝑣𝑖
2. 

Finally, after the introduction of dividends, we find little analytical guidance regarding the 

effects of increasing the mean-reverting speed 𝜃𝑖  on the expected appraisal ratio 𝐸[𝐴𝑅𝑝] , for 

which we resort to numerical experiments.  
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3.2.2 Numerical Experiments. Table 3 reports information ratios of the optimal portfolio for 

different combinations of the mean-reverting speed 𝜃𝑖 and the volatility of mispricing 𝜍𝑖, when 

the active risk 𝜎𝑖 is fixed at 14% and each of the 90 independent and identical securities pay 

fixed dividends 𝛿𝑖 = 1.5%.  

[Insert Table 3 around here] 

A couple of interesting observations can be made. On the one hand, we see that similar to 

the no-dividend case, the information ratio remains increasing in the volatility of mispricing 𝜍𝑖, 

and in the mean-reverting speed 𝜃𝑖. For example, a information ratio of 0.174 occurs when 𝜍𝑖 =

1% and 𝜃𝑖 = 9.9%, and increases to 0.395 when 𝜃𝑖 increases to 64.9% with the same 𝜍𝑖 = 1%, 

and to 2.600 when 𝜍𝑖 increases to 14% if we keep the 𝜃𝑖 = 9.9% unchanged.  

On the other hand, the information ratios become substantially larger for the same 

combinations of 𝜍𝑖 and 𝜃𝑖 than in the no-dividend case, corroborating with previous comparative 

statics analysis on the point that the existence of dividends strengthens the importance of 

fundamental analysis in term of improving portfolio selection. For instance, we see that when 

𝜃𝑖 ≥ 14.9% and 𝜍𝑖 ≥ 3%, the information ratio is 0.611, well above one-half, the corresponding 

information ratio when no security pays dividends. Actually, in this scenario we find in 91.07% 

and 79.17% of our results, the information ratios is greater than one-half and one, respectively. 

We can also see from Table 3 that there is a large region in which combinations of plausible 

values of 𝜍𝑖 and 𝜃𝑖, give rise to information ratios well above one-half, one and even two. For a 

mild magnitude of 𝜍𝑖 ≥ 3%, all the information ratios are above 0.50; for 𝜍𝑖 ≥ 6%, all the 

information ratios are above one. 

Our results are in contrast to empirical findings on practitioners’ performance. According 

to Grinold and Kahn (2000) and Kahn and Rudd (2003), empirical researches show that overall a 

top-percentile manager has a before-fee information ratio of one, and a top-quartile manager has 

a before-fee information ratio of one-half. However, even top portfolio managers’ performance 

appears lacklustre compared to what our model reveals. As mentioned above, we find that a large 

number of combinations of reasonable parameter values can achieve an information ratio of one 

or above, especially when securities pay dividends. Our numerical experiments reveal that a 

large realistic domain for parameter values, in which the information ratios are higher than the 

ones of top-percentile portfolio managers. Since our model simply maps the features of the 



18 

 

fundamental and the mispricing processes into the information ratio, the discrepancy between 

our calibration and those achieved in reality may be due to various realistic limits of arbitrage 

(e.g. Shleifer and Vishny, 1997) such as trading costs, costs to produce fundamental information, 

market participants’ competitions. Our paper is a first, necessarily simple, step toward filling the 

gap of modeling fundamental analysis into portfolio selection and endorsing fundamental 

analysis from a theoretical perspective. 

4 Concluding remarks 

We develop a continuous-time model to examine the implications of the mean-reverting security 

prices to their fundamentals for active portfolio management. We model the security price as its 

fundamental scaled by a mispricing, where the mispricing follows a geometric mean-reversion 

process and the fundamental a geometric Brownian motion satisfying the ICAPM. Our investor 

allocates her wealth into 𝑛 almost independent risky securities and one risk-free asset by solving 

the classic mean-variance portfolio choice problem based on quadratic utility.  

Analytically, we suggest investors choose securities with a more volatile mispricing, a less 

volatile fundamental, a higher mean-reverting speed and a larger dividend. A volatile mispricing 

implies many investment opportunities, while a volatile fundamental can only increase the active 

risk and thus has a negative effect on the expected appraisal ratio. The contribution from the 

mean-reverting speed and dividends to the expected appraisal ratio is positive.  

Our numerical experiments reveal that a large realistic domain for parameter values, in 

which the information ratios are higher than the ones of top-percentile portfolio managers. Since 

our model simply maps the features of the fundamental and the mispricing processes into the 

information ratio, the discrepancy between our calibration and those achieved in reality may be 

due to various realistic limits of arbitrage (e.g. Shleifer and Vishny, 1997) such as trading costs, 

costs to produce fundamental information, market participants’ competitions. Our paper is a first, 

necessarily simple, step toward filling the gap of modeling fundamental analysis into portfolio 

selection and endorsing fundamental analysis from a theoretical perspective. 

To illustrate our idea, we simply avoid introducing complex structures among securities, 

assuming dependence between the mispricing and the fundamental processes, and modeling the 

mispricing and/or the fundamental using more complicated stochastic processes. We view our 

model as a workhorse which is flexible to be extended in various directions. We share the 
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normative flavor with Treynor and Black (1973) by ignoring the transaction costs in the tradition 

of Markowitz, Sharpe, Treynor and Black, and others. Our model is a simple and parsimonious 

micro approach to model fundamental analysis into portfolio section analysis and we make no 

attempt to exhaust other potential approaches and utility functions, although we are aware that 

the dynamic programming approach popular in macro area may also be able to address our 

question. Of course, these issues should be considered when carried to empirical datasets and we 

leave them for future research. Another noteworthy direction, of course, is on the counterpart of 

our focus: technical analysis.   
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Appendix A. Proof of Equation (7) 

To simplify notation, we write 𝑃𝑖(t) and 𝛼𝑖(t) as 𝑃𝑖 and 𝛼𝑖, respectively. From equation (1), we 

know that the first and second order partial derivatives of 𝑃𝑖 with respect to 𝛼𝑖 and 𝐹𝑖 are 

𝑃𝛼𝑖
= 𝐹𝑖, 𝑃𝛼𝑖𝐹𝑖

= 1, 𝑃𝐹𝑖
=  𝛼𝑖, 𝑃𝛼𝑖𝛼𝑖

= 𝑃𝐹𝑖𝐹𝑖
= 0 (A.1) 

Using equation (2) and (5), we obtain 

𝑑𝛼𝑖 ∙ 𝑑𝐹𝑖 = (𝜃𝑖(𝜂𝑖 − 𝛼𝑖)𝛼𝑖𝑑𝑡 +  𝜍𝑖𝛼𝑖𝑑𝑍𝑖) ((𝛽𝑖𝜇𝑚 + 𝑟𝑓 − 𝛿𝑖)𝑑𝑡 + 𝑣𝑖𝑑𝐵𝑖 + 𝛽𝑖𝜎𝑚𝑑𝐵𝑚) 𝐹𝑖 

                        = 0                                                                                                          (A.2) 

where we employ the rules 𝑑𝑍𝑖
2 = 𝑑𝑡 , 𝑑𝑡2 = 𝑑𝑡 ∙ 𝑑𝑍𝑖 = 𝑑𝑡 ∙ 𝑑𝐵𝑚 = 𝑑𝑡 ∙ 𝑑𝐵𝑖 = 0  and the 

independence assumption 𝑑𝑍𝑖 ∙ 𝑑𝐵𝑚 = 𝑑𝐵𝑖 ∙ 𝑑𝐵𝑚 = 0. 

Using Ito’s formula, equations (A.1) and (A.2), we obtain the stochastic differential 

equation for the security price 𝑃𝑖 

𝑑𝑃𝑖 = 𝑃𝛼𝑖
𝑑𝛼𝑖 + 𝑃𝐹𝑖

𝑑𝐹𝑖 +
1

2
𝑃𝛼𝑖𝛼𝑖

(𝑑𝛼𝑖)
2 + 𝑃𝛼𝑖𝐹𝑖

𝑑𝛼𝑖 ∙ 𝑑𝐹𝑖 +
1

2
𝑃𝐹𝑖𝐹𝑖

(𝑑𝐹𝑖)
2 

= 𝐹𝑖𝑑𝛼𝑖 + 𝛼𝑖𝑑𝐹𝑖 

= 𝛼𝑖𝐹𝑖(𝜃𝑖(𝜂𝑖 − 𝛼𝑖)𝑑𝑡 +  𝜍𝑖𝑑𝑍𝑖) + 𝛼𝑖𝐹𝑖 ((𝛽𝑖𝜇𝑚 + 𝑟𝑓 − 𝛿𝑖)𝑑𝑡 + 𝑣𝑖𝑑𝐵𝑖 + 𝛽𝑖𝜎𝑚𝑑𝐵𝑚) 

= 𝑃𝑖 ((𝜃𝑖(𝜂𝑖 − 𝛼𝑖) + 𝛽𝑖𝜇𝑚 − 𝛿𝑖 + 𝑟𝑓)𝑑𝑡 +  𝜍𝑖𝑑𝑍𝑖 + 𝑣𝑖𝑑𝐵𝑖 + 𝛽𝑖𝜎𝑚𝑑𝐵𝑚) 

Divide 𝑃𝑖 from both sides of the above expression, we obtain Equation (7): 

𝑑𝑃𝑖

𝑃𝑖
= (𝜃𝑖(𝜂𝑖 − 𝛼𝑖) + 𝛽𝑖𝜇𝑚 − 𝛿𝑖 + 𝑟𝑓)𝑑𝑡 + 𝜍𝑖𝑑𝑍𝑖 + 𝑣𝑖𝑑𝐵𝑖 + 𝛽𝑖𝜎𝑚𝑑𝐵𝑚 (A.3)  

Appendix B. Proof of Equation (21) 

Let 𝑝𝑑𝑓𝑖(𝛼)  denote the stationary distribution of 𝛼𝑖(𝑡) , that is, the distribution of 𝛼𝑖(∞) ≡

lim
𝑡→∞

𝛼𝑖(𝑡). For convenience, we let 𝐷𝑖 = 𝜍𝑖
2/2𝜃𝑖 . Obviously, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖  is increasing in 𝜍𝑖  and 

decreasing in 𝜃𝑖. Since by assumption 𝜃𝑖 > 0, 𝐷𝑖  is always positive. As we will see, 𝐷𝑖  actually 

represents the distance between the non-central mean of the stationary distribution and the mean-

reversion level 𝜂𝑖. According to the Proposition 2 in Ewald and Yang (2007, page 11), under the 

restriction 𝐷𝑖 < 𝜂𝑖, 𝑝𝑑𝑓𝑖(𝛼) can be written as  

 𝑝𝑑𝑓𝑖(𝛼) =
(

1

𝐷𝑖
)

(
𝜂𝑖
𝐷𝑖

−1)

𝛤(
𝜂𝑖
𝐷𝑖

−1)
𝛼

(
𝜂𝑖
𝐷𝑖

−2)
𝑒

−
𝛼

𝐷𝑖 (B.1) 
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where 𝛤(∙) is the Gamma function 𝛤(𝑥) = ∫ 𝑡𝑥−1∞

0
𝑒−𝑡𝑑𝑡.  

𝑝𝑑𝑓𝑖(𝛼) is similar to a Gamma distribution with the shape and scale parameters equal to 

𝐷𝑖 and 𝜂𝑖/𝐷𝑖 − 1, respectively. However, the shape and scale parameters are independent in a 

standard Gamma distribution, but related to each other through 𝐷𝑖 for 𝑝𝑑𝑓𝑖(𝛼) in our case.  

According to the Proposition 4 in Ewald and Yang (2007, page 13), the non-central 

moments of 𝑝𝑑𝑓𝑖(𝛼), denoted by 𝑒(𝑛), satisfy the following relationship: 

 𝑒(𝑛 + 1) = 𝑑𝑖 (
𝜂𝑖

𝐷𝑖
− 1 + 𝑛) 𝑒(𝑛) (B.2) 

for all 𝑛 ≥ 0 and 𝑒(0) = 1. This recursive relationship implies that higher order moments have 

an influence on the mean and the variance. In particular, the first two moments are 

 𝑒(1) = 𝜂𝑖 − 𝐷𝑖 (B.3) 

𝑒(2) = 𝜂𝑖(𝜂𝑖 − 𝐷𝑖)                                                             (B.4) 

From the expression for 𝑒(1), we can see that 𝐷𝑖  represents the distance between the 

mean-reversion level 𝜂𝑖 and the non-central mean 𝑒(1). Since 𝑑𝑖 is positive, 𝑒(1) always stays 

below the mean-reversion level of 𝛼𝑖(𝑡).  

To simplify notation, we let 𝑋 = 𝛼𝑖(𝑡). From equations (B.3) and (B.4), we have 

𝐸[𝑋] = 𝜂𝑖 − 𝐷𝑖 , 𝐸[𝑋2] = 𝜂𝑖(𝜂𝑖 − 𝐷𝑖) (B.5) 

Next we evaluate 𝐸[𝑋−2] and 𝐸[𝑋−1] using the stationary distribution in equation (B.1) 

𝐸[𝑋−𝑛] = ∫ 𝑥−𝑛
∞

0

𝑝𝑑𝑓𝑖(𝑥)𝑑𝑡 = ∫ 𝑥−𝑛
∞

0

(
1
𝐷𝑖

)
(

𝜂𝑖
𝐷𝑖

−1)

𝛤 (
𝜂𝑖

𝐷𝑖
− 1)

𝑥
(

𝜂𝑖
𝐷𝑖

−2)
𝑒

−
𝑥

𝐷𝑖𝑑𝑥 

  =
(

1
𝐷𝑖

)
𝑛

𝛤(
𝜂𝑖

𝐷𝑖
− 1)

∫
1

𝐷𝑖
(

𝑥

𝐷𝑖
)

(
𝜂𝑖
𝐷𝑖

−1−𝑛)−1

𝑒
−

𝑥
𝐷𝑖𝑑𝑥

∞

0

 

  =
(

1
𝐷𝑖

)
𝑛

𝛤 (
𝜂𝑖

𝐷𝑖
− 1)

∫ 𝑧
(

𝜂𝑖
𝐷𝑖

−1−𝑛)−1
𝑒−𝑧𝑑𝑧

∞

0

  

=
(

1
𝐷𝑖

)
𝑛

𝛤(
𝜂𝑖

𝐷𝑖
− 1 − 𝑛)

𝛤(
𝜂𝑖

𝐷𝑖
− 1)
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where the penultimate equality is due to the change of variables 𝑧 =
𝑥

𝐷𝑖
 and 𝑑𝑥 = 𝐷𝑖𝑑𝑧, and for 

𝛤(∙) to be well defined, it is required that 𝜂𝑖 > (1 + 𝑛)𝐷𝑖. 

Therefore, we have 

 𝐸[𝑋−1] =
1

𝐷𝑖
(

𝜂𝑖

𝐷𝑖
− 2)

−1

=
1

𝜂𝑖−2𝐷𝑖
 (B.6) 

𝐸[𝑋−2] = (
1

𝐷𝑖
)

2

(
𝜂𝑖

𝐷𝑖
− 2)

−1

(
𝜂𝑖

𝐷𝑖
− 3)

−1

=
1

(𝜂𝑖−2𝐷𝑖)(𝜂𝑖−3𝐷𝑖)
 (B.7) 

where we employ the property of Gamma function 𝛤(𝑧 + 1) = 𝑧𝛤(𝑧) and the restriction 

𝜂𝑖 > 3𝐷𝑖 = 3𝜍𝑖
2/2𝜃𝑖  is required. Alternatively, Equations (B.6) and (B.7) can also be derived 

from the fact that if 𝑋~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏−1) , then 𝑋−1~𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)  where 

𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏−1) denotes the gamma distribution with shape and scale parameters 𝑎 and 𝑏−1 , 

respectively, and 𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) denotes the inverse gamma distribution with shape and 

scale parameters 𝑎 and 𝑏, respectively. In our case, the stationary distribution of 𝛼𝑖(𝑡) is gamma 

with 𝑎 = 𝜂𝑖/𝐷𝑖 − 1 and 𝑏−1 = 𝐷𝑖. 

By expanding out the nominator of the equation (20), we obtain 

𝐴𝑅𝑝 = ∑
𝜃𝑖

2(𝜂𝑖−𝑋)2+δ𝑖
2(𝑋−1−1)

2
+2𝛿𝑖𝜃𝑖(𝜂𝑖−𝑋)(𝑋−1−1)

𝜎𝑖
2

𝑛
𝑖=1  (B.8) 

Using (B.5), (B.6) and (B.7), we have  

𝐸[𝜃𝑖
2(𝜂𝑖 − 𝑋)2 + δ𝑖

2(𝑋−1 − 1)2 + 2𝛿𝑖𝜃𝑖(𝜂𝑖 − 𝑋)(𝑋−1 − 1)] = 𝜃𝑖
2(𝜂𝑖

2 − 2𝜂𝑖𝐸[𝑋] + 𝐸[𝑋2]) 

+𝛿𝑖
2(𝐸[𝑋−2] − 2𝐸[𝑋−1] + 1) + 2𝜃𝑖𝛿𝑖(𝜂𝑖𝐸[𝑋−1] + 𝐸[𝑋] − 1 − 𝜂𝑖)

= 𝜃𝑖
2𝜂𝑖𝐷𝑖 +

((𝜂𝑖 − 1)2 + 6𝐷𝑖
2 + (6 − 5𝜂𝑖)𝐷𝑖)𝛿𝑖

2

(𝜂𝑖 − 2𝐷𝑖)(𝜂𝑖 − 3𝐷𝑖)
+

(4𝑑𝑖
2 + (4 − 2𝜂𝑖)𝐷𝑖)𝜃𝑖𝛿𝑖

(𝜂𝑖 − 2𝐷𝑖)
 

Plugging the above result into (B.9), we have Equation (21) and the proof is complete. 

𝐸[𝐴𝑅𝑝]

= ∑ (
𝜃𝑖

2𝜂𝑖𝐷𝑖

𝜎𝑖
2 +

((𝜂𝑖 − 1)2 + 6𝐷𝑖
2 + (6 − 5𝜂𝑖)𝐷𝑖)𝛿𝑖

2

(𝜂𝑖 − 2𝐷𝑖)(𝜂𝑖 − 3𝐷𝑖)𝜎𝑖
2 +

(4𝐷𝑖
2 + (4 − 2𝜂𝑖)𝐷𝑖)𝜃𝑖𝛿𝑖

(𝜂𝑖 − 2𝐷𝑖)𝜎𝑖
2 )

𝑛

𝑖=1
 

= ∑ (
𝜃𝑖𝜍𝑖

2

2(𝜍𝑖
2 + 𝑣𝑖

2)
+

(2(𝜂𝑖 − 1)2𝜃𝑖
2 + 3𝜍𝑖

4 + (6 − 5𝜂
𝑖
)𝜃𝑖𝜍𝑖

2)𝛿𝑖
2

(2𝜂𝑖𝜃𝑖 − 3𝜍𝑖
2)(𝜂𝑖𝜃𝑖 − 𝜍𝑖

2)(𝜍𝑖
2 + 𝑣𝑖

2)
+

(𝜍𝑖
2 + (2 − 𝜂𝑖)𝜃𝑖)𝛿𝑖𝜍𝑖

2

(𝜂𝑖𝜃𝑖 − 𝜍𝑖
2)(𝜍𝑖

2 + 𝑣𝑖
2)

)
𝑛

𝑖=1
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Table 1. An Overview of Model Parameters 

This table reports the symbols, values and the source/justification of the values of all the 

parameters used in this paper. 

 

Symbol Parameter Value Source/Justification 

𝜃𝑖 
the mean-reversion speed of the 

mispricing 𝛼𝑖(𝑡) 

[9.9%, 64.9%] Giannetti and Kahraman 

(2015) 

𝜍𝑖 the volatility of the mispricing 𝛼𝑖(𝑡) [0, 14%] Bounded by zero and 𝜎𝑖 

𝑣𝑖 the volatility of the fundamental 𝐹𝑖(𝑡) [0, 14%] Bounded by zero and 𝜎𝑖 

𝛿𝑖 
dividend yield, which is a constant 

fraction of the fundamental value 𝐹𝑖(𝑡) 

[0, 1.5%] Hartzmark and Solomon 

(2013) 

ηi 
the mean-reversion level of the 

mispricing αi(t) 

1 The literature about mean-

reverting prices 

n the number of investable securities 90 Sapp and Yan (2008) 

𝜎𝑖 
√𝜍𝑖

2 + 𝑣𝑖
2, active risk or tracking error, 

i.e. standard deviation of active return 

14% Cremers and Petajisto 

(2009) 

 

Table 2. Information Ratios When Active Risk 𝛔𝐢 = 𝟏𝟒% and No Dividends 

Table 2 reports information ratios of the optimal portfolio for different combinations of the 

mean-reverting speed θi and the volatility of mispricing ςi, when the active risk σi is fixed at 14% 

and none of the 90 independent and identical securities pays dividends. The information ratio is 

calculated as the square root of the expected appraisal ratio in equation (22) and the missing 

values are due to the restrictions of 3ςi
2/2 < θi and ςi

2 ≤ σi
2.  

                          

        Ɵ 

 ς   
9.9% 14.9% 19.9% 24.9% 29.9% 34.9% 39.9% 44.9% 49.9% 54.9% 59.9% 64.9% 

1% 0.151 0.185 0.214 0.239 0.262 0.283 0.303 0.321 0.338 0.355 0.371 0.386 

2% 0.302 0.370 0.427 0.478 0.524 0.566 0.605 0.642 0.677 0.710 0.742 0.772 

3% 0.452 0.555 0.641 0.717 0.786 0.849 0.908 0.963 1.015 1.065 1.113 1.158 

4% 0.603 0.740 0.855 0.956 1.048 1.132 1.211 1.284 1.354 1.420 1.483 1.544 

5% 0.754 0.925 1.069 1.195 1.310 1.415 1.513 1.605 1.692 1.775 1.854 1.930 

6% 0.905 1.110 1.282 1.435 1.572 1.698 1.816 1.926 2.031 2.130 2.225 2.316 

7% 1.055 1.295 1.496 1.674 1.834 1.981 2.119 2.247 2.369 2.485 2.596 2.702 

8% 1.206 1.480 1.710 1.913 2.096 2.265 2.421 2.569 2.708 2.840 2.967 3.088 

9% 1.357 1.665 1.924 2.152 2.358 2.548 2.724 2.890 3.046 3.195 3.338 3.474 

10% 1.508 1.850 2.137 2.391 2.620 2.831 3.027 3.211 3.385 3.550 3.708 3.860 

11% 1.658 2.035 2.351 2.630 2.882 3.114 3.329 3.532 3.723 3.905 4.079 4.246 

12% 1.809 2.219 2.565 2.869 3.144 3.397 3.632 3.853 4.062 4.260 4.450 4.632 

13% 1.960 2.404 2.779 3.108 3.406 3.680 3.935 4.174 4.400 4.615 4.821 5.018 

14% 2.111 2.589 2.992 3.347 3.668 3.963 4.237 4.495 4.739 4.970 5.192 5.404 
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Table 3. Information Ratios when Active Risk 𝝈𝒊 = 𝟏𝟒% and Dividends 𝜹𝒊 = 𝟏. 𝟓% 

Table 3 reports information ratios of the optimal portfolio for different combinations of the 

mean-reverting speed θi and the volatility of mispricing ςi, when the active risk σi is fixed at 14% 

and each of the 90 independent and identical securities pay fixed dividends δi = 1.5%. 
                          

        Ɵ 

 ς   
9.9% 14.9% 19.9% 24.9% 29.9% 34.9% 39.9% 44.9% 49.9% 54.9% 59.9% 64.9% 

1% 0.174 0.204 0.230 0.254 0.275 0.295 0.314 0.332 0.349 0.365 0.380 0.395 

2% 0.348 0.407 0.460 0.507 0.550 0.591 0.628 0.664 0.697 0.729 0.760 0.790 

3% 0.522 0.611 0.690 0.761 0.826 0.886 0.942 0.996 1.046 1.094 1.140 1.185 

4% 0.698 0.816 0.921 1.015 1.101 1.181 1.257 1.328 1.395 1.459 1.521 1.580 

5% 0.874 1.021 1.151 1.269 1.377 1.477 1.571 1.660 1.744 1.824 1.901 1.975 

6% 1.053 1.227 1.383 1.524 1.653 1.773 1.886 1.992 2.093 2.189 2.281 2.370 

7% 1.233 1.434 1.615 1.779 1.929 2.069 2.200 2.324 2.442 2.554 2.662 2.765 

8% 1.416 1.642 1.848 2.034 2.206 2.366 2.515 2.657 2.791 2.920 3.043 3.161 

9% 1.601 1.852 2.081 2.290 2.483 2.662 2.831 2.990 3.141 3.285 3.423 3.556 

10% 1.790 2.064 2.316 2.547 2.761 2.960 3.146 3.323 3.491 3.651 3.804 3.952 

11% 1.984 2.277 2.552 2.805 3.039 3.257 3.462 3.656 3.841 4.017 4.186 4.348 

12% 2.183 2.493 2.789 3.064 3.318 3.556 3.779 3.990 4.191 4.383 4.567 4.744 

13% 2.388 2.711 3.028 3.323 3.598 3.854 4.096 4.324 4.542 4.750 4.949 5.140 

14% 2.600 2.933 3.269 3.584 3.878 4.154 4.413 4.659 4.893 5.116 5.331 5.537 

 
Figure 1. Information Ratios when Active Risk 𝝈𝒊 = 𝟏𝟒% and No Dividends 

Figure 1 illustrates how the information ratio varies according to the changes in the mean-

reverting speed θi and the volatility of mispricing ςi, when the active risk σi is fixed at 14% and 

none of the 90 independent and identical securities pays dividends. The two subplots are 

respectively the 3-D and 2-D contours, produced under the two restrictions 3ςi
2/2 < θi and ςi

2 ≤
σi

2. The labels on the plots indicate the levels of the information ratios. 


