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Abstract

The instanton method obtains approximate tunneling rates from the minimum-

action path (known as the instanton) linking reactants to the products at a given

temperature. An efficient way to find the instanton is to search for saddle-points on

the ring-polymer potential surface, which is obtained by expressing the quantum Boltz-

mann operator as a discrete path-integral. Here we report a practical implementation

of this ring-polymer form of instanton theory into the Molpro electronic-structure pack-

age, which allows the rates to be computed on-the-fly, without the need for a fitted

analytic potential-energy surface. As a test case, we compute tunneling rates for the

benchmark H + CH4 reaction, showing how the efficiency of the instanton method al-

lows the user systematically to converge the tunneling rate with respect to the level of

electronic-structure theory.

Graphical TOC Entry: Representation of the instanton describing H + CH4 ab-

straction at 200 K.
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At sufficiently low temperatures, reactions with barriers are dominated by tunneling.1

For hydrogen- and proton-transfer reactions, the cross-over temperatures (below which tun-

neling dominates) can by quite high, e.g. about 327 K in the gas-phase H + CH4 reaction.

Instanton rate theory has become a popular approach for calculating such tunneling ef-

fects2–7 and can be derived from a semiclassical approximation to the exact rate constant.8

The instanton describes the optimal tunneling pathway through the reaction barrier, and

corresponds to an unstable periodic orbit on the inverted potential-energy surface (PES).2

An efficient way to find the instanton is to search for saddle points on the ring-polymer

potential surface,9–11 which is obtained by expressing the Boltzmann operator as an integral

over discretized Feynman paths.12 This ring-polymer instanton method (also referred to as

harmonic quantum transition-state theory9) has been used to compute tunneling rates for a

wide range of reactions.9,13–19

A major advantage of the semiclassical instanton method is that it requires relatively

few evaluations of the PES. Thus, although the dynamics and statistics are described less

accurately than in exact quantum dynamics,20 or in fully quantum statistical methods such

as ring-polymer molecular dynamics (RPMD)21–23 and the quantum instanton method,24,25

it can be used with direct on-the-fly computation of the PES, using a high level of electronic-

structure theory. This makes good practical sense, since often the errors in the PES dominate

a rate calculation, making it more important to converge the electronic-structure calculation

than to finesse the dynamics. Here we report an implementation of the ring-polymer instan-

ton method10 in the Molpro electronic-structure package26,27 which can be used to compute

tunneling rates in gas-phase reactions using any electronic-structure ansatz available in the

package. The restriction to gas-phase kinetics is made because instanton theory is not usu-

ally applicable to liquids, where the tunneling does not pass through a single barrier; such

systems are better treated using RPMD.10,21–23

Before applying instanton theory, it is usual to first locate the transition state and hence

find the height and curvature of the barrier. An approximation to the cross-over tempera-

3



ture is given by Tc = ~ωb/2πkB where iωb is the imaginary vibrational wavenumber at the

transition state. For sufficiently simple reaction pathways, it is only below this temperature

that instantons exist and the rate formulae presented below are valid. However, note that

for more complicated molecular processes, a significant amount of corner-cutting3 can occur

and the instanton pathway does not pass near a transition state28 and can thus also exist

at higher temperatures.29 It is well-known that unlike RPMD or the quantum instanton

method, the semiclassical instanton approach overestimates the rate just below the cross-

over temperature. A number of methods for removing this problem have been suggested,30–34

but are not considered here.

Unlike earlier instanton approaches,7 it is not necessary for the ring-polymer instanton

approach to use a reduced-dimensionality model for the reaction. We consider molecular

systems with f degrees-of-freedom, equal to three times the number of atoms, in Cartesian

coordinates. The reciprocal temperature is β = 1/kBT and we use the most abundant

isotopic masses mj throughout. The discretized pathways can be described by ring polymers

and the instanton is located by optimizing a saddle point on the ring-polymer potential,

UN(x) =
N∑
i=1

V (xi,1, . . . , xi,f )

+
N∑
i=1

f∑
j=1

mj

2β2
N~2

(xi,j − xi−1,j)2 , (1)

where x0,j ≡ xN,j, βN = β/N , and N is the number of system replicas known as ring-

polymer beads. V (x1, . . . , xf ) is the Born-Oppenheimer PES which can be computed by

any available electronic-structure method. The instanton rate is obtained when the results

have converged with respect to N . Note that a number of ways of further increasing the

efficiency have been suggested by discretizing the instanton more flexibly16,35–37 but are not

implemented here. Because the instanton folds back on itself, the computational effort can be

halved by taking into account that half of the beads lie directly on top of the other half such
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that only N/2 electronic-structure calculations are necessary.17 The algorithm implemented

in Molpro works with a modified set of equations to optimize the half instanton, from which

the full solution is easily obtained. The instanton geometry x̃ is optimized from an initial

guessed configuration, using a quasi-Newton optimization algorithm38 with a Powell update

for the ring-polymer Hessian.39 Before the first step, the gradients and f × f Hessians are

computed for each bead but only the gradients need be recomputed after each optimization

iteration. The Hessian of the half-ring-polymer is a 1
2
Nf× 1

2
Nf banded matrix, which can be

stored and diagonalized efficiently. The implementation uses the existing Molpro framework

for computing first and second energy derivatives, which makes use of analytical derivatives

wherever these are available, but otherwise performs finite numerical differentiation. More

information about how to set-up the instanton calculations can be found in the relevant

section of the package manual, along with some examples.27

The number of optimization steps can be reduced dramatically by using initial configu-

rations close to the instanton geometry. One starts with an initial configuration in which

the ring-polymer contains only a few beads, and is stretched over the transition state,17

xi,j = x‡j + ∆ cos

(
2πi

N

)
qj , (2)

where q is the eigenvector corresponding to the imaginary mode at the transition state x‡ and

the variable ∆ is chosen by trial and error such that the initial guess is good enough for the

optimization to converge. The optimized configuration thus yields a few-bead approximation

to the instanton, which is then interpolated onto a denser grid of beads, to give an initial

guess for another optimization of the instanton geometry which typically requires only a few

iterations to optimize. Other techniques have also proven beneficial such as using optimized

configurations from higher temperature instantons or with lower levels of electronic-structure

theory as initial guesses. In any case, the results found are not dependent on the initial

guess as long as it is in the region of convergence around the stationary point. For gas-phase
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reactions this is usually easy to achieve. The total computational cost to locate the instanton

and compute the rate at a given temperature is about N/2 times (in this case, 64 times)

greater than that of a standard transition-state search and frequency calculation. As the

program is written in a parallel manner, this cost can easily be shared over a number of

processors, typically one per bead.

Our implementation compares the instanton rate with a variation of an Eyring TST

calculation, for which the quantum partition functions are substituted by those that would

be obtained by an N -bead ring polymer. This tends to the usual Eyring rate in the limit

N →∞ but we use the ring-polymer version to compare with the instanton rate as a certain

amount of cancellation of errors will occur which improves the convergence with respect to

N . This version of Eyring’s TST rate is defined as

kTSTQr =
1

2π~βN
Q‡transQ

‡
rotQ

‡
vibe−βV

‡
, (3)

where the reactant partition function, Qr, is defined in terms of translational, rotational

and vibrational contributions from the separated reactant molecules in the usual way and

partition functions with the ‡ symbol refer to a ring polymer collapsed at the transition state

configuration, xi,j = x‡j. The translational partition function describing a ring-polymer of

total mass NM , where M =
∑f/3

a=1ma, is

Q‡trans =

(
NM

2πβN~2

) 3
2

. (4)

Note that we have chosen to normalize these ring-polymer partition functions differently

from the usual expressions. The rotational contribution to the partition function, Qrot, is

defined using the classical expression as if all the beads in the ring polymer made up a

Nf/3-atom ‘super-molecule’ at reciprocal temperature βN . The moments-of-inertia tensor
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is given by

I =
N∑
i=1

f/3∑
a=1

ma [(~ri,a · ~ri,a)I− ~ri,a × ~ri,a] , (5)

where ~ri,a is the displacement from the center of mass of the ring-polymer of the ath atom

(with mass ma) of the ith replica, and I the 3×3 identity matrix. The ring-polymer rotational

partition function is computed using the appropriate formula:1

Q‡rot =
2IB
βN~2

for linear configurations, (6a)

Q‡rot =

√
8π det I

β3
N~6

for nonlinear configurations, (6b)

where IB is the value of the non-zero eigenvalues of I (for linear configurations). The vibra-

tional contribution of the ring polymer to the partition function is given by40

Q‡vib = N−f0
f∏

k=f0+2

[
2 sinh 1

2
β~ω̃k

]−1
, (7)

where sinh 1
2
βN~ω̃k = 1

2
βN~ωk and ωk are the vibrational wavenumbers at the transition

state. As well as the imaginary mode, the f0 modes corresponding to translational and

rotational degrees of freedom are excluded from the product. There can be 5 or 6 of these

depending on whether the transition state is linear or nonlinear.

The formula for the instanton rate can be written in a similar way to eq 3,10 and instanton

theory can thus be thought of as an extension of Eyring transition-state theory (TST) to

the deep-tunneling regime:

kinstQr =
1

βN~

√
BN

2πβN~2
QtransQrotQvibe−S/~ , (8)

1Note that the symmetry number does not appear here but instead manifests itself in a number of identical
transition states.
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where the instanton action is

S/~ = βNUN(x̃) . (9)

Here, the translational and rotational partition functions are defined as in eq 4 and eq 6

using the ring-polymer instanton configuration, but there are two important differences in

the vibrational contributions around the instanton. The full mass-weighted ring-polymer

Hessian is recomputed after the optimization has finished and diagonalized to give the in-

stanton frequencies ηk. Whereas a ring polymer collapsed at the TS has only f0 zero modes

corresponding to translations and rotations, an instanton should also have one more zero

mode corresponding to the permutation of the beads.10 The integral around this cyclic per-

mutational mode leads to a factor including the term

BN =
N∑
i=1

f∑
j=1

mj(x̃i+1,j − x̃i,j)2 . (10)

The vibrational partition function is then defined in the following way:

Qvib =
1

βN~|η1|

Nf∏
k=f0+3

1

βN~ηk
. (11)

Note that this includes the magnitude of the imaginary frequency η1 and that the eigenvector

corresponding to this mode gives an approximation for the optimal reaction coordinate for

an RPMD calculation.10

The tunneling-factor is defined by

κtun ≡
kinst
kTST

=

√
2πBN

βN~2
Qrot

Q‡rot

Qvib

Q‡vib
e−S/~+βV

‡
, (12)

which gives the factor by which the rate is increased upon including tunneling through

the barrier. It is this result which is directly computed by the algorithm in the Molpro

package.26,27 κtun is independent of the reactant partition function and is also much less
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sensitive to errors in the barrier height than the rate constant itself.

The gas-phase reaction H + CH4 −−→ H2 + CH3 is a well-studied system, often used to

compare and test new methodological developments in rate theory.41–43 In this letter, we

report thermal rate coefficients for this reaction computed using the ring-polymer instanton

approach based on energies obtained from on-the-fly coupled-cluster calculations.

Following Wu et al.,43 we employed the single and double excitation coupled cluster

method (CCSD) with a spin-restricted Hartree-Fock reference wavefunction and spin-symmetry

constraints on cluster amplitudes (RCCSD),44 and, in some calculations, the standard per-

turbative correction for the effect of connected triple excitations (RCCSD(T)).45 The cc-

pVTZ basis set46 was used, together with explicit two-particle correlations through the F12a

ansatz.47 The sensitivity of the results to basis-set incompleteness was explored by carrying

out calculations also using the cc-pVDZ basis. In all cases, N = 128 beads were used, which

converged the results with respect to N to at least 2%.

Table 1: Transition-state properties for the reaction H + CH4 with different
methods and basis sets: RCCSD-F12 and RCCSD(T)-F12 with cc-pVDZ and
cc-pVTZ. V ‡ is the potential-energy surface barrier height, and iωb the imaginary
harmonic vibrational wavenumber at the potential-energy surface saddle point.

method V ‡ / kJ mol−1 ωb / cm−1

RCCSD-F12/cc-pVDZ 67.51 1448
RCCSD-F12/cc-pVTZ 65.51 1506
RCCSD(T)-F12/cc-pVDZ 65.69 1389
RCCSD(T)-F12/cc-pVTZ 63.21 1428

The most important factor in the Eyring TST rate formula is the barrier height, whereas

the tunneling effect depends on the shape of the barrier rather than its height. Table 1 shows

predictions for the height and curvature of the barrier from the various levels of theory. These

data suggest that the barrier height is being slightly overestimated by the more approximate

methods which would therefore predict the rate to be more than a factor of 10 too small at

200 K. The curvature is also seen to vary by about 5% and we will study how this affects

the tunneling factor.
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Table 2: Tunneling factors, κtun, for the reaction H+CH4 with different methods
and basis sets.

T /K RCCSD-F12 /
cc-pVDZ

RCCSD-F12 /
cc-pVTZ

RCCSD(T)-F12 /
cc-pVDZ

RCCSD(T)-F12 /
cc-pVTZ

300 15.3 18.5 15.0 13.8
250 55.6 82.2 32.9 36.1
200 1680 3160 589 712
150 4 560 000 11 700 000 679 000 934 000

In Table 2, tunneling factors are presented at four different temperatures. The cross-

over temperature, Tc, is predicted to be 327 K by RCCSD(T)-F12/cc-pVTZ. Instanton

theory is only applicable below this temperature and as the temperature drops, the tunneling

factor increases. The tunneling factors evaluated at the different levels of theory vary by a

considerable amount at low temperature, differing by more than a factor of 10 in some cases.

Thus even if we were somehow to correct for the error in the barrier height, this error would

still remain. Note that, as expected, the variation correlates well with the curvature, in that

high curvature leads to more tunneling. In fact, these large variations can be assigned to

the negative exponent of the tunneling factor (rather than the prefactor). The values of

S/~− βV ‡ for the four methods at 200 K are 4.90, 5.52, 3.86 and 4.12 respectively.
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Figure 1: Potential energy along instanton pathway of 64 beads (half) at 200 K using
various combinations of electronic-structure methods: RCCSD-F12 (dashed), RCCSD(T)-
F12 (solid), and basis sets: cc-pVDZ (red), cc-pVTZ (blue).

As a final comparison, we study how the instanton pathways vary at the different levels
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of theory. Figure 1 shows the potential along the pathway as a function of cumulative

mass-weighted path-length,

ri =
i∑

i′=1

√∑f

j=1
mj(xi′+1,j − xi′,j)2 . (13)

This is the effective barrier through which the system must tunnel, and according to the

Hamilton-Jacobi principle, completely defines the action, S,35–37 and can thus be used to

explain the variation in tunneling factors. For example, Figure 1 shows that RCCSD(T)-

F12 yields a shorter, narrower barrier than RCCSD-F12 and hence smaller tunneling factors.

Note that in this reaction, the instanton passes close to the saddle-point and there is relatively

little corner-cutting; other reactions (e.g. those involving heavy-light-heavy combinations

of atoms) could show much stronger dependencies of the instanton path on the level of

electronic-structure theory.

Table 3: Rates of the reaction H + CH4 computed using the instanton method
described in this work with on-the-fly electronic-structure calculations at the
RCCSD(T)-F12/cc-pVTZ level. Reference data for comparison is computed us-
ing either the CBE48 or WWM43 analytic PES. The rates are given in cm3

molecule−1 s−1 and the numbers in parentheses denote powers of 10.

RCCSD(T)-F12/cc-pVTZ WWM PES CBE PES

T/K instanton MCTDH49 MCTDH50 RPMD51 CVT/µ-OMT52

300 1.70(−19) 7.8(−20) 8.4(−20) 1.14(−19) 1.1(−19)
250 4.80(−21) 3.6(−21) 3.1(−21) − 4.3(−21)
200 1.09(−22) − − 6.15(−23) −
150 1.82(−24) − − − −

Table 3 compares the computed instanton rates2 with CVT/µ-OMT, RPMD and multi-

configurational time-dependent Hartree (MCTDH) results, which were previously computed

using analytic PESs43,48 which had both been fitted to RCCSD(T)/cc-pVTZ data points.3 To

help compare results, note that WWM43 has a barrier height of 62.47 kJ/mol and frequency

2In order to take into account the degeneracy of the reaction due to the indistinguishability of the H
atoms, the instanton rate formula, eq 8, has been multiplied by 4.

3This is similar but not equivalent to our method which uses F12.
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1414 cm-1 whereas the CBE PES48 has a barrier height of 62.80 kJ/mol and frequency 1480

cm−1. Nonetheless, the MCTDH results at 250 K on the CBE PES are only about 20% lower

than those computed on the more accurate WWM surface. As we also expect the variation

between the WWM PES and the on-the-fly calculations to be small, the variations between

the rates presented in the table can mostly be assigned to the differences in dynamical

methods.

Taking into account that it is well-understood that the instanton rates will be overes-

timated at 300 K, close to the cross-over temperature, we see that there is only about a

30% error when compared to the benchmark MCTDH/WWM result at 250 K. This level of

agreement has also been seen previously between MCTDH and instanton calculations carried

out on the less accurate PJEG surface.9 There is little difference between the instanton and

CVT/µ-OMT rates at T = 250 K as this particular reaction appears to follow a fairly simple

reaction pathway without significant corner cutting, although the CVT/µ-OMT results will

probably deviate at lower temperatures when the tunneling factor becomes more sensitive

to the pathway.9 Bearing in mind that RPMD usually underestimates deep-tunneling rates

by up to a factor of two,10 comparison between the instanton and RPMD results shows

that there is little recrossing occurring. This therefore suggests that the instanton approach

should be valid for this system and that the new result at 150 K should be an accurate

estimate of the true rate.

It is worth pointing out that the accuracy of the instanton rates of Table 3, obtained using

the RCCSD(T)-F12/cc-pVTZ method is better than that of the RPMD and MCTDH results

of Ref.53 and Ref.9 carried out on the more approximate PJEG surface, which introduced

about a factor of four error. This of course to be expected, since the tunneling depends

exponentially upon the action of the instanton path, and thus on the shape of the PES in

the vicinity of the barrier, as well as the barrier height itself.54 For many reactions, for which

accurate analytic potentials are not available, we expect that an on-the-fly implementation

of instanton theory, such as the one implemented in Molpro that we have presented here,
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should give the most reliable estimates of the tunneling rate.
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(13) Meisner, J.; Kästner, J. Atom Tunneling in Chemistry. Angew. Chem. Int. Ed. 2016, 55, 5400–5413.
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