
Journal of Computer and System Sciences 85 (2017) 168–182
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Editing to a planar graph of given degrees ✩

Konrad K. Dabrowski a,∗, Petr A. Golovach b, Pim van ’t Hof c, Daniël Paulusma a,
Dimitrios M. Thilikos d,e,f

a School of Engineering and Computing Sciences, Durham University, United Kingdom
b Department of Informatics, University of Bergen, Norway
c School of Built Environment, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
d Computer Technology Institute and Press “Diophantus”, Patras, Greece
e Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece
f AlGCo project-team, CNRS, LIRMM, Montpellier, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 February 2016
Received in revised form 17 November 2016
Accepted 26 November 2016
Available online 1 December 2016

Keywords:
Graph editing
Connected graph
Planar graph
Polynomial kernel

We consider the following graph modification problem. Let the input consist of a graph
G = (V , E), a weight function w : V ∪ E → N, a cost function c : V ∪ E → N0 and a degree
function δ : V →N0, together with three integers kv , ke and C . The question is whether we
can delete a set of vertices of total weight at most kv and a set of edges of total weight
at most ke so that the total cost of the deleted elements is at most C and every non-
deleted vertex v has degree δ(v) in the resulting graph G ′ . We also consider the variant in
which G ′ must be connected. Both problems are known to be NP-complete and W[1]-hard
when parameterized by kv +ke . We prove that, when restricted to planar graphs, they stay
NP-complete but have polynomial kernels when parameterized by kv + ke .
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Graph modification problems capture a variety of fundamental graph-theoretic problems, and as such they are very well
studied in algorithmic graph theory. The aim is to modify some given graph G into some other graph H , that satisfies a
certain property, by applying at most some given number operations from a set S of prespecified graph operations. Well-known
graph operations are the edge addition, edge deletion and vertex deletion, denoted by ea, ed and vd, respectively. For
example, if S = {vd} and H must be a clique or independent set, then we obtain two basic graph problems, namely Clique

and Independent Set, respectively. To give a few more examples, if H must be a forest and either S = {ed} or S = {vd}, then
we obtain the problems Feedback Edge Set and Feedback Vertex Set, respectively. As we discuss in detail later, it is also
common to consider sets S consisting of more than one graph operation.

✩ An extended abstract of this paper appeared in the proceedings of CSR 2015 [10]. The first and fourth authors were supported by EPSRC Grant
EP/K025090/1. The research of the second author received funding from the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007–2013)/ERC Grant Agreement n. 267959. The research of the fifth author was co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) – Research Funding Program: ARISTEIA II.
* Corresponding author.

E-mail addresses: konrad.dabrowski@durham.ac.uk (K.K. Dabrowski), petr.golovach@ii.uib.no (P.A. Golovach), p.van.t.hof@hr.nl (P. van ’t Hof),
daniel.paulusma@durham.ac.uk (D. Paulusma), sedthilk@thilikos.info (D.M. Thilikos).
http://dx.doi.org/10.1016/j.jcss.2016.11.009
0022-0000/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcss.2016.11.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://creativecommons.org/licenses/by/4.0/
mailto:konrad.dabrowski@durham.ac.uk
mailto:petr.golovach@ii.uib.no
mailto:p.van.t.hof@hr.nl
mailto:daniel.paulusma@durham.ac.uk
mailto:sedthilk@thilikos.info
http://dx.doi.org/10.1016/j.jcss.2016.11.009
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.11.009&domain=pdf

K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182 169
A property is hereditary if it is closed under taking induced subgraphs. A property is non-trivial if it is both true for
infinitely many graphs and false for infinitely many graphs. A classic result of Lewis and Yannakakis [24] is that the vertex
deletion problem is NP-hard for any property that is both hereditary and non-trivial. In an earlier paper, Yannakakis [33]
also showed NP-hardness results for the edge deletion problem for several properties, such as being planar or outer-planar.
Natanzon, Shamir and Sharan [29] and Burzyn, Bonomo and Durán [5] proved that the graph modification problem is
NP-complete for several target hereditary graph properties when S = {ea, ed}.

As we can see from the above results, graph modification problems are often intractable even for elementary cases when
S ⊆ {ea, ed}. As such, many papers in this area study the complexity of graph modification problems when parameterized
by the total number of permitted operations k.

Cai [6] proved that the graph modification problem is FPT when parameterized by k, if S = {ea, ed, vd} and the desired
property is that of belonging to any fixed graph class characterized by a finite set of forbidden induced subgraphs. Khot
and Raman [21] determined all non-trivial hereditary properties for which the vertex deletion problem is FPT on n-vertex
graphs with parameter n − k and proved that the problem is W[1]-hard with respect to this parameter for all other such
properties.

From the aforementioned results we see that the graph modification problem has been thoroughly studied for hereditary
properties. Several other natural types of properties have also been considered. For instance, Dabrowski et al. [9] combined
a number of previous results [4,7,8] with new results to give a complete classification of the (parameterized) complexity of
the problem of modifying an input graph into a connected graph where each vertex has some prescribed degree parity for
every set S ⊆ {ea, ed, vd}.

1.1. Our focus

In this paper we consider the case when the vertices of the resulting graph must satisfy some prespecified degree
constraints (note that such properties are non-hereditary, so the result of Lewis and Yannakakis does not apply to this
case). This is a natural direction to consider given the classical structural results [25,32] on so-called f -factors in graphs,
which are spanning subgraphs in which each vertex u must have degree f (u) for some specified function f (these results
immediately imply that an f -factor in a graph can be found in polynomial time if one exists, while finding connected
f -factors, e.g. Hamilton cycles, is NP-complete).

Before presenting our results, we briefly discuss the known results and the general framework they fall under.

General framework. Moser and Thilikos in [28] and Mathieson and Szeider [27] initiated an investigation into the param-
eterized complexity of graph modification problems with respect to degree constraints. This leads to the following general
problem.

Degree Constraint Editing(S)

Instance: A graph G , integers d, k and a function δ : V (G) → {1, . . . , d}.
Question: Can G be modified into a graph G ′ such that dG ′ (v) = δ(v) for each v ∈ V (G ′) using at most k operations

from the set S?

Mathieson and Szeider [27] classified the parameterized complexity of this problem for S ⊆ {ea, ed, vd}. In particular they
showed the following results. If S ⊆ {ea, ed} then the problem is polynomial-time solvable. If vd ∈ S then the problem is
NP-complete, W[1]-hard with parameter k and FPT with parameter d +k. Moreover, they proved that the latter result holds
even for a more general version, in which the vertices and edges have costs and the desired degree for each vertex should
be in some given subset of {1, . . . , d}. If {v} ⊆ S ⊆ {ed, vd}, they proved that the problem has a polynomial kernel when
parameterized by d + k even if vertices and edges have costs. Recently, Mathieson [26] considered graph editing problems
for a number of alternative forms of degree constraints. Golovach [19] considered the cases S = {ea, vd} and S = {ea, ed, vd}
and proved (amongst other results) that for these cases the problem has no polynomial kernel when parameterized by d +k
unless NP ⊆ coNP/poly. Froese, Nichterlein and Niedermeier [14] gave more kernelization results for Degree Constraint
Editing(S).

Golovach [18] introduced a variant of Degree Constraint Editing(S) with the extra condition that the resulting graph
must be connected. He proved that, for S = {ea}, this variant is NP-complete, FPT when parameterized by k, and has a
polynomial kernel when parameterized by d + k. The connected variant is readily seen to be W[1]-hard when vd ∈ S by a
straightforward modification of the proof of the W[1]-hardness result for Degree Constraint Editing(S), when vd ∈ S , as
given by Mathieson and Szeider [27].

Our results. In the light of the above NP-completeness and W[1]-hardness results when vd ∈ S it is natural to restrict the
input graph G to a special graph class. Hence, inspired by the above results, we consider the set S = {ed, vd} and study both
variants of these problems (where we insist that the resulting graph G ′ is connected and where we do not) for planar input
graphs. The problem variant not demanding connectivity is defined as follows. (In fact the problems we study are slightly
more general.)

170 K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182
Planar Degree Constraint Deletion

Instance: A planar graph G = (V , E), integers kv , ke and a function δ : V →N0.
Question: Can G be modified into a graph G ′ such that dG ′ (v) = δ(v) for each v ∈ V (G ′) using at most kv vertex

deletions and at most ke edge deletions?

We note that Planar Degree Constraint Deletion is NP-complete even if δ ≡ 3 and that its connected variant is
NP-complete even if δ ≡ 2. These observations follow directly from the respective facts that both testing whether a pla-
nar graph of maximum degree at most 7 has a non-trivial cubic subgraph is NP-complete [31] and testing whether a cubic
planar graph has a Hamiltonian cycle is NP-complete [15].

In contrast to the aforementioned W[1]-hardness results for general graphs, our two main results are that the weighted
version of Planar Degree Constraint Deletion and its connected variant both have polynomial kernels when parameterized
by kv + ke (see Section 2.2 for the exact definition of these weighted versions). Note that by setting kv = 0 or ke = 0 we
obtain the same results for Degree Constrained Editing(S) when S = {ed} and S = {vd}, respectively (though the S = {ed}
case is not surprising, since this problem is solvable in polynomial time on general graphs [27]).

In order to obtain our results we first show that both problems are polynomial-time solvable for any graph class of
bounded treewidth. We then use a variant of the protrusion decomposition/replacement techniques introduced by Bodlaen-
der et al. [3]. These techniques were successfully used for various problems on sparse graphs [13,16,17,22]. We stress that
our problems do not fit into the meta-algorithmic framework of Bodlaender et al. [3] on kernelization. Our kernels re-
quire protrusion replacement machinery that is different from the general one in [3]. Hence our approach is, unavoidably,
problem-specific.

2. Preliminaries

In this section we state terminology and notation used throughout the paper.

2.1. Basic terminology and notation

All graphs in this paper are finite, undirected and without loops or multiple edges. The vertex set of a graph G is denoted
by V (G) and the edge set is denoted by E(G). For a set X ⊆ V (G), we let G[X] denote the subgraph of G induced by X . We
let G − X = G[V (G) \ X]; note that we allow the case where X � V (G). If X = {x}, we may write G − x instead. For a set
L ⊆ E(G), we let G − L be the graph obtained from G by deleting all edges of L. If L = {e} then we may write G − e instead.
For v ∈ V (G), let EG(v) = {e ∈ E(G) | e is incident to v}. For X ⊆ V (G), let EG(X) = ⋃

v∈X EG(v). For e ∈ E(G) with e = uv ,
let V (e) = {u, v}. For a set L ⊆ E(G) let V (L) = ⋃

e∈L V (e).
Let G be a graph. For a vertex v , we let NG(v) denote its (open) neighbourhood, that is, the set of vertices adjacent

to v . The degree of a vertex v is denoted by dG (v) = |NG(v)|. For a set X ⊆ V (G), we write NG(X) = (
⋃

v∈X NG(v)) \ X .
The closed neighbourhood NG [v] = NG(v) ∪ {v}, and for a non-negative integer r, Nr

G [v] is the set of vertices at distance
at most r from v; note that N0

G [v] = {v} and that N1
G [v] = NG [v]. Let X ⊆ V (G), and let r be a positive integer. We let

Nr
G [X] = ⋃

v∈X Nr
G [v]. The set X is an r-dominating set of G if V (G) ⊆ Nr

G [X]. We let ∂G(X) = X ∩ NG(V (G) \ X) be the
boundary of X in G , i.e. the set of vertices in X that have neighbours G outside of X .

A tree decomposition of a graph G is a pair (X , T) where T is a tree and X = {Xi | i ∈ V (T)} is a collection of subsets
(called bags) of V (G) such that

(i)
⋃

i∈V (T) Xi = V (G),
(ii) for each edge xy ∈ E(G), there is an i ∈ V (T) such that x, y ∈ Xi , and

(iii) for each x ∈ V (G), the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T)}, T) is maxi∈V (T) {|Xi | − 1}. The treewidth of a graph G (denoted tw(G)) is
the minimum width over all tree decompositions of G . A tree decomposition (X , T) of a graph G is nice, if T is a rooted
binary tree such that the nodes of T are of four types:

(i) a leaf node i is a leaf of T with Xi = ∅;
(ii) an introduce node i has one child i′ with Xi = Xi′ ∪ {v} for some vertex v ∈ V (G);

(iii) a forget node i has one child i′ with Xi = Xi′ \ {v} for some vertex v ∈ V G ; and
(iv) a join node i has two children i′ and i′′ with Xi = Xi′ = Xi′′ ,

and, moreover, the root r is a forget node with Xr = ∅. Kloks [23] proved that every tree decomposition of a graph can be
converted in linear time to a nice tree decomposition of the same width such that the size of the obtained tree is linear in
the size of the original tree.

We need the following known observation. We include a simple proof.

K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182 171
Lemma 1. Let V 1 and V 2 be the bipartition classes of a planar bipartite graph G such that dG(v) ≥ 3 for every v ∈ V 2 and V 2 is
non-empty. Then |V 2| ≤ 2|V 1| − 4.

Proof. Let G be such a graph. Let C(G) and F (G) be the set of components and faces in G , respectively. Since G is bipartite,
the border of every internal face of G must contain at least four edges. This also applies to the infinite outer face, since G
contains a vertex of degree at least 2 (edges contained in the border of a face that are not part of a cycle are counted twice).
Every edge is part of at most two faces. It follows that 4|F (G)| ≤ 2|E(G)|. Euler’s Formula for planar graphs states that
|V (G)| −|E(G)| +|F (G)| −|C(G)| = 1. Combining this with the above inequality, we find that |E(G)| ≤ 2|V (G)| −2|C(G)| −2 ≤
2|V (G)| − 4.

Now 3|V 2| ≤ ∑
v∈V 2

dG(v), since every vertex in V 2 has degree at least 3. We know that
∑

v∈V 2
dG(v) = |E(G)| since G

is bipartite. Combining these observations with the inequality found above implies that 3|V 2| ≤ 2(|V 1| +|V 2|) − 4. Therefore
|V 2| ≤ 2|V 1| − 4. �
2.2. Full problem description

As mentioned in Section 1 the problems we solve are more general than Planar Degree Constraint Deletion and its
connected variant. The generalizations we study are analogous to those used for other editing problems in the literature
(see e.g. [27]). The unconnected variant that we solve is defined as follows:

Deletion to a Planar Graph of Given Degrees (DPGGD)

Instance: A planar graph G = (V , E), integers kv , ke , C and functions δ : V → N0, w : V ∪ E →N, c : V ∪ E →N0.
Question: Can G be modified into a graph G ′ by deleting a set U ⊆ V with w(U) ≤ kv and a set D ⊆ E with w(D) ≤ ke

such that c(U ∪ D) ≤ C and dG ′ (v) = δ(v) for v ∈ V (G ′)?

In this problem, w is the weight and c is the cost function. The question is whether it is possible to delete vertices and edges
of total weight at most kv and ke , respectively, so that the total cost of the deleted elements is at most C and the obtained
graph satisfies the degree restrictions prescribed by the given function δ. Note that if we delete a vertex, the edges incident
to that vertex can no longer be present, so they are automatically deleted; these edges do not contribute to the weight
or cost of the solution. We include costs to make our results as general as possible. In particular note that the integer C
is neither a constant nor a parameter, but part of the input. Adding costs in this way does not fundamentally complicate
our proof. As the goal is to minimize the total costs, the costs for edges and vertices are combined. Besides costs, we also
include weights, mainly for technical reasons.

We call the variant of DPGGD, in which the desired graph G ′ must be connected, the Deletion to a Connected Planar
Graph of Given Degrees problem (DCPGGD).

2.3. Protrusion decompositions

For a graph G and a positive integer r, a set X ⊆ V (G) is an r-protrusion of G if |∂G(X)| ≤ r and tw(G[X]) ≤ r. For
positive integers s and s′ , an (s, s′)-protrusion decomposition of a graph G (see also Fig. 1) is a partition � = {R0, . . . , R p}
of V (G) such that

(i) max{p, |R0|} ≤ s,
(ii) for each i ∈ {1, . . . , p}, R+

i = NG [Ri] is an s′-protrusion of G , and
(iii) for each i ∈ {1, . . . , p}, NG(Ri) ⊆ R0 ∩ ∂G [R+

i].

The sets R+
1 , . . . , R+

p are called the protrusions of �. Originally, condition (iii) only demanded that NG(Ri) ⊆ R0 holds
for each i ∈ {1, . . . , p}. However, we can move every vertex in NG(Ri) \ ∂G [R+

i] to Ri without affecting any of the other
properties. Hence we assume without loss of generality that such vertices do not exist and may indeed state condition (iii)
as above (which is convenient for our purposes). Note that if a vertex v ∈ R+

i has a neighbour outside of R+
i then v ∈ NG(Ri)

by the definition of R+
i . It follows that every vertex of ∂G [R+

i] also lies in NG (Ri) and therefore NG(Ri) = ∂G [R+
i].

The following statement is implicit in [3] (see Lemmas 6.1 and 6.2).

Lemma 2 ([3]). Let r and k be positive integers and let G be a planar graph that has an r-dominating set of size at most k. Then G has
an (O (kr), O (r))-protrusion decomposition, which can be constructed in polynomial time.

2.4. Parameterized complexity

Parameterized complexity is a two dimensional framework for studying the computational complexity of a problem. One
dimension is the input size n and the other is a parameter k. A problem is said to be fixed parameter tractable (or FPT)

172 K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182
Fig. 1. A protrusion decomposition with p = 3. Recall that R+
i = NG [Ri] and note that the sets ∂G (R+

i) = NG (Ri) are not necessarily pairwise disjoint.

if it can be solved in time f (k) · nO (1) for some function f . A kernelization for a parameterized problem is a polynomial
algorithm that maps each instance (x, k) with input x and parameter k to an instance (x′, k′) such that

(i) (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance, and
(ii) the size of x′ and k′ is bounded by f (k) for a computable function f .

The output (x′, k′) is called a kernel. The function f is said to be the size of the kernel. A kernel is polynomial if f is
polynomial. We refer to the books of Downey and Fellows [11], Flum and Grohe [12], and Niedermeier [30] for detailed
introductions to parameterized complexity.

3. The polynomial kernels

In this section we construct polynomial kernels for DPGGD and DCPGGD. We say that a pair (U , D) with U ⊆ V (G)

and D ⊆ E(G) is a solution for an instance (G, kv , ke, C, δ, w, c) of DPGGD if w(U) ≤ kv , w(D) ≤ ke , c(U ∪ D) ≤ C and
G ′ = G − U − D satisfies dG ′ (v) = δ(v) for all v ∈ V (G ′). If (G, kv , ke, C, δ, w, c) is an instance of DCPGGD then (U , D) is a
solution if in addition G ′ is connected. Notice that it can happen that U = V (G) for a solution (U , D).

In order to prove our main results, we first need to introduce some additional terminology and prove some structural
results. We say that a solution (U , D) is of minimum cost if c(Û , D̂) ≥ c(U , D) for every solution (Û , D̂). We say that a
solution (U , D) for an instance of DPGGD or DCPGGD is efficient if D has no edges incident to the vertices of U . Since
deleting a vertex automatically removes all incident edges with no weight or cost penalty, we can make the following
observation.

Observation 1. Any yes-instance of DPGGD or DCPGGD has an efficient solution of minimum cost.

We will also make use of the following simple observation.

Observation 2. Let (G, kv , ke, C, δ, w, c) be instance of DPGGD or DCPGGD that has an efficient solution (U , D). If dG(v) = δ(v) for
some v ∈ V (G) then v is not incident to an edge of D.

We say that an instance (G, kv , ke, C, δ, w, c) of DPGGD (DCPGGD respectively) is normalized if

(i) for every v ∈ V (G), δ(v) ≤ dG(v) ≤ δ(v) + kv + ke , and
(ii) every vertex v in the set S = {u ∈ V (G) | dG(u) = δ(u)} is adjacent to a vertex in S = V (G) \ S .

Lemma 3. There is a polynomial-time algorithm that for each instance of DPGGD or DCPGGD either solves the problem or returns an
equivalent normalized instance.

Proof. Let (G, kv , ke, C, δ, w, c) be an instance of DPGGD. To simplify notation, we keep the same notation for the functions
δ, w, c if we delete vertices or edges and do not modify the values of the functions for the remaining elements if this does
not create confusion.

We say that a reduction rule is safe if by applying the rule we either solve the problem or obtain an equivalent instance.
It is straightforward to see that the following reduction rules are safe.

K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182 173
Yes-instance rule. If S = V (G) then (∅, ∅) is a solution, return a yes-answer and stop.

Vertex deletion rule. If G has a vertex v with dG (v) < δ(v) or dG(v) > δ(v) +kv +ke , then delete v and set kv = kv − w(v),
C = C − c(v). If kv < 0 or C < 0, then stop and return a no-answer.

Observe that by the exhaustive application of the vertex deletion rule and applying the yes-instance rule whenever
possible, we either solve the problem or we obtain an instance which satisfies (i) of the definition of normalized instances,
but where S = V (G). Notice that, in particular, the yes-instance rule is applied if the set of vertices becomes empty. To
ensure (ii), we apply the following two rules.

Contraction rule. If G has two adjacent vertices u, v ∈ S = {x ∈ V (G) | dG(x) = δ(x)} such that NG (v) ⊆ S , then we construct
the instance (G ′, kv , ke, C, δ′, w ′, c′) as follows.

– Contract uv . Denote the obtained graph G ′ = G/uv and let z be the vertex obtained from u and v .
– Set δ′(z) = dG ′ (z) and set δ′(x) = dG ′ (x) for any x ∈ S \ {u, v}. For each x ∈ S , set δ′(x) = δ(x).
– Set w ′(z) = w(u) + w(v) and c′(z) = c(u) + c(v). For x ∈ V (G) \ {u, v}, set w ′(x) = w(x) and c′(x) = c(x).
– For each xz ∈ E(G ′), set w ′(xz) = ke + 1 and c′(xz) = 0. For all other edges xy ∈ E(G ′), set w ′(xy) = w(xy) and c′(xy) =

c(xy).

Let (U , D) be an efficient solution for (G, kv , ke, C, δ, w, c). By Observation 2, D has no edges incident to u or v . Also
either u, v ∈ U or u, v /∈ U , because u and v are adjacent and dG (u) = δ(u) and dG (v) = δ(v). Let U ′ = (U \ {u, v}) ∪ {z}
if u, v ∈ U and U ′ = U otherwise. We have that (U ′, D) is a solution for (G ′, kv , ke, C, δ′, w ′, c′). If (U ′, D ′) is an efficient
solution for (G ′, kv , ke, C, δ′, w ′, c′), then D ′ has no edges incident to z by Observation 2. If z ∈ U ′ , let U = (U ′ \ {z}) ∪ {u, v}
and U = U ′ otherwise. We obtain that (U , D) is a solution for the original instance.

We exhaustively apply the above rule. Assume that it cannot be applied for (G, kv , ke, C, δ, w, c). Then we have that this
instance satisfies (i) and the following holds: for any v ∈ S = V (G), either v is adjacent to a vertex in S or v is an isolated
vertex. It remains to deal with isolated vertices.

Isolates removal rule. If G has an isolated vertex v , then delete v .

To see that above rule is safe, notice that, because the considered instance satisfies (i), it follows that δ(v) ≤ dG (v) = 0, so
v ∈ S . Clearly, by the exhaustive application of the isolates removal rule, we either solve the problem or obtain an instance
that satisfies (i) and (ii).

Now consider an instance (G, kv , ke, C, δ, w, c) of DCPGGD.
We replace the yes-instance rule by the following variant.

Yes-instance rule (connected). If S = V (G) and G is connected, then (∅, ∅) is a solution, return a yes-answer and stop.

It is straightforward to verify that the vertex deletion rule and the contraction rule are safe for this problem. By applying
these rules and by the application of the connected variant of the yes-instance rule whenever possible, we either solve the
problem or obtain an equivalent instance that satisfies (i) and has the property that for any v ∈ S , either v is adjacent to
a vertex in S or v is an isolated vertex. Suppose that (G, kv , ke, C, δ, w, c) satisfies these properties. Observe that if H is
a component of G , then for any solution (U , D), either V (H) ⊆ U or V (G) \ V (H) ⊆ U . Therefore, it is safe to apply the
following variant of the isolates removal rule.

Isolates removal rule (connected). If G has an isolated vertex v , then if w(V (G) \ {v}) ≤ kv and c(V (G) \ {v}) ≤ C , then
(V (G) \ {v}, ∅) is a solution, return a yes-answer and stop. Otherwise, if w(V (G) \ {v}) > kv or c(V (G) \ {v}) > C , delete v
and set kv = kv − w(v) and C = C − c(v); if kv < 0 or C < 0, then stop and return a no-answer.

It is easy to see that if the input graph was planar then the graph formed after applying the rules above will also be
planar. �
Lemma 4. If (G, kv , ke, C, δ, w, c) is a normalized yes-instance of DPGGD (DCPGGD respectively) then G has a 2-dominating set of
size at most kv + 2ke .

Proof. We prove the lemma for DPGGD; the proof for DCPGGD is the same. Let (G, kv , ke, C, δ, w, c) be a normalized
yes-instance of the problem. Let (U , D) be a solution and W = U ∪ V (D). Clearly, |W | ≤ kv + 2ke , because the weights are
positive integers. We show that W is a 2-dominating set of G .

174 K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182
Let S = {v ∈ V (G) | dG (v) = δ(v)} and S = V (G) \ S . For any vertex v ∈ S , either v ∈ U or v is adjacent to a vertex of U
or v is incident to an edge of D . Hence, S ⊆ NG [W]. Let v ∈ S . Because the considered instance is normalized, v is adjacent
to a vertex u ∈ S . It implies, that S ⊆ N2

G [W]. �
The following is a direct consequence of Lemmas 2 and 4.

Lemma 5. There is a fixed constant α such that, if (G, kv , ke, C, δ, w, c) is a normalized yes-instance of DPGGD (DCPGGD respec-
tively), then G has an (α(kv + 2ke), α)-protrusion decomposition. Moreover, if there is such a decomposition, one can be constructed
in polynomial time.

The next lemma states that, for both DPGGD and DCPGGD, an optimal solution can be found in polynomial time on
graphs of bounded treewidth. The proof is based on the standard techniques for dynamic programming over tree decompo-
sitions.

Lemma 6. DPGGD (DCPGGD respectively) can be solved, and an efficient solution (U , D) of minimum cost can be obtained in
(kv +ke)

O (q) · poly(n) time (in (q(kv +ke))
O (q) · poly(n) time respectively) for instances (G, kv , ke, C, δ, w, c) where G is an n-vertex

graph of treewidth at most q and δ(v) ≤ dG(v) ≤ δ(v) + kv + ke for v ∈ V (G).

Proof. We use a more or less standard approach for construction of dynamic programming algorithms for graphs of bounded
treewidth.

First, we consider DPGGD. Let (G, kv , ke, C, δ, w, c) be an instance of the problem where tw(G) ≤ q and δ(v) ≤ dG(v) ≤
δ(v) + kv + ke for all v ∈ V (G). We first of all assume that a nice tree decomposition (X , T) of G with width t = O (q) is
given. To simplify later arguments, we may assume t ≥ 2. For this, we may use the algorithm of [2] to obtain a decomposi-
tion whose width is at most five times the optimal in 2O (q) · n steps and then convert it to a nice tree decomposition using
the aforementioned results of Kloks [23].

Let r denote the root of T . For any node i ∈ V (T), let Ti denote the subtree of T induced by i and its descendants and
let Gi = G[⋃ j∈V (Ti)

X j]. We apply a dynamic programming algorithm over (X , T).
First, we describe the tables that are constructed for the nodes of T . Let i ∈ V (T). We define tablei as a partial function

whose inputs are quintuples (X, Y , γ , hv , he) where

– X ⊆ Xi ,
– Y ⊆ E(G[Xi]),
– γ : Xi \ X → {0, . . . , kv + ke},
– hv ≤ kv and
– he ≤ ke .

The value of tablei is a minimum cost pair (U , D) ∈ 2V (Gi) × 2E(Gi) with the following properties:

(i) for any v ∈ U and any e ∈ D , v and e are not incident,
(ii) w(U) ≤ hv and w(D) ≤ he ,

(iii) U ∩ Xi = X and D ∩ E(G[Xi]) = Y ,
(iv) for every v ∈ Xi \ X , the number of neighbours of v in Gi that belong in U \ Xi plus the number of edges of D \ E(G[Xi])

that are incident to v is exactly γ (v),
(v) for each v ∈ V (Gi) \ Xi , dG ′

i
(v) = δ(v) where G ′

i = Gi − U − D ,

and, if no such pair (U , D) exists, then tablei(X, Y , d, hv , he) is void.
Recall that Xr = ∅. Observe that (G, kv , ke, C, δ, w, c) is a yes-instance if and only if tabler(∅, ∅, ∅, kv , ke) is non-void

(where ∅ : ∅ → {0, . . . , kv +ke}). Moreover, in such a case, the value of tabler(∅, ∅, ∅, kv , ke) is a minimum-cost solution for
this instance.

Now we explain how we construct tablei for each i ∈ V (T). If i is a leaf node, tablei is constructed in a straightforward
way because Xi = ∅. Indeed, for 0 ≤ hv ≤ kv and 0 ≤ he ≤ ke we set tablei(∅, ∅, ∅, hv , he) = (∅, ∅) and have tablei void in
all other cases. Hence, it remains to give the construction for introduce, forget, and join nodes. Let i ∈ V (T) be a node of one
of these types. Assume inductively that the function tablei′ for every child i′ of i has already been constructed.

In what follows we write tablei(X, Y , γ , hv , he) � (U , D) to refer to the following procedure: If tablei(X, Y , γ , hv , he)

is undefined, set it to be equal to (U , D). If tablei(X, Y , γ , hv , he) = (Û , D̂) and c(Û ∪ D̂) > c(U ∪ D), change
tablei(X, Y , γ , hv , he) to be equal to (U , D). Otherwise, do not change tablei(X, Y , γ , hv , he).

Construction for an introduce node. Let i′ be the child of i and Xi = Xi′ ∪ {v}. Notice that NGi (v) ⊆ Xi′ . We start with
tablei empty. Then, for each pair hv , he where hv ≤ kv and he ≤ ke and each pair ((X ′, Y ′, γ ′, h′

v , h′
e), (U ′, D ′)) ∈ tablei′

where h′
v ≤ hv and h′

e ≤ he , we do the following:

K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182 175
– Let X ← X ′ ∪ {v}, Y ← Y ′ , γ ← γ ′ , U ← U ′ ∪ {v}, and D ← D ′ .
If hv ≥ h′

v + w(v), then tablei(X, Y , γ , hv , he) � (U , D).
– Let X ← X ′ , U ← U ′ , γ ← γ ′ ∪ {(v, 0)}.

For every L ⊆ {vu | vu ∈ E(G), u ∈ Xi′ \ X ′}, let Y ← Y ′ ∪ L, D ← D ′ ∪ L, and if he ≥ h′
e + w(L), then

tablei(X, Y , γ , hv , he) � (U , D).

Construction for a forget node. Let i′ be the child of i and Xi = Xi′ \ {v}. We start with tablei empty. For each pair
((X ′, Y ′, γ ′, hv , he), (U , D)) ∈ tablei′ , we do the following.

– If v ∈ X ′ then let X ← X ′ \ {v}, Y ← Y ′ , and define γ by replacing in γ ′ each pair (u, γ ′(u)) where uv ∈ E(G) and
u ∈ Xi \ X by the pair (u, γ ′(u) + 1).
If maxu∈Xi\X γ (u) ≤ kv + ke , then tablei(X, Y , γ , hv , he) � (U , D).

– If v /∈ X ′ , then let X ← X ′ , L ← {vu ∈ E(G) | u ∈ Xi} ∩ Y ′ , Y ← Y ′ \ L, and define γ by replacing in γ − = γ ′ \ {(v, γ ′(v))}
each pair (u, γ ′(u)) where uv ∈ L by the pair (u, γ ′(u) + 1).
If δ(v) = dG(v) − |L| − γ ′(v) and maxu∈Xi\X γ (u) ≤ kv + ke , then tablei(X, Y , γ , hv , he) � (U , D).

Construction for a join node. Let i′ and i′′ be the children of i. We start with tablei empty. For each pair ((X, Y , γ ′, h′
v , h′

e),

(U ′, D ′)) ∈ tablei′ and each pair ((X, Y , γ ′′, h′′
v , h′′

e), (U ′′, D ′′)) ∈ tablei′′ we do the following.

– Let γ ← γ ′ + γ ′′ , U ← U ′ ∪ U ′′ and D ← D ′ ∪ D ′′ .
If maxu∈Xi\X γ (u) ≤ kv + ke , then for any two integers hv , he such that h′

v + h′′
v − w(X) ≤ hv ≤ kv and h′

e + h′′
e − w(Y) ≤

he ≤ ke , tablei(X, Y , γ , hv , he) � (U , D).

Using standard arguments, it is straightforward to verify the correctness of the algorithm. To evaluate the running time,
recall that tablei receives a quintuple (X, Y , γ , hv , he) as input. There are at most 2t+1 possible choices for X , 23(t+1)−6 =
23t−3 choices of Y (because of the planarity of G), (kv + ke + 1)t+1 choices of γ , kv + 1 possible values of hv and ke + 1
possible values for he . We therefore have that each tablei has (kv + ke)

O (t) entries. This implies that the running time of
the dynamic programming algorithm is (kv + ke)

O (t) · n.

Now we consider DCPGGD. The difference is that we have to keep track of components of a partial solution as is standard
for dynamic programming algorithms for graphs of bounded treewidth with a connectivity condition such as, e.g. the Steiner
Tree problem. Let (G, kv , ke, C, δ, w, c) be an instance of DCPGGD where tw(G) ≤ t and δ(v) ≤ dG(v) ≤ δ(v) + kv + ke for
v ∈ V (G). Without loss of generality we assume that a nice tree decomposition (X , T) of G with treewidth at most t is
given and apply a dynamic programming algorithm over (X , T). Let i ∈ V (T).

We define tablec
i as a partial function whose inputs are quintuples (P, Y , γ , hv , he) where

– P = {P0, . . . , P s} is a partition of Xi ,
– Y ⊆ E(G[Xi]),
– γ : Xi \ X → {0, . . . , kv + ke},
– hv ≤ kv and
– he ≤ ke .

The value of tablec
i is a minimum cost pair (U , D) ∈ 2V (Gi) × 2E(Gi) with the following properties:

(i) for any v ∈ U and any e ∈ D , v and e are not incident,
(ii) w(U) ≤ hv and w(D) ≤ he ,

(iii) U ∩ Xi = P0 and D ∩ E(G[Xi]) = Y ,
(iv) for every v ∈ Xi \ X , the number of neighbours of v in Gi that belong in U \ Xi , plus the number of edges of D \ E(G[Xi])

that are incident to v is exactly γ (v),
(v) for each v ∈ V (Gi) \ Xi , dG ′

i
(v) = δ(v) where G ′

i = Gi − U − D ,

(vi) if s = 0, then G ′
i = Gi −U − D is connected and if s ≥ 1, then G ′

i has s components H1, . . . , Hs such that V (Hi) ∩ Xh = Pi
for h ∈ {1, . . . , s},

and, if no such pair (U , D) exists, then tablec
i (P, Y , d, hv , he) is void.

As in the non-connected case, (G, kv , ke, C, δ, w, c) is a yes-instance if and only if tablec
r (∅, ∅, ∅, kv , ke) is non-void and

the value of tablec
r (∅, ∅, ∅, kv , ke), if exists, is a minimum-cost solution for this instance.

The partial function tablec
i is constructed for every i ∈ V (T) similarly to the construction of tablei for DPGGD. Because

there are at most (t + 1)t+1 partitions P of each Xi , we have that each table contains (t(kv + ke))
O (t) entries. Therefore, the

running time of the dynamic programming algorithm is (t(kv + ke))
O (t)n. �

We are now ready to present our two main results, starting with the one for DPGGD.

176 K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182
Theorem 1. DPGGD has a polynomial kernel when parameterized by kv + ke .

Proof. Let (G, kv , ke, C, δ, w, c) be an instance of DPGGD. By Lemma 3, we may assume that this instance is normalized. By
Lemma 4, if (G, kv , ke, C, δ, w, c) is a yes-instance, then G has a 2-dominating set of size at most kv + 2ke . By Lemma 5,
there is a fixed constant α such that G has an (α(kv + 2ke), α)-protrusion decomposition, and such a decomposition, if it
exists, can be constructed in polynomial time. To simplify later arguments, we may assume α ≥ 3. Clearly, if we fail to obtain
such a decomposition, we return a no-answer and stop. Hence, from now on we assume that an (α(kv + 2ke), α)-protrusion
decomposition � = {R0, . . . , R p} of G is given. As before, we keep the same notation δ, w, c for the restrictions of these
functions. Again, we will introduce new reduction rules. We will keep the notation for G and for the parameters unchanged
where this is well-defined. We also assume that if we consider sets of vertices or edges associated with the considered
instance and delete vertices or edges from the graph, then we also delete these elements from the associated sets.

For each i ∈ {1, . . . , p}, we construct W i ⊆ Ri and Li ⊆ EG(Ri). To do this, we consider the set Q of all possible quintuples
q = (hv , he, X, Y , δ′) such that

– 0 ≤ hv ≤ kv and 0 ≤ he ≤ ke ,
– X ⊆ NG(Ri) and Y ⊆ E(G[NG(Ri) \ X]), and
– we define F = G[R+

i] − X − Y and require that δ′ : V (F) → N0 is a function such that δ′(v) ≤ dF (v) ≤ δ′(v) + kv + ke
for v ∈ NG(Ri) \ X and δ′(v) = δ(v) for v ∈ Ri .

Observe that there are at most 2α sets X , at most 23α−6 sets Y , at most (kv + 1)(ke + 1) pairs hv , he , and for each X , there
are at most (kv + ke + 1)α possibilities for δ′ . Therefore |Q| ≤ 2α23α−6(kv + 1)(ke + 1)(kv + ke + 1)α = (kv + ke)

O (α) .
For each q = (hv , he, X, Y , δ′) ∈Q, we construct an instance Iq = (F , hv , he, C, δ′, w ′, c) of DPGGD such that

– w ′(v) = kv + 1 for v ∈ NG(Ri) \ X and w ′(v) = w(v) for v ∈ Ri and
– w ′(e) = ke + 1 for e ∈ E(G[NG(Ri) \ X]) \ Y and w ′(e) = w(e) for all other edges of F .

By Lemma 6, we can solve the problem for this instance in (kv + ke)
O (α) time. Let (Uq, Dq) denote the obtained solution of

minimum cost and set Uq = Dq = ∅ if no solution exists for Iq . Let

W i =
⋃

q∈Q
Uq and Li =

⋃

q∈Q
Dq.

Because each Uq has at most kv vertices and each Dq has at most ke edges, we obtain that |W i | ≤ |Q|kv ≤ (kv + 1)(ke + 1) ·
2α · 23α−6 · (kv + ke + 1)α · kv and |Li | ≤ |Q|ke ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · (kv + ke + 1)α · ke . Hence, the size of W i and Li
is (kv + ke)

O (α) .
Let W = R0 ∪ ⋃

i∈{1,...,p} W i and L = E(G[R0]) ∪ ⋃
i∈{1,...,p} Li . Because max{p, |R0|} ≤ α(kv + 2ke), we have that |W | =

(kv + ke)
O (α) and |L| = (kv + ke)

O (α) . We prove the following claim.

Claim A. If (G, kv , ke, C, δ, w, c) is a yes-instance of DPGGD, then it has an efficient solution (U , D) of minimum cost such that
U ⊆ W and D ⊆ L.

We prove Claim A as follows. Let (U , D) be an efficient solution for (G, kv , ke, C, δ, w, c) of minimum cost such that
s = |U \ W | + |D \ L| is minimum. If s = 0, then the claim is fulfilled. Suppose, for contradiction, that s > 0. This means that
there is an i ∈ {1, . . . , p} such that (U ∩ Ri) \ W i = ∅ or (D ∩ EG(Ri)) \ Li = ∅. Let X = U ∩ NG(Ri), Y = D ∩ E(NG(Ri)) and
F = G[R+

i] − X − Y . Let hv = |U ∩ V (F)| and he = |D ∩ E(F)|. For each vertex v ∈ NG(Ri) \ X , let dv be the total number of
vertices in U \ V (F) adjacent to v plus the number of edges in D \ E(F) incident to v . Let δ′(v) = dF (v) − (dG (v) −δ(v) −dv)

for v ∈ NG(Ri) \ X and δ′(v) = δ(v) for all other vertices of F .
Clearly, (F , hv , he, C, δ′, w ′, c) = Iq is the instance of DPGGD when q = (hv , he, X, Y , δ′) if we set w ′ as before. Let U ′ =

U ∩ V (F) and D ′ = D ∩ E(F). Then (U ′, D ′) is a solution for the instance Iq and, therefore Iq is a yes-instance. In particular,
this means that there is a solution (U ′′, D ′′) for Iq = (F , hv , he, C, δ′, w ′, c) that was constructed by the aforementioned
procedure for the construction of W i and Li . Clearly, U ′′ ⊆ W i ⊆ W and D ′′ ⊆ Li ⊆ L. Because our algorithm for graphs of
bounded treewidth finds a solution of minimum cost, it follows that c(U ′′ ∪ D ′′) ≤ c(U ′ ∪ D ′). It remains to observe that
(Û , D̂), where Û = (U \ U ′) ∪ U ′′ and D̂ = (D \ D ′) ∪ D ′′ , is a solution for (G, kv , ke, C, δ, w, c) with c(Û ∪ D̂) ≤ c(U ∪ D), but
this contradicts the choice of (U , D) because |Û \ W | + |D̂ \ L| < s. This completes the proof of Claim A.

Let S = {v ∈ V (G) | dG (v) = δ(v)} \ W and T = {v ∈ V (G) | dG(v) > δ(v)} \ W ; because the instance we consider is
normalized, these sets form a partition of V (G) \ W (note that these sets may be empty). If v ∈ S , then for any efficient
solution (U , D) such that U ⊆ W and D ⊆ L, v is not adjacent to any vertex of U and not incident to any edge of L. This
implies that it is safe to exhaustively apply the following rule without destroying the statement of Claim A.

Set adjustment rule. If there is a vertex v ∈ S that is adjacent to a vertex u ∈ W , then set W = W \ {u} and set S = S ∪ {u}
if dG(u) = δ(u) and set T = T ∪ {u} if dG(u) > δ(u). If v ∈ S , remove any edge incident to v from L.

K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182 177
By Claim A, it is safe to modify the weights as follows.

Weight adjustment rule. Set w(v) = kv + 1 for v ∈ V (G) \ W and set w(e) = ke + 1 for e ∈ E(G) \ L.

After the exhaustive application of the set adjustment rule, we have that NG (S) ⊆ T . Now it is safe to remove S .

S-reduction rule. If v ∈ S , then remove v and set δ(u) = δ(u) −1 for u ∈ NG(v). If δ(u) < 0 for some u ∈ NG(v), then return
a no-answer and stop.

To show that the above rule is safe, let G ′ = G − S and let δ′ be the function obtained from δ by the application of the
rule. Suppose that (G, kv , ke, C, δ, w, c) is a yes-instance. Then, by Claim A, we have a solution (U , D) such that U ⊆ W
and D ⊆ L. Because NG (S) ⊆ T , T ∩ W = ∅ and the vertices of S are not incident to edges of L, it follows that we do not
stop and (U , D) is a solution for (G ′, kv , ke, C, δ′, w, c). Now let (U , D) be a solution for (G ′, kv , ke, C, δ′, w, c). Because of
the application of the weight adjustment rule, U ⊆ W and D ⊆ L. Because NG (S) ⊆ T , T ∩ W = ∅ and the vertices of S
are not incident to edges of L, we have that (U , D) is a solution for (G, kv , ke, C, δ, w, c). This completes the proof that the
S-reduction rule is safe.

Let W ′ = W ∪ V (L) and T ′ = T \ V (L). Clearly, |W ′| ≤ |W | + 2|L| = (kv + ke)
O (α) .

Using similar arguments to those for the S-reduction rule, the following rule is also safe.

T ′-reduction rule. If uv ∈ E(G[T ′]), then remove uv and set δ(u) = δ(u) − 1 and δ(v) = δ(v) − 1. If δ(u) < 0 or δ(v) < 0,
then return a no-answer and stop.

After the exhaustive application of the above rule, T ′ is an independent set in the obtained graph G . Some of the vertices
of this independent set may have the same neighbourhoods. We deal with them using the next rule.

Twin reduction rule. Suppose there are u, v ∈ T ′ with NG(u) = NG(v). If δ(u) = δ(v), then remove v and set δ(x) =
max{0, δ(x) − 1} for x ∈ NG(u). If δ(u) = δ(v) then return a no-answer and stop.

To prove that the above rule is safe, consider a pair of vertices u, v ∈ T ′ with NG(u) = NG(v) and δ(u) = δ(v). Let
G ′ = G − v and let δ′ denote the function obtained from δ by the rule. Suppose that (G, kv , ke, C, δ, w, c) is a yes-instance.
Then we have a solution (U , D) such that U ⊆ W and D ⊆ L. Notice that T ′ ∩ U = ∅ and the vertices of T ′ are not incident
to the edges of L. Note that u, v /∈ U and if x ∈ NG(u) then ux, vx /∈ D . We have that U contains exactly dG (u) − δ(u)

vertices that are adjacent to u. Therefore, (U , D) is a solution for (G ′, kv , ke, C, δ′, w, c). Now assume that (U , D) is a
solution for (G ′, kv , ke, C, δ′, w, c). By the same arguments, U contains exactly dG ′ (u) − δ′(u) vertices that are adjacent to u.
Also if x ∈ NG(u) and δ′(x) = 0, then x ∈ U , because u /∈ U and ux /∈ D . Because NG (u) = NG(v), δ(u) = δ(v) and T ′ is an
independent set, U contains dG (u) − δ(u) vertices that are adjacent to u and dG (v) − δ(v) vertices that are adjacent to v .
It follows that (U , D) is a solution for (G, kv , ke, C, δ, w, c). Now consider the case when NG(u) = NG(v) and δ(u) = δ(v).
Suppose, for contradiction that there is a solution (U , D). By the above arguments, U contains exactly dG (u) − δ(u) vertices
that are adjacent to u and dG (v) − δ(v) vertices that are adjacent to v . Since NG(u) = NG(v) and δ(u) = δ(v), this is a
contradiction, so there cannot be such a solution.

After the exhaustive application of the above rule for any two vertices u, v ∈ T ′ , we have that NG (u) = NG(v). Let T ′
0, T ′

1,
T ′

2, T ′≥3 denote the sets of vertices in T ′ that are of degree 0, 1, 2 and at least 3 respectively. Observe that dG (v) > δ(v) ≥ 0
for v ∈ T ′ . Therefore, T ′

0 = ∅ and T ′
1, T ′

2, T ′≥3 form a partition of T ′ (note that these sets may be empty). By the twin

reduction rule |T ′
1| = |NG(T ′

1)| ≤ |W ′| and |T ′
2| ≤

(|NG (T ′
2)|

2

) ≤ 1
2 |W ′|(|W ′| −1). By Lemma 1, |T ′≥3| ≤ 2|NG(T ′)| −4 ≤ 2|W ′| −4

(or |T ′≥3| = 0). We have that |V (G)| = |W ′| + |T ′| = |W ′| + |T ′
1| + |T ′

2| + |T ′≥3| ≤ 1
2 |W ′|2 + 7

2 |W ′|. Since W ′ has (kv + ke)
O (α)

vertices, we obtain that the obtained graph G has size kO (1) where k = kv +ke , i.e. we have a polynomial kernel for DPGGD.
To complete the proof, it remains to observe that the construction of the normalized instance can be done in polynomial

time by Lemma 3, the construction of W and L can be done in polynomial time by Lemma 6, and all the subsequent
reduction rules can be applied in polynomial time. �

The proof of our second main result is based on the same approach as the proof of Theorem 1, but it is more technically
involved because we have to ensure connectivity of the graph obtained by the editing.

Theorem 2. DCPGGD has a polynomial kernel when parameterized by kv + ke .

Proof. Let (G, kv , ke, C, δ, w, c) be an instance of DCPGGD. By Lemma 3, we may assume that this instance is normalized.
By Lemma 4, if (G, kv , ke, C, δ, w, c) is a yes-instance, then G has a 2-dominating set of size at most kv + 2ke . By Lemma 5,
there is a fixed constant α such that G has an (α(kv + 2ke), α)-protrusion decomposition, and such a decomposition, if it

178 K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182
exists, can be constructed in polynomial time. To simplify later arguments, we may assume α ≥ 3. Clearly, if we fail to obtain
such a decomposition, we return a no-answer and stop. Hence, from now on we assume that an (α(kv + 2ke), α)-protrusion
decomposition � = {R0, . . . , R p} of G is given. As before, we keep the same notation δ, w, c for the restrictions of these
functions. Again, we will introduce new reduction rules. We will keep the notation for G and for the parameters unchanged
where this is well-defined. We also assume that if we consider sets of vertices or edges associated with the considered
instance and delete vertices or edges from the graph, then we also delete these elements from the associated sets.

For each i ∈ {1, . . . , p}, we construct W i ⊆ Ri and Li ⊆ EG(Ri). To do this, we consider the set Q of all possible sextuples
q = (hv , he, X, Y , P, δ′) such that

– 0 ≤ hv ≤ kv and 0 ≤ he ≤ ke ,
– X ⊆ NG(Ri) and Y ⊆ E(G[NG(Ri) \ X]),
– P = {P1, . . . , P s} is a set covering of NG (Ri) \ X , with s ≤ |NG(Ri) \ X |,
– we define F = G[R+

i] − X − Y and require that δ′ : V (F) → N0 is a function such that δ′(v) ≤ dF (v) ≤ δ′(v) + kv + ke
for v ∈ NG(Ri) \ X and δ′(v) = δ(v) for v ∈ Ri .

Observe that there are at most 2α sets X , at most 23α−6 sets Y , at most (kv + 1)(ke + 1) pairs hv , he , and for each X ,
there are at most 2α2

possible set covers P and at most (kv + ke + 1)α possibilities for δ′ . Therefore |Q| ≤ 2α23α−6(kv +
1)(ke + 1)2α2

(kv + ke + 1)α = (kv + ke)
O (α2) .

For each q = (hv , he, X, Y , P, δ′) ∈Q, we construct an instance Iq = (FP , hv , he, C, δ′′, w ′, c′) of DCPGGD such that

– FP is the graph obtained from F by adding a set of s new vertices Z = {z1, . . . , zs} and making zi adjacent to all the
vertices of Pi . If P = ∅, which means that NG (R+

i) = X , then we simply have that Z = ∅ and FP = F .
– δ′′(v) = dFP (v) for v ∈ Z and δ′′(v) = δ′(v) for v ∈ V (FP) \ Z .
– w ′(v) = kv + 1 for v ∈ (NG (Ri) \ X) ∪ Z and w ′(v) = w(v) for v ∈ Ri .
– w ′(e) = ke + 1 for e ∈ (E(G[NG (Ri) \ X]) \ Y) ∪ E FP (Z), and w ′(e) = w(e) for all other edges of FP .
– c′(v) = 0 for v ∈ Z and c′(v) = c(v) for v ∈ V (FP) \ Z ; c′(e) = 0 for e ∈ E FP (Z) and c′(e) = c(e) for all other edges

in FP .

Since |Z | ≤ |NG(Ri)| ≤ α, it follows that |Z | ≤ α and therefore tw(F P) ≤ tw(F) + α ≤ 2α. We can check in linear time
whether FP is planar [20]. If it is not, then Iq is not a valid instance of DCPGGD and we set (Uq, Dq) = (∅, ∅). Otherwise, by
Lemma 6, we can solve DCPGGD for Iq in (α(kv + ke))

O (α) · poly(n) time and find a solution of minimum cost. Let (Uq, Dq)

be the obtained solution of minimum cost and let Uq = Dq = ∅ if no solution exists. Notice that Z ∩ Uq = ∅, because the
vertices of Z have weight kv +1, and Dq has no edges incident to the vertices of Z , because these edges have weight ke +1.
Let

W i =
⋃

q∈Q
Uq and Li =

⋃

q∈Q
Dq.

Because each Uq has at most kv vertices and each Dq has at most ke edges, we obtain that |W i | ≤ |Q|kv ≤ (kv + 1)(ke + 1) ·
2α · 23α−6 · 2α2 · (kv + ke + 1)α · kv and |Li | ≤ |Q|ke ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · 2α2 · (kv + ke + 1)α · ke . Hence, the size
of W i and Li is (kv + ke)

O (α2) .
Let W = R0 ∪ ⋃

i∈{1,...,p} W i and L = E(G[R0]) ∪ ⋃
i∈{1,...,p} Li . Because max{p, |R0|} ≤ α(kv + 2ke), we have that |W | =

(kv + ke)
O (α2) and |L| = (kv + ke)

O (α2) . We prove the following claim.

Claim A. If (G, kv , ke, C, δ, w, c) is a yes-instance of DCPGGD, then it has an efficient solution (U , D) of minimum cost such that
U ⊆ W and D ⊆ L.

We prove Claim A as follows. Let (U , D) be an efficient solution for (G, kv , ke, C, δ, w, c) of minimum cost such that
s = |U \ W | + |D \ L| is minimum. If s = 0, then the claim is fulfilled. Suppose, for contradiction, that s > 0. This means that
there is an i ∈ {1, . . . , p} such that (U ∩ Ri) \ W i = ∅ or (D ∩ EG(Ri)) \ Li = ∅.

Let X = U ∩ NG(Ri), Y = D ∩ E(NG(Ri)) and F = G[R+
i] − X − Y . Let hv = |U ∩ V (F)| and he = |D ∩ E(F)|. If X = NG(Ri),

then consider the graph H = G − U − D − R+
i and let H1, . . . , Hs denote the components of H . Next, starting with the graph

H ′ = G − U − D − Ri , contract each H j to a single vertex z j and call the resulting graph H ′′ . Note that Z = {z1, . . . , zs} is
an independent set in H ′′ . By the definition of protrusion decomposition, every vertex of NG(Ri) \ X is adjacent to at least
one vertex in Z . Likewise, since G − U − D is connected, every vertex z j must have a neighbour in NG (Ri) \ X . If there
is a vertex z j ∈ Z such that removing it from H ′′ does not increase the number of components in H ′′ and every vertex in
NG(Ri) \ X has a neighbour in Z \ {z j} then we remove z j from H ′′ and from Z . Doing this exhaustively, we obtain a graph
with |Z | ≤ |NG(Ri) \ X | ≤ α. Call this graph FP . Without loss of generality assume Z = {z1, . . . , zt}. Let P j = NH ′′(z j) for
j ∈ {1, . . . , t}. Then P = {P1, . . . , Pt} is a set cover of NG(Ri) \ X containing at most α sets. If X = NG(Ri), then set P = ∅
and FP = F . Now FP is precisely the graph constructed from F and P earlier. Note that FP is planar since it is obtained
from G by contractions, vertex deletions and edge deletions.

K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182 179
For each vertex v ∈ NG(Ri) \ X , let dv be the total number of vertices in U \ V (F) adjacent to v plus the number of
edges in D \ E(F) incident to v .

Let δ′(v) = dFP (v) − (dG (v) − δ(v) − dv) for v ∈ NG(Ri) \ X and δ′(v) = δ(v) for other vertices of FP . Set w ′ , c′ and δ′′
as before.

Clearly, Iq = (FP , hv , he, C, δ′, w ′, c′) is an instance of DCPGGD when q = (hv , he, X, Y , P, δ′). Let U ′ = U ∩ V (F) and
D ′ = D ∩ E(F). Then (U ′, D ′) is a solution for the instance Iq and, therefore Iq is a yes-instance.

In particular, this means that there is a solution (U ′′, D ′′) for Iq = (FP , hv , he, C, δ′′, w ′, c′) that was constructed by
the aforementioned procedure for the construction of W i and Li . Clearly, U ′′ ⊆ W i ⊆ W and D ′′ ⊆ Li ⊆ L. Because our
algorithm for graphs of bounded treewidth finds a solution of minimum cost, it follows that c(U ′′ ∪ D ′′) ≤ c(U ′ ∪ D ′). It
remains to observe that (Û , D̂), where Û = (U \ U ′) ∪ U ′′ and D̂ = (D \ D ′) ∪ D ′′ , is a solution for (G, kv , ke, C, δ, w, c) with
c(Û ∪ D̂) ≤ c(U ∪ D), but this contradicts the choice of (U , D) because |Û \ W | + |D̂ \ L| < s. This completes the proof of
Claim A.

If v ∈ W = V (G) \ W and dG (v) = δ(v), then for any efficient solution (U , D) such that U ⊆ W and D ⊆ L, v is not
adjacent to a vertex of U . Moreover, EG(v) ∩ D = ∅, by Observation 2. This implies that it is safe to apply the following rule
without destroying the statement of Claim A.

Set adjustment rule. If there is a vertex v ∈ W with dG (v) = δ(v), then set W = W \ NG(v) and set L = L \ EG(v).

The sets W and L give us the following possibility to remove some vertices when there is the unique possibility to
satisfy degree restrictions.

Vertex deletion rule. If there is a vertex v ∈ W with dG(v) > δ(v) such that EG (v) ∩ L = ∅ then

– if |NG(v) ∩ W | < dG (v) − δ(v), then return a no-answer and stop;
– if |NG(v) ∩ W | = dG(v) − δ(v), then delete the vertices of NG(v) ∩ W and set kv = kv − w(NG (v) ∩ W) and C =

C − c(NG(v) ∩ W); if kv < 0 or C < 0, then return a no-answer and stop.

We exhaustively apply the above two rules until they can no longer be further applied. Let S = {v ∈ V (G) | dG(v) =
δ(v)} \ W . Notice that NG (S) ⊆ W by the set adjustment rule. It is easy to see that the following rule is safe.

S-neighbour rule. If v has k neighbours in S , and δ(v) < k then return a no-answer and stop.

We apply the S-neighbour rule exhaustively. Next, we contract the edges of G[S].

S-contraction rule 1. If G has two adjacent vertices u, v ∈ S , then we do as follows.

– For any vertex x ∈ V (G) \ {u, v} such that xu, xv ∈ E(G), set δ(x) = δ(x) − 1.
– Contract uv; let z denote the vertex obtained from u and v .
– Set w(z) = kv + 1 and c(z) = 0.
– For e ∈ EG(z), set w(e) = ke + 1, c(e) = 0.

We now show that the S-contraction rule 1 is safe. To do this, let (G ′, kv , ke, C, δ′, w ′, c′) denote the instance obtained
by an application of the rule. Let (U , D) be an efficient solution for (G, kv , ke, C, δ, w, c) such that U ⊆ W and D ⊆ L. By
Observation 2, D has no edges incident to u or v . Also u, v /∈ U , because u, v ∈ S . Notice that δ(x) ≥ 2 by the S-neighbour
rule. If (U ′, D ′) is an efficient solution for (G ′, kv , ke, C, δ′, w ′, c′), then D ′ has no edges e incident to z, because w ′(e) > ke .
Similarly, z /∈ U ′ because w ′(z) > kv . Also note that δ′(x) ≥ 1 because of the S-neighbour rule. We obtain that (U ′, D ′) is a
solution for the original instance.

We exhaustively apply S-contraction rule 1. Note that S is an independent set in the obtained instance.

Stopping rule. If G has two components that contain vertices of W , then return a no-answer and stop. Suppose W contains
a vertex v which is isolated in G . In this case if w(V (G) \ {v}) ≤ kv and c(V (G) \ {v}) ≤ C , then return a (V (G) \ {v}, ∅) as
a solution and stop, otherwise, return a no-answer and stop.

Clearly, if G has two components that contain vertices of W , then one of these components should be deleted. By
Claim A, we know that if there is a solution then there must be a minimal cost solution that does not delete any vertices
of W . This contradiction means that there is no solution. If v ∈ W is an isolated vertex of G , then because dG (v) ≥ δ(v), it
follows that δ(v) = dG (v) and we conclude that (V (G) \ {v}, ∅) must be a solution. Therefore, the stopping rule is safe.

Assume that we do not stop at this stage. Then we obtain the instance (G, kv , ke, C, δ, w, c) of the problem and sets W ,
L such that the sets S = {v ∈ V (G) | dG (v) = δ(v)} \ W and T = {v ∈ V (G) | dG(v) > δ(v)} \ W form a partition of W (note

180 K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182
that these sets may be empty), S is an independent set, no vertex of W is isolated in G , and L ∩ E(S) = ∅. Also for any
v ∈ S , NG(v) ⊆ T , by the set adjustment rule.

By Claim A, it is safe to modify the weights as follows.

Weight adjustment rule. Set w(v) = kv + 1 for v ∈ V (G) \ W and set w(e) = ke + 1 for e ∈ E(G) \ L.

Our next aim is to bound the size of S . In the proof of Theorem 1 we simply deleted the vertices of S and adjusted δ

appropriately. Here we need to preserve connectivity. Hence, we delete vertices only if this does not destroy connectivity
and we use contractions otherwise.

S-deletion rule. If, for a vertex v ∈ S , one of the following is fulfilled

– dG(v) = 1,
– dG(v) = 2 and for {x, y} = NG(v), xy ∈ E(G) \ L or
– there is a vertex u ∈ S such that u = v and NG(v) ⊆ NG(u),

then delete v and set δ(x) = δ(x) − 1 for x ∈ NG(v); if δ(x) < 0, then return a no-answer and stop.

S-contraction rule 2. If v ∈ S , then let u ∈ NG(v) and let � = dG(u) − δ(u). For every vx ∈ E(v) \ {vu} such that ux ∈ E(G),
delete vx, add a vertex z adjacent to v and x, set δ(z) = 2, w(z) = kv + 1, w(zx) = w(zv) = ke + 1 and c(z) = c(zx) =
c(zv) = 0 and add z to S . Then contract uv in the obtained graph and set δ(y) = dG(y) + �, w(y) = kv + 1 and c(y) = 0
for the vertex y obtained from u and v .

The above two rules are safe, because NG (v) ⊆ T and the vertices of T are not included in any solutions.
We apply these rules exhaustively. First we apply the S-deletion rule whenever it is possible. Then we apply the

S-contraction rule 2. Notice that the S-contraction rule creates new vertices that are obtained by subdividing the edges
of E(v) and they are placed in S . Therefore, it may happen that we can again apply the S-deletion rule, and in this case
we do so. Finally, we get the graph G with the following properties:

(i) for any v ∈ S , dG(v) = 2 and for {x, y} = NG(v), x, y ∈ V (L), and
(ii) for any distinct u, v ∈ S , NG(u) = NG(v) (by the S-deletion rule). In particular, this means that |S| ≤ (2|L|)2.

Let W ′ = W ∪ V (L) ∪ S and T ′ = T \ V (L). Clearly, W ′ and T ′ form a partition of V (G) (one of the sets could be empty).
Notice that |W ′| ≤ |W | + 3|L| = (kv + ke)

O (α2) . Now our aim is to bound the size of T ′ .

T ′-deletion rule. If there are two distinct u, v ∈ T ′ such that NG (u) ∩ W ′ = NG(v) ∩ W ′ , dG(u) − δ(u) = dG(v) − δ(v) and v
is an isolated vertex of G[T ′], then delete v and set δ(x) = max{0, δ(x) − 1} for x ∈ NG(u).

To see that the T ′-deletion rule is safe, it is sufficient to recall that δ(v) = dG(v) because we already applied the vertex
deletion rule. Hence, |NG(v) ∩ W | > dG (v) − δ(v), so in any solution u and v have common adjacent vertices that are not
deleted. Because E(v) ∩ L = ∅ and E(u) ∩ L = ∅, the edges of E(u) and E(v) cannot be deleted. Therefore, we maintain
connectivity by the T ′-deletion rule. It is straightforward to verify that the T ′-deletion rule is safe with respect to degree
restrictions.

T ′-contraction rule. If there are two distinct u, v ∈ T ′ such that NG (u) ∩ W ′ = NG(v) ∩ W ′ , dG(u) − δ(u) = dG (v) − δ(v)

and u and v are in the same component of G[T ′], do the following.

– For each vx ∈ E(v) such that x /∈ T ′ , delete vx and set δ(x) = max{0, δ(x) − 1}.
– Let y ∈ NG(v) in the obtained graph and let � = dG (y) − δ(y). For every x ∈ NG(v) ∩ NG(y), set δ(x) = max{0, δ(x) − 1}.

Contract yv to a vertex z and set δ(z) = dG(z) + �, w(z) = kv + 1, c(z) = 0 and let w(zx) = ke + 1, c(zx) = 0 for every
x ∈ NG(z). Add z to T ′ .

To show that the T ′-contraction rule is safe, again recall that δ(v) = |NG(v) ∩ W ′| because we already applied the
vertex deletion rule. Hence, in any solution, u and v have common adjacent vertices in W ′ that are not deleted. Because
E(T ′) ∩ L = ∅, the edges of E(T ′) cannot be deleted. Therefore, we do not destroy connectivity by the T ′-contraction rule.
It is straightforward to verify that the T ′-contraction rule is safe with respect to degree restrictions.

We exhaustively apply the above two rules. First, we apply the T ′-deletion rule if possible. Then we apply the
T ′-contraction rule and if after the application of this rule we again can again apply the T ′-deletion rule, we do so.

For i = 0, 1, 2, let Ti = {v ∈ T ′ : |NG(v) ∩ W ′| = i}, and T≥3 = {v ∈ T ′ : |NG(v) ∩ W ′| ≥ 3}. Because we exhaustively applied
the vertex deletion rule, we have that T0 = T1 = ∅. By Lemma 1, |T≥3| ≤ 2|NG(T ′)| − 4 ≤ 2|W ′| − 4 (or T≥3 is empty).

K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182 181
Therefore we have that G[T ′] has at most 2|W ′| components that contain vertices of T≥3. It remains to evaluate |T2|.
Because of the vertex deletion rule, for any v ∈ T2, dG(v) − δ(v) = 1 as otherwise we would either stop or delete the
neighbours of v in W . Any two distinct u, v ∈ T2 such that NG (u) ∩W ′ = NG(v) ∩W ′ belong to distinct components of G[T ′]
by the T ′-deletion rule and the T ′-contraction rule. There are at most

(|W ′ |
2

)
such components that are isolated vertices

of G[T ′] and there are at most
(|W ′|

2

)|T≥3| vertices in T2 that belong to the components that contain vertices of T≥3, and the
total number of such vertices is at most

(|W ′|
2

)
(2|W ′|). Let T ′

2 denote the set of remaining vertices of T2. Observe that each
component of G[T ′

2] is a component of G[T ′] and has at least two vertices of T2. Moreover, for any two vertices u and v
in the same component of G[T ′

2], NG(u) ∩ W ′ = NG(v) ∩ W ′ . Let G ′ be the graph obtained from G by contracting the edges
of G[T ′

2]. Each component of G[T ′
2] is contracted into a single vertex. Let Z denote the set of vertices of G ′ obtained from the

components of G[T ′
2]. The set Z is independent and for each v ∈ Z , dG ′ (v) ≥ 3. By Lemma 1, |Z | ≤ 2|NG ′ (Z)| − 4 ≤ 2|W ′| − 4

(or Z is empty). Hence, G[T ′
2] has at most 2|W ′| components. Because each component has at most

(|W ′|
2

)
vertices, |T ′

2| ≤(|W |
2

)
(2|W ′|). Hence, |T2| ≤

(|W ′|
2

)
(4|W ′| +1). We have that |V (G)| = |W ′| +|T ′| = |W ′| +|T0| +|T1| +|T2| +|T≥3| = O (|W ′|3).

Since W ′ has (kv + ke)
O (α2) vertices, we obtain that the obtained graph G has size kO (1) where k = kv + ke , i.e. we have a

polynomial kernel.
To complete the proof, it remains to observe that the construction of the normalized instance can be done in polynomial

time by Lemma 3, the construction of W and L can be done in polynomial time by Lemma 6, and all the subsequent
reduction rules can be applied in polynomial time. �
4. Conclusions

We proved that DPGGD and DCPGGD are NP-complete but allow polynomial kernels when parameterized by kv + ke .
These problems generalize the Degree Constrained Editing(S) problem and its connected variant for S = {ed, vd}; this can
be seen, for instance, by testing all possible pairs kv , ke with kv + ke = k or by a slight adjustment of our algorithms. Note
that by setting kv = 0 or ke = 0 we obtain the same results for S = {ed} and S = {vd}, respectively (for S = {ed} this is not
so surprising: we recall that the problem Degree Constrained Editing({ed}) is polynomial-time solvable for general graphs
even if the vertices and edges have costs [27]).

Several open problems remain. We note that graph modification problems that permit edge additions are less natural to
consider for planar graphs, because the class of planar graphs is not closed under edge addition. However, we could allow
other, more appropriate, operations such as edge contractions and vertex dissolutions when considering planar graphs.
Belmonte et al. [1] considered the setting in which only edge contractions are allowed and obtained initial results for
general graphs that extend the work of Mathieson and Szeider [27] on Degree Constrained Editing(S) in this direction.

References

[1] R. Belmonte, P.A. Golovach, P. van ’t Hof, D. Paulusma, Parameterized complexity of three edge contraction problems with degree constraints, Acta
Inform. 51 (7) (2014) 473–497.

[2] H.L. Bodlaender, P.G. Drange, M.S. Dregi, F.V. Fomin, D. Lokshtanov, M. Pilipczuk, A ckn 5-approximation algorithm for treewidth, SIAM J. Comput. 45 (2)
(2016) 317–378.

[3] H.L. Bodlaender, F.V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, D.M. Thilikos, (Meta) kernelization, J. ACM 63 (5) (2016) 44.
[4] F.T. Boesch, C.L. Suffel, R. Tindell, The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1) (1977) 79–84.
[5] P. Burzyn, F. Bonomo, G. Durán, NP-completeness results for edge modification problems, Discrete Appl. Math. 154 (13) (2006) 1824–1844.
[6] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary properties, Inf. Process. Lett. 58 (4) (1996) 171–176.
[7] L. Cai, B. Yang, Parameterized complexity of even/odd subgraph problems, J. Discret. Algorithms 9 (3) (2011) 231–240.
[8] M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk, I. Schlotter, Parameterized complexity of Eulerian deletion problems, Algorithmica 68 (1) (2014) 41–61.
[9] K.K. Dabrowski, P.A. Golovach, P. van ’t Hof, D. Paulusma, Editing to Eulerian graphs, J. Comput. Syst. Sci. 82 (2) (2016) 213–228.

[10] K.K. Dabrowski, P.A. Golovach, P. van ’t Hof, D. Paulusma, D.M. Thilikos, Editing to a planar graph of given degrees, in: CSR 2015, in: Lecture Notes in
Computer Science, vol. 9139, Springer, 2015, pp. 143–156.

[11] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[12] J. Flum, M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag, Berlin, 2006.
[13] F.V. Fomin, D. Lokshtanov, S. Saurabh, D.M. Thilikos, Linear kernels for (connected) dominating set on H-minor-free graphs, in: SODA 2012, SIAM, 2012,

pp. 82–93.
[14] V. Froese, A. Nichterlein, R. Niedermeier, Win–win kernelization for degree sequence completion problems, J. Comput. Syst. Sci. 82 (6) (2016)

1100–1111.
[15] M.R. Garey, D.S. Johnson, R.E. Tarjan, The planar hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (4) (1976) 704–714.
[16] V. Garnero, C. Paul, I. Sau, D.M. Thilikos, Explicit linear kernels via dynamic programming, SIAM J. Discrete Math. 29 (4) (2015) 1864–1894.
[17] V. Garnero, I. Sau, D.M. Thilikos, A linear kernel for planar red–blue dominating set, Discrete Appl. Math. (2016), http://dx.doi.org/10.1016/j.dam.2016.

09.045, in press.
[18] P.A. Golovach, Editing to a connected graph of given degrees, in: MFCS 2014, Part II, in: Lecture Notes in Computer Science, vol. 8635, Springer, 2014,

pp. 324–335.
[19] P.A. Golovach, Editing to a graph of given degrees, Theor. Comput. Sci. 591 (2015) 72–84.
[20] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 (4) (1974) 549–568.
[21] S. Khot, V. Raman, Parameterized complexity of finding subgraphs with hereditary properties, Theor. Comput. Sci. 289 (2) (2002) 997–1008.
[22] E.J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, S. Sikdar, Linear kernels and single-exponential algorithms via protrusion decompositions,

ACM Trans. Algorithms 12 (2) (2016) 21.
[23] T. Kloks, Treewidth, Computations and Approximations, Lecture Notes in Computer Science, vol. 842, Springer, 1994.

http://refhub.elsevier.com/S0022-0000(16)30121-0/bib424748503134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib424748503134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib426F646C61656E6465724444464C503133s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib426F646C61656E6465724444464C503133s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib426F646C61656E646572464C505354303961s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib426F6573636853543737s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4275727A796E42443036s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4361693936s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib436169593131s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib437967616E4D5050533134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib444748503134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib44474850543135s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib44474850543135s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib446F776E6579463133s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib466C756D473036s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib466F6D696E4C53543132s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib466F6D696E4C53543132s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib46726F6573654E4E3134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib46726F6573654E4E3134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib47617265794A543736s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4761726E65726F5053543134s1
http://dx.doi.org/10.1016/j.dam.2016.09.045
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib476F6C6F766163683134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib476F6C6F766163683134s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib476F6C6F76616368313461s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib48543734s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4B686F74523032s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4B696D4C50525253533133s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4B696D4C50525253533133s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4B6C6F6B733934s1
http://dx.doi.org/10.1016/j.dam.2016.09.045

182 K.K. Dabrowski et al. / Journal of Computer and System Sciences 85 (2017) 168–182
[24] J.M. Lewis, M. Yannakakis, The node-deletion problem for hereditary properties is NP-complete, J. Comput. Syst. Sci. 20 (2) (1980) 219–230.
[25] L. Lovász, M.D. Plummer, Matching Theory, Annals of Discrete Mathematics, vol. 29, Elsevier, Oxford, 1986.
[26] L. Mathieson, Graph editing problems with extended regularity constraints, CoRR arXiv:1510.03482, 2015.
[27] L. Mathieson, S. Szeider, Editing graphs to satisfy degree constraints: a parameterized approach, J. Comput. Syst. Sci. 78 (1) (2012) 179–191.
[28] H. Moser, D.M. Thilikos, Parameterized complexity of finding regular induced subgraphs, J. Discret. Algorithms 7 (2) (2009) 181–190.
[29] A. Natanzon, R. Shamir, R. Sharan, Complexity classification of some edge modification problems, Discrete Appl. Math. 113 (1) (2001) 109–128.
[30] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Lecture Series in Mathematics and Its Applications, vol. 31, Oxford University Press,

Oxford, 2006.
[31] I.A. Stewart, Deciding whether a planar graph has a cubic subgraph is NP-complete, Discrete Math. 126 (1–3) (1994) 349–357.
[32] W. Tutte, A short proof of the factor theorem for finite graphs, Can. J. Math. 6 (1954) 347–359.
[33] M. Yannakakis, Node- and edge-deletion NP-complete problems, in: STOC 1978, ACM, 1978, pp. 253–264.

http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4C65776973593830s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4C6F506C3836s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4D6174686965736F6Es1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4D6174686965736F6E533132s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4D6F736572543039s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4E6174616E7A6F6E53533031s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4E69656465726D65696572626F6F6B3036s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib4E69656465726D65696572626F6F6B3036s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib537465776172743934s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib54753534s1
http://refhub.elsevier.com/S0022-0000(16)30121-0/bib59616E6E616B616B69733738s1

	Editing to a planar graph of given degrees
	1 Introduction
	1.1 Our focus

	2 Preliminaries
	2.1 Basic terminology and notation
	2.2 Full problem description
	2.3 Protrusion decompositions
	2.4 Parameterized complexity

	3 The polynomial kernels
	4 Conclusions
	References

