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Abstract

We study the heating mechanisms and Lyα escape fractions of 35 Lyα blobs (LABs) at z≈3.1 in the SSA22 field.
Dust continuum sources have been identified in 11 of the 35 LABs, all with star formation rates (SFRs) above
100Me yr−1. Likely radio counterparts are detected in 9 out of 29 investigated LABs. The detection of
submillimeter dust emission is more linked to the physical size of the Lyα emission than to the Lyα luminosities of
the LABs. A radio excess in the submillimeter/radio-detected LABs is common, hinting at the presence of active
galactic nuclei. Most radio sources without X-ray counterparts are located at the centers of the LABs. However, all
X-ray counterparts avoid the central regions. This may be explained by absorption due to exceptionally large
column densities along the line-of-sight or by LAB morphologies, which are highly orientation dependent. The
median Lyα escape fraction is about 3% among the submillimeter-detected LABs, which is lower than a lower
limit of 11% for the submillimeter-undetected LABs. We suspect that the large difference is due to the high dust
attenuation supported by the large SFRs, the dense large-scale environment as well as large uncertainties in the
extinction corrections required to apply when interpreting optical data.
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1. Introduction

Lyα emission has emerged as a powerful tool to study
distant galaxies, as it is very bright and redshifted to optical
wavelengths at high redshifts. Lyα emitters (LAEs), efficiently
discovered in narrowband imaging surveys, are galaxies that
emit strong Lyα radiation presumably from the photoionization
of neutral hydrogen by young, hot stars or active galactic nuclei
(AGNs) at high redshifts. They hold unique clues to the
formation and evolution of galaxies at a time when the universe
was still young (e.g., Bridge et al. 2013). However, due to the
resonant nature of the Lyα line and high optical depth in
neutral hydrogen (Hayes 2015), Lyα photons are likely to
undergo numerous scattering events before they escape from
the galaxy or are absorbed by dust. Thus the actual emitted Lyα
luminosity is a function of the atomic hydrogen distribution,
dust content, gas kinematics, and galaxy viewing angle

(Hayes 2015). Therefore, in order to use Lyα to study galaxies
at high redshift, we need to understand the escape fraction of
Lyα photons, which is defined as the ratio of observed to
intrinsic Lyα luminosity and thus determined by the Lyα
emitter’s environment. The evolution of the Lyα escape
fraction over cosmic time has been determined based on
empirical measurements from large samples (e.g., Gronwall
et al. 2007; Ouchi et al. 2008; Hayes et al. 2011a), providing
useful clues to the evolution of the dust content of galaxies.
As a special class of LAEs, Lyα blobs (LABs) have been

most commonly found in the dense environment of star-
forming galaxies at high redshift and are characterized by their
large physical scale (30–200 kpc) and high Lyα luminosity
(1043–1044 erg s−1; see e.g., Francis et al. 1996; Steidel et al.
2000; Matsuda et al. 2004, 2009, 2011, 2012; Palunas et al.
2004; Dey et al. 2005; Saito et al. 2006; Yang
et al. 2009, 2010; Erb et al. 2011; Prescott et al. 2012a,

The Astrophysical Journal, 850:178 (16pp), 2017 December 1 https://doi.org/10.3847/1538-4357/aa960f
© 2017. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://doi.org/10.3847/1538-4357/aa960f
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa960f&domain=pdf&date_stamp=2017-11-30
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa960f&domain=pdf&date_stamp=2017-11-30


2013; Bridge et al. 2013). While the LABs’ preferential
location in over-dense environments indicates an association
with massive galaxy formation, the origin of their Lyα
emission is still unclear and under debate (Faucher-Giguère
et al. 2010; Cen & Zheng 2013; Yajima et al. 2013). Proposed
sources have generally fallen into two categories: (1) cooling
radiation from cold streams of gas accreting onto galaxies (e.g.,
Haiman et al. 2000; Dijkstra & Loeb 2009; Faucher-Giguère
et al. 2010) and (2) photoionization and/or galactic super-
winds/outflows from starbursts or AGNs (e.g., Taniguchi &
Shioya 2000; Furlanetto et al. 2005; Wilman et al. 2005;
Colbert et al. 2006; Mori & Umemura 2006; Matsuda
et al. 2007; Zheng et al. 2011; Cen & Zheng 2013; Ao
et al. 2015; Prescott et al. 2015; Alexander et al. 2016; Hine
et al. 2016). All of the above mentioned energy supplying
sources may trigger Lyα emission in an environment where
violent interactions are frequent between gas rich galaxies as
expected in over-dense regions at high redshift (Matsuda
et al. 2009, 2011; Prescott et al. 2012a, 2013; Kubo
et al. 2013).

Supporting evidence for the cooling flow scenario comes
from those LABs lacking any visible power source (e.g., Smith
& Jarvis 2007). Dijkstra & Loeb (2009) demonstrates that if
>10% of the change in the gravitational binding energy of a
cold flow goes into heating of the gas, then the simulated
cooling flows are spatially extended Lyα sources that are
comparable to observed LABs. This model can naturally
explain the spatial distribution of the LABs and the diversity of
host galaxies in the LABs, as the Lyα emission is effectively
decoupled from the associated sources. The most luminous
gravitationally powered blobs would be associated with the
most massive halos, which may host a variety of sources like
AGNs, Lyman break galaxies (LBGs), and submillimeter
galaxies (SMGs). Alternatively, ionizing photons from young
stars in star-forming (SF) galaxies and/or unobscured AGNs
can ionize neutral hydrogen atoms and the subsequent
recombination leads to Lyα emission. It is usually difficult to
discriminate between the two internal heating mechanisms, SF
or AGNs. Resonant scattering of Lyα photons in the
circumgalactic medium leads to spatially extended emission
(Geach et al. 2005, 2009; Colbert et al. 2006; Webb et al. 2009;
Hayes et al. 2011b; Zheng et al. 2011; Cen & Zheng 2013;
Overzier et al. 2013). Cen & Zheng (2013) propose an SF-
based model and predict that LABs at high redshift correspond
to protoclusters containing the most massive galaxies/halos in
the universe and ubiquitous strong infrared (IR) sources
undergoing extreme starbursts. Their model also predicts that
the most luminous FIR source within each LAB is likely
representing the gravitational center of the protocluster. Note
that both cooling flow (Dijkstra & Loeb 2009) and SF-based
models (Cen & Zheng 2013) can reproduce the measured
luminosity functions of LABs.

To study the heating mechanism(s) of the LABs and
investigate their Lyα escape fraction, we need to select a large
sample of LABs to locate their accurate positions and
investigate their possible powering sources. SSA22 is such a
suitable field because it has 35 LABs detected at z≈3.1
(Matsuda et al. 2004), providing an ideal laboratory to study
the LABs in a large sample. One of them, SSA22-LAB01 is the
best studied source (e.g., Matsuda et al. 2007; Yang et al. 2012;
Geach et al. 2014, 2016; Umehata et al. 2017a). At (sub)
millimeter wavelength, most LABs of SSA22 have been

studied with the Submillimetre Common-User Bolometer
Array (SCUBA, Geach et al. 2005) and SCUBA-2 (Hine
et al. 2016) on the James Clerk Maxwell Telescope (JCMT),
and with the AzTEC 1.1mm camera (Tamura et al. 2009,
2013; Umehata et al. 2014) on the Atacama Submillimeter
Telescope Experiment (ASTE). However, no significant
1.1mm continuum has been found in any of the individual
35 LABs (Tamura et al. 2013). Even in the recent deep
SCUBA-2 observations, only 2 out of 34 LABs are detected at
850μm (Hine et al. 2016). A few LABs have been observed
and detected in the dust continuum with the Atacama Large
Millimeter/Submillimeter Array (ALMA; Umehata et al. 2015;
Alexander et al. 2016; Geach et al. 2016). In this paper, we
present deep submillimeter results from new JCMT/SCUBA-2
data (Holland et al. 2013) together with ALMA data, and deep
radio images from the Karl G. Jansky Very Large Array
(VLA)21 observations to study the LABs in the SSA22 field.
Note that in this paper we only focus on the LABs; the SMGs
in this region will be presented in an upcoming paper based on
the same submillimeter and radio data (Y. Ao et al. 2017, in
preparation).

2. Observations

2.1. JCMT/SCUBA-2 Observations

The observations were carried out at 850μm with SCUBA-2
(Holland et al. 2013) at the JCMT. The data were taken between
2015 April 20 and June 30 under good weather conditions
when the zenith optical depth at 225GHz was in the range of
0.04<τ225<0.08 with a mean tá ñ225 of 0.06. We observed a
subregion of SSA22 with a total on-source observing time of
19hr, covering a field with a diameter of 15 arcmin, centered
on α(J2000)=22h17m31 7, δ(J2000)=+00o17′50″, using
multiple repeats (40 minutes per repeat) of the PONG scanning
pattern (Holland et al. 2013). The SSA22 field was also observed
as part of the JCMT SCUBA-2 Cosmology Legacy Survey
(S2CLS, Hine et al. 2016; Geach et al. 2017) with a total
on-source observing time of 72hr to cover a map with a
diameter of 30 arcmin, centered on α(J2000)=22h17m36 3,
δ(J2000)=+00o19′22 7. The observations are summarized in
Table 1.
Pointing checks and flux calibration were achieved via

observations of Neptune and Uranus, immediately before and
after the science exposures. Data reduction was carried out
using the SubMillimeter User Reduction Facility (smurf)
makemap pipeline (Chapin et al. 2013), with flat fields, image
stacking, and removing atmospheric emission (see also Hine
et al. 2016 for more details). The main beam size of the
SCUBA-2 observations at 850μm is 14″ and the map is
convolved with a smoothed beam of 30″ to optimize the
detection of point sources. The total on-source integration time
was about 91hr (see Table 1). The final beam-convolved map
reaches an rms noise level of 0.75mJy/beam within the central
15 arcmin and about 1.0mJy/beam outside the central region
(see Figure 1).

21 The National Radio Astronomy Observatory is a facility of the National
Science Foundation operated under cooperative agreement by Associated
Universities, Inc.
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2.2. ALMA Observations

ALMA observations were carried out in band 7 with a
central frequency of 350 GHz toward 4 LABs (LAB1, LAB2,
LAB5, and LAB18; project code: 2013.1.00704S; Y. Matsuda
et al. 2017, in preparation). Another two LABs, LAB12 and
LAB14, had been covered by a deep field in SSA22 (Umehata
et al. 2015, 2017b) in band 6 with a central frequency of
263 GHz. The data were reduced with the CASA package in a
standard manner (for details, see Umehata et al. 2017b and
Y. Matsuda et al. 2017, in preparation).

2.3. VLA Observations

We observed the SSA22 region centered around the location
of our SCUBA-2 observations with the VLA in B-configuration
at S-band (2–4 GHz), under projects 15A-120 and 16A-310.
During 17 sessions with a total observing time of 41hr, we
observed three positions in 2015 and 2016 (see Table 1 for the
observing log). The total bandwidth was 2 GHz, split into 16
spectral windows.

Data were first processed through the VLA Common
Astronomy Software Applications (CASA) Calibration Pipe-
line by NRAO staff, performing basic flagging and calibration.
Then we iteratively inspected the data, and then flagged the
data with radio frequency interference. The final mosaic of
images was created with CASA task CLEAN, reaching an rms
sensitivity of 1.5μJy/beam (before primary beam correction)
and an angular resolution of 2 3×2 0. The primary beam of
one single pointing is about 15 arcmins. In Figure 2, we
indicate the locations of 29 out of the 35 LABs identified by
Y. Matsuda et al. (2004) in the final radio image.

3. Results

3.1. Submillimeter Emission

For the 35 LABs identified in Matsuda et al. (2004), all
sources are covered by SCUBA-2 observations, as shown in
Figure 1. The SSA22 field has been observed as part of the
JCMT S2CLS project (Geach et al. 2017), reaching a 1σ level
of 1.1 mJy/beam at 850μm. Combined with our SCUBA2
observations in 2015, we reach a deeper rms sensitivity of
about 0.75 mJy/beam for the overlapping region.

The SCUBA-2 850μm flux measurements are listed in
Table 2. Out of the 35 LABs, 9 are detected in dust emission
with peak signal-to-noise ratios (S/Ns) above 2.5σ, and 6 of
them above 3σ (see Figure 3). The three sources, LAB4, LAB9,
and LAB14, with only marginal detection levels of 2.5σ, have
all been detected in the radio above 5σ.

Figure 4 shows the SCUBA-2, VLA, and ALMA images
together to cross-check the detections with low significance
from the SCUBA-2 and VLA observations by the highly
significant ones from ALMA. The typical pointing accuracy of
the JCMT is about 1″–2″. Due to the noise of the image,
the positional uncertainty of the SCUBA-2 observations is
related to its S/N and beam size (Condon et al. 1998) via
s = q

( )p S N 2 ln 2
beam

0.5 , where sp is the 1σ positional uncertainty and
θbeam the beam size. For a marginally detected source with an
S/N of 3 and a smoothed beam of 30″, its positional
uncertainty will be about 8 5. Six LABs observed by ALMA
have been detected with high S/Ns. Two sources, LAB2 and
LAB12, have not been detected with SCUBA-2 due to low flux
densities, but have been detected with ALMA in the dust
continuum. For the remaining four LABs, their positions are
consistent with our SCUBA-2 observations if considering the
positional uncertainties of SCUBA-2 observations. The VLA
positions of the radio emission are in good agreement with
those of the dust emission obtained with ALMA. These
consistent results support the reliability of the SCUBA-2 and
VLA data, even for the marginal detections. Adopting the
number count study of SCUBA-2 sources in Geach et al.
(2017), the probability of finding a 850μm source with a flux
greater than 2 mJy within a box of 15″, accounting for the
typical LAB’s size and the SCUBA-2ʼs beam size at 850 μm, is
∼5.2%. Thus, we expect to have two spurious submillimeter
sources detected above 2 mJy among the 35 LABs in the
SSA22 field. However, all SCUBA-2-detected sources have
significant radio counterparts except for LAB10 and LAB11.
The former is not covered by the VLA observations and the
latter has a weak radio counterpart. Thus, all SCUBA-2 sources
are very likely associated with the LABs, instead of merely
representing chance coincidences along the given lines of sight.
Previously, three deep (sub)millimeter surveys had been

carried out in this field (Geach et al. 2005, 2017; Tamura et al.
2013; Hine et al. 2016) and their results are presented in
Table 2. Early SCUBA data (Geach et al. 2005) show five
sources detected at �3.5σ. However, only two sources, LAB1
and LAB18, have been confirmed by the recent deeper
SCUBA2 observations (Hine et al. 2016). Our results are
consistent with those in Hine et al. (2016). For the LABs
detected in Geach et al. (2005), we confirmed all sources but
mostly with much lower flux densities. The large difference
may be due to flux boosting in the original SCUBA data
and issues related to data reduction and calibrations (Hine
et al. 2016). Adopting the SED templates described in
Section 3.3, one expects that flux densities at 1.1mm are
about half of those at 850μm. Thus, it is not surprising that

Table 1
Observation Logs in SSA22

Telescope Observation Date Project R.A. Decl. Freq. Map Sizea Observing Time On-source Time
(J2000) (J2000) (GHz) (arcmin) (hr) (hr)

JCMT/SCUBA-2 2012 Sep–2013 Dec MJLSC02 22:17:36.30 +00:19:22.7 345 30 L 72
JCMT/SCUBA-2 2015 Apr–2015 Jun M15AI91 22:17:31.70 +00:17:50.0 345 15 L 19
VLA 2015 Apr–2015 Apr 15A-120 22:17:28.00 +00:17:50.0 2–4 15 6.7 4.2
VLA 2016 May–2016 May 16A-310 22:17:43.00 +00:10:40.0 2–4 15 2 1.6
VLA 2016 May–2016 Aug 16A-310 22:17:32.00 +00:15:00.0 2–4 15 32 26.1

Note. Note that the best sensitivities in the images are 0.75mJy/beam for the combined SCUBA-2 observations and 1.5μJy/beam for the combined VLA
observations, respectively.
a The map size of the VLA observations is the field of view at the central frequency of 3GHz.
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none of the LABs is individually detected at �3.5σ at 1.1mm
by AzTEC/ASTE (Tamura et al. 2013). Typical predicted
fluxes of SCUBA2-detected LABs are less than 1.5 mJy at
1.1mm, which corresponds to about 2σ. Actually, the brightest
source, LAB18, is the only 3σ detection at 1.1mm, and is
consistent with the predicted value from the SED templates.

We also stack the remaining submillimeter-undetected LABs
except for LAB17, because the latter is located in a region with
a high noise level (see Figure 1). The stacked image shows no
significant detection at >3σ (0.56 mJy).

3.2. Radio Emission

In Figure 2, we show the full radio map imaged by the VLA
observations with the radio emission in grayscale. Twenty-nine
sources are covered by our observations, and 7 (LAB13,
LAB15, LAB21, LAB22, LAB27, LAB28, and LAB33) of
them are outside the central field of view (FoV) with a noise
level of above ∼3.5μJy/beam after primary beam correction.
None of the sources outside of the FoV are detected at radio
wavelengths, and this may well be related to the lower
sensitivity in these regions. Among the remaining 22 LABs,
9 are detected above 4σ. The VLA S-band flux measurements
are listed in Table 2. For 5 out of 9 radio-detected sources,
spectroscopic data from the literature at the same locations as
the radio counterparts show that their redshifts are around 3.1
(see Table 2). Adopting the number count study of radio
sources in Condon et al. (2012), the probability of finding a
3 GHz source with a flux greater than 7.5 μJy within a typical
LAB’s size of 6″ is ∼4.2%. Thus, among the 22 sources with
good sensitivities, we expect to have one spurious radio source
detected above 7.5 μJy.

3.3. Star Formation Rates (SFRs)

Here we derive the SFRs from the Lyα, IR, and radio
luminosities. To estimate the SFR from the Lyα luminosity, we
first assume that star formation (SF) powers the observed Lyα
flux. We use an unreddened Lyα/Hα ratio of 8.7:1 and the
conversion factor between Hα luminosity and SFR (Kennicutt
1998; Kennicutt & Evans 2012), yielding SFR(Lyα)/
(Me yr−1)=0.62×LLyα/(10

42 erg s−1). This provides a
lower limit, because the dust extinction of Lyα emission,
likely exacerbated by resonance scattering, may significantly
reduce the observed Lyα luminosity.
For another estimate of the SFR, we first need to determine

the IR luminosity. However, the dust SEDs of the LABs cannot
be well constrained, as only one or two measurements at (sub)
millimeter wavelengths are available. Therefore, we will follow
the method described in Umehata et al. (2015) to use SED
templates of well studied starburst galaxies, Arp 220 and M82
(Silva et al. 1998), a composite SED of SMGs from the ALMA
LESS survey (ALESS, Swinbank et al. 2014) and SMM
J21350201 (the cosmic eyelash; Swinbank et al. 2010) to
consider a variety of SEDs. We created best-fit SEDs for each
template based on redshift and SCUBA-2/ALMA measure-
ments. The spectra between 8 and 1000μm in the rest frame
were integrated, and we derive a median value as well as
minimum/maximum values. Following the SFR calibration
in Kennicutt (1998) and Kennicutt & Evans (2012), we
can estimate the SFR by using the relation SFR(LFIR)/
(Me yr−1)=1.46×LFIR/(10

10 Le). The uncertainties of
submillimeter-derived SFRs mainly come from the choice of
adopted templates, and the minimum and maximum as well as
median values are given in Table 3.

Figure 1. Signal-to-noise map of the SCUBA-2 data in the SSA22 region in gray is overlaid with contour levels of 0.8, 0.9, 1.0, 1.1, 1.3, 1.5, and 1.7 mJy/beam of the
noise map. The locations of the 35 LABs identified by Matsuda et al. (2004) are shown as yellow circles with diameters of 25 arcsec. The ID numbers of the sources
are indicated in green.
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In luminous galaxies, radio emission is dominated by
synchrotron radiation from electrons, and one can relate this
emission to the SFR by SFR(L1.4 GHz)/(Me yr−1)=5.52×
10−22L1.4GHz/(WHz−1) (Bell 2003). The radio luminosity at
1.4 GHz in the rest frame can be estimated from the observed
flux at 3 GHz by assuming a relation S∝να, where S is the
flux density and a typical spectral index commonly adopted for
SMGs (e.g., Ivison et al. 2010) is α=−0.8. The SFRs derived
using these three methods are listed in Table 3.

3.4. Comments on Individual LABs

Radio data are not only helpful to discover the powering
sources, but also to provide accurate positions of the
unresolved SCUBA-2-detected sources and help to cross-
identify and even verify the corresponding dust emission at a
relatively faint detection level. Here, we will briefly describe
the sources detected at submillimeter and radio wavelengths.
Deep X-ray observations with Chandra are available for the
SSA22 field (Geach et al. 2009; Lehmer et al. 2009), and will
also be discussed for the detected sources. For those readers
mainly interested in statistically relevant results, we recom-
mend continuing with Section 4.

3.4.1. LAB1

For LAB1, the ALMA observations at 850μm reveal three
cores with a total flux density of 1.72± 0.21 mJy (upper left
panel in Figure 4; see also Geach et al. 2016), two close to
VLA-LAB1a and one close to VLA-LAB1b. Using the
SCUBA-2 data, Geach et al. (2014) found a flux density of
4.6± 1.1 mJy. Not accounting for the slightly different

SCUBA-2 and ALMA primary beams, this suggests that
63%± 10% of the extended emission is missed by the ALMA
observations. Combining this with our new SCUBA-2 data, we
find a flux density of 2.9± 0.8 mJy, indicating that missing
flux accounts for 41%± 15% of the total flux density.
Considering the flux uncertainties, the new value is only
slightly higher than ALMA’s measurement, showing that in
this LAB there may be not much extended structure missed by
ALMA. Adopting the SED templates described in Section 3.3,
the predicted flux densities are -

+0.46 mJy0.12
0.40 for ALMA-

LAB1ab, -
+0.27 mJy0.07

0.24 for ALMA-LAB1c at 1.25mm, and

-
+0.025 mJy0.007

0.022 for ALMA-LAB1 at 3.5mm, respectively.
These results are consistent with the 3σ upper limits around
LAB1 of 0.45mJy at 1.25mm and 0.15mJy at 3.5mm
reported by Yang et al. (2012).
Two radio sources are detected in this LAB. The northern

radio source, VLA-LAB1a, peaks at a location close to two
dust continuum peaks, ALMA-LAB1a and ALMA-LAB1b.
The southern radio source, VLA-LAB1b, is consistent with one
of the ALMA 350 GHz continuum sources, ALMA-LAB1c.
Weak X-ray emission is detected around the southern source.
[C II] emission has also been detected in ALMA-LAB1b with a
secured redshift of 3.0993± 0.0004 (Umehata et al. 2017b).

3.4.2. LAB2

Radio emission is detected within this LAB. However,
SCUBA-2 observations show no dust emission around this
source down to a 2σ level of 1.6 mJy. Sensitive ALMA
observations find a counterpart near the radio source with a flux

Figure 2. Radio map of the SSA22 region in grayscale. Three big circles denote the primary full width at half maximum beam size for three pointings with different
on-source observing times (red: 26hr, blue: 1.6hr, and black: 4.2hr). The locations of 29 out of the 35 LABs identified by Matsuda et al. (2004) are covered by our
observations and are shown as yellow circles with diameters of 25 arcsec. The ID numbers of the sources are labeled in black.
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Table 2
JCMT/SCUBA-2 and VLA S-band Observations toward LABs in SSA22

Previous (sub)mm Measurementsb VLA Observationsc Spectroscopic Observationsd

Source R.A.(J2000) Decl.(J2000) S850 μm
a S850 μm S850 μm S1.1 mm VLA ID rms offx offy S10 cm offx offy zred References

(mJy) (mJy) (mJy) (mJy) (μJy) (″) (″) (μJy) (″) (″)
Geach

et al. (2005)
Hine

et al. (2016)
Tamura

et al. (2013)

SCUBA2-

LAB1

22:17:25.961 +00:12:37.57 2.9 ± 0.8 16.8 ± 2.9 4.6 ± 1.1 1.97 ± 0.74 L L L L L L L L L

ALMA-
LAB1ab

22:17:25.981 +00:12:36.35 1.08 ± 0.17 L L L VLA-LAB1a 1.64/1.79 −0.4 −1.1 7.3 ± 2.2 L L L L

ALMA-

LAB1c

22:17:26.100 +00:12:32.37 0.64 ± 0.12 L L L VLA-LAB1b 1.64/1.79 0.2 −0.1 8.6 ± 2.2 0.0 −0.1 3.0993+/−0.0004 (1)

ALMA-
LAB1

L L 1.72 ± 0.21 L L L L L L L L L L L L

SCUBA2-

LAB2

22:17:38.996 +00:13:27.51 −0.5 ± 0.8 3.3 ± 1.2 0.1 ± 1.1 −1.89 ± 0.76 L L L L L L L L L

ALMA-
LAB2

22:17:39.079 +00:13:30.85 0.91 ± 0.10 L L L VLA-LAB2 1.57/1.65 0.0 0.0 8.4 ± 2.4 −0.5 −0.7 3.091+/−0.001 (3)

SCUBA2-

LAB3

22:17:59.153 +00:15:28.37 0.2 ± 0.9 −0.2 ± 1.5 0.1 ± 1.1 −0.69 ± 0.73 VLA-LAB3 1.54/2.70 −1.9 −1.8 7.5 ± 3.8 L L L L

SCUBA2-

LAB4

22:17:25.126 +00:22:10.21 2.4 ± 0.8 0.9 ± 1.5 2.4 ± 1.1 0.11 ± 0.74 VLA-LAB4a 1.48/2.72 0.0 0.1 25.4 ± 4.1 L L L L

L L L L L L VLA-LAB4b 1.48/2.72 2.3 −5.6 98.9 ± 3.8 L L L L
SCUBA2-

LAB5

22:17:11.681 +00:16:43.95 2.9 ± 0.8 5.2 ± 1.4 1.9 ± 1.1 0.34 ± 0.74 L L L L L L L L L

ALMA-
LAB5

22:17:11.664 +00:16:44.32 2.21 ± 0.08 L L L VLA-LAB5 1.29/1.93 0.1 −0.4 10.8 ± 2.7 L L L L

SCUBA2-

LAB6

22:16:51.428 +00:25:02.39 0.4 ± 1.0 −0.5 ± 1.8 1.0 ± 1.1 0.07 ± 1.14 L n.a. L L L L L L L

SCUBA2-
LAB7

22:17:41.005 +00:11:26.32 −1.0 ± 0.8 0.2 ± 1.6 1.2 ± 1.1 −0.88 ± 0.74 L 1.52/1.81 L L L L L L L

SCUBA2-

LAB8

22:17:26.176 +00:12:53.53 −0.6 ± 0.8 0.3 ± 5.3 2.6 ± 1.1 0.67 ± 0.74 L 1.65/1.78 L L L L L L L

SCUBA2-

LAB9

22:17:51.084 +00:17:26.31 2.2 ± 0.8 1.3 ± 5.3 2.2 ± 1.1 0.07 ± 0.74 VLA-LAB9a 1.54/2.25 −2.0 0.7 11.1 ± 3.4 L L L L

L L L L L L VLA-LAB9b 1.54/2.25 2.6 0.0 7.0 ± 3.4 L L L L
SCUBA2-

LAB10

22:18:02.250 +00:25:55.77 2.7 ± 1.1 6.1 ± 1.4 3.2 ± 1.1 1.20 ± 0.84 L n.a. L L L L L L L

SCUBA2-
LAB11

22:17:20.325 +00:17:32.05 2.3 ± 0.7 −0.4 ± 5.3 2.5 ± 1.1 0.61 ± 0.73 VLA-LAB11 1.46/1.78 −1.8 2.9 5.5 ± 2.7 L L L L

SCUBA2-

LAB12

22:17:31.907 +00:16:58.77 0.7 ± 0.8 3.2 ± 1.6 0.8 ± 1.1 0.30 ± 0.74 L L L L L L L L L

ALMA-

LAB12

22:17:32.01 +00:16:55.4 0.63 ± 0.03 L L L VLA-LAB12 1.61/1.70 0.2 0.1 7.4 ± 2.4 −0.2 0.1 3.0909+/−0.0004 (2)

SCUBA2-

LAB13

22:18:07.972 +00:16:46.77 0.1 ± 0.9 L 1.2 ± 1.1 −0.72 ± 0.73 L 1.32/3.95 L L L L L L L

SCUBA2-

LAB14

22:17:35.908 +00:15:58.79 2.0 ± 0.7 4.9 ± 1.3 2.0 ± 1.1 2.43 ± 0.76 L L L L L L L L L

ALMA-

LAB14

22:17:35.83 +00:15:59.0 1.45 ± 0.09 L L L VLA-LAB14 1.51/1.54 0.1 −0.4 14.5 ± 2.1 1.0 0.0 3.094 (4)
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Table 2
(Continued)

Previous (sub)mm Measurementsb VLA Observationsc Spectroscopic Observationsd

Source R.A.(J2000) Decl.(J2000) S850 μm
a S850 μm S850 μm S1.1 mm VLA ID rms offx offy S10 cm offx offy zred References

(mJy) (mJy) (mJy) (mJy) (μJy) (″) (″) (μJy) (″) (″)
Geach

et al. (2005)
Hine

et al. (2016)
Tamura

et al. (2013)

SCUBA2-

LAB15

22:18:08.317 +00:10:21.78 1.3 ± 1.1 L 2.4 ± 1.1 −0.27 ± 0.74 L 1.51/4.33 L L L L L L L

SCUBA2-
LAB16

22:17:24.845 +00:11:16.77 2.4 ± 0.8 2.2 ± 5.3 3.4 ± 1.1 0.34 ± 0.74 VLA-LAB16 1.44/1.77 0.2 0.6 8.5 ± 2.7 0.8 0.7 3.0689+/−0.0002 (2)

SCUBA2-

LAB17

22:18:36.533 +00:07:19.88 −1.5 ± 1.9 L L 1.41 ± 1.19 L n.a. L L L L L L L

SCUBA2-
LAB18

22:17:28.998 +00:07:51.16 5.4 ± 0.9 11.0 ± 1.5 5.2 ± 1.1 2.33 ± 0.73 L L L L L L L L L

ALMA-

LAB18a

22:17:29.032 +00:07:50.26 1.18 ± 0.08 L L L VLA-LAB18a 1.58/2.80 −0.2 0.1 13.0 ± 4.2 L L L L

ALMA-
LAB18b

22:17:28.936 +00:07:46.92 2.73 ± 0.10 L L L VLA-LAB18b 1.58/2.80 −0.1 0.0 9.1 ± 4.0 L L L L

ALMA-

LAB18c

22:17:29.017 +00:07:43.44 1.14 ± 0.15 L L L L 1.58/2.80 L L L L L L L

ALMA-
LAB18d

22:17:28.781 +00:07:40.07 4.42 ± 0.30 L L L VLA-LAB18d 1.58/2.80 0.2 0.4 16.4 ± 4.3 L L L L

ALMA-

LAB18

L L 9.47 ± 0.36 L L L L L L L L L L L L

SCUBA2-

LAB19

22:17:19.569 +00:18:46.38 −2.1 ± 0.7 −8.6 ± 5.3 −0.4 ± 1.1 −0.81 ± 0.74 L 1.56/2.09 L L L L L L L

SCUBA2-

LAB20

22:17:35.307 +00:12:48.31 −0.4 ± 0.8 0.4 ± 1.5 0.2 ± 1.1 −0.80 ± 0.75 L 1.60/1.68 L L L L L L L

SCUBA2-

LAB21

22:18:17.324 +00:12:08.66 1.1 ± 1.2 L 0.9 ± 1.1 −1.37 ± 0.75 L 1.63/6.63 L L L L L L L

SCUBA2-

LAB22

22:17:34.982 +00:23:35.09 1.5 ± 0.8 L 1.3 ± 1.1 1.04 ± 0.74 L 1.31/3.45 L L L L L L L

SCUBA2-

LAB23

22:18:07.950 +00:23:16.62 −0.1 ± 1.1 L 1.0 ± 1.1 −1.55 ± 0.80 L n.a. L L L L L L L

SCUBA2-
LAB24

22:18:00.905 +00:14:40.10 −0.9 ± 0.8 L −0.6 ± 1.1 0.03 ± 0.72 L 1.64/2.93 L L L L L L L

SCUBA2-

LAB25

22:17:22.590 +00:15:50.86 −2.1 ± 0.8 1.4 ± 5.3 −1.5 ± 1.1 0.01 ± 0.73 L 1.43/1.57 L L L L L L L

SCUBA2-
LAB26

22:17:50.424 +00:17:33.37 0.6 ± 0.8 −2.7 ± 5.3 1.1 ± 1.1 −0.90 ± 0.74 L 1.50/2.17 L L L L L L L

SCUBA2-

LAB27

22:17:06.974 +00:21:30.15 1.7 ± 0.8 0.5 ± 1.6 2.1 ± 1.1 0.18 ± 0.77 L 1.29/3.70 L L L L L L L

SCUBA2-
LAB28

22:17:59.210 +00:22:53.96 −0.1 ± 0.9 L −0.6 ± 1.1 −0.99 ± 0.76 L 1.41/5.83 L L L L L L L

SCUBA2-

LAB29

22:16:53.869 +00:23:00.39 0.3 ± 1.1 L 0.7 ± 1.1 −2.54 ± 0.91 L n.a. L L L L L L L

SCUBA2-

LAB30

22:17:32.454 +00:11:33.36 0.6 ± 0.9 3.3 ± 1.3 1.9 ± 1.1 0.65 ± 0.74 VLA-LAB30a 1.72/1.91 4.6 1.6 24.9 ± 2.4 L L L L

L L L L L L VLA-LAB30b 1.72/1.91 1.1 0.7 4.3 ± 2.4 L L L L
L L L L L L VLA-LAB30c 1.72/1.91 3.4 −2.5 20.0 ± 2.6 L L L L
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Table 2
(Continued)

Previous (sub)mm Measurementsb VLA Observationsc Spectroscopic Observationsd

Source R.A.(J2000) Decl.(J2000) S850 μm
a S850 μm S850 μm S1.1 mm VLA ID rms offx offy S10 cm offx offy zred References

(mJy) (mJy) (mJy) (mJy) (μJy) (″) (″) (μJy) (″) (″)
Geach

et al. (2005)
Hine

et al. (2016)
Tamura

et al. (2013)

L L L L L L VLA-LAB30d 1.72/1.91 −4.8 −3.7 46.9 ± 2.6 L L L L
SCUBA2-

LAB31
22:17:38.945 +00:11:01.87 −0.7 ± 0.8 −3.7 ± 5.3 0.0 ± 1.1 −1.44 ± 0.74 L 1.48/1.78 L L L L L L L

SCUBA2-

LAB32

22:17:23.874 +00:21:55.46 0.6 ± 0.7 1.8 ± 1.4 0.9 ± 1.1 −0.16 ± 0.74 L 1.50/2.75 L L L L L L L

SCUBA2-
LAB33

22:18:12.553 +00:14:32.67 −0.6 ± 1.1 1.6 ± 1.5 0.7 ± 1.1 0.04 ± 0.73 L 1.41/4.92 L L L L L L L

SCUBA2-

LAB34

22:16:58.365 +00:24:29.08 −0.7 ± 1.1 L 0.4 ± 1.1 1.01 ± 0.93 L n.a. L L L L L L L

SCUBA2-

LAB35

22:17:24.837 +00:17:16.92 −0.3 ± 0.8 1.2 ± 5.3 1.0 ± 1.1 −0.74 ± 0.73 L 1.58/1.77 L L L L L L L

Notes.
a The fluxes are measured at 850 μm by JCMT/ALMA except for LAB12 and LAB14. The latter two sources were observed at 1.14 mm with ALMA (Umehata et al. 2015). The sources detected at submillimeter
wavelengths are highlighted in bold font.
b Previous (sub)millimeter measurements from three deep surveys. The first two were carried out at 850 μm by SCUBA (Geach et al. 2005) and SCUBA2 (Hine et al. 2016), respectively. The third one was taken at
1.1mm by AzTEC/ASTE (Tamura et al. 2013). Sources detected with S/Ns at �3.5σ are shown in bold font.
c In Column9, the given two values are for the noise levels before and after primary beam correction. The offsets of radio counterparts relative to the LAB centers or ALMA sources are given in Columns7 and 8. The
counterparts associated with the LABs are highlighted in bold font.
d Only the targets with offsets (Column 13 and 14) less than 1 arcsec relative to the radio sources are considered to be associated with the radio sources. References: (1) Umehata et al. (2017b); (2) Kubo et al. (2015); (3)
Steidel et al. (2003); (4) Yamada et al. (2012).
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density of 0.91± 0.10 mJy at 350GHz, coincident with the
X-ray counterpart (Geach et al. 2009).

Our observation does not confirm the presence of a second
continuum source (see Figure 4) marginally detected by
Alexander et al. (2016) with a flux of 1.11± 0.25 mJy at
0.87 mm, which is significantly higher than our 3σ ALMA
limit of 0.23 mJy. This may be due to the presence of extended

structure that is resolved out by our higher angular resolution
observations or it may be a spurious source.

3.4.3. LAB3

The VLA data show a tentative detection within this LAB,
but no dust emission is detected with SCUBA-2. Note that the

Figure 3. SCUBA2 dust emission at 850μm in red (the contour levels are 2, 2.5, 3, 4, and 5 times the respective noise level, the latter given in Column 4 of Table 2),
VLA radio emission at 3GHz in green (contour levels are 2, 3, 4, 5, 6, 8, 10, 15, 20, and 30σ and the values of σ are the noise levels prior to primary beam correction
given in Column 6 of Table 2) and Chandra X-ray emission in yellow (the contour levels of number counts of the smoothed full-band, 0.5–8 keV, image adopted from
Lehmer et al. 2009 are 6, 9, 12, 15, 18, 21, 30, 40, and 50) are overlaid on the Lyα emission taken from Matsuda et al. (2004). Radio sources are labeled with letters in
blue when more than one radio core is detected in one LAB. The offsets are relative to the centers of the LABs, denoted by blue crosses.
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radio peak has only a 3σ significance, and there are no
counterparts at other wavelengths. Thus, the VLA signal might
not be reliable, and we consider this LAB as undetected at radio
frequencies. A strong X-ray source is detected in this LAB;
however, it is not coincident with the weak radio peak.

Recently, dust continuum has been marginally detected
around this LAB with ALMA (Alexander et al. 2016), but it is
outside of the LAB, offset ∼4.5 arcsec (∼30 kpc) from the
center. Thus, the dust continuum is not considered to be
associated with the LAB.

3.4.4. LAB4

The radio emission peaks at the center of the LAB. However,
the SCUBA-2 submillimeter source is offset 9 arcsec from the
center. Considering the positional uncertainty of about 9 arcsec
for this weak source, we still consider the submillimeter source
to be consistent with the radio source and also associated with
the LAB. A similar situation is encountered in LAB14, where
the ALMA observations confirm the association between the
radio and submillimeter sources. Note that there is a bright
radio source at the southeastern edge (Figure 3). This is
possibly a foreground source.

3.4.5. LAB5

This LAB is detected by SCUBA-2 and the VLA, and
further confirmed by the ALMA observations. The SCUBA-2
and ALMA data show similar flux densities for this LAB.

3.4.6. LAB9

This LAB shows dust emission around the center. The VLA
data reveal two radio components within this source, but only
one source with an S/N above 4σ.

3.4.7. LAB10

This source is detected at submillimeter wavelengths with a
significance of 3σ by SCUBA-2, but is not covered by our
radio observations. Further cross-identification is needed to
confirm its reliability.

3.4.8. LAB11

This LAB shows SCUBA-2 dust emission around the center.
The marginally detected radio emission shows elongated
structure, and its reality needs to be confirmed because of its
low S/N.

3.4.9. LAB12

A significant radio detection is found within the LAB, but no
dust counterpart is detected by SCUBA-2. However, the more
sensitive ALMA observations at 1.14mm show dust emission
around the radio source. It also coincides with a strong X-ray
counterpart (Geach et al. 2009). This LAB is also detected at
0.87mm with ALMA by Alexander et al. (2016), showing a
flux density of 1.58± 0.35mJy. Both ALMA measurements

Figure 4. SCUBA2 dust emission at 850μm (red), VLA radio emission at 3GHz (green) and Chandra X-ray emission (yellow) contours are overlaid on the
continuum images (LAB12 and LAB14 at 1.14 mm and others at 850 μm) of the LABs observed with ALMA. The offsets are relative to the centers of the LABs. The
contour levels are the same as in Figure 3. ALMA dust continuum sources are labeled with letters in white when more than one dust core is detected in a single LAB.
The white cross in the panel of LAB2 denotes the location of dust continuum marginally detected at 870μm by Alexander et al. (2016).
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can be well fitted by the SED templates described in
Section 3.3

3.4.10. LAB14

The radio emission peaks around the center of the LAB, and
SCUBA-2 shows dust emission centered 7 arcsec off the radio
peak. However, our ALMA observations demonstrate that the
1.14mm dust emission coincides with the radio counterpart
(see Figure 4), supporting the reality of the SCUBA-2
detection. The inconsistency between the dust seen by
SCUBA-2 and ALMA as well as the radio emission may be
explained by the 1σ positional uncertainty of 9″ of the
SCUBA-2 data. The radio source is also coincident with a
strong X-ray counterpart (Geach et al. 2009).

This LAB was also detected at 0.87mm by ALMA (Alexander
et al. 2016), showing a flux density of 2.96± 0.29mJy. The SED
templates described in Section 3.3 can well fit both ALMA
measurements. It predicts a flux density of 3.12± 0.31 at
0.85mm, which is about 56% higher than the SCUBA-2
measurement, suggesting that SCUBA-2 only reveals about
two-thirds of the total flux. It may be due to the effect of a
negative sidelobe from a bright source in the south, which is 16″,
close to the SCUBA-2 beam size of 14″, off the SCUBA-2 source
associated with LAB14.

3.4.11. LAB16

The radio emission is detected around the center of the LAB
and SCUBA-2 shows dust emission that peaks around 5 arcsec
from the center, which is well within the 1σ positional
uncertainty of the SCUBA-2 data.

3.4.12. LAB18

This is the strongest submillimeter source among all LABs in
this field. The SCUBA-2 observations reveal a flux density of
5.4± 0.9 mJy. The ALMA observations discover four dust
cores (a, b, c, and d in the lower right panel of Figure 4) with a
total flux density of 9.47± 0.36 mJy, which is about 75%
higher than the SCUBA-2 value. Three out of four ALMA
submillimeter sources have radio counterparts. ALMA-
LAB18a peaks around the center of the LAB and ALMA-
LAB18b lies south of the center with an offset of 4.5 arcsec.
The latter is surrounded by Lyα emission. If the Lyα emission
in the south is a part of LAB18, its elongation along the north–
south direction is around 13 arcsec, i.e., 100 kpc. The other two
submillimeter sources, ALMA-LAB18c and ALMA-LAB18d,
located farther to the south are outside the LAB and not
associated with it. Geach et al. (2009) found an X-ray
counterpart between two ALMA sources, ALMA-LAB18b
and ALMA-LAB18c. However, the positional errors of the
X-ray sources are expected to be the order of 2.5 arcsec in most

Table 3
Derived Star Formation Rates toward Submillimeter/Radio-detected LABs in SSA22

Source SFR850 μm
a Radio Comp SFR10 cm

a SFR10 cm/SFR850 μm SFRLyα
a SFRLyα/SFR850 μm

(Me yr−1) (Me yr−1) (Me yr−1) (%)

SCUBA2-LAB1 -
+376 99

332 VLA-LAB1 1017 ± 198 2.7 68 18.1

ALMA-LAB1ab -
+140 37

124 VLA-LAB1a 468 ± 140 3.3 L L
ALMA-LAB1c -

+83 22
73 VLA-LAB1b 549 ± 140 4.6 L L

ALMA-LAB1 -
+223 59

197 VLA-LAB1 1017 ± 198 4.0 68 30.5

SCUBA2-LAB2 <195 VLA-LAB2 536 ± 156 >2.7 52 >26.5
ALMA-LAB2 -

+118 31
104 VLA-LAB2 536 ± 156 4.5 52 44.1

SCUBA2-LAB3b <237 L <482 L 36 >14.9
SCUBA2-LAB4 -

+317 84
280 VLA-LAB4a 1625 ± 264 5.1 23 7.4

VLA-LAB4b 6342 ± 242 L L L
SCUBA2-LAB5 -

+382 101
338 VLA-LAB5 690 ± 175 1.8 10 2.6

ALMA-LAB5 -
+287 76

254 VLA-LAB5 690 ± 175 2.4 10 3.5

SCUBA2-LAB9 -
+281 74

248 VLA-LAB9a 709 ± 215 2.5 8.0 2.9

VLA-LAB9b 450 ± 218 L L L
SCUBA2-LAB10 -

+349 92
308 L L L 14 3.9

SCUBA2-LAB11 -
+302 80

266 VLA-LAB11 352 ± 172 1.2 5.6 1.8

SCUBA2-LAB12 <214 VLA-LAB12 474 ± 156 >2.2 5.3 >2.5
ALMA-LAB12 -

+189 19
76 VLA-LAB12 474 ± 156 2.5 5.3 2.7

SCUBA2-LAB14 -
+265 70

234 VLA-LAB14 930 ± 137 3.5 7.4 2.8

ALMA-LAB14 -
+389 63

227 VLA-LAB14 930 ± 137 2.4 7.4 1.9

SCUBA2-LAB16 -
+309 82

273 VLA-LAB16 541 ± 170 1.7 6.1 2.0

SCUBA2-LAB18 -
+696 184

615 VLA-LAB18abd 2464 ± 462 3.5 L L
ALMA-LAB18a -

+153 40
135 VLA-LAB18a 830 ± 270 5.4 4.0 2.6

ALMA-LAB18b -
+355 94

313 VLA-LAB18b 586 ± 254 1.7 L L
ALMA-LAB18d -

+575 152
508 VLA-LAB18d 1048 ± 275 1.8 L L

Notes.
a The star formation rates (SFRs) are determined from measured submillimeter and radio fluxes under some assumptions (for details, see the text in Section 3.3. 2σ
upper limits are given for submillimeter-undetected LABs.
b Note that the LAB, not detected at dust and radio wavelengths but with X-ray emission, is also presented in this table.
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cases (Lehmer et al. 2009). LAB18 is at the edge of the X-ray
image, and its positional error will be even larger. Therefore,
the X-ray source might be associated with either ALMA-
LAB18b or ALMA-LAB18c.

There is no continuum emission detected at 3.55mm by
Yang et al. (2014), showing a 3σ upper limit of 0.13mJy. This
is confirmed by the predicted flux density of -

+0.054 mJy0.014
0.048

from the SED templates.

3.4.13. LAB30

There are four radio sources detected in this region
(Figure 3). The sources, A, C, and D, show detections of high
significance but are located outside of this LAB. Source D is
found to be associated with a local galaxy at z=0.41 (Saez
et al. 2015). Source B is close to the center of the LAB, but
only marginally detected at 3σ. No submillimeter emission is
detected and the marginal detection of source B needs to be
confirmed. We consider this source as undetected at radio
wavelengths.

4. Discussion

4.1. Physical Sizes of LABs and Detection of Submillimeter
Emission

Figure 5 shows the distribution of Lyα luminosity, isophotal
area, and measured fluxes at submillimeter wavelengths for all
LABs. In all 11 submillimeter-detected sources, 2 ALMA-
detected LABs, LAB2 and LAB12, remain undetectable by our
SCUBA-2 observations, while the remaining 9 sources are
detected by SCUBA-2. In this section, we will therefore rely on
the SCUBA-2 data alone to investigate possible relations
between the physical size of LABs and the detection of
submillimeter emission. In the left panel, we plot the
submillimeter flux density against the Lyα luminosity. For
the sources with LLyα>1043 ergs−1, 6 out of 17 LABs are
detected at submillimeter wavelengths with SCUBA-2. For the
fainter sources with LLyα<1043 ergs−1, 3 out of 18 LABs are
detected at submm wavelengths. Apparently, more Lyα

luminous galaxies are more likely to be detected at sub-
millimeter wavelengths. In the right panel, we plot the
submillimeter flux density against the isophotal area. For the
first 18 large LABs, which are named according to their
isophotal area in Matsuda et al. (2004), 9 are detected in the
submillimeter. The remaining 17 LABs are not detected at
submillimeter wavelengths. This suggests that large LABs
exhibit stronger submillimeter emission. Furthermore, our
results suggest that the detection of submillimeter dust
emission in LABs is more linked to the physical sizes of
Lyα emission than to their Lyα luminosities. The physical sizes
of Lyα emission, instead of their luminosities, may have a tight
correlation with dust emission. This seems to be inconsistent
with the fairly tight correlation between the physical sizes of
LABs and the Lyα luminosities reported by Matsuda et al.
(2004). However, one should note that the correlation is weak
if excluding the four brightest/largest LABs. The (sub)
millimeter emission can be a good indicator of gas masses
for SMGs because of its low optical depth. Due to the
uncertainties in the Lyα escape fraction of LABs, the Lyα
emission is not a good mass tracer of SMGs and therefore the
correlation between the dust emission and the Lyα emission is
not very tight. The larger physical extension of Lyα emission
may be related to spatially more extended surrounding atomic
hydrogen and star-forming regions emitting ionizing photons.
A recent study (Matsuda et al. 2012) shows that the spatial
extent of the Lyα haloes is determined by the surrounding
megaparsec-scale environment, rather than by the central UV
luminosities. However, this is inconsistent with the result in
Xue et al. (2017), who do not find any correlation between
measured scale-lengths and degree of overdensity relative to
the environment. It is worth emphasizing that the trend to dust
detections, more related to LAB sizes than to LAB luminos-
ities, is based not entirely on detections but on detections of the
large area LABs and nondetection of the smaller area LABs.
Future more sensitive ALMA data may settle this puzzle and
reveal the relation between LAB sizes and their possible
internal heating sources in a more convincing way.

Figure 5. Distribution of measured 850 μm flux versus Lyα luminosity (left) and isophotal area (right) for the LABs in the SSA22 field. The black empty squares
denote the LABs detected at 850 μm and the arrows mark undetected sources with 3σ upper limits. Two sources, LAB2 and LAB12, are only detected by ALMA with
850 μm fluxes less than 1.0 mJy, shown as red squares.
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4.2. Powering Sources of LABs: Star Formation or Active
Galactic Nuclei?

4.2.1. Submillimeter and Radio Detections in LABs and Their
Implications on Heating Mechanisms

The heating mechanism of LABs is still unclear. About one-
third of the LABs in SSA22 are associated with submillimeter/
radio sources with SFRs above 100Me yr−1. Spectroscopic
measurements from the literature (see Table 2) confirm that at
least some of the detected submillimeter/radio counterparts are
indeed associated with the LABs. These results suggest that
internal heating in the host galaxies may be a major energy
source for some LABs. It is consistent with our recent study of
J2143−4423 (Ao et al. 2015), where 2 out of 4 LABs have
been detected at radio and submillimeter wavelengths.

Alternately, AGNs may also be responsible for heating the
gas. Deep Chandra X-ray observations in the SSA 22 field
(Geach et al. 2009; Lehmer et al. 2009) cover 29 LABs. Indeed,
6 out of 29 LABs have X-ray counterparts, implying a
significant fraction of AGNs in LABs. Among these, six X-ray
detected LABs, LAB3 shows no counterparts at radio and
submillimeter wavelengths (for details, see Section 3.4 and
Figure 3) and LAB18 is not clearly associated with any
submillimeter/radio counterparts, given the pointing accuracy
of the Chandra observations (for details, see Section 3.4 and
Figures 3 and 4). The remaining four LABs, LAB2, LAB12,
and LAB14, identified in Geach et al. (2009), as well as LAB1
with weak X-ray emission (see Figure 4), are detected at radio
and submillimeter wavelengths.

The far-infrared (FIR) and radio luminosities of star-forming
galaxies are tightly related via an empirical relationship, the
FIR/radio correlation (FRC; e.g., Helou et al. 1988; Yun
et al. 2001; Magnelli et al. 2015). The radio excess in the
systems with AGNs drives them to deviate from this tight
relationship. Therefore, following the method described in
Magnelli et al. (2015), we use the parametrization of the FRC,
qFIR, to study the radio excess in our sample. The qFIR

parameter is defined as

=
´

- -⎜ ⎟⎛
⎝

⎞
⎠

[ ] ( [ ]) ( )q
L

Llog
W

3.75 10
log W Hz 1FIR

FIR
12 1.4 GHz

1

(e.g., Helou et al. 1988; Yun et al. 2001; Magnelli et al. 2015),
where LFIR is the integrated FIR luminosity from rest-frame 42
to 122 μm and LIR=1.91×LFIR (Magnelli et al. 2015), and
L1.4 GHz is the rest-frame 1.4 GHz radio luminosity and is
calculated as in Section 3.3. The results are shown in the left
panel of Figure 6. We also compare our results to the qFIR value
at z=3.1 predicted by the redshift evolution of qFIR in
Magnelli et al. (2015). The detection limit set by the sensitivity
of VLA observations is shown as the solid line in Figure 6. It is
clear that all X-ray detected LABs have qFIR below the
predicted value. For the sources detected at both submillimeter
and radio wavelengths, 8 out of 10 LABs have qFIR lower than
the predicted value for the star-forming galaxies, suggesting a
radio excess in LABs is common. In the right panel of Figure 6,
we plot SFRradio/SFRsubmm ratios against SFRsubmm. It is clear
that X-ray detected LABs have SFRradio/SFRsubmm ratios
above 2.5. For the sources detected at both submillimeter and
radio wavelengths, 8 out of 10 LABs have ratios larger than
2.5, suggesting that a radio excess in LABs is common.
Previously taken radio/FIR data from local AGNs (Rush
et al. 1993, 1996) show that Seyfert galaxies have a three times
stronger 6 cm radio continuum than predicted by star formation
alone, indicating that the existence of AGNs in submillimeter/
radio-detected LABs might be common. This is consistent with
the finding that 10 out of 12 LAEs with LLyα>1043 ergs−1

are detected in X-rays with Chandra (Civano et al. 2016;
Sobral et al. 2017). However, it is very difficult to discriminate
between predominately SF or AGN powered LABs. At least for
the submillimeter/radio-detected sources with SFRs larger than
100Me yr−1, it is very likely that SF is an important heating

Figure 6. Parametrization of the FRC, qFIR, (left) and SFRradio/SFRsubmm ratios (right) against SFRsubmm for the LABs detected at dust and radio wavelengths. The
sources detected in X-rays are shown with cross symbols inside the open squares. The solid lines present the detection limit, corresponding to a radio flux of 6.3μJy,
constrained by the VLA observations. The dashed line in the left panel denotes the qFIR value at z=3.1 predicted by the redshift evolution of qFIR in Magnelli
et al. (2015).
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mechanism, and among most of them AGNs may also play an
important role in powering the Lyα emission.

Note that the upper SFR limits of the submillimeter-
undetected sources by the SCUBA-2 measurements are about
300Me yr−1, which is usually much higher than the SFR
determined by the Lyα luminosity. Therefore, it is difficult to
draw a strong conclusion on the powering sources of these
LABs with the current data, due to the large variance in the
Lyα escape fraction (see Section 4.3). Future deep observations
are required to settle this problem.

4.2.2. Locations of Radio and X-Ray Counterparts within LABs and
Their Implications on Heating Mechanisms

Due to the limited angular resolution and positional
uncertainties of the SCUBA-2 observations, it is impossible
to pinpoint the accurate positions of the SMGs in the LABs
with SCUBA-2 data alone. With the high angular resolution
VLA images, the accurate positions of radio counterparts and
their associated SMGs are now well determined. Among the
sources with radio counterparts detected above 4σ, four LABs,
LAB4, LAB5, LAB9, and LAB16, have no X-ray counterparts.
Except for LAB9, the radio counterparts of the remaining three
sources, LAB4, LAB5, and LAB16, are located in the center of
the LABs. This may provide evidence in support of SF as the
main powering source in these LABs, and is consistent with the
SF-based model (e.g., Zheng et al. 2011) for LAB formation
and recent observations by Matsuda et al. (2012) who find that
stacking of fainter LAEs in the SSA 22 field shows the
extended and faint Lyα emission surrounding the bright
sources at the center. However, the existence of AGNs in
these LABs cannot be excluded. Especially, LAB4 has a high
SFRradio/SFRsubmm ratio of 5.1± 1.7, strongly supporting that
an AGN may reside there. Thus, these sources without X-ray

emission may also host AGNs, but still deeply embedded in
their host galaxies where X-ray emission might be efficiently
absorbed. This is supported by the fact that these four LABs
contain the high massive dust masses among all LABs.
X-ray emission has been detected in 6 of the 29 LABs of the

SSA22 field. This includes LAB1, not discussed in Geach et al.
(2009), suggesting the existence of AGNs in these systems.
None of the X-ray sources are located at the LAB’s center. This
positional inconsistency between Lyα and the embedded
AGNs has already previously been found in a few LABs
(Prescott et al. 2013; Yang et al. 2014). In comparison with the
X-ray detected LABs, the LABs with the radio counterparts in
the centers usually contain more material and they are located
in the centers of the LABs. It is possible that their X-ray
emission, if present, is largely absorbed by neutral hydrogen,
helium, and presumably recently synthesized heavy elements.
Alternatively, a recent simulation (Geach et al. 2016) shows that
observed Lyα surface brightness and morphology is highly
orientation dependent. This may lead to positional inconsisten-
cies between X-ray sources and the centers of LABs. However,
this simulation cannot explain why most radio counterparts
without X-ray emission locate at the centers of LABs.

4.3. Lyα Escape Fraction at z=3.1

It is very interesting to know the Lyα escape fraction, afesc
Ly ,

in LABs, a special class of LAEs, and to understand it in
different environments. Traditionally, the Lyα escape fraction
at z�2.3 is mainly derived from the Lyα and UV/Hα
luminosity function (e.g., Hayes et al. 2011a; Sobral
et al. 2017). Dust emission is directly related to SF activity
in galaxies and has been widely used as a good SFR estimator
(Kennicutt 1998; Kennicutt & Evans 2012). Therefore, using
SCUBA-2/ALMA data, the Lyα escape fraction can also be

Figure 7. Plots of the escape fraction, afesc
Ly , against the star formation rate (left) and Lyα luminosity (right). Submillimeter-detected and submillimeter-undetected

LABs are marked by black and red squares, respectively. Stacked submillimeter-undetected LABs are presented by a filled red square. X-ray detected LABs are
indicated by crosses inside the squares. Lower limits of afesc

Ly for LAEs at z=2.2 and 3.1 are presented in green (Hayes et al. 2010) and blue (Wardlow et al. 2014),
respectively. The fractions for LAEs at z=2.23 in Sobral et al. (2017) are shown in magenta. The global Lyα escape fractions at z=2.33 (Sobral et al. 2017) and
z=3.1 (Hayes et al. 2011a) are denoted by black and green hashed regions, respectively, where their typical SFRs are less than 20Me yr−1. The dashed line in the
right panel denotes the lower limit of afesc

Ly constrained by the SCUBA-2 detection threshold of 300 Me yr−1. Some detected sources above this line are due to better
sensitivities of the ALMA measurements. Some undetected LABs, shown as red open squares at 3σ, well below the line are limited by their poor sensitivities outside
the central field of the SCUBA-2 observations.
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calculated from the ratio of Lyα to dust continuum derived
SFRs. In Figure 7, we plot afesc

Ly against the SFRs and Lyα
luminosities of the LABs. The Lyα escape fraction ranges from
2% to 45% among the submillimeter-detected LABs, with a
median value of about 3%. Except for 11 submillimeter-
detected sources, the remaining LABs not detected at
submillimeter wavelengths can also provide important con-
straints on afesc

Ly . Lower limits of afesc
Ly can be estimated by

using the upper limits of SCUBA-2 measurements and these
values are presented in Figure 7. We also stack the
submillimeter-undetected LABs, but fail to detect the dust
emission at >3σ, leading to a lower limit of afesc

Ly to be 11%.
This suggests that the majority of the sample have higher afesc

Ly

in comparison with the global Lyα escape fraction in the
previous studies (Hayes et al. 2011a; Sobral et al. 2017), where
the global escape fraction refers to the value for all galaxies in a
field, and is usually determined from the integral of the Lyα
and Hα luminosity functions. Indeed, the fractions in the LAEs
are usually much higher than the global values, as the LAEs are
a biased sample, selected by their strong Lyα emission. Hayes
et al. (2010) reported >af 32%esc

Ly for LAEs at z=2.2, Sobral
et al. (2017) shows that afesc

Ly is around 37% for LAEs at
z=2.23. Wardlow et al. (2014) use far-infrared data instead of
optical data and obtain a lower limit of afesc

Ly to be 10% to 20%
for LAEs at z=3.1, which is consistent with our stacking
results for the majority of the LABs.

We notice that most submillimeter-detected LABs have Lyα
escape fractions much lower than the fractions of LAEs in other
studies (e.g., Hayes et al. 2010; Wardlow et al. 2014; Sobral
et al. 2017), as shown in Figure 7. We find a big difference
between these LABs and those of Hayes et al. (2010), Wardlow
et al. (2014), and Sobral et al. (2017) that the SFRs of the
submillimeter-detected LABs are much higher than those in the
latter three samples. The galaxies with high SFRs are most
likely massive galaxies with a large amount of dust. We suspect
that the low Lyα escape fractions in the submillimeter-detected
LABs are probably due to high dust attenuation as their
SFRs are about one magnitude higher than in the samples of
other studies. Another reason may be related to the large-scale
environment around the LABs. All sources are located in the
dense region of SSA22, which contains a large amount of
circumgalactic medium. In such an environment, Lyα photons
experience numerous resonance scatterings, and can also
be easily absorbed by surrounding neutral hydrogen atoms,
making the Lyα emission more extended and leading to a
lower escape fraction. This is consistent with the recent study
of Shimakawa et al. (2017), who find that Lyα escape fractions
in high-density regions are lower than in low-density regions.
We also note that three LABs, LAB1, LAB2, and LAB3, have
similar Lyα escape fractions as the LAEs studied by Hayes
et al. (2010), Wardlow et al. (2014), and Sobral et al. (2017).
All of these sources have X-ray emission. Their high fractions
may be partially due to the AGNs in the host galaxies. The
AGNs will produce additional photons and feedback to
possibly remove the material surrounding the centers and then
enhance the Lyα emission by increasing the escaping photons
from the central regions. We also need to mention that our
SCUBA-2 data provide superior measures of SFRs from
extinction-free dust emission, in comparison with typically
used optical data that suffer large uncertainties due to the
extinction correction. The actual escape fractions will decrease
if considering an extra extinction related to the H II regions

for Hα (Wuyts et al. 2013; Reddy et al. 2015, 2016; An
et al. 2017). To better understand the physical origin of the low
Lyα escape fraction in the LABs, deep submillimeter
observations will be useful.

5. Conclusions

We have presented submillimeter data from JCMT/SCUBA-
2 observations together with ALMA data toward 35 LABs
identified in the SSA22 field by Matsuda et al. (2004) and deep
radio images with the VLA toward 29 out of the 35 LABs. We
also discuss the deep X-ray data from the same region. Our
conclusions are as follows.

1. With the JCMT/SCUBA-2 and ALMA, 11 out of 35
LABs show dust emission. With the VLA, 9 out of 29
LABs are detected at radio wavelengths. For 5 out of
the 9 radio-detected sources, spectroscopic data from the
literature reveal redshifts around 3.1, confirming that the
radio counterparts and the corresponding submm sources
are associated with the LABs.

2. The detection of submillimeter dust emission in LABs is
more linked to the physical sizes of Lyα emission than
their Lyα luminosities.

3. The 11 LABs detected at submillimeter wavelengths have
SFRs over 100Me yr−1, favoring star formation as an
important energy source for some LABs. Our results
show that a radio excess is common in the submillimeter/
radio-detected LABs and therefore AGNs may also play
an important role to power the Lyα emission.

4. Among the four radio-detected LABs lacking X-ray
emission, three sources are located in the center of their
parent LABs. All X-ray sources are not located at the
center of their associated LABs. The latter may be
explained by absorption due to neutral hydrogen, helium,
and potentially newly formed heavy elements or by LAB
morphologies, which are highly orientation dependent.

5. The Lyα escape fraction ranges from 2% to 45% among
the submillimeter-detected LABs, with a median value of
about 3%. Based on the stacked data, the submillimeter-
undetected LABs show a lower limit of 11%, which is
consistent with those of LAEs in previous studies. However,
some submillimeter-detected LABs have significantly lower
Lyα escape fractions. We suspect that this large variation in
Lyα escape fractions is due to the high dust attenuation
supported by the large SFRs in our sample, the dense large-
scale environment in SSA22 as well as large uncertainties
related to the extinction correction in optical data.

We thank the anonymous referee for valuable comments that
improved this manuscript. Y.A. thanks Fangxia An for the
comment about the effect of extinction correction on the Lyα
escape fraction and Thomas Reiprich for the discussion about
the contributions to the X-ray emission. Y.A. was supported by
the ALMA Japan Research Grant of NAOJ Chile Observatory,
NAOJ-ALMA-0165. Y.A. acknowledges partial support by
NSFC grant 11373007 and Youth Innovation Promotion
Association CAS. M.H. acknowledges the support of the
Swedish Research Council, Vetenskapsrådet and the Swedish
National Space Board (SNSB), and is Fellow of the Knut
and Alice Wallenberg Foundation. N.K.H. is supported by
the Science and Technology Facilities Council (grant number
ST/K502029/1).

15

The Astrophysical Journal, 850:178 (16pp), 2017 December 1 Ao et al.



The James Clerk Maxwell Telescope has historically been
operated by the Joint Astronomy Centre on behalf of the
Science and Technology Facilities Council of the United
Kingdom, the National Research Council of Canada and the
Netherlands Organisation for Scientific Research. Additional
funds for the construction of SCUBA-2 were provided by the
Canada Foundation for Innovation. The James Clerk Maxwell
Telescope is operated by the East Asian Observatory on behalf
of The National Astronomical Observatory of Japan, Academia
Sinica Institute of Astronomy and Astrophysics, the Korea
Astronomy and Space Science Institute, the National Astro-
nomical Observatories of China and the Chinese Academy of
Sciences (Grant No. XDB09000000), with additional funding
support from the Science and Technology Facilities Council of
the United Kingdom and participating universities in the United
Kingdom and Canada.

This paper makes use of the following ALMA data: ADS/
JAO.ALMA#2013.1.00162.S and ADS/JAO.ALMA#2013.
1.00704.S. ALMA is a partnership of ESO (representing
its member states), NSF (USA) and NINS (Japan), together
with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI
(Republic of Korea), in cooperation with the Republic of
Chile. The Joint ALMA Observatory is operated by ESO,
AUI/NRAO, and NAOJ.

ORCID iDs

Y. Ao https://orcid.org/0000-0003-3139-2724
C. Henkel https://orcid.org/0000-0002-7495-4005
D. Iono https://orcid.org/0000-0002-2364-0823
D. M. Alexander https://orcid.org/0000-0002-5896-6313
B. Hatsukade https://orcid.org/0000-0001-6469-8725
N. K. Hine https://orcid.org/0000-0002-7975-0474
R. Kawabe https://orcid.org/0000-0002-8049-7525
K. Kohno https://orcid.org/0000-0002-4052-2394
M. Lehnert https://orcid.org/0000-0003-1939-5885
M. Malkan https://orcid.org/0000-0001-6919-1237
K. M. Menten https://orcid.org/0000-0001-6459-0669
M. Ouchi https://orcid.org/0000-0002-1049-6658
A. Weiss https://orcid.org/0000-0003-4678-3939

References

Alexander, D. M., Simpson, J. M., Harrison, C. M., et al. 2016, MNRAS,
461, 2944

An, F. X., Zheng, X. Z., Hao, C.-N., Huang, J.-S., & Xia, X.-Y. 2017, ApJ,
835, 116

Ao, Y., Matsuda, Y., Beelen, A., et al. 2015, A&A, 581, A132
Bell, E. F. 2003, ApJ, 586, 794
Bridge, C. R., Blain, A., Borys, C. J. K., et al. 2013, ApJ, 769, 91
Cen, R., & Zheng, Z. 2013, ApJ, 775, 112
Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545
Civano, F., Marchesi, S., Comastri, A., et al. 2016, ApJ, 819, 62
Colbert, J. W., Teplitz, H., Francis, P., et al. 2006, ApJL, 637, L89
Condon, J. J., Cotton, W. D., Fomalont, E. B., et al. 2012, ApJ, 758, 23
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
Dey, A., Bian, C., Soifer, B. T., et al. 2005, ApJ, 629, 654
Dijkstra, M., & Loeb, A. 2009, MNRAS, 400, 1109
Erb, D. K., Bogosavljević, M., & Steidel, C. C. 2011, ApJL, 740, L31
Faucher-Giguère, C.-A., Kereš, D., Dijkstra, M., Hernquist, L., &

Zaldarriaga, M. 2010, ApJ, 725, 633
Francis, P. J., Woodgate, B. E., Warren, S. J., et al. 1996, ApJ, 457, 490
Furlanetto, S. R., Schaye, J., Springel, V., & Hernquist, L. 2005, ApJ, 622, 7
Geach, J. E., Alexander, D. M., Lehmer, B. D., et al. 2009, ApJ, 700, 1
Geach, J. E., Bower, R. G., Alexander, D. M., et al. 2014, ApJ, 793, 22
Geach, J. E., Dunlop, J. S., Halpern, M., et al. 2017, MNRAS, 465, 1789

Geach, J. E., Matsuda, Y., Smail, I., et al. 2005, MNRAS, 363, 1398
Geach, J. E., Narayanan, D., Matsuda, Y., et al. 2016, ApJ, 832, 37
Gronwall, C., Ciardullo, R., Hickey, T., et al. 2007, ApJ, 667, 79
Haiman, Z., Spaans, M., & Quataert, E. 2000, ApJL, 537, L5
Hayes, M. 2015, PASA, 32, e027
Hayes, M., Östlin, G., Schaerer, D., et al. 2010, Natur, 464, 562
Hayes, M., Scarlata, C., & Siana, B. 2011, Natur, 476, 304
Hayes, M., Schaerer, D., Östlin, G., et al. 2011, ApJ, 730, 8
Helou, G., Khan, I. R., Malek, L., & Boehmer, L. 1988, ApJS, 68, 151
Hine, N. K., Geach, J. E., Matsuda, Y., et al. 2016, MNRAS, 460, 4075
Holland, W. S., Bintley, D., Chapin, E. L., et al. 2013, MNRAS, 430, 2513
Ivison, R. J., Magnelli, B., Ibar, E., et al. 2010, A&A, 518, L31
Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531
Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189
Kubo, M., Uchimoto, Y. K., Yamada, T., et al. 2013, ApJ, 778, 170
Kubo, M., Yamada, T., Ichikawa, T., et al. 2015, ApJ, 799, 38
Lehmer, B. D., Alexander, D. M., Chapman, S. C., et al. 2009, MNRAS,

400, 299
Magnelli, B., Ivison, R. J., Lutz, D., et al. 2015, A&A, 573, A45
Matsuda, Y., Iono, D., Ohta, K., et al. 2007, ApJ, 667, 667
Matsuda, Y., Nakamura, Y., Morimoto, N., et al. 2009, MNRAS, 400, L66
Matsuda, Y., Yamada, T., Hayashino, T., et al. 2004, AJ, 128, 569
Matsuda, Y., Yamada, T., Hayashino, T., et al. 2011, MNRAS, 410, L13
Matsuda, Y., Yamada, T., Hayashino, T., et al. 2012, MNRAS, 425, 878
Mori, M., & Umemura, M. 2006, Natur, 440, 644
Nilsson, K. K., Fynbo, J. P. U., Møller, P., Sommer-Larsen, J., & Ledoux, C.

2006, A&A, 452, L23
Ouchi, M., Shimasaku, K., Akiyama, M., et al. 2008, ApJS, 176, 301
Overzier, R. A., Nesvadba, N. P. H., Dijkstra, M., et al. 2013, ApJ, 771, 89
Palunas, P., Teplitz, H. I., Francis, P. J., Williger, G. M., & Woodgate, B. E.

2004, ApJ, 602, 545
Prescott, M. K. M., Dey, A., Brodwin, M., et al. 2012, ApJ, 752, 86
Prescott, M. K. M., Dey, A., & Jannuzi, B. T. 2012, ApJ, 748, 125
Prescott, M. K. M., Dey, A., & Jannuzi, B. T. 2013, ApJ, 762, 38
Prescott, M. K. M., Momcheva, I., Brammer, G. B., Fynbo, J. P. U., &

Møller, P. 2015, ApJ, 802, 32
Reddy, N. A., Kriek, M., Shapley, A. E., et al. 2015, ApJ, 806, 259
Reddy, N. A., Steidel, C. C., Pettini, M., & Bogosavljević, M. 2016, ApJ,

828, 107
Rush, B., Malkan, M. A., & Edelson, R. A. 1996, ApJ, 473, 130
Rush, B., Malkan, M. A., & Spinoglio, L. 1993, ApJS, 89, 1
Saez, C., Lehmer, B. D., Bauer, F. E., et al. 2015, MNRAS, 450, 2615
Saito, T., Shimasaku, K., Okamura, S., et al. 2006, ApJ, 648, 54
Shimakawa, R., Kodama, T., Hayashi, M., et al. 2017, MNRAS, 468, L21
Silva, L., Granato, G. L., Bressan, A., & Danese, L. 1998, ApJ, 509, 103
Smith, D. J. B., & Jarvis, M. J. 2007, MNRAS, 378, L49
Sobral, D., Matthee, J., Best, P., et al. 2017, MNRAS, 466, 1242
Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2000, ApJ, 532, 170
Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2003, ApJ, 592, 728
Swinbank, A. M., Simpson, J. M., Smail, I., et al. 2014, MNRAS, 438, 1267
Swinbank, A. M., Smail, I., Longmore, S., et al. 2010, Natur, 464, 733
Tamura, Y., Kohno, K., Nakanishi, K., et al. 2009, Natur, 459, 61
Tamura, Y., Matsuda, Y., Ikarashi, S., et al. 2013, MNRAS, 430, 2768
Taniguchi, Y., & Shioya, Y. 2000, ApJL, 532, L13
Umehata, H., Matsuda, Y., Tamura, Y., et al. 2017a, ApJL, 834, L16
Umehata, H., Tamura, Y., Kohno, K., et al. 2014, MNRAS, 440, 3462
Umehata, H., Tamura, Y., Kohno, K., et al. 2015, ApJL, 815, L8
Umehata, H., Tamura, Y., Kohno, K., et al. 2017b, ApJ, 835, 98
Wardlow, J. L., Malhotra, S., Zheng, Z., et al. 2014, ApJ, 787, 9
Webb, T. M. A., Yamada, T., Huang, J.-S., et al. 2009, ApJ, 692, 1561
Wilman, R. J., Gerssen, J., Bower, R. G., et al. 2005, Natur, 436, 227
Wuyts, S., Förster Schreiber, N. M., Nelson, E. J., et al. 2013, ApJ, 779,

135
Xue, R., Lee, K.-S., Dey, A., et al. 2017, ApJ, 837, 172
Yajima, H., Li, Y., & Zhu, Q. 2013, ApJ, 773, 151
Yamada, T., Matsuda, Y., Kousai, K., et al. 2012, ApJ, 751, 29
Yang, Y., Decarli, R., Dannerbauer, H., et al. 2012, ApJ, 744, 178
Yang, Y., Walter, F., Decarli, R., et al. 2014, ApJ, 784, 171
Yang, Y., Zabludoff, A., Eisenstein, D., & Davé, R. 2010, ApJ, 719, 1654
Yang, Y., Zabludoff, A., Tremonti, C., Eisenstein, D., & Davé, R. 2009, ApJ,

693, 1579
Yun, M. S., Reddy, N. A., & Condon, J. J. 2001, ApJ, 554, 803
Zheng, Z., Cen, R., Weinberg, D., Trac, H., & Miralda-Escudé, J. 2011, ApJ,

739, 62

16

The Astrophysical Journal, 850:178 (16pp), 2017 December 1 Ao et al.

https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0003-3139-2724
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-2364-0823
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0002-5896-6313
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0001-6469-8725
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-7975-0474
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-8049-7525
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0002-4052-2394
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0003-1939-5885
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6919-1237
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0002-1049-6658
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://orcid.org/0000-0003-4678-3939
https://doi.org/10.1093/mnras/stw1509
http://adsabs.harvard.edu/abs/2016MNRAS.461.2944A
http://adsabs.harvard.edu/abs/2016MNRAS.461.2944A
https://doi.org/10.3847/1538-4357/835/2/116
http://adsabs.harvard.edu/abs/2017ApJ...835..116A
http://adsabs.harvard.edu/abs/2017ApJ...835..116A
https://doi.org/10.1051/0004-6361/201424165
http://adsabs.harvard.edu/abs/2015A&amp;A...581A.132A
https://doi.org/10.1086/367829
http://adsabs.harvard.edu/abs/2003ApJ...586..794B
https://doi.org/10.1088/0004-637X/769/2/91
http://adsabs.harvard.edu/abs/2013ApJ...769...91B
https://doi.org/10.1088/0004-637X/775/2/112
http://adsabs.harvard.edu/abs/2013ApJ...775..112C
https://doi.org/10.1093/mnras/stt052
http://adsabs.harvard.edu/abs/2013MNRAS.430.2545C
https://doi.org/10.3847/0004-637X/819/1/62
http://adsabs.harvard.edu/abs/2016ApJ...819...62C
https://doi.org/10.1086/500647
http://adsabs.harvard.edu/abs/2006ApJ...637L..89C
https://doi.org/10.1088/0004-637X/758/1/23
http://adsabs.harvard.edu/abs/2012ApJ...758...23C
https://doi.org/10.1086/300337
http://adsabs.harvard.edu/abs/1998AJ....115.1693C
https://doi.org/10.1086/430775
http://adsabs.harvard.edu/abs/2005ApJ...629..654D
https://doi.org/10.1111/j.1365-2966.2009.15533.x
http://adsabs.harvard.edu/abs/2009MNRAS.400.1109D
https://doi.org/10.1088/2041-8205/740/1/L31
http://adsabs.harvard.edu/abs/2011ApJ...740L..31E
https://doi.org/10.1088/0004-637X/725/1/633
http://adsabs.harvard.edu/abs/2010ApJ...725..633F
https://doi.org/10.1086/176747
http://adsabs.harvard.edu/abs/1996ApJ...457..490F
https://doi.org/10.1086/426808
http://adsabs.harvard.edu/abs/2005ApJ...622....7F
https://doi.org/10.1088/0004-637X/700/1/1
http://adsabs.harvard.edu/abs/2009ApJ...700....1G
https://doi.org/10.1088/0004-637X/793/1/22
http://adsabs.harvard.edu/abs/2014ApJ...793...22G
https://doi.org/10.1093/mnras/stw2721
http://adsabs.harvard.edu/abs/2017MNRAS.465.1789G
https://doi.org/10.1111/j.1365-2966.2005.09538.x
http://adsabs.harvard.edu/abs/2005MNRAS.363.1398G
https://doi.org/10.3847/0004-637X/832/1/37
http://adsabs.harvard.edu/abs/2016ApJ...832...37G
https://doi.org/10.1086/520324
http://adsabs.harvard.edu/abs/2007ApJ...667...79G
https://doi.org/10.1086/312754
http://adsabs.harvard.edu/abs/2000ApJ...537L...5H
https://doi.org/10.1017/pasa.2015.25
http://adsabs.harvard.edu/abs/2015PASA...32...27H
https://doi.org/10.1038/nature08881
http://adsabs.harvard.edu/abs/2010Natur.464..562H
https://doi.org/10.1038/nature10320
http://adsabs.harvard.edu/abs/2011Natur.476..304H
https://doi.org/10.1088/0004-637X/730/1/8
http://adsabs.harvard.edu/abs/2011ApJ...730....8H
https://doi.org/10.1086/191285
http://adsabs.harvard.edu/abs/1988ApJS...68..151H
https://doi.org/10.1093/mnras/stw1185
http://adsabs.harvard.edu/abs/2016MNRAS.460.4075H
https://doi.org/10.1093/mnras/sts612
http://adsabs.harvard.edu/abs/2013MNRAS.430.2513H
https://doi.org/10.1051/0004-6361/201014552
http://adsabs.harvard.edu/abs/2010A&amp;A...518L..31I
https://doi.org/10.1146/annurev-astro-081811-125610
http://adsabs.harvard.edu/abs/2012ARA&amp;A..50..531K
https://doi.org/10.1146/annurev.astro.36.1.189
http://adsabs.harvard.edu/abs/1998ARA&amp;A..36..189K
https://doi.org/10.1088/0004-637X/778/2/170
http://adsabs.harvard.edu/abs/2013ApJ...778..170K
https://doi.org/10.1088/0004-637X/799/1/38
http://adsabs.harvard.edu/abs/2015ApJ...799...38K
https://doi.org/10.1111/j.1365-2966.2009.15449.x
http://adsabs.harvard.edu/abs/2009MNRAS.400..299L
http://adsabs.harvard.edu/abs/2009MNRAS.400..299L
https://doi.org/10.1051/0004-6361/201424937
http://adsabs.harvard.edu/abs/2015A&amp;A...573A..45M
https://doi.org/10.1086/521076
http://adsabs.harvard.edu/abs/2007ApJ...667..667M
https://doi.org/10.1111/j.1745-3933.2009.00764.x
http://adsabs.harvard.edu/abs/2009MNRAS.400L..66M
https://doi.org/10.1086/422020
http://adsabs.harvard.edu/abs/2004AJ....128..569M
https://doi.org/10.1111/j.1745-3933.2010.00969.x
http://adsabs.harvard.edu/abs/2011MNRAS.410L..13M
https://doi.org/10.1111/j.1365-2966.2012.21143.x
http://adsabs.harvard.edu/abs/2012MNRAS.425..878M
https://doi.org/10.1038/nature04553
http://adsabs.harvard.edu/abs/2006Natur.440..644M
https://doi.org/10.1051/0004-6361:200600025
http://adsabs.harvard.edu/abs/2006A&amp;A...452L..23N
https://doi.org/10.1086/527673
http://adsabs.harvard.edu/abs/2008ApJS..176..301O
https://doi.org/10.1088/0004-637X/771/2/89
http://adsabs.harvard.edu/abs/2013ApJ...771...89O
https://doi.org/10.1086/381145
http://adsabs.harvard.edu/abs/2004ApJ...602..545P
https://doi.org/10.1088/0004-637X/752/2/86
http://adsabs.harvard.edu/abs/2012ApJ...752...86P
https://doi.org/10.1088/0004-637X/748/2/125
http://adsabs.harvard.edu/abs/2012ApJ...748..125P
https://doi.org/10.1088/0004-637X/762/1/38
http://adsabs.harvard.edu/abs/2013ApJ...762...38P
https://doi.org/10.1088/0004-637X/802/1/32
http://adsabs.harvard.edu/abs/2015ApJ...802...32P
https://doi.org/10.1088/0004-637X/806/2/259
http://adsabs.harvard.edu/abs/2015ApJ...806..259R
https://doi.org/10.3847/0004-637X/828/2/107
http://adsabs.harvard.edu/abs/2016ApJ...828..107R
http://adsabs.harvard.edu/abs/2016ApJ...828..107R
https://doi.org/10.1086/178132
http://adsabs.harvard.edu/abs/1996ApJ...473..130R
https://doi.org/10.1086/191837
http://adsabs.harvard.edu/abs/1993ApJS...89....1R
https://doi.org/10.1093/mnras/stv747
http://adsabs.harvard.edu/abs/2015MNRAS.450.2615S
https://doi.org/10.1086/505678
http://adsabs.harvard.edu/abs/2006ApJ...648...54S
https://doi.org/10.1093/mnrasl/slx019
http://adsabs.harvard.edu/abs/2017MNRAS.468L..21S
https://doi.org/10.1086/306476
http://adsabs.harvard.edu/abs/1998ApJ...509..103S
https://doi.org/10.1111/j.1745-3933.2007.00318.x
http://adsabs.harvard.edu/abs/2007MNRAS.378L..49S
https://doi.org/10.1093/mnras/stw3090
http://adsabs.harvard.edu/abs/2017MNRAS.466.1242S
https://doi.org/10.1086/308568
http://adsabs.harvard.edu/abs/2000ApJ...532..170S
https://doi.org/10.1086/375772
http://adsabs.harvard.edu/abs/2003ApJ...592..728S
https://doi.org/10.1093/mnras/stt2273
http://adsabs.harvard.edu/abs/2014MNRAS.438.1267S
https://doi.org/10.1038/nature08880
http://adsabs.harvard.edu/abs/2010Natur.464..733S
https://doi.org/10.1038/nature07947
http://adsabs.harvard.edu/abs/2009Natur.459...61T
https://doi.org/10.1093/mnras/stt077
http://adsabs.harvard.edu/abs/2013MNRAS.430.2768T
https://doi.org/10.1086/312557
http://adsabs.harvard.edu/abs/2000ApJ...532L..13T
https://doi.org/10.3847/2041-8213/834/2/L16
http://adsabs.harvard.edu/abs/2017ApJ...834L..16U
https://doi.org/10.1093/mnras/stu447
http://adsabs.harvard.edu/abs/2014MNRAS.440.3462U
https://doi.org/10.1088/2041-8205/815/1/L8
http://adsabs.harvard.edu/abs/2015ApJ...815L...8U
https://doi.org/10.3847/1538-4357/835/1/98
http://adsabs.harvard.edu/abs/2017ApJ...835...98U
https://doi.org/10.1088/0004-637X/787/1/9
http://adsabs.harvard.edu/abs/2014ApJ...787....9W
https://doi.org/10.1088/0004-637X/692/2/1561
http://adsabs.harvard.edu/abs/2009ApJ...692.1561W
https://doi.org/10.1038/nature03718
http://adsabs.harvard.edu/abs/2005Natur.436..227W
https://doi.org/10.1088/0004-637X/779/2/135
http://adsabs.harvard.edu/abs/2013ApJ...779..135W
http://adsabs.harvard.edu/abs/2013ApJ...779..135W
https://doi.org/10.3847/1538-4357/837/2/172
http://adsabs.harvard.edu/abs/2017ApJ...837..172X
https://doi.org/10.1088/0004-637X/773/2/151
http://adsabs.harvard.edu/abs/2013ApJ...773..151Y
https://doi.org/10.1088/0004-637X/751/1/29
http://adsabs.harvard.edu/abs/2012ApJ...751...29Y
https://doi.org/10.1088/0004-637X/744/2/178
http://adsabs.harvard.edu/abs/2012ApJ...744..178Y
https://doi.org/10.1088/0004-637X/784/2/171
http://adsabs.harvard.edu/abs/2014ApJ...784..171Y
https://doi.org/10.1088/0004-637X/719/2/1654
http://adsabs.harvard.edu/abs/2010ApJ...719.1654Y
https://doi.org/10.1088/0004-637X/693/2/1579
http://adsabs.harvard.edu/abs/2009ApJ...693.1579Y
http://adsabs.harvard.edu/abs/2009ApJ...693.1579Y
https://doi.org/10.1086/323145
http://adsabs.harvard.edu/abs/2001ApJ...554..803Y
https://doi.org/10.1088/0004-637X/739/2/62
http://adsabs.harvard.edu/abs/2011ApJ...739...62Z
http://adsabs.harvard.edu/abs/2011ApJ...739...62Z

	1. Introduction
	2. Observations
	2.1. JCMT/SCUBA-2 Observations
	2.2. ALMA Observations
	2.3. VLA Observations

	3. Results
	3.1. Submillimeter Emission
	3.2. Radio Emission
	3.3. Star Formation Rates (SFRs)
	3.4. Comments on Individual LABs
	3.4.1. LAB1
	3.4.2. LAB2
	3.4.3. LAB3
	3.4.4. LAB4
	3.4.5. LAB5
	3.4.6. LAB9
	3.4.7. LAB10
	3.4.8. LAB11
	3.4.9. LAB12
	3.4.10. LAB14
	3.4.11. LAB16
	3.4.12. LAB18
	3.4.13. LAB30


	4. Discussion
	4.1. Physical Sizes of LABs and Detection of Submillimeter Emission
	4.2. Powering Sources of LABs: Star Formation or Active Galactic Nuclei?
	4.2.1. Submillimeter and Radio Detections in LABs and Their Implications on Heating Mechanisms
	4.2.2. Locations of Radio and X-Ray Counterparts within LABs and Their Implications on Heating Mechanisms

	4.3. Lyα Escape Fraction at z = 3.1

	5. Conclusions
	References



