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ABSTRACT
The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark
matter halos such that the fifth force is negligible and general relativity is recovered within their
Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast
to e.g. chameleon screening, making it difficult to test. However, our previous studies have found
that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein
mechanism. We therefore investigate whether cosmic voids, identified as local density minima using
a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We
measure density, velocity, and screening profiles of stacked voids in cosmological N -body simulations
using both dark matter particles and dark matter halos as tracers of the density field. We find that
the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of
stacked voids show a clear deviation from ΛCDM at all radii. Voids have the potential to provide a
powerful test of gravity on cosmological scales.
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1 INTRODUCTION

The concordance cosmological model, ΛCDM, in which a
cosmological constant drives the late-time accelerated ex-
pansion of the Universe, is currently in agreement with cos-
mological observations. However, the predicted value of the
vacuum energy is many orders of magnitude larger than
the observed value of the cosmological constant – the so-
called cosmological constant problem (see, e.g., Carroll et al.
1992). Theoretical approaches to modeling the late-time ac-
celeration generally follow one of two avenues: either the
acceleration is caused by a dark energy field, which need
not have a constant energy density, or a new theory of grav-
ity is needed which modifies general relativity (GR) on large
scales. Theories which modify GR are distinguished by their
screening mechanism, which describes the transition from
small scales where GR is well-tested to large scales where
modifications result in accelerated expansion (for a detailed
review, see (Joyce et al. 2015; Koyama 2016)).

Modifications to GR generally introduce a new
scalar degree of freedom which mediates a fifth force,
and screening mechanisms suppress this fifth force on
small scales. For example, the chameleon mechanism
makes the mass of the scalar field large in high den-
sity environments (Khoury & Weltman 2004), while the
symmetron and dilaton mechanisms change the scalar
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field coupling to matter (Hinterbichler & Khoury 2010;
Brax et al. 2010). Screening also occurs if the derivative self-
interactions of the scalar field become large, which is real-
ized for k-mouflage (Babichev et al. 2009; Brax & Valageas
2014), D-BIonic (Burrage & Khoury 2014), and Vain-
shtein (Vainshtein 1972) screening mechanisms. The Vain-
shtein mechanism is particularly interesting because it ap-
pears in a large class of modified gravity theories such
as massive gravity (de Rham 2014; Koyama et al. 2011;
Sbisà et al. 2012), galileon cosmology (Chow & Khoury
2009; Silva & Koyama 2009), and the DGP braneworld
model (Dvali et al. 2000; Maartens & Koyama 2010).

In this paper, we investigate the effect of the Vainshtein
mechanism on cosmic voids. Cosmic voids are hierarchical
underdense regions of the universe marked by outflow from
void centers to nearby structures, slowly expanding as ha-
los and filaments collapse (see, e.g. Aragon-Calvo & Szalay
2013; Nadathur & Hotchkiss 2015b; Sutter et al. 2014).
Their general features can be understood theoretically
via the excursion set formalism, in a similar way to ha-
los (Sheth & van de Weygaert 2004; Jennings et al. 2013).
These theoretical models aren’t perfect: it turns out that
void boundaries do not usually correspond to regions of shell-
crossing (Nadathur & Hotchkiss 2015b; Falck & Neyrinck
2015; Achitouv et al. 2015), and the models do not ac-
count for the non-spherical nature of voids found by
watershed methods of e.g. Platen et al. (2007); Neyrinck
(2008). Nevertheless, the non-sphericity of voids is washed
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out when many voids are averaged together; the Alcock-
Paczynski test can thus be used to measure cosmological
parameters from stacked voids (Lavaux & Wandelt 2010;
Sutter et al. 2012b), and the stacked density profiles seem to
be self-similar (Hamaus et al. 2014; Ricciardelli et al. 2014;
Nadathur et al. 2015; Cautun et al. 2016).

Screening mechanisms typically involve nonlinear dy-
namics in the equation of motion for the scalar field. Thus
cosmological N -body simulations that solve for the nonlin-
ear gravitational collapse of structures are required to com-
pare these models to GR and search for observable signa-
tures; see Winther et al. (2015) for a review and compari-
son of such codes. Since screening mechanisms in modified
gravity models operate in high density regions, dark mat-
ter halos are often screened, so it can be hard to detect
deviations from GR using galaxies or clusters. Indeed, pre-
vious simulations of the Vainshtein mechanism models have
found that it is more efficient at screening dark matter halos
than other types of screening (Schmidt 2010; Li et al. 2013b;
Barreira et al. 2013, 2014; Falck et al. 2014, 2015), though
there may be signatures of these models in the velocity
field (Lam et al. 2012; Hellwing et al. 2014; Bose et al. 2017)
and higher order hierarchical amplitudes (Hellwing et al.
2017).

This makes voids a potentially fruitful tool for prob-
ing the nature of gravity and the accelerated expansion.
Indeed, it has recently been proposed that redshift-space
distortions around voids can provide precise measurements
of the growth rate of structure, thereby probing deviations
from GR (Hamaus et al. 2016; Cai et al. 2016). The excur-
sion set formalism has been extended to predict the abun-
dance of voids in chameleon and symmetron models of grav-
ity (Clampitt et al. 2013; Lam et al. 2015; Voivodic et al.
2017), and their properties have been studied in simulations
of chameleon, symmetron, and Galileon models (Li et al.
2012b; Cai et al. 2015; Zivick et al. 2015; Barreira et al.
2015; Hamaus et al. 2015; Voivodic et al. 2017). Similarly
to voids, troughs are underdense regions along the line-of-
sight in galaxy surveys (Gruen et al. 2015), and their weak
lensing signal has been studied in simulations of the normal
branch of DGP gravity (Barreira et al. 2017). This paper
presents the first study of voids in the Vainshtein mech-
anism using simulations of the normal-branch DGP model.
This has the same expansion history as the ΛCDM model so
that we can disentangle the effects of the background model
from those of the Vainshtein mechanism. Voids have also
been studied in the Cubic Galileon model, which exhibits
the Vainshtein screening mechanism, but this model suffers
from an instability in underdense regions at late times such
that the quasi-static solution ceases to exist (Barreira et al.
2015; Winther & Ferreira 2015); the nDGP model is free of
this problem.

This paper proceeds as follows. We present the basic
theory in Section 2 and describe the simulations and void
identification method in Section 3. Results are given in Sec-
tion 4; we compare the distributions of voids in GR to those
in the Vainshtein mechanism, as well as the density, fifth
force, and velocity profiles, at z = 1 and z = 0. Conclusions
are given in Section 5.

2 THEORY

2.1 Model

We consider the normal branch DGP (nDGP) braneworld
model that has exactly the same expansion history as the
ΛCDM model. Under the quasi-static approximation, the
Poisson equation and the equation for the scalar field ϕ are
given by (Koyama & Silva 2007)

∇2Ψ = ∇2ΨN +
1

2
∇2ϕ, (1)

∇2ϕ+
r2
c

3β(a)a2
[(∇2ϕ)2 − (∇i∇jϕ)(∇i∇jϕ)] =

8πGa2

3β(a)
ρδ,

(2)

where Ψ is the gravitational potential and ∇2ΨN =
4πGa2ρδ. The scalar field ϕ mediates an additional
“fifth force”. Note that the quasi-static approximation
has been shown to have a negligible effect on re-
sults (Winther & Ferreira 2015). The function β(a) is given
by

β(a) = 1 + 2Hrc

(
1 +

Ḣ

3H2

)
, (3)

where rc is the cross-over scale, which is a free parameter of
the model. Note that β is always positive, so the growth of
structure formation is enhanced in this model.

As mentioned, this model has one extra parameter, rc,
in addition to the usual cosmological parameters in the
ΛCDM model. If rc increases, the enhancement of gravity
becomes weaker, the Vainshtein mechanism operates more
efficiently, and we recover ΛCDM.

2.2 Voids

In order to obtain analytic predictions for the forces in
voids, we assume the density profile can be described
by (Hamaus et al. 2014)

δ(R′ = R/Reff) = δv
1− (R′/s1)α

1 + (R′/s2)β
. (4)

This admits an analytical formula for the mass perturbation
M(< R) = 4πρ̄m

∫ R
0
δ(x)x2dx in terms of the hypergeomet-

ric functions.
The Newtonian force is given by

dΨN

dR
=
GM(< R)

R2
. (5)

The scalar field equation in the nDGP model, Eq. (2) can
be solved analytically

dϕ

dR
=
GM(< R)

R2

4

3β
g

(
R

r∗

)
, g(x) = x3

(√
1 + x−3 − 1

)
,

(6)
where r∗ is the Vainshtein radius

r3
∗ =

16GM(< r)r2
c

9β2
. (7)

Note that r3
∗ is negative for voids thus x = R/r∗ is negative.

If x becomes smaller than −1, the inside of the square root in
g(x) becomes negative and the solution ceases to exist. This
happens in galileon models (Barreira et al. 2015), and it was
shown that this problem does not go away even we include
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Figure 1. M200 mass functions of ROCKSTAR halos at z = 1

(left panel) and z = 0 (right panel) and the ratio of nDGP to
ΛCDM mass functions (bottom panels).

the time dependence in the scalar field (Winther & Ferreira
2015). However, this problem does not occur in the nDGP
model. The condition that x > −1 is satisfied for an empty
void with δ = −1 is given by

9

8

βa3

Ωm(H0rc)2
> 1 (8)

where Ωm is the density parameter for matter and H0 is
the present day Hubble parameter. This condition is always
satisfied with β given by Eq. (3) (Winther & Ferreira 2015).

3 METHODS

3.1 Simulations

We run cosmological N -body simulations of the nDGP
model and ΛCDM using the AMR code ECOS-
MOG (Li et al. 2012a, 2013a), which is a modified gravity
version of RAMSES (Teyssier 2002). The background
cosmology is taken from WMAP9 (Hinshaw et al. 2013):
Ωm = 0.281, h = 0.697, and ns = 0.971. The simulations
have a box of length of 1024h−1 Mpc, 10243 dark matter
particles, a starting redshift of 49, and the initial conditions
were generated using MPGrafic (Prunet et al. 2008) 1.

We run two nDGP simulations with different values of
the cross-over scale and different values of σ8. These values
were chosen to match f(R) simulations with the same σ8 at
z = 0, such that nDGP2 is matched to F5 (|fR0| = 10−5)
and nDGP3 is matched to F6 (|fR0| = 10−6), thus nDGP2
deviates more strongly from ΛCDM than nDGP3. Specif-
ically, for nDGP2, H0rc = 0.75 and σ8 = 0.902, and for
nDGP3, H0rc = 4.5 and σ8 = 0.859. The ΛCDM simulation
has σ8 = 0.844. Note that these values differ from those in
our previous papers (Falck et al. 2014, 2015) because of the
difference in the background cosmology; note also that we do
not simulate nDPG1 (corresponding to F4) because of the
intense computational requirements and the observational
constraints already present (Joyce et al. 2015).

We identify halos using ROCKSTAR (Behroozi et al.

1 Available at http://www2.iap.fr/users/pichon/mpgrafic.html

2013), a phase-space halo finder. The z = 1 and z = 0
mass functions are shown in Figure 1 for ΛCDM and the
two nDGP models, and ratios of nDGP to ΛCDM mass
functions are shown in the bottom panels. At z = 1, there
are many more halos with M200 > 1014 h−1 M� in nDGP2
than ΛCDM, and slightly more large halos in nDGP3. This
difference increases at z = 0; both nDGP2 and nDGP3
have ∼ 20% more halos with M200 > 1013 h−1 M�, and
nDGP2 has over 100% more halos with masses greater than
1015 h−1 M�, though the mass functions at the highest mass
bins are likely affected by small number statistics. This be-
havior is a reflection of the fact that the growth of structure
formation is stronger in these models.

3.2 Void Identification

We use a watershed technique to identify voids in the
simulations (Platen et al. 2007), in which voids are local
density minima and void boundaries are the higher density
ridges between them. The watershed technique can be used
to identify voids given any set of discrete tracers of the
underlying density field and has been successfully applied to
define void catalogs in galaxy surveys (Sutter et al. 2012a;
Nadathur & Hotchkiss 2014; Nadathur 2016; Mao et al.
2016). We measure the density field using the Delaunay
Tessellation Field Estimator (Schaap & van de Weygaert
2000; van de Weygaert & Schaap 2009;
Cautun & van de Weygaert 2011) which constructs a
volume-weighted density at the locations of the discrete
tracers, which we take to be either the dark matter particles
or the halos identified with ROCKSTAR. The mean sepa-
ration of the density tracers determines the scale at which
local density minima can be resolved and thus the size of
the smallest voids; note that due to its adaptive nature,
DTFE is less susceptible to shot noise at low densities
than, e.g., cloud-in-cell or other grid-based measures of the
density field. For these simulations, the mean density of
dark matter particles is 1 per cubic h−1 Mpc, and for the
halos it is roughly 1.5× 10−3 per cubic h−1 Mpc.

This DTFE density field, defined either by dark mat-
ter particles or by halos, is interpolated onto a grid of
cell size 1h−1 Mpc for computational convenience and then
smoothed with a Gaussian filter of size 2h−1 Mpc to re-
duce spurious voids caused by shot noise. The watershed
algorithm then defines the void boundaries that separate lo-
cal density minima. In principle, the watershed method can
identify a hierarchy of sub-voids within larger voids, but we
do not consider sub-voids here. We require that each cell
volume is part of only one void, and boundaries must have
a density contrast of at least δ = −0.8.

Profiles are calculated by averaging quantities in spher-
ical shells around the barycenter, which is the volume-
weighted average position of the grid cells that make up the
void. For voids found using dark matter particles as tracers
of the density field, we average quantities (density, veloc-
ity, or force) of the particles, and for voids identified in the
halo distribution we measure profiles using the positions and
velocities of the halos. Thus halo-identified voids will have
profiles that are not as well resolved but are closer to what
can be measured in a galaxy survey. Bringing simulation re-
sults even closer to observations requires the use of mocks

Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stx3288/4772880
by University of Durham user
on 03 January 2018



4 Falck, et al.

Figure 2. Void volume functions at z = 1 (left panel) and z = 0

(right panel) and the ratio of nDGP to ΛCDM volume functions

(bottom panels). In the bottom panels, lines indicate voids found
using dark matter particles, and symbols indicate voids found in

the distribution of halos.

to take into account the bias of galaxy tracers of the density
field (Ricciardelli et al. 2014; Nadathur & Hotchkiss 2015a).

4 RESULTS

4.1 Void Volume Functions

In Figure 2 we show the cumulative distribution functions
of void volumes at z = 1 and z = 0, for voids found in all
models using both dark matter particles and halos as tracers
of the density field. Since halos are sparser than dark matter
particles and are biased tracers of the density field, there are
fewer voids found using halos as tracers, and these voids are
much larger (Ricciardelli et al. 2014; Nadathur & Hotchkiss
2015b). The distributions change very little from z = 1 to
z = 0, but there are more large voids at z = 0 than z = 1, as
voids slowly grow and their interiors evacuate (Sutter et al.
2014).

It is clear from the figures that there is little difference
between the distribution of voids in the ΛCDM and nDGP
simulations; in most of the volume bins the nDGP cumula-
tive volume functions remain very close to that of the ΛCDM
simulation, as seen in the ratios in the bottom panels of Fig-
ure 2. At z = 0, there are more large voids in the nDGP2
simulation than ΛCDM and nDGP3. A plausible reason for
this is that since gravity is stronger in this model, voids can
evacuate more quickly, which can prevent large voids from
being identified as several smaller voids. Note that at z = 0,
there are ∼ 50 voids (traced by dark matter particles) in
the largest volume bin of ΛCDM and nDGP3 and ∼ 150
nDGP2 voids (purple dashed line) in the same bin, suggest-
ing this excess of large voids may be significant. However,
there are fewer than 5 ΛCDM, nDGP2, and nDGP3 halo-
tracer voids in the largest volume bin; larger simulations are
needed to study in detail the differences in the populations
of very large voids. Further, we will see that this excess of
large voids has little bearing on the profiles of stacked voids
measured in the next sections.

Void volumes are often described in terms of their ef-
fective radius, Reff , defined as the radius of a sphere having

the same volume as the void, Reff= (3V/4π)1/3, even though
the voids themselves can be non-spherical. For all models
and at both redshifts, the distributions of void sizes peak
at ∼ 8h−1 Mpc for voids found using dark matter particles
as tracers and at ∼ 15h−1 Mpc for voids found using halo
tracers. In what follows, we split the voids into two samples
according to these median values in order to take into ac-
count the physical and dynamical differences between small
and large voids. In our simulations, there are ∼ 20000 small
and ∼ 19000 large voids using dark matter particle tracers,
and there are ∼ 8000 small and ∼ 15000 large voids using
halo tracers.

4.2 Density profiles

We plot the density profiles of stacked voids found using dark
matter particles as tracers at z = 1 and z = 0 in Figure 3.
There is a clear difference between the profiles of large and
small voids; the small voids are shallower and have a more
compensated profile, since these voids tend to live in dense
environments, while the larger voids are deeper and their
profiles have a less prominent density ridge at the bound-
ary (Sheth & van de Weygaert 2004; Hamaus et al. 2014;
Cautun et al. 2016). The difference between void density
profiles in ΛCDM and the two nDGP simulations are not
as clear as the difference between the profiles of small and
large voids, so we also plot the ratios of the nDGP to ΛCDM
density profiles in the bottom panels of Figure 3, where er-
ror bars represent the standard deviation of all void profiles
contributing to the stack and are shown for ΛCDM only.
The model with the strongest deviation from GR, nDGP2,
has a deeper stacked profile and a correspondingly slightly
more pronounced ridge, but these differences are less than
5% at z = 1. From z = 1 (left panel) to z = 0 (right panel),
the density profiles become emptier in the centers and larger
at the void edges, as matter continues to evacuate from void
centers and pile up at void boundaries, and the difference
between the nDGP2 and ΛCDM profile centers increases to
10%.

The stacked density profiles are fit to a 5-parameter an-
alytic model (see Equation 4), and these fits are shown as
solid and dashed lines for the small and large void samples,
respectively, in the upper panels only. These analytical fits
are used to calculate the force profiles in the following sec-
tions.

When halos are used as tracers of the density field, both
to define the voids and to measure the profiles, the stacked
density profiles again show much more dependence on void
radius than on the gravity model, as shown in Figure 4 for
z = 1. Compared to the voids found in the dark matter,
these voids are more dense both in the void centers and
the void edges, especially the sample of “small” voids (which
are larger than those found using dark matter particles).
There is more of a difference between the small and large
void density profiles, likely because halos are biased trac-
ers of the density field; we note that measuring profiles in
galaxy surveys would result in somewhat different profiles
due to galaxy bias (Nadathur & Hotchkiss 2015a). The ratio
of nDGP to ΛCDM profiles are again shown in the bottom
panel of Figure 4; since there are fewer voids, the error bars
are much larger than for voids found using dark matter par-
ticles, but the general trend appears to be the same, with the

Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stx3288/4772880
by University of Durham user
on 03 January 2018



Vainshtein Voids 5

Figure 3. Mean density profiles of voids found in the dark matter particle distribution at z = 1 (left panel) and z = 0 (right panel).

In the upper panels, symbols give results from simulations, and the lines are the best-fit analytic profiles using the fitting function of
Equation 4. In the bottom panel, ratios of nDGP to ΛCDM profiles from the simulations are given as solid and dashed lines, and (very

small) error bars denoting the error on the mean are shown for ΛCDM only.

Figure 4. Density profiles: the same as Figure 3 but for voids

found using halo tracers at z = 1. The error bars, again shown

for ΛCDM only, are much larger because there are fewer voids
found in the halo distribution, and for the same reason the error

bars are larger for the set of small voids (both are shown).

nDGP stacked profiles being emptier than in ΛCDM. Emp-
tier voids are also found in studies of f(R) and Galileon
models (Cai et al. 2015; Barreira et al. 2015), thus they are
a common feature of models in which a fifth force enhances
gravity, but Figure 4 shows that it will be difficult to use
density profiles of voids to test Vainshtein screening.

4.3 Screening profiles

In dark matter halos, the fifth force is suppressed within
the Vainshtein radius by the Vainshtein screening mecha-
nism. The Vainshtein mechanism has been shown to be very
efficient at screening halos regardless of their mass, the den-
sity of their local environment, or their location within the
cosmic web (Schmidt 2010; Falck et al. 2014, 2015). How-
ever, due to the dimensional dependence of the nonlinear
equations describing Vainshtein screening (Bloomfield et al.
2015), the Vainshtein mechanism exhibits a shape depen-
dence and does not work for objects that are not collaps-
ing along three dimensions such as voids, walls, and fila-
ments (Falck et al. 2014). When the Vainshtein mechanism
is not working, the ratio of the fifth force to the Newtonian
force,

∆M =
1

2

dϕ/dr

dΨN/dr
, (9)

has the linear theory value of ∆M = 1/3β – this is where
we expect to find the largest signals for theories which con-
tain the Vainshtein screening mechanism. In this section, we
measure the radial profiles of the fifth force and Newtonian
force of voids found in the dark matter distribution, as well
as their ratio, using the forces saved during the simulation
run for each dark matter particle. Note that this means if
particles are moving away from void centers, they will have
positive radial forces, as expected for underdense, expanding
voids.

Figure 5 shows the z = 1 and z = 0 stacked force pro-
files for the voids in the nDGP2 simulation. The larger voids
(triangles) have profiles that increase from the void center
and gradually return to zero at large radii, while the smaller
voids (circles) have radial force profiles that go to zero at the
effective radius and negative at larger radii as the voids are
squeezed by the collapse of their local neighborhood, creat-
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Figure 5. Radial profiles of the fifth force (green) and Newtonian force (black) of voids found using dark matter particles for nDGP2 at

z = 1 (left panel) and z = 0 (right panel). Forces are in units of cH0. Symbols give results from the simulation, while solid and dashed

lines are analytic predictions using the density profile fits for small and large voids, respectively. Bottom panels show profiles of the ratio
of the fifth to Newtonian force, ∆M .

ing the compensated density profiles shown in the previous
section. The fifth force profiles show a similar behavior to the
Newtonian force, though with a much smaller magnitude.
Analytic predictions for the fifth and Newtonian forces are
calculated using the fits to the density profiles and shown as
solid and dashed lines for small and large voids, respectively.

The force ratios, ∆M , are shown in the bottom panels
of Figure 5. They are constant with radius and have values
very near the linear theory prediction of 0.127 at z = 1 and
0.145 at z = 0, for both the large and small void samples.
Note that the analytic ∆M profiles overpredict the value
measured from simulations by a constant amount because
they are calculated from the stacked density profiles: aver-
aging the matter field suppresses higher density peaks and a
smoother and lower density void profile is obtained, as dis-
cussed in Barreira et al. (2015). The fifth force derived from
this lower density profile is thus higher, since the screening
is underestimated. The analytical calculation that uses this
profile gives a fifth force that is stronger in magnitude than
that obtained by averaging the force field directly.

Figure 5 shows that, unlike halos, cosmic voids are com-
pletely unscreened in the Vainshtein mechanism. Even go-
ing out to twice the void effective radii, the stacked pro-
files of voids remain unscreened. This is likely because most
of the density ridges that make up void boundaries can be
classified dynamically as filament, wall, and void compo-
nents of the cosmic web (Falck & Neyrinck 2015), which are
unscreened (Falck et al. 2014), instead of halos, which are
screened but occupy a very small volume.

For voids found using halos as tracers, however, more of
the density ridges that make up void boundaries can be ex-
pected to contain screened halos. One might expect this to
introduce a radial dependence to the screening profiles, such
that screening is suppressed near void boundaries, but we
will see in the next section that no such radial dependence

is found for velocity dispersion profiles of halo-tracer voids,
which trace the fifth force. This is because, though dark mat-
ter halos themselves are screened in the Vainshtein mecha-
nism, screened objects can still feel the fifth force of external
fields (Hui et al. 2009; Falck et al. 2014), so screened halos
that trace voids can still be influenced by the dynamics of
external fields if their wavelengths are long compared to the
Vainshtein radius of the halos.

Figure 6 shows the force profiles from the nDGP3 sim-
ulation at z = 1 and z = 0. They show the same behavior
as in nDGP2, but the fifth force is further suppressed in
this model due to the larger value of rc. The ratios in the
bottom panel are again constant with radius, such that the
voids are completely unscreened, and agree well with the
analytic prediction; the values are close to the linear theory
values of 0.0314 at z = 1 and 0.0382 at z = 0. Though this rc
parameter value produces small differences with respect to
ΛCDM, it is clear the Vainshtein mechanism is not working
at all in cosmic voids, so this could be one of the best places
to look to test a large class of modified gravity models.

4.4 Velocity profiles

Next we investigate how the velocity profiles trace the fifth
forces for voids found using both dark matter particles and
halos as tracers of the density field. We measure stacked
radial velocity, tangential velocity, and tangential velocity
dispersion profiles of cosmic voids and the difference between
these profiles in nDGP and ΛCDM simulations.

4.4.1 Radial velocity

Figure 7 shows radial velocity profiles at z = 1 and z = 0
for voids found using dark matter particles. As with the
radial forces, a positive radial velocity points away from the
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Figure 6. Force profiles: the same as Figure 5 but for the nDGP3 simulation, in which the magnitude of the fifth force is much smaller.

Figure 7. Radial velocity profiles for voids found using dark matter particles at z = 1 (left panel) and z = 0 (right panel). The difference
between the nDGP and ΛCDM profiles are given in the bottom panels. Error bars (shown for ΛCDM only) represent the standard

deviation of all profiles in the stack.

void centers. The stacked profiles for the smaller sample of
voids reach zero at R =Reff and are negative beyond the
void effective radius, as matter flows both out from the void
and in toward the local density peak at the void boundary.
Radial velocity profiles for the larger voids, however, level off
to around zero and don’t experience significant infall toward
their boundary, and they have a larger magnitude of outflow.
The radial velocities of Vainshtein voids are enhanced with
respect to ΛCDM voids, with both larger outflow from void
centers and larger inflow.

We can understand these behaviours qualitatively using
the linear theory (Hamaus et al. 2014). In the linear theory,

the radial velocity is given by

vr(r) = −1

3
afHr∆(r) ∝ afFN (r) (10)

where ∆(r) is the integrated density contrast and f is the
linear growth rate. As we can see from Figures 5 and 6, the
radial velocity profiles trace the Newtonian force profile. The
linear growth rate is enhanced in nDGP, thus it has larger
radial velocities. However, this difference is very small, on
the order of a few km/s.

The stacked radial velocity profiles of z = 1 voids found
using halo tracers are shown in Figure 8. In contrast to the
voids found using dark matter particles, the small voids have
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Figure 8. Radial velocity profiles: the same as Figure 7 but for

voids found in the halo distribution at z = 1.

very little outfall and are dominated by infall, even within
the effective radius. This is in line with the higher central
densities of these voids seen in Figure 4 – since halos are local
peaks in the density field, they are not good tracers of small
underdense regions. Though the difference between nDGP
and ΛCDM radial velocity profiles is statistically significant
for the nDGP2 model, as seen in the bottom panel of Fig-
ure 8, the differences are still very small, on the order of a
few km/s, making radial velocities a potentially challenging
probe of Vainshtein screening.

4.4.2 Tangential velocity

Stacked profiles of the tangential velocity for z = 1 and z = 0
are shown in Figure 9. In contrast to the radial velocity pro-
files, there is little difference between profiles for the large
and small voids and a clear offset with respect to ΛCDM
for the two nDGP models. The weaker dependence of the
tangential velocity profiles on void size is a reflection of the
fact that the dynamics of large vs. small voids is captured
by their outflow from void centres and infall toward void
boundaries, not on tangential velocities. The fact that the
difference between nDGP and ΛCDM appears more obvi-
ous in tangential versus radial velocity profiles is primarily
because the tangential velocities have a much larger mag-
nitude than the velocities radial to the void centres, so the
difference between nDGP and ΛCDM, which depends on the
ratio of the fifth force to Newtonian force, is more apparent.
These ratios are given in the bottom panels of Figure 9 and
show a constant offset, independent of radius, very near the
linear theory values of the ratio of the fifth force to Newto-
nian force given in Figures 5 and 6.

The stacked tangential velocity profiles of z = 1 voids
found using halo tracers are shown in Figure 10. Similarly to
the voids found using dark matter particles as tracers of the
density field, the tangential velocities of halos around voids,

using halos as tracers to define the voids, show a clear differ-
ence between those in nDGP models and ΛCDM. The ratios
of the nDGP profiles with respect to ΛCDM are shown in
the bottom panels and again are constant with radius, with
values similar to the screening profiles. These profiles show
that voids are indeed unscreened in the Vainshtein mecha-
nism and that the velocities around these voids, independent
of radius from void centre, are excellent probes of gravity
models utilizing Vainshtein screening.

4.4.3 Velocity dispersion

Velocity dispersion profiles around dark matter halos and
moments of the pairwise velocity dispersion have been sug-
gested as probes of modified gravity in f(R) and Galileon
models (Lam et al. 2012; Hellwing et al. 2014). The disper-
sion profile around halos and clusters must be probed far into
the outer regions where the screening is no longer damping
the signal. We have seen that voids are not screened at all
by the Vainshtein mechanism, and indeed this is reflected in
the profiles of the tangential velocity dispersion, shown in
Figure 11 for voids found in the dark matter particle distri-
bution at z = 1 and z = 0. There is little difference between
profiles for the large and small samples, while the nDGP
profiles show a constant offset with respect to ΛCDM; ratios
of nDGP with respect to ΛCDM are shown in the bottom
panels. As with the tangential velocity profiles, the values
of these ratios are remarkably close to the ratios of the fifth
force to Newtonian force found in the screening profiles (Fig-
ures 5 and 6) for a given simulation and redshift.

It is interesting to note that for f(R) models of grav-
ity that experience chameleon screening, the offset of the
velocity dispersion profiles of f(R) with respect to ΛCDM
voids was not found to be constant but was smaller within
the void and increased at about the void radius (Cai et al.
2015). However, Cai et al. (2015) use a different void finder
for their study, so it is not clear whether this difference is
caused by the difference in the screening mechanisms or dif-
ferent definition of voids.

Very similar results are found when halos are used to de-
fine the voids and measure the velocity dispersion profiles,
shown in Figure 12 for z = 1. The dispersions themselves
have lower values than in voids found using dark matter par-
ticles (Figure 11), but the ratios of nDGP to ΛCDM are sim-
ilar and again closely match the screening profiles, though
the error bars on the profiles are larger because there are
fewer voids. Though there are on the order of 10,000 voids
that have been stacked to compute these profiles, a void cat-
alog of this size is within reach of current surveys (Nadathur
2016). However, in order to distinguish between ΛCDM and
a model with Vainshtein screening, the velocities would have
to be measured very well, as the differences can be ∼ 10
km/s.

5 CONCLUSION

The Vainshtein mechanism, which appears in many models
of modified gravity, is very effective at screening dark matter
halos but not the other elements of the cosmic web, including
voids (Falck et al. 2014). We have investigated the effect of
the Vainshtein mechanism on the properties of cosmic voids
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Figure 9. Tangential velocity profiles for voids found using dark matter particles at z = 1 (left panel) and z = 0 (right panel). The

ratio between the nDGP and ΛCDM profiles are given in the bottom panels. Error bars (shown for ΛCDM only) represent the standard
deviation of all profiles in the stack.

Figure 10. Tangential velocity profiles: the same as Figure 9 but

for voids found in the halo distribution at z = 1.

in cosmological N -body simulations by measuring their den-
sity, fifth force, velocity, and velocity dispersion profiles. The
voids are identified with a watershed technique, using both
dark matter particles and dark matter halos as tracers of
the density field, at z = 1 and z = 0.

The density profiles of stacked voids show that Vain-
shtein voids are emptier in the centres compared to voids in
ΛCDM, similarly to what was found for f(R) and Galilieon
voids (Cai et al. 2015; Barreira et al. 2015). At z = 1, Vain-
shtein voids have ∼ 5%-1% deeper void centers, depending

on the strength of the modification to gravity, and the dif-
ference with respect to ΛCDM levels off at the effective void
radius. These differences in void centers increase to ∼ 10%-
2% at z = 0. In contrast to the density profiles, the fifth force
profiles show a constant force ratio at all radii, with a value
that is at the level of the linear theory value. Thus Vainshtein
voids are unscreened, independent of void radius, out to as
far as twice the void effective radius. This holds for voids
found both using dark matter particles and halos as tracers
of the density field. Both the density and fifth force profiles
showed similar results for the two sets of large and small
voids: even though many small voids are likely in dense en-
vironments, i.e. voids-in-clouds (Sheth & van de Weygaert
2004), these overdense ‘clouds’ are not collapsing halos and
thus Vainshtein screening is not triggered (Falck et al. 2014).

The radial velocities of Vainshtein voids are enhanced
with respect to ΛCDM voids, with both larger outflow from
void centres and larger inflow, especially for small voids.
However, the magnitude of this difference is very small, on
the order of a few km/s for both z = 1 and z = 0. On
the other hand, tangential velocity and velocity dispersion
profiles show a clear offset between Vainshtein and ΛCDM
voids. The ratios between Vainshtein and ΛCDM tangential
velocity and velocity dispersion profiles show a constant off-
set as a function of void radius, with values that are very
close to the linear theory values of the fifth force to Newto-
nian force ratios. This is true at both z = 1 and z = 0, using
both dark matter particles and halos as tracers to define the
voids, though the statistical error is increased for halo-tracer
voids because there are fewer of these voids. This suggests
that tangential velocities of voids are excellent tracers of the
enhanced fifth force in models of gravity that exhibit the
Vainshtein screening mechanism.

Observing this signature, which is tangential to the void
centers, would require measuring the velocity dispersion of
galaxies on the edges of voids with respect to our line-of-
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Figure 11. Tangential velocity dispersion profiles for voids found using dark matter particles at z = 1 (left panel) and z = 0 (right

panel). The ratio between the nDGP and ΛCDM profiles are given in the bottom panels. Error bars (shown for ΛCDM only) represent
the standard deviation of all profiles in the stack.

Figure 12. Tangential velocity dispersion profiles: the same as

Figure 11 but for voids found using halo tracers at z = 1.

sight, which is where most void tracers should be anyway;
however, a full accounting of this effect would need to take
into account the effect of redshift space distortions (see, e.g.
Hamaus et al. 2016; Cai et al. 2016; Hawken et al. 2016).
Further, void catalogs derived from surveys use galaxies as
tracers of the density field, which are more highly biased and
sparser tracers than halos, leading to a smaller sample of
identified voids with different size distributions than those
found using dark matter (Nadathur & Hotchkiss 2015a).
However, since we have shown Vainshtein voids to be com-

pletely unscreened for all void sizes, this will primarily affect
that statistical significance of the signal. Thus, the stacked
tangential velocity profiles of a large sample of voids is a
promising signature of Vainshtein models of gravity.
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