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a b s t r a c t

Policy-makers need to be confident that decisions based on the outputs of energy system models will
be robust in the real-world. To make robust decisions it is critical that the consequences of uncertainty
in model outputs are assessed. This paper presents statistical methodology for quantifying uncertainty
associated with the output of a computer model of the long-term GB electricity supply. The output of the
computer model studied is the projection of wholesale electricity prices from 2016 to 2030. The effect
on wholesale prices of both uncertainty in input parameters and structural discrepancy is modelled. A
probability distribution is used to model uncertainty over four inputs of the model: gas price, demand,
EU ETS price and future offshore deployment. Estimates of the structural discrepancy introduced by the
use of smoothed gas price projections and assuming that coal prices out to 2030 are known are obtained
from experimentation with the computer model. A statistical model, known as an emulator, is fitted to a
set of computer model evaluations and used to model uncertainty in the output of the computer model
at inputs that have not been tested. The emulator is combined with the probability distribution over the
inputs and the estimate of structural discrepancy to make an assessment of the overall uncertainty in the
wholesale electricity price projections. A sensitivity analysis is also performed to investigate the effect of
each of the four inputs on the trajectory of wholesale electricity prices.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computer models are widely used to help study the behaviour
of energy systems and to make decisions about these systems
(e.g. see [1] and [2]). Computer models generally combine a set
of uncertain input assumptions with an approximation of some
part of an energy system to give some output of interest. Decision-
makers need confidence that decisions made on the basis of this
model output will be robust in the real-world, rather than within
the computer model. This distinction makes it critical to study the
uncertainty in how the output of the computermodel relates to the
real energy system.Without assessing uncertainty inmodel output
it is not possible to draw conclusions based on model output that
relate to the real-world. Uncertainties that should be considered to
make this link include: parametric uncertainty, which stems from
lack of knowledge about which input parameters to use, and struc-
tural discrepancy, which relates to the imperfect approximation
of the system. This paper presents methodology for quantifying
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uncertainty so that real-world decisions that are reliant on com-
puter model output can be based on a more complete picture of
the uncertainties associated with this output.

The computer model studied in this paper is a long-termmodel
of the future Great Britain (GB) electricity supply. This model takes
inputs such as projected future demand, future fossil fuel prices
and the costs of future technology and uses these assumptions
to model investment in generation and electricity supply in GB.
Outputs from the model are wide ranging and include future
wholesale electricity prices, future generation mix and emissions.
In this paper one particular aspect of the modelling is studied,
namely obtaining projections of wholesale electricity prices out
to 2030. Uncertainty in these projections is of interest to policy-
makers because of the impact that electricity prices have on other
aspects of an energy system, such as on demand for electricity
and on future investment (e.g. see [3]). In GB, wholesale electricity
prices are particularly of interest because of political concerns
about the effect of high electricity prices ondomestic and industrial
consumers [4].

The computer model estimates wholesale electricity prices by
comparing daily load curves on sample days (net of wind gener-
ation, interconnection, storage and reserve requirements) to the
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generation merit order, accounting for increased prices above the
marginal cost at times of short supply. Thismerit order is estimated
using assumptions about the short term costs for each plant in
the system. The future projections depend on a large number of
uncertain model inputs. Four of these are focused on: gas prices,
demand, European Union Emissions Trading System (EU ETS) price
and offshore wind deployment. These inputs were selected after
discussion withmodel developers as being inputs whichmay have
a large impact on wholesale electricity prices, as well as being
associated with a high level of uncertainty. Confidentiality issues
prevent further details about the model being discussed here but
this does not affect the validity of this study, which focuses on the
assessment of uncertainty in model outputs, and not on technical
modelling details.

When assessing uncertainty for wholesale electricity price pro-
jections, one consideration is the extent to which uncertainty in
the four selected input assumptions affects the wholesale price
projections. An assessment of the overall uncertainty in wholesale
price projections due to input uncertainty as well as the effect that
individual inputs have on the wholesale price projections will be
made. However, even if the true values of the four input assump-
tions were known and the model was run at these values, there
would still likely be some error, or structural discrepancy, in the
price projections. A further aspect of this study therefore considers
the quantification of this structural discrepancy. In particular, two
possible sources of structural discrepancy are considered. The first
is the use of a smoothed time-series of future gas prices as an input
to the model, when in reality gas prices are volatile. The second
is the effect that uncertainty associated with future coal prices
(which are held as a fixed time series in this study) has on the
wholesale price projections.

A major practical difficulty associated with the study of uncer-
tainty in computer models is that these models can take a long
time to run. The model studied in this paper takes around one
hour to perform one model evaluation. Traditional Monte Carlo
(MC) simulation involves drawing many inputs from a probability
distribution (used to represent uncertainty in these inputs) and
running the computer model at every input drawn. When models
are slow to evaluate, this process is infeasible because it is not pos-
sible to run the model at enough inputs to get a complete picture
of uncertainty over the input space. To resolve this difficulty, a
statisticalmodel (knownas an emulator) is fitted to a small number
of model evaluations. A computer model can be thought of as a
function f(·), taking some vector of inputs x and returning some
vector of outputs f(x). An emulator specifies the uncertainty in
f(x) for any input x. Thus, even for inputs that have not been run,
an approximation of the model output at that input (given by the
mean of the emulator) and the error in this approximation (given
by the standard deviation of the emulator) can be obtained. Emu-
lation makes it possible to assess uncertainty when the number of
model evaluations is limited, whilst also quantifying the additional
uncertainty arising from this sparse coverage of the input space.

This paper uses emulation and a model for structural discrep-
ancy to assess uncertainty in projections of the wholesale elec-
tricity price obtained using a computer model. The steps taken
are applicable to a wide range of applied problems in energy
systems modelling. Any modelling study which uses a slow-to-
run computer model to obtain results and has uncertain inputs
and/or structural discrepancy could benefit from the methodology
described here. This paper focuses on amodel that is used to obtain
long-term projections. Examples of similar computer modelling
studies that could benefit from the methodology include those
associated with the TIMES/MARKAL family, PRIMES and ESME
(see [2] for a summary of the major UK energy models).

Emulation has previously been used to assess uncertainty in
the output of energy system models in [5] and [6]. This paper

extends [5] and [6] with three key contributions. The first is that
Bayes linear methods are used to fit the emulator. As with a
conventional Bayesian analysis, Bayes linear methods have the
advantage that expert judgement can be incorporatedwhen fitting
the emulator, but Bayes linear fitting uses only linear algebra rather
than time-consuming Markov Chain Monte Carlo (MCMC). The
second contribution is that computer model experimentation is
used to assess structural discrepancy. Using experimentation as
demonstrated in this paper is particularly useful in the absence
of historical data, or where historical data are not thought to be
representative of the future behaviour of a system. More details
on these two points are given in Section 2. The third contribution
is that emulation is demonstrated on a real-world policy problem,
that of assessing uncertainty in projections of wholesale electricity
prices.

The structure of the rest of this paper is as follows. In Section 2
existing methods for assessing uncertainty in energy models are
reviewed. In Section 3, the process for the selection of model
evaluations to run is described. In Section 4, an emulator is fitted
to these model evaluations. In Section 5, results from the study on
structural discrepancy are given. Finally, in Section 6, the emulator
in combination with uncertainty specifications for structural dis-
crepancy and parametric uncertainty is used to study uncertainty
in wholesale electricity price projections.

2. Literature review

In energy systems modelling, the standard technique for as-
sessing the consequences of input uncertainty is to run a scenario
analysis, considering model outputs for a small selection of differ-
ent future scenarios, without considering the relative probabilities
of these scenarios [7–9]. There are several disadvantages when
using this approach to assess uncertainty in model output. One
disadvantage is that only a small set of scenarios are tested, and
so the full range of possible inputs is not explored. It is unlikely
that any single scenario will occur in practice, and so testing only a
small number of scenarios gives an unrealistic view of the possible
range of outputs. A study in [10] highlights the importance of this
issue by comparing historic demand scenarios to observed demand
in theUK, concluding that the demand scenarios considereddidnot
capture the observed behaviour of UK demand. Another disadvan-
tage is that a scenario-based analysis cannot be used to estimate
statistics such as the mean and variance of the model output. To
estimate statistics such as these, an assessment of uncertainty in
model inputs must be given and combined with computer model
runs (using e.g. Monte Carlo simulation). Without a clear and
quantitative specification of uncertainty in model output, it is very
difficult to make good decisions using computer models because
the relative probabilities of different possible model outputs are
not known.

Using a scenario analysis to investigate the effect on model
output of varying a single input of interest or a set of inputs of
interest (i.e. a sensitivity analysis) can also be problematic. Firstly,
it is common for scenario analyses to focus only on sensitivity to a
single input and the effect of interactions between inputs is not
considered [11]. This is problematic when the effect of varying
an input is different as other inputs vary. Secondly, a sensitivity
analysis is usually carried out by performing several model runs,
varying some input of interest in each one whilst keeping all other
inputs fixed at some estimated value. The variation in output as
this input of interest is varied is used to assess the sensitivity of the
model output to the input of interest. In the real-world, the inputs
held fixed are usually uncertain and this uncertainty should be
accounted for to get an accurate view of the effect onmodel output
of varying any given parameter. To account for this uncertainty
fully it is necessary to probabilistically specify the uncertainty over
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the inputs held fixed and to compute the impact of this uncertainty
on themodel outputwhenperforming a sensitivity analysis (e.g. by
using Monte Carlo sampling combined with runs of the computer
model).

In [11], probabilities are attached to scenarios in a stochastic
optimisation to investigate the effect of mid-term uncertainty
on short-term decisions in a two-stage stochastic version of UK-
MARKAL. In [12] a method is described for eliciting these proba-
bilities. Probabilistic scenario-based analyses have also been used
to study uncertainty in multi-stage problems (e.g. [13] and [14]).
Whilst these methods incorporate probabilities alongside scenar-
ios, they still restrict consideration to a small number of scenarios
and so do not give a full picture of output uncertainty. Tradi-
tional Monte Carlo simulation can be used in combination with a
probability distribution over the input parameters of a computer
model to give a full picture of uncertainties in the outputs of a
computer model (e.g. [15,16]), but for models which take even a
few minutes to run it is usually not possible to perform enough
computer model runs to obtain a robust and accurate assessment
of uncertainty in model outputs. Monte Carlo simulation can be
combined with scenario-reduction techniques (e.g. [17]) to over-
come this problem, but the effectiveness of this approach is reliant
on an assumption that the reduced scenario space will adequately
capture the output uncertainty. The extra uncertainty arising from
this assumption is rarely considered.

The methods described above are all used to assess the impact
of input uncertainty on the outputs of a computer model. The
impact of structural discrepancy is a key part in linking the model
and the real-world but it is rarely considered in the energy system
planning literature. One example where the importance of this
source of uncertainty was highlighted is in [18], where model
output is compared across a variety of different energy planning
models. Another example is in [19], where the impact of structural
discrepancy is assessed by testing the stability of the solution of an
optimisation routine to modelling assumptions.

Rather than a scenario-based approach, this paper uses emula-
tion in combination with Monte Carlo simulation and a statistical
model for structural discrepancy to assess uncertainty in computer
model outputs. The quantification of uncertainty in computer
models using emulation for a variety of different non-energy ap-
plications is described in [20–23] and [24]. There are few examples
of the use of emulation in energy systems modelling. In [6] an
emulator of a transmission costs model is used to make decisions
about transmission network expansion. Uncertainty in three input
parameters is accounted for in this decision making process but
there is no consideration of structural discrepancy. In [5] emulation
is used to calibrate a generation investment model. Both input
uncertainty and structural discrepancy are modelled. Structural
discrepancy is estimated by training a statistical model using
historical data. In real studies, there may be no historical data
available to fit a model for structural discrepancy, or any available
historical data may not be relevant to future projections. For the
example in this paper, the computer model was only set up to run
for future years, so although historic wholesale electricity prices
were available, it was not possible to compare this historic data
to computer model runs to estimate structural discrepancy. We
instead used experimentation to investigate the possible impact
of structural discrepancy on future projections, a methodology
that can be used in the absence of relevant historical data, or in
combination with any available data.

Both [6] and [5] use Gaussian Processes to emulate the com-
puter models studied. In [5], the Gaussian Process is fitted using
Bayesian updating, with Markov Chain Monte Carlo (MCMC) used
to update the prior distributions of any unknown parameters with
training data. These prior distributions are used to describe un-
certainty in the parameters of the emulator before any computer

model runs have been performed. This Bayesian approach of up-
dating prior distributions has the benefit that expert knowledge
about the computer model incorporated in the prior distributions
can be combined with data from computer model runs. There are
two disadvantages to the Gaussian Process approach described
in [5]. The first is that full probability distributions must be spec-
ified as prior distributions for all unknown parameters. This is
not an easy task for complicated statistical models with many
parameters and so many studies are forced to resort to using
standard prior distributions without clear justification. As prior
distributions can impact results (especially if few computer model
runs are possible), it is important to have prior distributions that
properly reflect our uncertainty about the unknown parameters.
For more details on the difficulties of prior selection, see [25].
The second disadvantage is that MCMC routines can be difficult to
implement and may take time to converge. This paper uses Bayes
linear methods [26] to fit the emulator to avoid these problems.
Bayes linear methods are still Bayesian in nature, and hence re-
tain the ability to update prior information with computer model
runs, but require only prior means and variances to be specified
for unknown quantities. By using only means and variances, the
burden of specifying full probability distributions for all unknown
quantities is avoided. Another benefit is that the computations for
fitting the emulator are reduced to simple linear algebra and there
is no need to use MCMC. Without the need for MCMC, there is no
need to assess convergence of the MCMC algorithm and the fitting
of the emulator can be done much more quickly.

This paper demonstrates the use of emulation combined with
a statistical model for structural discrepancy for overcoming the
deficiencies of a scenario based analysis as described above. By
using an emulator in combination with Monte Carlo simulation
and a probabilistic specification of uncertainty over the computer
model inputs a full picture of the impact of input uncertainty can be
assessed. As an emulator is quick to evaluate, scenario-reduction
techniques are not required. The uncertainty that arises because
limited computer model runs are available is quantified using
the emulator and incorporated into the uncertainty assessment.
The emulator is combined with a statistical model for structural
discrepancy, the parameters of which are estimated by experi-
menting with computer model parameters that are usually set at
fixed values. Without a full picture of the uncertainties associated
with an energy model it is not possible to make good decisions
based on the model output. This paper describes methodology for
quantifying these uncertainties in models which are slow to run,
and demonstrates this methodology on a widely used model for
projecting energy prices.

3. Experimental design

3.1. Parametrisation of input parameters

The model inputs studied were gas price, demand, EU ETS price
and offshore wind deployment. All other inputs to the computer
model were set to a central scenario chosen by themodel develop-
ers. We chose to focus on uncertainty arising from these four input
assumptions as theywere deemedby themodel developers to be of
most interest to policy-makers, to have a large impact onwholesale
electricity prices and to be associatedwith substantial uncertainty.
The impact of these inputs on wholesale electricity prices in GB
is discussed in [27]. Uncertainty in the EU ETS price and offshore
wind deployment largely arises from uncertainty about future
policy,whereas uncertainty in gas price and demand can arise from
economic conditions, policy, global political stability and weather
conditions. Themethods discussed here focus on fourmodel inputs
but can be extended in principle to a larger input space. With a
larger input spacemoremodel evaluationswill be needed to fit the
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Fig. 1. Central, high (dashed) and low (dashed) demand scenarios in black, parametrisation (possible model inputs) in grey, for gas price (left hand side) and demand (right
hand side).

Fig. 2. LHS—central (solid), low (dashed) and high (dashed) scenarios for EU ETS price in black, parametrisation (possible model inputs) in grey. RHS—carbon price floor
corresponding to these EU ETS price assumptions.

emulator but the extent of the increase in requirement depends
on the sensitivity of the outputs of the computer model to each of
the inputs. It is likely that after an initial analysis, some inputs will
be found to have little effect on the outputs and it will therefore
be possible to exclude them from further consideration. In [28],
emulation for input spaces of dimension 50 are discussed and there
are examples in the literature of emulators designed for around
twenty input parameters (e.g. [24,29]). For very large input spaces,
uncertainty arising from any inputs not included in the emulator
can be included as an extra error term in the uncertainty analysis
(aswe demonstrate for coal price in the following section). The size
of this extra error term will determine whether any extra investi-
gation into the inputs not included in the emulator is required.

Gas price, demand and EU ETS price take the form of an annual
average time series from 2010 to 2030. For offshore wind deploy-
ment the model inputs consist of a list of the plants to be deployed
in each year from 2016, along with the capacity of each plant
(where this deployment relates to future contract for difference
auctions [30]). For each input, low, central and high assumptions
were available from the model developers. For gas price and EU
ETS price, the inputs were known up to and including 2015. For
demand, inputs were known up to and including 2014.

As described above, each of the four model inputs is multi-
variate, so there were a large number of individual parameters
to consider when forming the input assumptions. Given the time
constraints of the project, it was necessary to reduce the number of
parameters studied. Each model input (gas price, demand, EU ETS
price and offshore wind deployment) was therefore represented
by one parameter: a shift away from the central projection for
each input. For all inputs the extent of the shift from the central

projection in each year was determined using the high and low
scenarios. A shift of +1 from the central projection corresponds
to the high scenario. A shift of −1 corresponds to the low scenario.
Positive shifts interpolate between the high and central scenarios
whereas negative shifts interpolate between the central and low
scenarios.

For offshore wind, the central, high and low scenarios consist
of the total capacity of offshore wind that will be deployed in
future contract for difference auctions. Any offshore wind plants
that had already been contracted at the time of analysis were not
treated as uncertain. For a given shift parameter, it was assumed
that the same number of offshore wind plants would be deployed
over the period of interest, but the size of each deployed plant was
proportionately adjusted according to the shift parameter. This
assumption was made because the aim was to study the effect of
variation in the total future capacity of offshore wind rather than
the effect of changes in the total number of deployed plants.

The carbon price floor is a minimum price for carbon emis-
sions, currently set as the EU ETS price plus some government
determined carbon price support which is known to 2020/21.
Dependence of the carbon price floor on the EU ETS price was
incorporated into the input assumptions by assuming that the
carbon price floor in 2020/21 will increase in line with an assumed
Retail Price Inflation (RPI) for all years post 2020/21, unless the
carbon price floor is less than the EU ETS price in which case the
carbon price floor will be set to the EU ETS price.

Figs. 1–3 show graphically the effect of the parametrisations
described above. The y-axis labels on these plots and on other
plots in this paper have been removed to protect the potential
sensitivity of the data. For each plot in Figs. 1–3, the grey lines
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Fig. 3. Total deployment of offshore wind generation in each year. Central (solid),
low (dashed) and high (dashed) scenarios for EU ETS price in black, parametrisation
(possible model inputs) in grey.

show possible parametrisations of the model input assumptions.
In Fig. 3, the deployed wind plants have been aggregated by the
year in which it is assumed they will become operational. The
ranges of shift parameters tested were: gas price, [−1.5, 1.5]; EU
ETS price, [−1, 1.2]; demand [−1.2, 1.2] and offshore deployment
[−1.1, 1.1]. The increased range for gas priceswas chosen to reflect
that model developers thought gas price was the most influential
input assumption. The EU ETS price was capped below at a shift
parameter of −1 as shift parameters smaller than this led to nega-
tive prices. All other input assumptions in the model were taken
to be fixed at the current central estimates used by the model
developers.

The effect of parametrising the inputs in this way is that it will
not be possible to obtain an emulator prediction for any demand,
gas price, EUETSprice or offshorewinddeployment projection that
cannot be represented as a shift parameter as described above. If it
is possible to approximate the input with some shift parameter,
then this approximation can be used with the emulator, but an
additional error (that of uncertainty in the parametrisation) will
be introduced. In Section 5, the effect on wholesale prices of devi-
ations from the gas price parametrisation will be considered.

3.2. Data collection

Three designs (or sets of model evaluations) were set up over
the four shift parameters. The first two designs were used for
fitting and validating the emulator. The third design was used to
assess structural discrepancy. In each design, the values to run for
the four input parameters were selected using a maximin Latin
hypercube design (see [31] for details and [32] for the R package
used to select the design). A Latin hypercube design aims to select
model evaluations that are space-filling, rather than focusing the
model evaluations on regions of particular interest. This designwas
chosen so that the emulator could be combined with a wide range
of assumptions relating to the probability distribution chosen to
represent uncertainty in the inputs.

Brief descriptions of the three designs are given below:

• Design 1: 150 model evaluations to use for fitting the emu-
lator.

• Design 2:60model evaluations to use as a test set to validate
the emulator.

• Design 3: four sets of 20 model evaluations, used for as-
sessing structural discrepancy. These four sets of model
evaluations consist of:

– Design 3a: 20 model evaluations with the standard
parametrisations used for the first and second designs.

– Design 3b: the 20model evaluations used in design 3a,
but with volatility of 2 sin(π/2 + (year − 2015)π/2)
added to each year of the gas price assumption. Fur-
ther discussion of this volatility is given in Section 5.

– Design 3c: the 20model evaluations used in design 3a,
but with volatility of 8 sin(π/2 + (year − 2015)π/2)
added to each year of the gas price assumption.

– Design 3d: the 20 model evaluations used in design
3c, but with a randomly chosen shift factor for coal
away from the central assumption. The shift was cho-
sen from a Normal distribution with mean zero and
variance set so that high and low coal price scenarios
provided by the model developers corresponded to a
95% probability interval around the central assump-
tion.

The model was run for each design point (or model evaluation)
described above.

4. Emulation

In this section details of the statistical emulator used to model
the wholesale electricity price output as a function of gas price,
demand, EU ETS price and offshore wind deployment are given.

The output of the model considered here is an annual time-
series from 2010 to 2030 of wholesale electricity prices. To fit an
emulator to each of these years independently would be time-
consuming and would require a large number of models runs,
so principal components analysis (PCA) was used to reduce the
dimension of the output space (see [33] for an introduction to
PCA, [34] for an example with emulation and [35] for a discussion
of multi-output emulation). The aim was to select a small number
of principal components that explain as much of the variance in
the outputs as possible. Independent emulators were then used to
model each principal component.

Before applying PCA, the output for each year was scaled by the
mean and standard deviation of the completed runs. The first six
principal componentswere found to explain 98.7% of the total vari-
ance,with 78.3% of the total variance arising from the first principal
component. Thus, the first six principal components were selected
for analysis. The error introduced by discarding the remaining 15
principal components will later be incorporated into the emulator.

Let fi(x) be the ith principal component of the model output at
some vector of inputs x. The value of fi(x) is unknown at untested
x so we represent our uncertainty in fi(x) as

fi(x) =

pi∑
j=0

βijhij(x) + ϵi(x), (1)

for i ∈ {1, . . . , 6}, where hij(x) are a set of known and deterministic
basis functions with hi0(x) = 1, B = {βij} are unknown constants
and ϵi(x) is a stochastic process.

By including a mean function, given by
∑pi

j=0βijhij(x), it is possi-
ble to incorporate prior judgements about the effect that individual
inputs have on the output into the emulator. The basis functions
hij(x) that were chosen for each principal component are given
in Table 1. These basis functions were chosen by comparing the
coefficients of determination (R2) of linear regressionmodels fitted
to different sets of polynomial and interaction terms formed from
x. That is, different possible sets of basis functions were tested
by fitting linear regression models to the computer model inputs
and outputs. Those basis functions that resulted in a better fit
when included in the regression model (as assessed using the
coefficient of determination) were retained in the mean function
of the emulator. The emulator given by (1) was fitted to the model
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Table 1
Basis functions for each principal component, where x1 = gas price, x2 = EU ETS
price, x3 = demand and x4 = offshore wind deployment.

Principal component Basis functions

1 x1, x2, x3, x4, x22, x
2
3, x1x2

2 x1, x2, x3, x4, x21, x
3
1, x

4
1, x

5
1, x

2
2

x23, x
3
3, x

4
3, x1x2, x1x3

3 x1, x2, x3, x4, x21, x
3
1, x

2
2, x

2
3, x2x3

4 x1, x3, x4, x21, x
3
1, x

4
1, x

5
1, x

2
3, x

3
3, x1x4

5 x1, x2, x3, x4, x21, x
3
1, x

4
1, x

5
1, x

6
1, x

2
3

x33, x1x3, x1x4
6 x1, x2, x4, x21, x

3
1, x

4
1, x

5
1, x

6
1

evaluations using Bayesian techniques, requiring specification of
prior judgements about all uncertain quantities. For prior beliefs
for the coefficients βij, we set E[βij] = 0 for all i, j, all βij were
assumed independent, and Var[βij] was set to 1.

The prior mean of ϵi(x) was set to zero and the prior covariance
was set to σ 2

i ci(x, x
′), where ci(x, x′) is given by the Gaussian

correlation function,

ci(x, x′) = exp

(
−

∑
k

(xk − x′

k)
2

δ2i

)
, (2)

and the δi are constants to be specified. Prior independence be-
tween ϵi(x) and βij was assumed. To complete the prior specifi-
cation, we set δ1 = 0.3, δi = 0.1 for i > 1, and σ 2

i for each i
to the residual variance from a standard linear regression fit. The
prior beliefs for δi were chosen because a reasonable degree of
correlation was expected for the emulator for the first principal
component, as based on initial fits to training sets it was clear
that the mean

∑pi
j=0βijhij(x) explained much of the variance. For

later principal components, the selected basis functions explained
a smaller proportion of the variance, so prior expectations were
that the local variation around the mean of the emulator would
have a lower correlation (i.e. the stochastic process ϵi(x) will be
less smooth).

Before fitting the model, the inputs and outputs were scaled
to lie between −1 and 1. Bayes linear methods [26] were used to
fit (1) to the model evaluations detailed in the previous section.
A Bayes linear analysis specifies prior means and covariances for
uncertain quantities (βij, δi and σ 2

i ), rather than full probability
distributions. Given that there is often limited ability to specify
prior probability distributions with great detail, using only prior
means and covariances can be more natural and results in no
meaningful loss of detail. Bayes linear updating equations are used
to update these prior specifications with the model evaluations.
Using Bayes linear methods to update beliefs in this way can speed
up emulator computations in comparison to a Bayesian analysis
using full distributions as numerical linear algebra can be used in
place of MCMC.

In [5], the author states that the fitting of the emulator (which
uses MCMC) takes six minutes for 25 model evaluations and that
one emulator evaluation takes 10−4 s. Using the Bayes linear up-
dating equations, we were able to estimate the mean and variance
of the emulator of the first principal component for the 60 sets
of inputs in the test set in approximately 0.3 s for 150 model
evaluations (this estimation includes the fitting of the emulator).
These two tests are not exactly comparable owing to the different
number of model evaluations, a slight difference in the dimension
of the input space and different coding platforms but it is clear that
even with small variation in the timings, it would be substantially
quicker to fit an emulator to the test set using Bayes linear than
MCMC. There aremany situations where repeated fitting of an em-
ulator is useful. For example, to check the fit of an emulator in the

absence of a test set a leave-one-out analysis might be performed.
Each model evaluation would be left out in turn, and the emulator
fitted to the remaining model evaluations and used to predict the
output for the evaluation left out. For 150 model evaluations, this
would require themean and variance to be computed for one set of
inputs using 150 emulators. In these situations, reducing the time
taken to fit each emulator from 6 min to less than a second makes
a substantial impact on the total required computing time.

To fit an emulator using Bayes linear methods, the Bayes linear
updating equations are used to update prior beliefs about the
emulator, given a set of model evaluations. As a different emulator
is fitted for each principal component, let Di = {(xn, yin), for n ∈

{1, . . . N}} be the data from the N model evaluations used to fit
the emulator of the ith principal component. Here, yin is the ith
principal component of the output of the nth model evaluation,
and xn is the corresponding input. The Bayes linear equation for
the updated expectation of the ith principal component of the
computer model output at untested input x is given by

EDi [fi(x)] = E[fi(x)] + Cov[fi(x),Di](Var[Di])−1(Yi − E[Di]), (3)

where Yi = (yi1, . . . , yiN ) is a vector of the ith principal component
of the N observed model evaluations. Expectations and variances
in (3) are taken with respect to the prior judgements. Similarly,
the Bayes linear equation for the updated covariance between two
outputs fi(x) and fi(x′) is

CovDi [fi(x), fi(x
′)]

= k(x, x′) − Cov[fi(x),Di](Var[Di])−1Cov[Di, fi(x′)], (4)

where k(x, x′) is the prior covariance between fi(x) and fi(x′). All the
terms on the right hand sides of Eqs. (3) and (4) can be calculated
using the emulator (1) in combination with the prior judgements
described above and the data from the model evaluations.

By using Eqs. (3) and (4) the mean and variance of fi(x) can be
estimated for any x. In other words, for any untested input x, a
mean and variance for the ith principal component of the computer
model at this input can be given. From this, the mean and variance
of the wholesale price projection at any untested input can be
constructed by reversing the principal component transformation.
The variance of this projection describes the uncertainty arising
because a limited number of model evaluations have been used to
fit the emulator. For more details on fitting emulators of the form
given in (1) using Bayes linear methods, see [36,22,21] and [24].

A test set was used to validate the emulator. The emulator
(1) was fitted to the 150 model evaluations in the first design,
and the ability of the emulator to predict the output for the 60
model evaluations in the second design was tested. Fig. 5 shows
the results of this study for each principal component. Almost
all of the model outputs lie within the predicted interval for all
of the principal components. Out of 60 model evaluations tested,
4, 1, 2, 1, 1 and 2 of themodel outputs were outside the prediction
interval for each of the six principal components, indicating a good
fit of the emulator to the model. In Fig. 5, the size of the error bars
increases for each principal component, reflecting the difficulty of
finding a good set of basis functions to explain increasingly smaller
variations in the output with a fixed number of model evaluations.
This is also shown by the sums of squared errors for each of the
plots in Fig. 5, which were 0.06, 0.79, 1.11, 1.62, 2.09 and 4.31 for
the first, second, third, fourth, fifth and sixth principal components
respectively. As described above, the vast majority of the variance
was explained by the first principal component. This means that
a large emulator error for later principal components will have a
small effect on the emulator error of the final wholesale electricity
price predictions (as later principal components only contribute a
small amount to the overall variance in these projections).

Fig. 4 summarises the steps set out in this section for fitting an
emulator to a set of model evaluations. The arrow from the final
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Fig. 4. Flow chart describing steps used to build emulator of computer model.

step to the fourth step demonstrates that fitting the emulator is
an iterative process. The form of the emulator should be chosen to
get the best fit to themodel evaluations possible. If after validating
the emulator the fit needs improvement the emulator in (1) can
be altered to better fit the model evaluations (for example by
investigating different basis functions). Some of the steps in this
flow chart will vary for different applications. For example, it may
be possible to run extra sets of model evaluations after an initial
emulator has been fitted. By doing this, it is possible to use the
emulator to investigate which extra model evaluations are likely
to be beneficial for improving the emulator. An example detailing
this process for a computer model of the Milky Way galaxy can be
seen in [24].

The computer code used to fit the emulator described above
has beenmade available as supplementarymaterial. This computer
code uses the R programming language in combination with the
Rcpp and RcppArmadillo packages to enable integration between
R and C++ [37,38]. For confidentiality reasons it was not possible to
make available the computer model runs used to fit the emulator
forwholesale electricity prices in this paper but code for generating
a dataset to test the statistical methodology described here has
been included within the supplementary material.

5. Structural discrepancy

The third design in Section 3 was used to study two different
sources of structural discrepancy. Designs 3b and 3c were used to
investigate the effect of adding volatility to smoothed gas price

assumptions. Design 3d was used to study the effect of varying
the fixed annual time series of coal prices. By experimenting with
the model using these designs it was possible to investigate the
effect of particularmodelling assumptions on thewholesale prices.
An alternative method for assessing structural discrepancy is to
compare model output to real-world data. The model studied here
was set-up to be used only for future projections so it was not
possible to use the computer model to produce predictions for his-
toric years to compare with any real-world data. Even if this were
possible, use of historic structural discrepancy assessments with
future wholesale price projections would require an assumption
that the past is representative of the future.

As described in Section 3,model inputswere parametrised to be
some shift away from the central projection. This parametrisation
introduces uncertainty, because in reality the inputs are unlikely
to follow the smooth parametrisation. The left hand side of Fig. 6
shows historic annual gas prices from 1998 to 2015. Comparing
this to Fig. 1 it is clear that the historic prices are considerably
more volatile year to year than the model inputs. To assess the
effect of this smoothing, a deterministic effect given by A sin(π/2+

(year − 2015)π/2) for A = 2 (design 3b) and A = 8 (design 3c)
was added to each year of the model input. The gas price inputs
tested for A = 8 can be seen on the right hand side of Fig. 6.
Although the plot shown on the right hand side of Fig. 6 is still not
fully representative of the volatility seen on the left hand side of
Fig. 6 (because the variation is too regular), these results should still
allow for an approximation of the effect on wholesale electricity
prices if large jumps are introduced in gas prices year-on-year.

In design 3d, the effect of varying the fixed time series of coal
price assumptions was tested. A random shift was added to the
time-series of coal price inputs. This shift was defined as for the
gas, demand and EU ETS price shifts described in Section 3.

Fig. 7 shows the effect of varying the coal price assumption by
plotting thewholesale price projection for 40 possible sets of input
assumptions. Lines of the same colour have all input assumptions
equal except for coal price. There are 20 colours in the plot and
two lines associated with each colour: one of these two lines gives
the wholesale price projection when varying the coal price and
one gives the wholesale price projection when the coal price is
kept at the fixed central scenario. Fig. 8 does the same, but for
gas price volatility. Again, the only difference between lines of
the same colour is that extra volatility has been added to the gas
price. Both plots have been shown with the same scale so that
they can be compared. Adding volatility to the gas price clearly
has a large effect on wholesale prices in comparison to the effect
of varying coal price. The mean absolute difference from 2020
to 2030 was calculated for each set of inputs to compare the
effect of varying coal price to the effect of varying volatility in gas
price. For coal price, the mean of the mean absolute difference
over the twenty sets of inputs was £0.50/MWh, ranging from
£0.02/MWh to £3.32/MWh. For gas price volatility, the mean of
these mean absolute differences over the twenty sets of inputs
was £2.60/MWh, ranging from £2.09/MWh to £4.54/MWh. For coal
price variation, the relative size of the range is larger because the
variation in coal price is dependent on a randomly drawn shift
parameter (as the future coal price is uncertain, whereas we can
be reasonably sure that given historical data volatility in gas price
is larger than that assumed). Any difference between different sets
of input assumptions (i.e. lines of different colour in Fig. 7) can arise
both because of this randomly drawn shift parameter and because
of interaction between coal price and the other input assumptions.
For gas price volatility, it is assumed that future volatility will
be approximately equal to historic volatility, so any difference
in effect between different sets of inputs can be attributed only
to interactions between gas price volatility and the other input
assumptions.
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Fig. 5. Validation of the emulator for each principal component in order: 1 (left, top), 2 (right, top), 3 (left, middle), 4 (right, middle), 5 (left, bottom), 6 (right, bottom).
Black dot is emulator mean (predicted value) for a given run in the test set, error bars give a 95% probability interval around this mean. Cross shows actual value of principal
component for this run.
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Fig. 6. Left hand side—Historic annual gas prices (adjusted for inflation) [39]. Right hand side—volatile gas price inputs tested for design 3c (amplitude 8). Both charts have
the same scale.

Fig. 7. Wholesale electricity price projections for the model evaluations in designs
3c and 3d, with and without variation in coal price. Each colour is associated with
two wholesale price projections, one with variation in coal price and one using the
standard central assumption. Lines of the same colour are associated with the same
input assumptions (except for coal price). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

5.1. Modelling structural discrepancy

To incorporate structural discrepancy relating to coal and gas
prices in our uncertainty specification, we model our uncertainty
in the wholesale price time seriesw(x) as

w(x) = f(x)T LT + ϵPCA + ϵg + ϵc, (5)

where

• f(x) is a 6-dimensional vector where each dimension fi(x) is
the emulator modelling the ith principal component of the
wholesale electricity prices at input x (given by (1)).

• L is a 6 × 21 dimensional loadings matrix used to transform
the principal components to wholesale prices.

• ϵPCA is a 21-dimensional random vector with zero mean and
covariance matrix Iσ2

PCA, where I is the identity matrix and
σ2
PCA is a 21-dimensional vector of constant variance terms.

ϵPCA represents the uncertainty in each year of wholesale
prices due to the emulation of 6 principal components rather
than the full 21.

• ϵg is a 21-dimensional vectorwith zeromean and covariance
matrix Iσ2

g , representing the uncertainty due to smoothed
gas price inputs.

Fig. 8. Wholesale electricity price projections for the model evaluations in designs
3a and 3c, with and without gas price volatility of amplitude 8. Each colour is
associatedwith twowholesale price projections, onewith volatility in gas price and
one using the standard central assumption. Lines of the same colour are associated
with the same input assumptions (except for gas price). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

• ϵc is a 21-dimensional vectorwith zeromean and covariance
matrix Iσ2

c , representing the uncertainty due to use of a fixed
times series of coal price inputs.

In (5) we assume that ϵPCA, ϵg and ϵc do not depend on the
input x. We also assume that ϵPCA, ϵg and ϵc are independent of one
another and of f(x). The 21 components in each of ϵPCA, ϵg and ϵc are
assumed to be independent of one another. It is likely that some,
if not all, of these assumptions do not hold in practice. Informal
evidence that errors are correlated year-on-year can be seen in
Fig. 7.When the error is positive in one year, it is generally positive
in the next. Given the small size of the errors in comparison to
the overall variation in wholesale prices due to different input
assumptions, this assumption of independence is likely to have
a negligible impact on the results, but further investigation is
required to confirm this.

Values for σ2
c and σ2

g were estimated using the sample variances
of the differences in each yearwhen adding coal price variation and
gas price volatility respectively. To reduce the effect of the small
sample size (and to remove the periodic effects seen in the gas price
volatility results), a lowess curve was used to smooth the sample
variances through time. A low and high value for each of σ2

c and σ2
g

was estimated. The low value of σ2
g corresponds to volatility with



A.L. Wilson et al. / Sustainable Energy, Grids and Networks 13 (2018) 42–55 51

amplitude 2 and the high value of σ2
g to amplitude of 8. One of the

model evaluationswas found to have a very large deviation in years
2028, 2029 and 2030 when coal price was varied. The low value
for σ2

c was estimated removing this model evaluation. The high
value included this model evaluation in the variance estimation.
This outlying model evaluation provides some evidence that the
error terms in (5) may not be independent of x.

The estimate of the variance of σ2
PCA was set using results in [40].

The variance for each year was set to the total variance not ex-
plained by the first six principal components (which was 0.28 or
1.3% of the overall variance) divided by the difference between the
number of dimensions (21) and the number of principal compo-
nents (6), giving a variance in each year of 0.0189. This variance
is of the scaled principal components and translates to a standard
deviation of approximately 0.15 in 2015 up to 1.33 in 2030 in the
wholesale prices.

The uncertainty specification in (5) accounts for uncertainty in
wholesale prices at untested x (through the emulator), uncertainty
arising from the use of PCA and structural uncertainty arising from
using smoothed gas prices and a fixed series of coal prices. Other
sources of structural discrepancy will exist and have not been
assessed here, but the methodology described provides a proof of
concept for further study of structural discrepancy.

6. Uncertainty and sensitivity analysis

In this section the uncertainty specification in (5) is combined
with a probability distribution over the four model inputs to in-
vestigate uncertainty inwholesale electricity price projections. The
emulator used for this investigation was fitted using all 210 model
evaluations, i.e. the 150 in the first design combined with the 60 in
the test set.

A truncatedmultivariate Normal distribution over the four shift
parameters was used to represent uncertainty in the input param-
eters. The truncation was used so that the EU ETS price remained
above zero. Themean, variance and correlations of themultivariate
Normal distribution (where x1 = gas price, x2 = EU ETS price, x3 =

demand and x4 = offshore wind deployment) were set to:

E [X] = (0, 0, 0, 0)T , Var [X] = (a2, a2, a2, a2)T

Corr(x1, x3) = b, Corr(x2, x3) = c, Corr(xi, xj) = 0
for all other pairs of inputs, (6)

for constants a, b and c . The values of a, b and c were varied to
investigate the effect of these parameters on the overall uncer-
tainty. Setting a = 0.5 corresponds to the belief that the high
and low scenarios approximately form a 95% probability interval,
with the mean given by the central projection. Correlations were
set based on discussions with the model developers and represent
the interaction between different inputs. For example, setting a
value close to one for b would imply that a high gas price is
associated with high demand. It is possible to combine any joint
distribution over the inputs with the emulator to assess the effect
of this uncertainty on the wholesale prices.

The R package [41] was used to draw a Monte Carlo sample
of size 3000 from the distribution over the inputs given in (6).
The expected value of the emulator at each of the 3000 Monte
Carlo samples and for each of the 6 principal components was then
obtained using (1) and the Bayes linear updating Eq. (3). Similarly,
the 3000 × 3000 covariance matrix for each principal component,
giving the covariance of the emulator for all pairs of inputs in
the Monte Carlo sample was estimated using (1) and the Bayes
linear updating Eq. (4). A multivariate Normal distribution with
thismean and covariancematrixwas used to approximate the joint
distribution of the emulator for each principal component over the
Monte Carlo sample. This joint distribution describes the uncer-
tainty arising from use of an emulator rather than the underlying

computermodel itself. A single draw from the joint distribution can
be thought of as a simulation of the 3000 outputs associated with
the 3000 inputs in the Monte Carlo sample. Samples of size 5000
were then drawn from the multivariate Normal distributions for
each principal component. The principal components were then
transformed back to wholesale electricity price projections. Each
of the 5000 samples then consisted of 3000 wholesale electricity
price projections, one for each of the Monte Carlo draws over the
input distribution given by (6). The 3000 samples over the input
distribution incorporate parametric uncertainty, whereas the 5000
samples of the emulator account for the uncertainty in the output
of the computer model at the 3000 draws tested. These wholesale
electricity price projections could then be used to estimate the
mean and variance in each year arising both from parametric
uncertainty over distribution (6) and fromuncertainty over the dis-
tribution of the emulator (1). The uncertainty specification given in
(5) was used to add structural discrepancy to these variances.

In the Monte Carlo procedure described above, the uncertainty
arising from use of an emulator is explicitly modelled. It is im-
portant to model this uncertainty because the actual principal
components of the computer model output at each of the Monte
Carlo draws are unknown and have been estimated using the
emulator. This estimation is necessary because the time taken
to run the underlying computer model means that the computer
model itself cannot be run at each of the Monte Carlo draws.
An emulator makes it possible to quantify the uncertainty that
arises because the computer model itself cannot be used. Without
quantifying this uncertainty using an emulator, the uncertainty
would not be modelled and hence it would be impossible to assess
the consequences of this uncertainty on the wholesale prices.

Fig. 9 shows the results of the uncertainty analysis for a =

0.5, b = 0.3, c = 0.3, split by the errors included in the analysis.
In each plot, the mean of the projections is shown by a solid black
line. This black line represents themeanwholesale price projection
integrated over uncertainty in the input parameters, structural
discrepancy and uncertainty arising from the limited number of
model evaluations (i.e. uncertainty due to use of an emulator rather
than the underlying computer model). The uncertainty in this
mean, caused by use of an emulator rather than the model itself
to do the analysis, is shown as a 95% probability interval with
dashed black lines. The 95% probability interval incorporating un-
certainty in the input assumptions aswell as structural uncertainty
due to gas price volatility and coal price variation is shown with
solid grey lines. The uncertainties in these approximations of the
variance, again caused by use of an emulator, is shown as a 95%
probability interval with dashed grey lines. In all plots, the means
and variances are calculated individually for each year (i.e. they are
pointwisemeans and variances). There is no uncertainty shown up
to and including 2014, as all inputs are known to then. Given the
time taken to perform individual runs of the computer model, it
would not be possible to produce the plots shown here without
using an emulator to approximate the computer model output.

In Fig. 9, the effect of incorporating ϵPCA, ϵg and ϵc into the
analysis can be seen. In the upper left plot, none of these errors are
included in the analysis. As can be seen, the uncertainty bounds
(both solid lines and dashed lines) are smaller. In the other plots,
the incorporation of ϵPCA in the analysis increases the uncertainty
due to emulation (i.e. the black dashed lines). The size of these un-
certainty bounds could be reduced by incorporatingmore principal
components. Including ϵg and ϵc causes the probability interval
given by the solid grey lines to increase. There is little difference
between the upper right and lower left plots, suggesting that it is
only the high variance assumptions for coal and gas volatility that
have an impact on results.

In Fig. 10, the effect that the values of a, b and c have on the
wholesale price projections is investigated. Increasing the correla-
tion between gas and demand (i.e. the value of b) slightly increases
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Fig. 9. Estimated mean wholesale electricity price projection (solid black line) with 95% probability interval accounting for emulator uncertainty (dashed black lines),
estimated variance due to gas price, demand, EU ETS price, offshore deployment andmodel discrepancy (solid grey line)with 95% probability interval accounting for emulator
uncertainty (dashed grey lines). Model discrepancies considered: none (upper left); PCA approximation (upper right), low coal price variance, low gas price volatility and
PCA approximation (lower left), high coal price variance, high gas price volatility and PCA approximation (lower right). The scale of the y-axis is the same across all graphs.

Fig. 10. Estimated mean (solid black line) with 95% probability interval accounting for emulator uncertainty (dashed black lines), estimated variance due to gas price,
demand, EU ETS price, offshore deployment and model discrepancy (solid grey line) with 95% probability interval accounting for emulator uncertainty (dashed grey lines).
In each plot the parametric uncertainty given in (6) has been set in the following way: a = 0.5, b = c = 0 (upper left), a = 0.5, b = −0.3, c = 0.3 (upper right), a = 0.4,
b = c = 0.3 (lower left), a = 0.6, b = c = 0.3 (lower right). All have low coal price variance, low gas price volatility and PCA approximation error included. The y-axis scale
is the same across all graphs.
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Fig. 11. Estimated mean wholesale electricity prices curve for fixed gas price assumption (top left), EU ETS price (top right), demand (bottom left) and offshore deployment
(bottom right). For gas price, demand and offshore deployment the fixed values are −1.2 (dashed), −0.1 (solid) and 1.2 (dotted). For EU ETS price, the fixed values are −1
(dashed), 0 (solid) and 1.2 (dotted). In all cases, the mean is estimated by integrating over uncertainty in all other parameters, where this uncertainty is specified by the
conditional distributions of (6). The scale of the y-axis is the same across all graphs.

the overall variation in wholesale prices. A bigger increase is seen
when increasing the assumed standard deviation of the model
inputs (a). This suggests that careful consideration of the standard
deviation of model inputs is needed to ensure an appropriate rep-
resentation of uncertainty in future wholesale electricity prices.

The effect that each of the four shift parameters has on the
model output was investigated by holding each individual param-
eter fixed at a range of values and integrating over uncertainty
in the remaining parameters using the Monte Carlo procedure
described above. The uncertainty in the remaining parameters is
specified by the conditional distributions of (6), with a = 0.5, b =

c = 0.3. Draws from these conditional distributions were made
using results in [42]. The same process can be used to investigate
sensitivity to groups of inputs, by holding several inputs fixed at
once and integrating over uncertainty in the remaining inputs.

The mean wholesale electricity price curves for a range of fixed
values of the four shift parameters are shown in Fig. 11. For gas
price, demand and offshore deployment, the plots show the mean
wholesale electricity price projection when the shift parameter in
question is fixed to −1.2 (dashed line), −0.1 (solid line) and 1.2
(dotted line). For the EUETS price, the shift parameter is fixed to−1
(dashed line), 0 (solid line) and 1.2 (dotted line). A variety of values
were tested and those displayed were selected as being generally
representative of the behaviour of the wholesale electricity price
time series as each input parameter varies.

Fig. 11 shows that each shift parameter has a different effect
on the shape of the modelled mean wholesale prices curve. The
biggest effect is seen with the gas price, which seems to shift the
wholesale prices curve, keeping the shape roughly consistent for
all shift parameters. High EU ETS prices have a similar effect up to
around 2025 but after then the wholesale prices continue rising
instead of flattening off. Demand and offshore wind seem to have
an impact on the extent of the modelled price drop post 2027,

with the amount of offshore wind having little effect before then.
Demand also seems to have an effect on whether the price drops
post 2015.

Assessing uncertainty in wholesale electricity price projections
as demonstrated in this section allows better real-world decisions
to bemade. Consider for example the decision of whether to invest
in a new thermal generating plant. This decision would be made
based on projected future cash flows, which would incorporate
assumptions about the future wholesale electricity price through-
out the lifetime of the plant. Using a scenario-based analysis for
decision-making would restrict consideration of the wholesale
prices to a small set of future scenarios. Themethod described here
instead estimates a central projection (i.e. the solid black lines in
Figs. 9 and 10) which incorporates parametric uncertainty over all
possible scenarios, as determined by the probability distribution
over the input space. The risk arising from this parametric uncer-
tainty and from structural discrepancy is also assessed. Making
a decision based only on the central wholesale price projection
would ignore these risks and could result in the building of a
plant when there is a high probability that this plant will not be
profitable.

7. Conclusion

This paper has presented a study of uncertainty associated with
a complex computer model used for the projection of wholesale
electricity prices. Three sources of uncertainty were considered.
The first was parametric uncertainty, namely uncertainty in four
model inputs (gas price, demand, EU ETS price and offshore wind
deployment). The second source of uncertainty considered was
structural discrepancy, arising because the model used is an ap-
proximation of the real-world and so even at some best set of
inputs, therewill still be some discrepancy between themodel and
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the real-world. Specifically, structural discrepancy arising from the
use of smoothed gas price projections (which in reality are volatile)
and from treating coal prices as known was studied. The third
source of uncertainty consideredwas uncertainty as to the value of
themodel output at untestedmodel inputs. As themodel takes one
hour to run, assessing parametric uncertainty necessarily requires
an approximation of themodel output at a large collection ofmodel
inputs. A model for the error associated with the approximation is
required to fully account for the extra uncertainty this approxima-
tion introduces.

An emulator, fitted to 210 model evaluations, was used to
model uncertainty in model outputs at inputs that had not been
tested. This emulator was shown to have a good fit to the model
when validated using a test set. A small number of model evalu-
ations were used to assess the size of the structural discrepancy
relating to the use of smoothed gas price projections and from fix-
ing the coal price input assumptions. It was found that introducing
volatility into the gas price input assumptions has a larger effect on
wholesale electricity price projections than varying the fixed time
series of coal price assumptions. The emulator was then combined
with a probability distribution over the model inputs and a model
for structural discrepancy to investigate the impact that these
uncertainties have on wholesale electricity price projections.

The quantification of uncertainty associated with the output of
a complex computer model is a critical step that needs to be taken
when real-world decisions are being made based on this output.
Without having a full picture of the uncertainties associated with
a model output, it is not possible to relate this output to the real-
world, and hence tomake decisionswhich are relevant for the real-
world. This paper has provided a case study for the quantification of
uncertainty in projections of wholesale electricity prices, demon-
strating steps that can be taken to quantify uncertainties logically
and consistently, even when time constraints restrict the number
of available model runs.
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