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1. Introduction  

Three-dimensional (3D) models of real objects are used in many 

applications, such as manufacturing engineering, object 

manipulation, virtual reality and augmented reality, et al, and the 3D 

model acquisition methods are widely studied attributes of 

computer vision technology1. However, due to their limited fields of 

view, the scanners must be placed at different locations for a 

complete 3D model acquisition2-5. The human operation is the 

mainstream method for viewpoints selection, as in the 

Michelangelo Project6, which made the 3D model acquisition a very 

tedious and time-consuming task and the modeling quality dependent 

on the skill of the operator. 

  In order to perform the automatic 3D model acquisition, the 

viewpoints of the scanner are better determined automatically. 

Many researchers have made great efforts on this issue. Blaer et al.7 

proposed a method that determined the next best viewpoint from a 

set of candidates, where the computation time is reduced by means 

of looking for just one type of voxel. However, they divided the 

modeling process into initial and second scans, which made the 3D 

model acquisition complicated. Other work was that of Callieri et al.8 

and Larsson et al.9, both of their work used an industrial robot in 

combination with a turntable to model the objects. The former 

focused on 3D modeling, but did not consider path planning aspects 

at all. For the latter, the user needed to manually input object size and 

stand-off distance for each object individually, which did not render 

the system autonomous. Vasquez-Gomez et al.10 proposed a search-

based paradigm to generate a set of candidate viewpoints. With the 

modeling constraints of new information, positioning, sensing and 

registration, the best one was determined by the evaluation of all 

candidates. He et al.11 proposed a new concept of limited visible 

surface in the laser scanning system, according to unknown space 

prediction, where the next best view is determined with the maximum 

predicted surface visible. However, due to the lack of flip degrees of 

freedom, the top surface of the object cannot be modeled. Torabi et 

al.12 chose the next best viewpoint from a set of candidates in the 

workspace of the manipulator arm, and then inverse kinematics was 

addressed to match the desired sensor location in the workspace. The 

novelty of the method was the generation of the candidates and the 

stop criteria. Nevertheless, it assumed the bounding box of the object 

as a priori, and did not consider the estimation of the unknown area.  

To overcome the limitation of the above automatic 3D modeling 

methods, the multi-sensor or multi-method fusion technology 

provides another alternative in automatic 3D modeling for their 

robust performances. Martins et al.13 presented a method to automate 

the process of 3D scanning using range sensors and based on a priori 

known information from a CAD model, but the dependence on the 

CAD model lowered its applicability. Sablatnig et al.14 and Sun et 

al.15 presented an automatic 3D modeling strategy based on active 

and passive vision technology. They obtained the coarse contour 

from the intersection of a target object border in images, which 

were acquired from different viewpoints. And then, according to the 

complexity of the contour already obtained, the viewpoints around 

the target object were arranged by a suitable step length. But the 
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approaches were not suitable for nonconvex objects, and the 

determination of the step length would produce a large amount of 

redundant information. Fang et al.16 proposed a sensor fusion 

method in a BSLS for automatic 3D reconstruction for an object, 

but the next best viewpoint was only considered by different 

rotation positions. Due to the lack of translation, the method is only 

suitable for small objects. Based on the surface-based and 

volumetric-based method, Kriegel et al.17 proposed an efficient 

autonomous 3D reconstruction of the unknown objects with laser 

scanning and an industrial robot. The candidate viewpoints were 

iteratively determined by the combination of boundary detection and 

trend surface estimation. However, the trend surface estimation was 

not deemed to be robust, with some mutation of the surface, and it 

may lead the next best viewpoint estimation to fail.  

In summary, despite the achievements obtained above, the specific 

equipment requirements, such as industrial robots, may limit their 

practical application for the higher cost and space restriction on site, 

and the laser scanning system is not fast enough for 3D scanning. 

With the benefits of high efficiency and low cost, the BSLS, as shown 

in Fig. 1, is widely used. But to our knowledge, most attention of the 

BSLS is paid to the goal of gaining the 2.5D range image of the 

object, and the 2D gray image is ignored. In this paper, the 2.5D 

range image and 2D gray image, being acquired synchronously in a 

scanning process, are made full use of for automatic 3D modeling 

through the hybrid vision technology. Firstly, based on the active 

vision for a 2.5D range image acquisition, the limit visual vacuums of 

the BSLS are built. In addition, the coarse boundary size of the 

unknown object can be recovered from a 2D gray image with passive 

vision SFS18-19 (Shape from Shading).  Combining the boundary size 

from passive vision and the limit visual surface from active vision, a 

more accurate unknown area can be predicted. Finally, the scanning 

viewpoint with more unknown visual areas is deemed the next best 

one, which can be generated automatically for the complete 3D model 

acquisition.   

 
Fig. 1 Schematic of the BSLS experimental platform 

The remainder of this paper is organized as follows. In section 2, 

the hybrid vision technology of the BSLS is introduced. Section 3 

describes the automatic 3D model acquisition strategy b viewpoint 

planning. In Section 4, an example for a complete 3D model 

acquisition is presented. We conclude the paper with some 

discussions in Section 5. 

2. Hybrid Vision Technology in BSLS 

Based on the hybrid vision technology in a BSLS, the overall 

flowchart of automatic 3D modeling is depicted in Fig. 2. 

               
Fig. 2 The overall flowchart of automatic 3D model acquisition  

2.1 Active vision prediction strategy  

2.1.1 Side surface prediction 

To obtain the effective DOF (depth of field) of the BSLS, a flat 
plane with high precision is measured under different DOF as a 
reference. Within a certain flatness threshold of 0.05mm, the 
measured DOF is considered to be effective when the fitting accuracy 

is located. Repeating the above process at different depths, the DOF 
range of the BSLS can be obtained. As illustrated in Fig. 3, the DOF 

i
d  is acquired by moving the reference planar along the z  axis, 

and the effective range [ ]min max,id d d∈  can be obtained.  

               
 Fig. 3 DOF acquisition schematic of the BSLS 

Within the range of the acquired DOF, the left limit visual angle 
il

θ , 

denoting the critical position of the reference plane, visual or not, is 

obtained by the angle between the normal vector 
il

n
r

 of the planar 

and the negative direction of the z  axis (shown in Fig.4). The right 

limit visual angle 
ir

θ  can also be obtained in the same way. Based 

on the visibility principle, with only the normal vector ( )il irn n
r r

 of 

the surface patch located in the limit visual angle, these surface ones 

are considered as visible.  
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Fig. 4 The limit visual rotation angle of BSLS  

Repeating the above process at different 
i

d  within the DOF 

range, a series of left (right) limit visual angles [ ] [ ]( )i il i irz zθ θ  

are collected. The corresponding relationship between the limit visual 

angle ( ) ( )il ir radθ θ  and ( )z mm can be yielded with least squares, 

as equations (1) and (2) show, respectively.  
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0.0017 0.1382 570 680

1.0348 680 780
ir

z z

z
θ

− ≤ ≤
= 

≤ ≤
          (2) 

Therefore, according to equations (1) and (2), the left and right 

limit visual curves can be built logically, which are illustrated in 

equation (3) and equation (4), respectively. 
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With the projected boundary point of the acquired 2.5D range 

image on the XOZ  plane, the ( )1, 2,3, 4iC i =  in equations (3) 

and (4) can be determined. As shown in Fig. 5, given the projection 

point ( )0 0 0,P x z , the left and right limit visual curves 
0 1 2

P P P  can be 

generated according to equations (3) and (4), respectively.  
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(a) Left limit visual curve          (b) Right limit visual curve 

Fig. 5 Prediction for the unknown side surface  

2.1.2 Top surface prediction 

  According to the aforementioned method in section 2.1.1, the 

unknown side surface can be predicted with the acquired 2.5D range 

image. However, the top surface of the unknown object is not taken 

into consideration, which may result in the 3D model being 

incomplete. In this section, the top surface prediction and planning 

strategy around the X  axis are established. As shown in Fig. 6, 

with the reference planar rotating around the X  axis, the limit 

visual positions Ps 
and Pb are obtained. The minimal flip angle 

is
β  

is defined as the angle between the normal vector 
is

n
r

 and the 

negative Y  axis, and the maximum flip angle 
ib

β  is obtained 

corresponding to position 
b

P .  
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Fig. 6 The limit visual flip angle of vision system 

  According to the different depth 
i

z  within DOF, a series of limit 

flip angles are collected (shown in Fig. 7). The corresponding formula 

(5) between the flip angle ( )( )is ib radβ β  and the depth ( )z mm  

can be determined with least squares.  
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(a) Minimal flip angle            (b) maximum flip angle 

Fig. 7 Limit flip angles and the fitting curves 

  For the minimal flip fitting formula in equation (5), according to

/ / tan cot
2

is is

is is

z y
z y

π
β β

β β

∂ ∂  
∂ ∂ = = + = − 

∂ ∂  
, the minimum and 

maximum flip visual curves can be obtained as equation (6), which 
are yielded in the same way as equations (3) and (4). 

( )( ) ( )

( )( ) ( )
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476.19ln cos 0.0021 3.9972 570 780

y z C z

y z C z
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= − − + + ≤ ≤

        (6) 

 Given the projection center of the side surface boundary on the 

YOZ plane, the unknown constants 
5

C  and 
6

C  are obtained. 

Then, the unknown profile of the top surface can be predicted, and it 

provides evidence to the viewpoint planning of the top surface 

modeling. As shown in Fig. 8, according to the acquired projection 

boundaries C and A, the unknown parameters of 
5

C  and 
6

C  in 

equation (6) can be determined. Then, the predicted flip profiles of 

CD and AE are confirmed. 
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Fig. 8 Prediction for the unknown top surface 

2.2 Passive vision prediction strategy  

2.2.1 Shape from Shading algorithm 

  With the assumption of an ideal Lambertian model, SFS deals 

with the recovery of the 3D shape from a single gray image. 

Therefore, the intensity ( ),E x y  of image ( ),I x y  is deduced 

from the angle θ  between the light direction and the surface 

normal vector, which is denoted by equation (7). 

 ( ) ( ), , cosE x y I x y ρ θ=   (7) 

Where ρ is the surface reflectivity of the measured object

( ),I x y . With the surface profile ( ),z z x y= , the discrete 

gradients p and q at the x  and y directions are zp
x

∂=
∂  

and zq
y

∂=
∂  . Therefore, the ideal surface model can be 

denoted by equation (8). 

( ) ( )
2 2 2 2

1
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s s
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p q p q

+ +
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+ + • + +
 

     (8) 

  The linear method20 is used in this paper for its higher efficiency. 

In order to linearize the reflectance map in terms of z , the discrete 

approximations of p and q are employed by finite differences in 

equation (9). 
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  Where 0, , 1i M= −L , 0, , 1j N= −L , M , N  are the 

rows and columns of an image. Substituting equation (9) to (8), the 

discrete Lambertian reflection model can be obtained in equation 

(10).            
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  According to the Taylor expansion, we can acquire equation (11). 
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With 
, ,

n

i j i jz z= , the 
thn  iteration of the result is yielded by the 

equation (12). 
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,
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given an initial value to the entire image with 0

,i jz , the 3D contour 

can be recovered by equation (12). For ideal illumination conditions, 
the 3D shape can be recovered from the shading image, as illustrated 
in Fig. 9. 

   
      (a) Gray image of vase            (b) Recovered 3D profile 

Fig. 9 3D Shape recovery from a gray image of a vase 

2.2.2 Boundary box dimension estimation from SFS 

  For a single gray image, the coarse 3D contour between 0~180° 

can be recovered from SFS. Therefore, with two images of the 

measured object captured between 180°, the entire coarse 3D size of 

the measured object can be determined. As shown in Fig. 10 (a) (b), 

the two gray images are captured by the BSLS. 

  With the SFS algorithm described, the coarse 3D size can be 

recovered from the two gray images above, as shown in Fig. 10 (c) 

(d). Therefore, the bounding box of the modeled object can be 

estimated. 

              

      (a)  0° gray image                 (b) 180° gray image 

        
(c) 3D contour from 0° image          (d) 3D contour from 180° image 

Fig. 10 Bounding box estimation from two gray images 

3. Viewpoint Planning for Automatic 3D Modeling 

3.1 Viewpoint planning for automatic side surface modeling 

3.1.1 Determination for the next rotation angle  

Given the left rotation planning strategy for an unknown object, as 

shown in Fig. 11, the left projection center 
0

P  of a 3D contour 

boundary is obtained on the XOZ  plane, after substituting point 

( )0 0 , 0p p
P x z  into equation (3), the left limit visual contour 

0 1
PP  can 

be predicted. Combined with the recovered boundary box from SFS, 
the left predicted contour of the unknown object can be extended to
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Fig. 11 The left rotation planning schematic 

When the predicted contour 
0 1 2 3

PPPP  rotates 
l

θ  counterclockwise 

to 
01 11 21 31

P P P P , the left boundary center point ( )0 0 0
,

p p
P x z  rotates 

to the right limit visual position ( )0 1 01 01
,

p p
P x y , shown by equation 

(13). 

 01 0

01 0

cos sin

sin cos

p p

p p

x x

z z

θ θ

θ θ

  −   
=    
    

  (13) 

  Then, substituting the point ( )0 1 01 01
,

p p
P x y  to the right limit visual 

curve in equation (2), we can acquire the right limit visual angle 
ir

θ  

in equation (14). 

( )0 0 01
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0.0017 sin cos 0.1382 570 680

1.0348 680 780
ir

x z z

z

θ θ
θ

 + − ≤ ≤
= 

< ≤

  (14) 

  At the same time, the normal vector 
L

n
r

 of the boundary point 

0
P  changes to a new position 

01
P  with 

R
n
r

, where the angle 

between the normal vector 
R

n
r

 and z  negative direction is 

denoted by '
ir

θ , where 

 '
ir l il

θ θ θ= −   (15) 

  For the registration of the different 2.5D range image, the point 

01
P  visual, the angle '

ir
θ  must be located within the right limit 

visual angle, therefore 

 '
ir ir

θ θ≤   (16) 

  Finally, the critical rotated angle 
l

θ  can be obtained by combining 

the three equations (14), (15) and (16), and the rotation position 

represents the left maximum visual surface. Similarly, the right 

rotation planning strategy can be carried out, and the right maximum 

visual surface can also be acquired with a certain rotation angle 
r

θ .  

3.1.2 Determination of the next best viewpoint   

  As shown in Fig. 12, given the boundary point 
01

P  after rotation, 

the translation range of the object can be determined with

( )01pd d z z ∈  pmax
. When the predicted contour 

01 11 21 31
P P P P  moves 

along the positive z  axis, the angle 
q

θ  at a random position of the 

predicted profile keeps constant while the limit visual angle changes 
with the depth z .  
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Fig. 12 Parameter schematic of the next best viewpoint  

  Substituting the translation 
x

d  in the right limit visual angle 

equation (2), the right limit visual angle 
qr

θ  can be acquired in 

equation (17). 

( )0.0017 0.1382 570 680

1.0348 680 780

q x q x q

qr

q x q

z d z d z

z d z
θ

 + − − ≤ ≤ −
= 

− < ≤ −

   (17) 

 Given the limit visual condition, only the angle 
q

θ  within the 

right limit visual angle, the corresponding surface patch is assumed to 
be visible.   

 
q qr

θ θ≤   (18) 

Therefore, combining equations (17) and (18), the critical visual 

position 
0x

P  on the predicted contour 
01 11 21 31

P P P P  can be 

determined. With the predicted curves function ( )1 ,lf x z  obtained 

in equation (3), the corresponding length of the visual contour can be 

acquired by the curve integral in equation (19).    

( )
( )0

0 1

2

1

0 01

,
1

px

p

z

l

x x

z

f x z
L d P P dz

z

 ∂ 
= = +  

∂ 
∫           (19) 

  The visual contour length of the left translation planning can be 

denoted as ( )xL d , obtaining the maximum of ( )xL d  

corresponding to
 
the translation 

l
d , and the position parameters of 

the left viewpoint planning [ ]vpp l l lL L dθ=  can be determined. 

And the right planning parameters [ ]vpp r r rR L dθ=  can be 

obtained in a similar way. Finally, comparing the above two 
viewpoint parameters, the position with more visual length is deemed 
the next best viewpoint.    

3.2 Viewpoint planning for automatic top surface modeling  

  According to the viewpoint planning strategy in section 3.2, the 

side surface can be modeled automatically. But the top surface of the 

measured object cannot be recovered. Therefore, the flip freedom 

around X  is extended to achieve a complete 3D model, and the 

corresponding viewpoint planning strategy is illustrated as follows. 

  After finishing the side surface modeling, the 2.5D range image of 

the last side viewpoint is projected to the YOZ  plane, as curve 

0 0 0
D E F  shows in Fig. 13. With the prediction of hybrid vision 

technology, the top predicted curve 
0 0 0

F G H  can be determined. 
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Fig. 13 Prediction of the unknown top surface 

  Similar to the automatic 3D modeling of the side surface, the 
position with maximum top predicted surface visual is assumed to be 

the best flip viewpoint. For the predicted curve 
0 0 0

F G H , the limit flip 

angle of the arbitrary point ( )0 0, 0x x xP y z  is 
0x

β . Then the new 

position 
1 1 1

F G H  can be determined after rotating β  around the 

X  axis (as shown in Fig. 14), and the corresponding point 

( )1 1 1,x x xP y z  can be obtained by equation (20). 

1 0 0

1 0 0

cos sin

sin cos

x x x

x x x

y y z

z y z

β β

β β

= −


= +
            (20) 

The angle 
1x

β  between normal vector of point ( )1 1 1,x x xP y z  and 

negative Y  axis is acquired  

 
1 0x x

β β β= +   (21) 

  For the flip angle β , there are two possible conditions for further 

analysis. 

  a) When 0 / 2β π< ≤  (as shown in Fig. 14(a)), the translation 

range of the top surface curve 
1 1 1

FG H  is [ ]( )1,Fd d z z∈ Pmax . 

Substituting the flipped point ( )1 1 1,x x xP y z  into equation (5), the 

corresponding minimal flip angle 
1sx

β  can be determined by 

equation (22): 

 ( )1 0 00.0022 sin cos 0.9086sx x xy zβ β β= + −   (22) 

  Combining the equations (21) and (22), the critical visual point 

( )1 1 1,x x xP y z  in flipped curve 
1 1 1

FG H  can be obtained, thus the 

length 
1

L  of the visual part curve 1 1xF P  among the top surface can 

be calculated by curve integration in equation (23).  

 
1

1

2

1

1 1 1

( , )
1
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F

z
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z

f y z
L F P dz

z

∂ 
= = +  ∂ 

∫   (23) 

  Thus, the maximum visual area 
1max

L can be determined with the 

specific position parameters ( )1max 1, dβ .  

  b) When / 2π β π< ≤ (as is shown in Fig. 14 (b)), the angle 
1xβ  

between the normal vector of point ( )1 1 1,x x xP y z  and negative Y  

axis is the same as in equation (21). The corresponding limit 

maximum flipped angle 
1bx

β  can be obtained by substituting 

( )1 1 1,x x xP y z  into equation (5). 

 
1 0 0

0.0021( sin cos ) 3.9972
bx x x

y zβ β β= − + +   (24) 

   According to equations (21) and (24), the position of the critical 

point ( )1 1 1,x x xP y z  can be determined, followed with the visual 

length 
2

L  of 1 1xF P , where  
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1

2

2

2 1 1

( , )
1

px

F

z

x

z

f y z
L F P dz

z

∂ 
= = +  ∂ 

∫   (25) 

  Therefore, the maximum visual length 
2 max

L  with the 

corresponding parameters 
2 max 2

( , )dβ  can be obtained. 

c) Comparing the maximum visual length between 
1max

L  and 

2 max
L , the position parameters with more visual surface can be 

deemed the next best flip viewpoint. 
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Fig. 14 The parameters for next best flip viewpoint 

4. Experiments 

  To confirm the automatic 3D modeling method proposed in this 

paper, the experiment of a real object is carried out. Firstly, a gray 

image is acquired by the left camera of the BSLS (shown in Fig. 

15(a)), then another gray image is obtained from a 180° angle-interval, 

which is also considered as the initial viewpoint to begin 3D scanning. 

The 2D gray image and the 2.5D range image under the initial 

viewpoint are shown in Fig. 15(b) and Fig. 15(e), respectively. 

  The two gray images are handled by filter processing, and then the 

SFS technique in section 2.2 is used to recover the 3D model (shown 

in Fig. 15(c) and (d)), thus the coarse boundary size can be estimated, 

which is listed in Table 1. 

Table 1 3D coarse boundary size from SFS 

 Recovered  

boundary size 
 ( )L mm     ( )W mm     ( )H mm   

  94.71 92.65    102.58 

  Given the 2.5D range image at the initial viewpoint, the left and 

right predicted curves (as shown in Fig. 15 (f)) can be determined by 

combining the boundary size with the limit visual surfaces. With the 

viewpoint planning strategy for the side surface, two candidate 

viewpoints are obtained and the corresponding position parameters 

are shown in Table 2. The next best viewpoint can be determined by 

comparison of the visual lengths from the two candidate positions. 

Table 2 Candidate viewpoints at viewpoint1 

Left candidate 

viewpoint 

( )1l radθ  ( )1ld mm  ( )1 maxlL mm  

1.8248 18.2251 70.9988 

Right candidate 

viewpoint 

( )1r radθ  ( )1rd mm  ( )1 maxrL mm  

1.7609 21.3027 56.9760 

  In table 2, it is easy to note that the visual length 
1 max 1 maxl r

L L> , 

which illustrates the visual surface of left planning， is greater than 

the right one (under the assumptions that the height of the object is 

constant and the length of the predicted curve is proportional to the 



INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. X, No. X, pp. X-XX XXXX 201X  /  7 

DOI: XXX-XXX-XXXX 

area). Therefore, the left candidate viewpoint 2 (shown in Fig. 15(g)) 

is seemed as the next best viewpoint. Combining with the predicted 

curve and boundary size, the left predicted curve at viewpoint 2 

(shown in Fig.15 (h)) can be yielded. Similarly, the left candidate 

viewpoint under viewpoint 2 can be obtained and the corresponding 

parameters are listed in Table 3. 

Table 3 Candidate viewpoints at viewpoint 2 

Left candidate 

viewpoint 
( )2l radθ   ( )2ld mm   ( )2 maxlL mm   

 1.8157 3.0922  81.2718 

  Making a comparison between the left visual surface  
2 maxl

L  of 

viewpoint 2 and the right visual surface 
1 maxr

L  of viewpoint 1, and 

the left visual planning of viewpoint 2 is deemed the next best 

viewpoint for 
2 max 1 maxl r

L L> . Therefore, the viewpoint with the 

position parameters in Table 3 is deemed the next best viewpoint 3, 
and the 2.5D range image is shown in Fig. 15 (i). In addition, the 
viewpoint 4 (as shown in Fig. 15(k)) can be obtained in a similar way.      

To ensure the integrity of the 3D model, the top surface modeling 

should be taken into consideration after the side surface acquisition. 

Given the automatic top surface modeling strategy, the top surface of 

the object can be predicted by the combination of boundary size and 

the limit flipped curve, as shown in Fig. 15 (l), and then the viewpoint 

parameters for the top surface modeling can be determined

（illustrated in Table 4）.   

Table 4 Candidate viewpoint for top surface modeling 

Top candidate 

  viewpoint 
( )radβ   ( )d mm   ( )maxupL mm   

1.4835 27.2098 68.2047 

Given the parameters of the top candidate viewpoint, the 2.5D 

range image is obtained in Fig.15 (m). Finally, after the merging of all 

the 2.5D range images acquired, the complete 3D model can be 

obtained and the result is shown in Fig. 15 (n). 

      
(a) Gray image at 0 degree           (b) Gray image at 180 degree 

        
     (c) 3D shape from (a)              (d) 3D shape from (b) 

       

Boundary from SFS

Left limit surface

Right limit surface

 
        (e) Viewpoint 1            (f) Predicted curve at viewpoint 1 

       

Boundary from SFS

Left limit surface

  
        (g) Viewpoint 2          (h) Left predicted curve at viewpoint 2 

       

Boundary from SFS

Left limit surface

   
        (i) Viewpoint 3           (j) Left predicted curve at viewpoint 3 

     

Boundary from SFS

Top limit surface

 

  (k) Viewpoint 4               (l) Top surface predicted curve                

        

  (m) Upper surface planning       (n) Final measured model 

        Fig. 15 Automatic 3D modeling of a dog model 

5. Conclusions 

  This paper reviewed the research on automatic 3D modeling, and 

according to the widely used BSLS, a novel automatic 3D model 
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acquisition method based on the hybrid vision technology was 

proposed. 

For the prediction of the unknown area, the limit visual vacuums 

of the BSLS are built, which can be used to estimate the unknown 

area from the acquired 2.5D range image. At the same time, the 

passive vision of SFS is deemed to be another restraint to extract 

the precise unknown information of the measured object. And then, 

with the predictions for unknown area from hybrid vision, the 

viewpoint planning strategy for automatic 3D modeling is carried 

out. To obtain the complete 3D model, the automatic planning 

strategy is divided into side surface and top surface reconstruction, 

and then the unknown 3D object can be modeled automatically and 

completely. The method can reduce manual intervention to a large 

extent. Finally, the experimental results demonstrate the 

effectiveness and feasibility of the proposed method. 
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