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We consider the transport of conserved charges in spatially inhomogeneous quantum systems with a
discrete lattice symmetry. We analyze the retarded two-point functions involving the charges and the
associated currents at long wavelengths, compared to the scale of the lattice, and, when the dc
conductivities are finite, extract the hydrodynamic modes associated with diffusion of the charges. We
show that the dispersion relations of these modes are related to the eigenvalues of a specific matrix
constructed from the dc conductivities and certain thermodynamic susceptibilities, thus obtaining
generalized Einstein relations. We illustrate these general results in the specific context of relativistic
hydrodynamics where translation invariance is broken using spatially inhomogeneous and periodic
deformations of the stress tensor and the conserved U(1) currents. Equivalently, this corresponds to
considering hydrodynamics on a curved manifold, with a spatially periodic metric and chemical potential,
and we obtain the dispersion relations for the heat and charge diffusive modes.
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I. INTRODUCTION

Motivated by various strongly correlated states of matter
seen in nature, there has been a significant effort devoted to
obtaining a deeper theoretical understanding of thermo-
electric transport. It has long been appreciated that it is
necessary to work within a framework in which momentum
is not conserved. Indeed, for a translationally invariant
system in which momentum is exactly conserved, the ac
thermal response necessarily contains a delta function at
zero frequency leading to a nonphysical infinite dc thermal
conductivity. Thus, one is interested in setups in which
translation symmetry is explicitly broken.

In this paper we will present some general results for
thermoelectric transport in inhomogeneous systems. More
precisely, we will consider general quantum systems, with
one or more conserved currents, with a discrete, spatial
lattice symmetry. This could describe, for example, a
quantum field theory in which translation invariance has
been explicitly broken by deforming the theory with
operators which have a periodic dependence on the spatial
coordinates.

Of central interest are the retarded Green’s functions for
the current-current correlators G ;(t, x; 'x’). At the level of
linear response these determine how the currents respond
after perturbing the system by a current source. Time
translation invariance implies that these Green’s functions
only depend on 7 — ¢ which allows us to Fourier transform
and obtain G,;(w,x,x’). In a translationally invariant
setting the Green’s functions would also only depend on
x' —x and a Fourier transform leads to a correlator
depending on @ and a single wave vector k. When
translations are broken, this is no longer possible but a
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discrete lattice symmetry allows us to define an infinite

discrete set of correlators GE{J"'D (w, k), where {n;} are a set

of integers. We will be particularly interested in studying

the correlator G,;(w, k) = G(J{Jo})(a), k). Indeed this corre-
lator, which satisfies a simple positivity condition, captures
the transport properties of the system at late times and for
wavelengths much longer than the scale of the lattice, and
thus we might call G;;(w,k) a “hydrodynamic-mode
correlator.”

By generalizing similar computations presented in [1] in
the translationally invariant setting, we will show that when
the thermoelectric dc conductivity is finite, subject to some
analyticity assumptions, there is necessarily a diffusion
pole in the hydrodynamic-mode correlator for w, ek — 0. If
the system has just a single conserved current then we
explain precisely when we get a dispersion relation for the
diffusion pole of the form
w=-ieD(k)+..., D(k)= [0 kik;]x (0)~", (1.1)
where afjjc is the dc conductivity and y(k) is the charge
susceptibility. This is our first Einstein relation for inho-
mogeneous media.

When there are additional conserved currents, there will
be additional diffusion modes when the associated dc
conductivities are finite. We analyze the dispersion rela-
tions for the diffusion modes and show how they can be
obtained from the eigenvalues of a specific “generalized
diffusion matrix” that is constructed from the dc conduc-
tivities and various thermodynamic susceptibilities. We
emphasize that, generically, the dispersion relations for
the diffusion modes are not of the form (1.1) and hence we
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refer to our result concerning the dispersion relation as a
“generalized Einstein relation.” This feature of diffusion
modes was also emphasized in [2] within a specific
hydrodynamic setting, which we will return to later.

These results concerning hydrodynamic modes of the
Green’s functions are very general. However, motivated by
recent experimental progress [3-5], there has been con-
siderable theoretical work using hydrodynamics to study
thermoelectric transport [2,6—18] and it is therefore of
interest to see how our general results on diffusion manifest
themselves in this particular context. More specifically, we
will study this within the context of relativistic hydro-
dynamics, describing the hydrodynamic limit of a relativ-
istic quantum field theory.

Within this hydrodynamic framework, we first need to
consider how momentum dissipation is to be incorporated.
A standard approach is to modify, by hand, the hydro-
dynamic equations of motion, i.e. the Ward identities of the
underlying field theory, by a phenomenological term that
incorporates momentum dissipation (e.g. [19,20]). An
alternative and more controlled approach is to maintain
the Ward identities, which are fundamental properties of the
field theory, but to consider the field theory to be deformed
by spatially dependent sources. In this spirit, the hydro-
dynamic limit of a class of field theories which have been
deformed by certain scalar operators was analyzed in [7].
Subsequently, the universal class of deformations which
involve adding spatially dependent sources for the stress
tensor were studied in [14]. Since the stress tensor of the
field theory couples to the spacetime metric, the deforma-
tions studied in [14] are equivalent to studying the hydro-
dynamic limit of the quantum field theory on a curved
spacetime manifold. The spacetime metric is taken to have
a timelike Killing vector in order to discuss thermal
equilibrium. Then, while spatial momentum will, generi-
cally, no longer be conserved, energy still will be. It may be
possible to experimentally realize the deformations studied
in [14] in real materials, such as strained graphene [21-23].

In this paper we extend the analysis of [14] to cover
relativistic quantum field theories which have a conserved
U(1) symmetry. Asin [14] we can consider the field theory to
live on a static, curved manifold. Although not necessary, it
will be convenient to take the manifold to have planar
topology and with a metric that is periodic in the spatial
directions. Within the hydrodynamic framework we will also
consider deformations that are associated with spatially
dependent sources for the U(1) symmetry. This is particu-
larly interesting since it corresponds to allowing for spatially
dependent chemical potential or, equivalently, spatially
dependent charge density. One can anticipate that our results
will be useful for understanding thermoelectric transport in
real systems, such as charged puddles, with or without strain,
in graphene [24-27] as also discussed in [18].

As an application of our formalism, we show how to
construct long-wavelength, late-time hydrodynamic modes
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that are associated with diffusion of both energy and
electric charge. We derive the dispersion relation for these
modes and explicitly obtain the generalized FEinstein
relations. It is worth noting that this result is independent
of the precise transport coefficients that enter the con-
stitutive relations in the conserved currents. We also note
that a derivation of an Einstein relation for the diffusion of
electric charge in the context of hydrodynamics with
vanishing local charge density in one spatial direction
was carried out in Appendix A of [13] and this is consistent
with our more general analysis here.

II. GREEN’S FUNCTION PERSPECTIVE

We begin our discussion with a general quantum system
with a time-independent Hamiltonian H. We assume that
there is a lattice symmetry group which acts on the d spatial
coordinates via x — x+L; and Ui}A(t,x)ULj =
A(t,x 4 L;), where A(,x) is an arbitrary local operator.
We assume that the Hamiltonian is invariant under this
symmetry and hence U E; HUy,, =H. We will also consider
the system to be at finite temperature 7.

As usual, for two local operators A(t,x), B(t,x), the
retarded two-point functions are defined through
Gup(t,x; 1, x") = —if0(t — 1) {([A(1,x), B(Y,x")]),  (2.1)
with (A(t,x)) = Tr(pA(t,x)), where p = ePH /Tr(e ")
and p=1/T. Using the fact that A(t,x)=
e"™A(0,x)e™" and the lattice symmetry of H, we see
that the two-point functions will satisfy

GAB(Z,X;ZI,X/) = GAB(I—[/,X;O,X/), (22)

Gap(t,x + L1, x" +L;) = Gap(t, x; 7, X). (2.3)
The symmetry (2.2) allows us to define a function with
three arguments through G,z(r—7,x,x") =G,p(1,x;7,X').

We next recall that if we introduce a perturbative source
term in the Hamiltonian via

SH(1) = / dxShy(t. x)B(t. X), (2.4)

then at the level of linear response, the change in the
expectation values of an arbitrary operator A is given by

5(A)(1.x) = / AP dX'G gt — ¢, %, X)0hg(¢.X').  (2.5)

We note that the source, and hence the response, need not
be a periodic function of the spatial coordinates and indeed
this will be case of most interest in the following.

To proceed we Fourier transform the Green’s function on
all arguments and define
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Gup(w,k,K') = / dtdxdx' e’ x+KX' G (1 x, x).
(2.6)

The discrete symmetry (2.3) implies that we can perform a
crystallographic type of decomposition to obtain

= > 6

{n;}

Gap(w, k, k) o, k')5(k — k' —nkj}),

(2.7)

where kjL' are the reciprocal lattice vectors satisfying K/ -
L/ = 276" and {n;} are sets of integers. To see this, we
simply notice that if we define the function

GAB (C(), X, k/) = / dtdxleia)IJrik/leAB(t, X, X/), (28)

then the real space lattice symmetry (2.3) implies the
periodicity condition

Gap(@.x +L; k') = e®LiGp(w, x. k'), (2.9)
and hence we can deduce that e"'k/"GBB/(a),x,k’) is

periodic as a function of x. This lets us write it as a
discrete Fourier series, expressing

1 ix U
GAB(w x. k'’ ) _ (Zﬂ) oK' xzemjk G{ h ( ,k/),
{n;}

(2.10)

and (2.7) follows.

In the sequel, we will be B)artlcularly interested in the
zero modes, G p(w, k) = GAB (a) k). These can easily be
obtained by taking average spatial 1ntegrals over a period of

periodic functions. If we define § =([]L;)™" |, {{OI;‘} dx then

we have
0
= GEjB}>(w, k)

= ?{ dx / dx'Gap(w, x, x')e®* =) (2.11)

Gap(o, k)

From (2.6) we can also write
NHL

where N is the total number of spatial periods in the system.

We next examine the positivity of the spectral weight of
our operators. Working in the interaction picture, the
system absorbs energy at rate

%W(t): / dx5<B)(t,x)%5hB(t,x), (2.13)

GAB w, k GAB , k k) (212)
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where a summation over B is understood. Introducing the
notation

1 —iot+ikx
(1) = / dwodkshy(o, K)e-o+kx (2.14)
we can show that the total energy absorbed by the system is

1
AW = _(27T)2d+1/ dwdkdk'5hy (0, k)o[InG] gy

x (0, Kk, K")6hg (0, k'), (2.15)
where [ImG] 5 (. k. k') =3-[G 1 3(0.k k') -G, (0. K k).
To get to the last line we used Gyp(w, k,K')=
Gyp(—w,—k,—Kk’)* (for real frequencies and wave
vectors), which follows from the reality of G,z(z, x, x').
Since Shz(w,k) are arbitrary we deduce that
—o[ImG|,z(w. k,K’) is a positive semidefinite matrix,
with matrix indices including both the operator labels as
well as the wave vectors. Since the block diagonal elements
of a positive semidefinite matrix are positive semidefinite,
using (2.12) we can conclude that the zero modes
—wImG,p(w,Kk) are positive semidefinite. In particular
we have

—wImGyy(w,k) >0, (2.16)
with no sum on A. The positive semidefinite aspect of
—o[ImG] 5 (w. k, k') also gives rise to additional condi-

tions for the G({n’}>(a),k), with {n;} # {0}.

To conclude this subsection we examine how the Green’s
functions behave under time reversal invariance. For
simplicity we will assume that the periodic system is
invariant under time reversal. Recall that this acts on local
operators according to TA(t,x)T~! = e A(~t,x), where
€4 = *1. Since T is an antiunitary operator we can deduce
that Gup(f,x,X') = €4€5Gpa(t, X', x). Thus, we have
Gap(o, K, K') = e465Gps (@, —k’, —K) and hence

G (w.k) = exesGir (. —k —njk}).  (2.17)

Returning to the linear response given in (2.5), after
taking suitable Fourier transforms we can write

5(A)(w, x)

1 ik K {n;})
:W/dkze (ktnk)x G (0, K)Shg (0, K).
{"j}

(2.18)

If we consider a source which contains a single spatial
Fourier mode 8hg(t, x) = e’**5hy(t), then we have
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i 1 in.k’ x n;
A X) = D g G (0o,
{n;}

= eikSXZei"/kiX5<A>({”f}) (w’ ks)-
{n;}

(2.19)

Notice, in particular, that the zero mode in the summation
is fixed by the zero mode of the Green’s function:
S(A) N (0. k) = (27)Gap(@, k,)Shp(w).

In the next subsections we will take A and B to be
components of conserved currents. In this context the
zero-mode correlator G,p(w, K) captures transport of the
associated hydrodynamic modes and hence one can call it a
hydrodynamic-mode correlator.

A. Einstein relation for a single current

We now consider the operator A to be a current density1
operator J¥, which satisfies a continuity equation of the
form 8,,]" = 0. From the definition (2.6) we have

—iwGyg(w, Kk, K') + ik;Gig(0,k, k') =0, (2.20)
for any operator B, whose equal time commutator with J’

vanishes. Using the crystallographic decomposition (2.7) in
(2.20) we then have

—ioG\ ) (0,1) + i(k + nk]),G Y (w0, k) = 0.
(2.21)

We now” focus on the hydrodynamic-mode correlators
with {n;} = 0, which satisfy a positivity property dis-
cussed just above (2.16). Using (2.21) twice, we have

—ia)GJxe (CU, k) + ikiGJiJI(a), k)

07
0. (2.22)
We next consider the time reversal invariance conditions
(2.17) with {n;} = 0. Since €, = +1 and €;; = —1, we
obtain

GJiJr (a), k) — —GJIJi(Cl), —k),

GJiJj (a), k) = GJjJi (a), —k). (2.23)

Combing (A3) with (2.22) we therefore have the key
result

'In this section we find it convenient to work with current
vector densities. In Sec. IIT we will work with current vectors. We
also note that as our analysis will focus on two-point functions of
the current, we only require that the current to be conserved at the
linearized level.

*We have also presented some more general results in
Appendix A.
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1

_—kl‘kiGJiJj(Cl),k) = —ia)GJer(a),k). (224)

io
In general, taking the @ — 0 limit of the correlator

Gyp(w,K) gives rise to a static, thermodynamic suscep-

tibility. It will be useful to write

_wll(gllioGj'J' (0,k) = y(k),

(2.25)
where y (k) is a charge-charge susceptibility (the sign here
is explained in Appendix A). Note that (2.24) implies

. 1
wll(l;?_jogkiijjiﬂ(a)’ k) = _)((k>’

(2.26)
and in particular, the longitudinal part of the current-current
susceptibility  vanishes, lim,,_ o k;k;G;i;i(w, k) =0,
provided that y(k) is finite,’which we will assume.

In order to focus on studying the response to long-
wavelength sources, it will be convenient to now rescale the
wave-number k by ¢ and write (2.24) in the form

1

iw
Ekik,fGJiJj (a), €k) = —?Gjtjt(a),ek). (227)

We next note that the ac conductivity matrix is defined by
taking the following limit of the transport correlators:

. 1
o’ (w) = _11—1}(}% Giji(w, ek).

(2.28)
Notice from the discussion above (2.16) that the real part of
6'/(w) is a positive semidefinite matrix. In general, the ac
conductivity is a finite quantity for w # 0. On the other
hand, the dc conductivity, defined by ¢/;. = lim,,_yo(®), is
not necessarily finite. For example, if the system is trans-
lationally invariant or if the breaking of translation invari-
ance has arisen spontaneously, or more generally if there
are Goldstone modes present, generically the dc conduc-
tivity will be infinite, or more precisely there will be a delta
function on the ac conductivity at @ = 0. By taking the
limit € — 0 in (2.27) we have

. !
kk;c'(w) = lwlgrol?GJ,J,(w,ek). (2.29)

Thus when the dc conductivity is finite, the function
Giyi(w,ek)/e? must have a pole at @ = 0 after taking
the ¢ — 0 limit. Note that (2.25) shows that before the limit
is taken this pole is absent (provided that y(k) is finite).

*Note that for a superfluid one can have y(k) diverging at
k - 0.
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To make further progress, it is helpful to write

—N(w, €k)
Gyy(w, ek)y(ek) = ——n 72—, 2.30
J'J ((0 € ))((8 ) —iw—i—N(w, é‘k) ( )
where we have defined the quantity
GJtJr(CU, gk)
N(w, ek) = (2.31)

(G, ek) + y(ek))

We can now prove that N(w, €k) is an analytic function of
o provided that Im(w) # 0. First, any poles in the numer-
ator G (w, €k), which can only occur in the lower half
plane, will cancel out with those in the denominator. We
thus need to check whether or not the denominator in (2.31)
can vanish for Im(w) # 0. That this cannot occur can be
seen by writing

dw' ImG (@', €k)
o (0 — w)

s

1 Grlarek) ek = [ 2

(2.32)

where C; is a contour that skirts just under the real axis.
Then writing @ = x + iy, with y # 0, we can show that the
real part of the integral is nonvanishing after using the fact
that ImG (@', ek) /@’ < 0, which we showed in (2.16).
We now return to (2.29), from which we deduce that, for
fixed w, as € — 0, we can expand
N = &2 M + ..

x(0) ’
with the neglected terms going to zero with a higher power
of e.

We are now in a position to discuss the poles of
G (w, ek) that appear at the “origin,” by which we mean
when both @ — 0 and € — 0. The simplest possibility is if
N(w, k) does not have any poles (or branch cuts) at
@ = 0. In this case, we see that when the dc conductivity
matrix is finite, G will have a single diffusion pole with
dispersion relation

(2.33)

w=—ie?D(k) +---,  D(k) = [0 kik;]y(0)7",

(2.34)

and the neglected terms are higher order in e. This is our
first result on Finstein relations for inhomogeneous media.

It is important to emphasize that is not the only
possibility. Indeed, as we discuss in the next subsection,
there are additional poles when there are additional con-
served currents. If, for example, we suppose that there are
two conserved currents in total then a second diffusion pole
can appear in Gy(w,ek). To illustrate this situation
schematically, consider the behavior of the following
function for w, ek — 0:
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o A B
—iw+e*a  —iw+ *b

2(A+ B
~ e a (azh)z . (235)
—iw + 82(aA+bB 3 e 4 O(i_))Z)

A+B ~ LA+ o

corresponding to the function N(w, ¢k) having additional
singularities at @ — 0. Another interesting situation in
which additional poles will appear is in the presence of
Goldstone modes arising from broken symmetries.
Additional general statements can be made using the
memory matrix formalism, generalizing the discussionin [1].

Returning now to the case in which there is just a single
conserved current with a single diffusion pole then a natural
phenomenological expression for the Green’s function is
given near the origin, (w,ek) — 0, by

—D(w, €K)

G// s k ~N————
(@, k) —iw + D(w, k)

x(ek), (2.36)

with D(w, ek) ~ & %Sw) It is interesting to note that if,
by contrast, we are in the context of infinite dc conductivity
with 6" (w) ~ K (L 4 78(w)) for small w, where K" is

constant, then (2.36) is gives rise to sound modes for
the current density J’, with dispersion relation w, =

+e,/Kk;K;/y(ek). The transition between diffusion

modes and sound modes was also discussed in a homo-
geneous hydrodynamic setting, with a phenomenological
term to relax momentum, in [6].

To conclude this subsection, we briefly note that we can
carry out a similar analysis for the higher Fourier modes of
the current-current correlators. Starting with (2.21), the
analogue of (2.27) is

1

r ({m}) — i)
la)(k—i_n’kL)ik/GJngg (0,k) = —iwG " (w0, k),

A
(2.37)

and this leads, mutatis-mutandis, to additional relations

concerning the poles of G%r}ﬂ})(a),k), which would be
A B
interesting to explore in more detail. We note however, that

for {n;} # 0, there is no longer a simple statement con-

({m})
Juls

used in the above. We also point out that within a holo-
graphic context and for a specific gravitational model, some

of the G(Jf’;j})(a), k) were calculated in [28].

cerning the positivity of ImG (w,k)/w, which was

B. Generalized Einstein relations for
multiple currents

We now assume that we have multiple conserved
currents J’g. For example, one could have both a conserved
heat current and a conserved U(1) current. Much of the
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analysis that we carried out for the case of a single current
goes through straightforwardly and we obtain

1

i®
%kikjcji\]é(w, £k) = —?G‘]ﬁ\]g(w, €k) (238)

We write the charge susceptibilities and the ac conductivity
via

Xap(ek) = —wligﬂioGJ;J; (0, k),
y 1
ij i o
oiz(@) = ll—{% . Gy (w, €k), (2.39)
respectively, and we now have
Kk o'l (@) = iolim— G k 2.40
iKjop(0) = M 3G, (w.ek).  (2.40)

Generically this shows that for finite dc conductivities there
will be at least as many poles in the transport current
correlators as there are currents.

Proceeding much as before we write

G(w,ek)y(ek)™! = —[~iw + N(w, ek)]"'N(w, ek),
(2.41)

where G (@, ek), 5 = Gy (0, k) and

-1

N(w, k) = G(w, k) % (G(w, k) + %(¢k))
(2.42)

We can again argue that N(w, €k) can only have poles on
the real w axis. From (2.40) we deduce that for fixed w, as
e — 0, we can expand

N(w,ek) = e*Z(w, k) (ek)™!, (2.43)
where Z(w, k), = k,»kjoi{B(a)) and the neglected terms
go to zero with a higher power of e.

If we now assume that N(w, ek) doesn’t have any poles
at w = 0, then we can conclude that at the origin, i.e. when
both w — 0 and ¢ — 0, if the dc conductivities are finite
then the diffusion poles of the system are located at

wy (k) = —iDy(K)e? + - - -, (2.44)
where D4 (k) are the eigenvalues of what can be called the
“generalized diffusion matrix” D(k) defined by

D(k) = Z(0,k)x(0)7!, (2.45)

and the dots involve higher order corrections in &. In
particular when the dc conductivities are finite, the number
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of diffusion poles is the same as the number of conserved
currents.

Furthermore, we emphasize that when there is more
than one conserved current, generically, these diffusion
modes do not satisfy a dispersion relation of the form
w ~ —ig?%;;k'k’, with the matrix ¥;; a component of the dc
conductivities. As a consequence we refer to our result
(2.44), (2.45) as a “generalized Einstein relation.”

We conclude this section by noting that the general result
(2.44), (2.45) relates thermodynamic instabilities to
dynamic instabilities. Suppose that the system has a static
susceptibility matrix y%(0) with a negative eigenvalue and
hence is thermodynamically unstable. Then (2.45) implies
that D(k) will have a negative eigenvalue, for small k, and
hence, from (2.44) we deduce that there will be a diffusion
pole in the upper half plane leading to a dynamical
instability.*

III. DIFFUSION IN RELATIVISTIC
HYDRODYNAMICS

We now discuss thermoelectric transport within the
context of relativistic hydrodynamics. As well as general-
izing the work of [14] to include a conserved U(1) charge
(as also studied in [18]), we will also be able to use the
formalism to illustrate the results of the previous section.
In particular, associated with the heat current and the U(1)
current we construct two diffusion modes with dispersion
relations satisfying the generalized Einstein relation (2.44).
We note that it will be convenient to use a slightly different
notation in this section, which implies that a little care is
required in directly comparing with the last section.

A. General setup

We will consider an arbitrary relativistic quantum field
theory with a global U(1) symmetry in d > 2 spacetime
dimensions. The field theory is defined on a static, curved
manifold, with metric g,,, and a nonzero background gauge
field, A,, of the form:

ds® = —f2(x)dr® + hyj(x)dx'dx/,

A, = a,(x). (3.1)
This corresponds to studying the field theory with f? and
h;; parametrizing sources for the stress tensor components
T and T, respectively, and a, parametrizing a source for
the J' component of the conserved U(1) current. We focus
on cases in which the manifold has planar topology, with
the globally defined spatial coordinates x’ parametrizing
R, and f, h;;,a, all depending periodically on x!, with
period L;.

j°

‘An explicit example of such a dynamic instability can be seen
using the results of Appendix B.
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We will study the field theory at finite temperature in the
hydrodynamic limit keeping the leading order viscous
terms. In particular, we will consider temperatures’ that
are much greater than the largest wave number that appears
in the background fields in (3.1). The Ward identities are
given by

D, T = F“J,, D,J" =0, (3.2)
where D, is the covariant derivative with respect to g, and
F,= 28[MA,,]. For the special case of conformal field theory,
we should also impose T#, = 0 and this implies, amongst
other things, that in (3.3) {, =0 and e = (d — 1)P.

The hydrodynamic variables are the local temperature,
T(x), the local chemical potential, y(x), and the fluid
velocity, u¥, with w*u”g,, = —1. As in [29], the constitutive
relations are given, in the Landau frame, by

Ty = Pgu, + (P +e)u,u,

, D,w’
= 2n( Dyuy) + uyu,DPuyy — (g, + u,u,) 1

- z:b(gyv + ”M”u)Dpupv
JH = put 4o (F’“’uv - T(¢" + uw'u”)D, <%))
(3.3)

where P is the pressure density, € is the energy density and
p is the U(1) charge density. The dissipative terms in (3.3)
are the shear viscosity, #, the bulk viscosity, {;, and the
conductivity, 6, which should not be confused with the
electrical dc conductivity, o,., which we discuss later.
We also have the local thermodynamic relation and first law
which take the form

P+ e =sT + up, dP = sdT + pdu, (3.4)

where s is the entropy density. It will also be helpful to

introduce the susceptibilities ¢, £ and y via
ds =T 'c,dT + &dy, dp = &AT + ydu.  (3.5)
For any vector k, the Ward identities imply
D,[(T", + JFA,)K"] :—LikgWT + L AT, (3.6)

where L}, is the Lie derivative. Taking k = 0, we define the
heat current as

>This temperature is the same as what is denoted as T
below.

6Following [29], we have set to zero two other terms in J#
that are allowed by Lorentz invariance but are not consistent
with positivity of entropy and thermodynamics with external
sources.
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oF = —(T", + AJ"), (3.7)
which is conserved for stationary metrics with £;A, = 0.

Thus, given such background metrics and gauge fields,
for time-independent configurations we therefore have

9i(v/=90Q") = 0i(y/=gJ') = 0.
In thermal equilibrium the fluid configuration is given by
u, = —f(x), u; =0, T=To(x).,  p=po(x),
(3.8)

where Ty(x) and po(x) are periodic functions, and from
(3.4) we have the equilibrium relations

Py + €9 = 50T + popo, 0Py = 500;T + poOiy.

(3.9)
For later use, we note that we also have
Viso = Ty' e, ViTo + & Viko,

Vipy = &ViTo + xoViko. (3.10)

By calculating 7#¥, J# one can show that the Ward
identities are satisfied provided that

= Ty, po = f"ay, (3.11)
where T, is constant. Note, in particular, that in thermal
equilibrium the local hydrodynamic variable T, is not
constant when f is not constant and, furthermore, there is a
factor of f that appears in the relationship between y and
the background gauge field. We also note that we have set a
possible integration constant to zero in the second expres-
sion as we want y to vanish when a, does. Finally it will
be helpful to define the zero mode of a, via jiy = f a,
where we are again using the notation § =(L - < Lg)™!

f {{OI;‘} dx! - dx?.

(Ho + a,(x) ), with ¢$a, = 0.
The nonvanishing components of the stress tensor and
current for this equilibrium configuration are then given by

This allows us to write uy= f""

T, = €of?, T;; = Poh,j, J'=poft. (3.12)
In particular for the backgrounds we are considering, in
thermal equilibrium both the electric and the heat currents
vanish: J' = Q' = 0. Note, since (3.1) provides a source for
the energy and the charge, we can immediately deduce that
the charge-current susceptibilities must vanish. The total

energy and charge of the equilibrium configuration are
defined by
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o == f VI, = § Viseo

Prot = f\/—_gJ’ —j{\/ﬁpo- (3.13)

We can also define the total equilibrium entropy as

Stor = ]{ Vhsy. (3.14)

For later use, using the fact that s, is a function of T, and
1o, we observe that for suitable zero modes of the charge
susceptibilities we have

8St0t _ %\/Ef_lTalcﬂo’

o7y
aStot o —1
- ]{ Vif g, (3.15)

Similarly, we also have

Oprot _
O

T § Viria,

0T,

ja{\/ﬁf—l;(o. (3.16)

T, = €0f2(1 - 2¢T) + 5€f2,
T = —f(Po+ €y)ou;,

~
|

J'=pof T (1 + ) + £ p,

J' = podu’ + ogof TME = VI (fop) — fuel’ + uoTy' Vi (f8T)),

where V; is the covariant derivative with respect to the metric 4;

identities (3.2) give

0i6p + Vi(fJ7) =0,

;= (Po+ 8P)hy; — 2o f ™! (V(i(féun) -
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B. Generalized Navier-Stokes equations

In the following we want to study the behavior of small
perturbations about the equilibrium configuration, includ-
ing the possibility of adding external, perturbative thermal
gradient and electric field sources. Following [14] we will
do this by considering

ds2 = —f2(1 - 2¢T)dt2 + h,-jdxidxj,

Ay =a;— fuodr + ¢k, (3.17)
along with
uy = —f(1-or), u; = du;,
T =T,+ 6T, 1= o + Op. (3.18)

Here ¢, ¢, Su;, 5T and Sy are all functions of (z, x'). Note
that these need not be periodic functions of the spatial
coordinates. For later use, we also define the spatial
components of the external sources {;, E; via
§i = 0igr, E; = 0,¢p. (3.19)
At linearized order, the perturbed stress tensor and U(1)
current can then be written as

h..
i vk<f6uk>) — Cyohi 1V Fou)

(d-1)

(3.20)

j» which is also used to raise and lower indices. The Ward

f0ide + Vi(f(Py + €o)u’) = fI'Via, = 0,

SN Py +€0)0,8u; — 2f~'Vi(noV i (fouy)) + 'V, < (Lo) - Cbo) Vk(f5uk))

= =V;6P — (8¢ + 6P)f 'V, f + (Po + €0)C; + po(fT'Ej = mol;) + f7'6pVa;.

(d—1
(3.21)

In the case when there is no U(1) charge this agrees with the expression derived in Eqgs. (A.10) of [14]. These expressions

can be further simplified. We use (3.11) as well as

6P = S05T + poé[l,

5S = Talcﬂ()éT + 505//!,

o€ = Ty0s + pyop,

which we obtain from (3.4), (3.5). After also using (3.10) we eventually find that we can rewrite the system (3.21) in the

following form, which is the key result of this section,
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800:6T + 00,01 + V,(fJ') =0,
fcu00,8T + fToEgd,0u + V;(fQ') =0,
(Po +€9)0,0u; — 2vi('lov(i(f5”j)))

+V; ( (% - Ch0> Vk(f5”k))
= polE; =V (fou)] + fTosol; — (fTo)~'V,(f8T)].

(3.23)
with
' = podu' + og0f M E' = V' (fou)]
= ogomolS’ = (fTo)™'VI(f8T)),
Q" = f(Py + eg)5u’ = fuol". (3.24)

Notice that the first two lines in (3.23) are just current
conservation equations for the linearized perturbation. We
emphasize that all background equilibrium quantities,
marked with a O subscript, are all periodic functions of
the spatial coordinates. It is interesting to note that the
system of Egs. (3.23) is invariant under the interchange

Finally, for later use, we note that when the sources are

set to zero, ¢pr = ¢ = 0, we have for the total charges

f\/—_gf’z ]{\/ﬁpwjg\/ﬁép,
f\/—_th = fﬁf(eo = Hopo) + To]{\/ﬁés. (3.26)

C. Thermoelectric dc conductivity

We now explain how we can obtain the thermoelectric dc
conductivity, generalizing [14]. We begin by considering
the sources ¢p7 and ¢ to have space and time dependence
of the form e ¢!~ where k; is an arbitrary wave
number. After solving (3.23) for du s o, 0T one obtains

the local currents J' Q, and hence the current fluxes J/ Q',
as functions of E; and {;. To obtain the thermoelectric dc
conductivity we should then take the limit k; — 0, followed
by w — 0. _

By considering approximating e’ ~ 1 4 ik;x' we are
prompted’ to consider a time-independent source of the
form
¢ = x'E;, (3.27)

T = X’Zi’

’An alternative procedure is to consider sources that are linear
in time, as explained in a holographic context in [30,31].
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where ;, E; are constants and hence E; = E;, {; = {;. After
substituting into (3.32) we obtain the system

Vi(fJ') =0, V,(fo') =0,
= 2Vi(noVi(fou;)) +V; < <(d2% - Cbo) Vk(f5”k))

= poE; = poV,(fou) + fsoTol; — soV,;(f8T).
(3.28)

After solving these equations we obtain the local time-
independent, steady state currents J'(x)Q'(x), periodic in

the spatial coordinate, as functions of {;, E;. We can now
define the heat and charge current fluxes via

0'= ]f V=90’ = ]f Vo',
J’:]{\/——gﬁ = ]fx/ﬁfﬁ,

and the dc conductivities are obtained from

J 6l Tea? \ [E;
(-0 TE) o

0 TOadc TOch Z:j
Since we are considering backgrounds which preserve time

reversal invariance the Onsager relations imply that ¢, and
K, are symmetric matrices and a, = @ ..

(3.29)

D. Diffusive modes

We now discuss how we can construct a perturbative
diffusive solution of the system of Egs. (3.23) that is
associated with diffusion modes. Our objective will be to
extract the associated dispersion relations for these modes.

We first set the source terms in (3.23) to zero:
E; =¢; = 0. We will allow for a time dependence of the
form =" and consider the expansion

o0
w = E 0,
a=1

with e < 1. Since we are interested in wavelengths that are
much larger than the periods, L;, of the background fields
in (3.1), we introduce arbitrary wave numbers k' and
consider

(3.31)

In the special case of conformal field theories, similar
equations were obtained in a holographic context in [32]. The
equations differ when there is a U(1) symmetry due to a
difference in the expression for Q' in (3.24). The equations
should agree in the hydrodynamic limit, after a possible change of
frame and/or incorporating higher order terms in the hydro-
dynamic expansion, and it would be interesting to investigate this
in more detail.
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ST = e—iwteisk,xi Z 25T @) (x)’

S = et pigkix! Z €a5'u(a) (X),
a=0

o0

Su; = e~iol gickix' Z 8“5ul(-a) (x),

a=0

(3.32)

with the functions inside the summations taken to be
periodic in the x/, with period L'.

We next note that the system of Eqgs. (3.23) (with
E' = ¢ = 0) admit the simple time-independent solution
with foT, fou both constant and éu; = 0. Indeed, from
(3.11) this corresponds to simply perturbing the parameters
of the thermal equilibrium configuration. The diffusive
modes are constructed as a perturbation of this time-
independent solution by using the expansions (3.31),
(3.32) and taking

6T = constant, féu'® = constant, sul” =0,

(3.33)

as the zeroth order solution. We immediately see that the
associated expansion for J' and Q' can be written as

o
Ji = e—ia)tei&‘k,-xi E 8(1Ji((1) (.X')
a=1

Qi _ e—iwteisk,-xi Z €aQi(a) (X) (334)
a=1

At leading order in &, the first two equations of (3.23)
then read

—iwNE,6TO)
_iw(l)cﬂong(O) -

— i you® 4+ V;(f71V) = 0,
W To&fou® + Vi (fo'V) = 0.
(

3.35)

Integrating Eq. (3.35) over a period we obtain

b 7{ Vh(ETO + y5u ) =0,

) § VifendT® + Togou®) =0. (330

Assuming thermodynamically stable matter, the matrix of
static susceptibilities, whose components appear in (3.36),
is positive deﬁnite and these equations can only be satisfied
by setting ") = 0. The leading order system (3.23) then
becomes

PHYSICAL REVIEW D 96, 125003 (2017)
Vi(fI') = Vi(fo') =0,
—2Vi(noVy (f5u )

= —~ipok; fou'”) — poV ;(fou'V) — isok; fST)
— 5oV, (f8TM), (3.37)
with
JW = posu'™ + o0 fH=Vi(fou)]
— o goto[—(fTo)~'VI(f6TW)],
Q'Y = f(Py + €)du'™ — fuoiV) (3.38)

Notice that this system is equivalent to the system of

gs. (3.28) that appeared for the calculation of the
thermoelectric dc conductivity if we identify E; <>
—ik;ifou'), £; <> —ik;T5'8T® and note that the quantities
on the right-hand 31des of these expressions are indeed
constant. Thus, we can express the heat current fluxes Ji(!)
and Q') in terms of —ik;fou'), —ik,T5'6T") using the
thermoelectric dc conductivity matrix given in (3.30)
to get

= f VAR = ity 3 = il by 57
= 7{ VhfQU) = ~iToa k;fou'® — ik k;f5TC).
(3.39)

Continuing the expansion, we next examine the first two
equations of (3.23) at second order in ¢ to find

6T — i %5# + ik fI +V(f7®) = 0,
— i0@ ¢, f6TO) — i@ To& fou®) + ik f Q'
+ Vi(fQi(z)) =0. (3.40)

Integrating these two equations over a period, substituting
the expression for the dc conductivity and using (3.15),
(3.16) we now deduce

Ip
i | 220t rs7(0)
io < 9T, f

— o kik; fSTO

aptotfa >
adck,kjfé,u =0,

aStot f5 >

Toadck k]féu = 0.

0T, <ast°‘ £6TO

— & ik, fSTO) (3.41)
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Writing this in matrix form as

() o
fou

we have det(M) = 0. This gives rises to a quadratic

(3.42)

equation for iw® which has two solutions, ia;f), which
give the leading order dispersion relations for the diffusion
modes that we are after.

To write i@ f in a compact way we first define the scalar
quantities depending on the dc conductivities that are
quadratic in the wave numbers k':

R(k) =R kik;,  a(k)=dlkk;,  o(k)=olkk;
(3.43)
as well as
s a(k)*T,
szmpg®9 (3.44)

Recall that ch = ch To(ay. - 03} - az)" is the dc ther-
mal conductivity for zero electric current and in general
(k) # k4.k'k/. We also define the following susceptibil-
ities:

X — Pt = D810 _ ap_tot
Oy’ Oy 9Ty’
7,52
C,= 7{ Vhe,o == (3.45)
Note that if we consider the susceptibility c, =

T(9s/0T), = ¢, —TTSZ, in general C,# §v/hc,. Using
these definitions, we then find that

T Cp X’
x(k To(Xa(k) — Zo(k))>
02 + i = é) ;)+T0(Xc(p)326(k)( )

(3.46)

This is the main result of this section and it should be
compared with the general result given in (2.44), (2.45) that
we obtained in the previous section.

A number of comments are in order. First, for relativistic
hydrodynamics without a U(1) current, there is just a single
energy diffusion mode. In this case, the leading order
dispersion relation is given by

chk K

T 0‘tm ’
T 8T0

in? = (3.47)

This result should be compared with (2.34). Similarly, we
can also consider charge neutral backgrounds which have

PHYSICAL REVIEW D 96, 125003 (2017)

B= adc =0 and then the two equations in Eq. (3.41)
decouple. In particular we find a charge diffusion mode
with leading order dispersion relation given by

adck k

ap tot
Ofg

io?® =

(3.48)

Our next comment concerns perturbative lattices. By
definition a perturbative lattice is one in which the metric
and gauge field deformations have a perturbatively small
amplitude. In this case the spatial momentum dissipation is
weak. Using the memory matrix formalism [33] or holog-
raphy [32] we have

47TSOTOL 47Tp0L

lj’ l]’

o'l = dznsg oL (3.49)
Here the matrix L;; incorporates the leading order dis-
sipation and L;; —» 0 when translation invariance is
retained While all of these dc conductivities are large,

ch and also x in (3.44) are parametrically smaller as
pointed out in [31,34]. Thus, from (3.46) we deduce that
one of the frequencies will be proportional to L~! while the
other will be parametrically smaller.

1. Reduced hydrodynamics

When translations are broken, it should also be possible
to construct a “reduced” hydrodynamical description that
just involves the conserved charges i.e. the heat and the

U(1) charge. At the level of linear response, this can be

done, in principle, by solving for 5ul(»") order by order in

Eq. (3.23), to, effectively, get a set of linear equations for
the variables 67 and du and highly nonlocal in terms of the
background metric and gauge field. We will not carry out
this in any detail here, but instead highlight some interest-
ing features of the leading order terms that would arise.
In particular, we will be able to derive a set of reduced
hydrodynamical equations, at the level of linear response,
that generalize those discussed in [2].

We begin with the on-shell expressions for the currents in
the ¢ expansion given in (3.34). Focusing on the U(1)
current for the moment, we recall that at each order
VhfJi™ are periodic functions of the x'. We have seen
that at leading order they are determined by the system of
linear equations given in (3.37), which is equivalent to the
system of Eqgs. (3.28) that appeared for the calculation of
the dc conductivity if we identify E; <> —ik,fou®
i < —ik;T;'6T®. We can therefore write +/AfJ/!)
linearly in terms of fou®), f6T® as a sum of a constant
flux, expressed in terms of the dc conductivity matrix, and a
term which is co-closed and has vanishing zero mode (a
periodic magnetisation current). Thus, we can write for the
full current
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\/}.lf‘]l — ity isk,-x'e[(ailjc + akSkij)(_l'kjf5'u(0))

+ (alf, + O AN) (=ik; f6TO) + O(e)],  (3.50)
where SK/ = —S*i Akj = —Aki and both are periodic
functions of the spatial coordinates. We can also obtain a
similar expression for the heat current and we can write
both of them in the following suggestive form:

Vhfli = (6", + O SV 60 — (alf. + 0, ANV ;8T
+ cee,

VhfQ' = ~To(dy. + AV 60 =(Ry, + 0KV 6T
+-, (3.51)

where 8 = e eikix' £5,0) 5T = =it pickix’ f5T(0) and
K*i = —KJ n these on-shell expressions w is fixed as an
expansion in ¢ in terms of k; and the background quantities
via the dispersion relations.

We next consider analogous expressions for the local
charge density and heat density. From (3.20) we obtain

VhfIt = Vhpo + e7 e V(g TO + 406 +-0(e)],
VhfQ' = Vhf(eo = popo) + e ek f

x [€,08T ) + To&oou® + O(e)], (3.52)

where v/hp, and \/hf(ey— popo) are the local charge
densities in equilibrium. Hence, for the perturbation we
can write

SIVAFI = VR8T + Vhf yodp+ -

At this stage, from these on-shell expressions, we now
can see the leading order structure of an off-shell reduced
hydrodynamics. Specifically, if we take (3.53) to be
expressions for the local charge densities and (3.51) to
be the associated constitutive relations for the currents the
continuity equations V,J* =V,0# =0 at order & will
lead to the same dlffuswe solutlons that we had above with
exactly the same dispersion relations for the diffusion
modes. In particular, the magnetization currents in (3.51)
do not play a role in this specific calculation. It is also worth
emphasizing that in this reduced hydrodynamics, the
variables 87, 8fi need not be periodic functions and indeed
they are not in the diffusive solutions.

We can now compare these results with the hydro-
dynamics described in the “Methods" section of [2],
highlighting several differences. First, the constitutive
relations for the local currents given in [2] were declared
to be given in terms of the dc conductivity, whereas here we
have derived them from the underlying relativistic hydro-
dynamics. Second, the possibility of the terms involving
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Skii, Akii - Kkii was not considered in [2]. Finally, the
expression for the local charge densities in [2] were not of
the form (3.53). To make a connection we note that using
(3.15), (3.16) we can rewrite (3.53) in the form

SVhfI) = (g’i;w )5T+ (%pt°‘+~-)5g+-.-,

0 Ho
8Smt 8tot A
VR = (Tugife oot + (T o
(3.54)

+...’

where in the bracketed terms we have just written the
constant zero mode part of the relevant term. The expres-
sions (3.54) are what were considered in [2]; while the
neglected higher Fourier modes will not affect the calcu-
lation of the dispersion relations for the diffusive modes,
they are the same order in the & expansion with the zero
modes and they should be included as they will affect other
calculations.

2. Green’s functions

Within the context of relativistic hydrodynamics, the
leading order solutions for the charge density and the
currents are given in the previous subsection. It is possible
to relate these expressions to the retarded Green’s func-
tions. At a first pass this seems problematic as the diffusive
solutions are source free solutions and yet to extract
Green’s functions we need to relate a response to a source.

This puzzle can be resolved by the following trick. We
view the solutions as having arisen after adiabatically
switching on sources for the charge density in the far past,
switching them off at time ¢ = 0 and then comparing the
solutions for # > 0O in the long-wavelength limit. As this is
somewhat technical we have explained how this can be
achieved, as well as presenting some results of general
validity, in Appendix B. For simplicity, we will carry out
the analysis just for the case when there is only a single
current present, which is the heat current. Hence, for
convenience we present the perturbed part of the diffusive
solution in this case here:

SIVhfQ'] = em e [Vhe,o fTO) + O(e)),
VhfQ' = e e e[(ky, + OKM) (~ik;) fOT
+O(e)], (3.55)

o I kik; .
with iow = % We also recall that 67 is constant and

087,

\/Ecﬂo is a local susceptibility whose constant zero mode

3 fo T 08
piece 1s T o
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IV. FINAL COMMENTS

In this paper we have made a general study of the
hydrodynamical diffusion modes associated with con-
served charges that arise in inhomogeneous media with
a lattice symmetry. When the dc conductivities are finite,
we showed that there are diffusive modes with dispersion
relations that are determined by the dc conductivities and
certain thermodynamical susceptibilities. This constitutes a
generalized Einstein relation for inhomogeneous media.
We also illustrated the general results, obtained by an
analysis of retarded Green’s functions, by considering the
specific context of relativistic hydrodynamics. For simplic-
ity, here we have focused on systems that are invariant
under time reversal. However, it should be straightforward
to generalize to the nonstatic case, after identifying suitably
defined transport currents as in [20,35-38].

In [14], for a general conformal field theory on a curved
manifold with a metric of the form (3.1) with f =1, h;; =
®6;; and @ a periodic function, the relativistic hydro-
dynamic equations [with vanishing U(1) fields] were
solved for the local temperature and heat current, at the
level of linear response, after applying a dc thermal gradient

. In particular, it was shown that thermal backflow can
occur whereby the heat current is locally flowing in the
opposite direction to the dc source. These results can be
recast in terms of the diffusion results of this paper. Let o(?)
be the leading order dispersion relation as in (3.47). Then,
focusing on real variables, we have leading order diffusing
solutions with 8T = e~ @1 cos(ek;x) (ST + 5T +
O(¢?)), and the local heat current given by 8Q' =
e~ sin(ek,xi)e(5Q1Y) + O(e)), where 5T and 5Q'()
are the local temperature and heat current obtained in [14]
for a dc thermal gradient given by Z . = k;6T©). We can
consider these solutions as having been adiabatically
prepared in an initial state at # = O (say) and then diffusing.
The solution shows that in each individual spatial period
there is an elaborate local structure, which includes thermal
backflow, with an overall damping of the current in time.
The existence of the same backflow current patterns that
emerge in the steady state setup provides a nontrivial test of
the validity of hydrodynamics for certain strongly corre-
lated systems of electrons for which backflows have been
observed. Finally, we note that the initial conditions at
t = 0 that we are considering, arising from the construction
of specific long-wavelength diffusion modes, might seem
fine tuned. However, as long as short wavelength modes die
out faster in time, the diffusive modes will capture the
universal late-time behavior for generic initial conditions.
For systems with light, spatially modulated modes, this will
be case provided we examine long enough wavelengths.
The general results of this paper should also manifest
themselves within the context of holography. In particular,
it should be possible to obtain the Einstein relations in
terms of the dc conductivities and the thermodynamic
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susceptibilities. It is now understood how, in general, the
thermoelectric dc conductivity of the boundary field theory,
when finite, can be obtained in terms of data on the black
hole horizon [32,34,37]. Thus, providing one can obtain the
susceptibilities in terms of horizon data, one should also be
able to extract the Einstein relations. This will be explored
in [39]. This line of investigation could also make contact
with the recent work on relating diffusion to a characteristic
velocity extracted from the black hole horizon, related to
out of time ordered correlators [40,41] and [13,42-50].
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Note added.—While writing up this work, Ref. [18]
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served U(1) charge and independently derived the hydro-
dynamic Egs. (3.23), for the special case of no time
dependence and for curved manifolds with a unit norm
timelike Killing vector (i.e. f = 1).

APPENDIX A: GENERAL RESULTS

Here we present some general results for Green’s
functions involving a single conserved current density
operator J# satisfying the continuity equation 9,J* = 0.
We will present results for Gjp(w,k,Kk’); using the
crystallographic decomposition (2.7) we can easily extract
analogous results for the G%’;} )(a), k).

From (2.6) the current conservation condition 8,,]” =0
implies

—iwGg(w, Kk, K') + ik;Gig(0,k, k') =0, (A1)
for any operator B, whose equal time commutator with J’
vanishes. From (A1) we have

_iQ)GJIJl(w, k, k/> —|— ikiGJiJ'(w, k’ k/) — O,
" =0.

—iCL)GJtJj(O),k,k/) + ikiGJiJj(a),k,k ) (A2)

We next consider the time reversal invariance conditions
(2.17). Since €; = +1 and €;; = —1, we obtain
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Gjijt<a), k, k/) = —ijji (CO, _k/a _k)v

Gy k. K') = Giji(w, -k, k). (A3)
Combing (A3) with (A2) we therefore have
kiKGiji(w. k. k') = ~(i0)*G ey (. k. k'),
K,Gy(0.k k) = (i0)Gyp(0. k. K).  (A4)
Define the static susceptibility
wE(I)EioG”t (0. k. K') ==y (k. K). (A5)
We see that (A2) and (A4) imply
Ky (k. k') =0,
kiK' (k, k') = 0. (A6)

Note that the sign in (A5) is fixed as follows. From (2.5),
for a time-independent source for the charge density
Shy(x), we have

S (1K) = / AK'G oy (0 =0,k K'\5h, (K'). (A7)

(27)

On the other hand from (2.4) 6H = (2x)™ [ dkéh,:
(=k)8J'(k) and so we identify the perturbed chemical
potential, du(k), as éu(k) = —6h; (k). Since the static
susceptibility y ;. is defined by varying the charge density
with respect to the chemical potential we get the sign as
in (A5).

APPENDIX B: LINEAR RESPONSE FROM
A PREPARED SOURCE

We consider a perturbative deformation of the
Hamiltonian as in (2.4), with a prepared source that is
switched off at r = 0, given by

ee,l+iksx5h37 t < 0

hp(1,x) = {o 0 (B1)

with &, > 0. This source contains a single spatial Fourier
mode and we will be interested in taking the adiabatic
limit ¢, — 0.

The time dependent expectation value of an operator A is
given by the retarded Green’s function as in (2.5). Thus, at
t = 0, when the sources are switched off, we have

5(AY(t = 0,x) = / AP dX' Gy (—1'. X, X')Shy(f . X'),

= / drdx'Gp(t, x, x")e s TRX 5p

= GAB(iEt’X’kS)(shB' (B2)
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In the £, - 0" limit, after a Fourier transform, we have

5<A>(t = 0’ k) = _)(AB(ka ks>5h37 (B3)
where y,3(k,K') = —lim,_,0Gaz(®w, k,K’). Also, after
a Fourier transform of the source (B1), for any # > 0 we
deduce that

S(A)(1,X) = %/“" dp—1

—iot G X, Kk, )ohg.
. e,+iwe ap(@. X, K)6hp

(B4)

Taking a Laplace transform in time we get

+oo ,
5(A) (2,x) = / d15(A) (1, x) e,
0
1 +oo 1 1
— -5 | T do——— Gyl x k),
7)o ®—ie,0—7

(BS)

with, necessarily, Imz > 0 in order for the integrals to
converge. Performing a contour integral on the above
expression by closing it in the upper half plane and
assuming that the Green’s function vanishes fast enough
for large w, we just pick up contributions from the poles at
w = ig, and w = 7z to obtain

i

5<A>(Z’ X) = = GAB(igl’ X, ky)éhB

i, —z2
i

7 — g,

Gap(z.%.K,)5hp. (B6)

Thus, in the ¢, - 01 limit we conclude that the spatial
Fourier transform is given by (B1):

1
5(A) (2. k) = — (Gap(z. k. ky) + yap(k. ky))Shg.  (BT)
Using (B3) we now obtain the following solution to the
initial value problem that is sourced by (B1) in the &, - 0
limit:

ANz K) = = (Gaple. . Kzt (k. K

+8,¢)5(C) (1 = 0.K). (BS)

1. Conserved current

Let us now apply some of these results to conserved
currents. For simplicity we just consider the case of a single
conserved current and assume that there is a single
diffusion pole. We will assume that the source (B1) is a
source just for the charge density operator J'. In particular
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(0)
JI’

6h§,) . We take the limit ¢, — 0 and then consider k; — 0.
From (B6), the time dependence of the charge density for
t > 0 is fixed by the Laplace transformed quantity

at r = 0 we write the source as e¢®*5h',’, with constant

. . Jj 1 n; n;
5(J")(z.x) = e’ksXZe‘"kax p {Gg/” (z. ks)+;((jijf}) (ks)}
{n;}

(271') gr)’ (B9)

where y ;! J’} (ky) = —lima,_,0+,-0G(JiL;f D (w,k;). It is inter-

esting to now examine the zero mode of the periodic
function inside the sum [see (2.19)]:

Lo
- oh')
@2m)d

(B10)

SN O ) = - Grae k) + )] =

since we can draw some further general conclusions using
the results of Sec. I A. Indeed after considering k; — 0,
and recalling the general results (2.30) and (2.33), we have

-1 (0)
— oh;,’.
—iz ksiksjgll(z))((o)

(IO} (z) = —x(0) 207

(B11)

Taking the inverse Laplace transform and keeping just the
time dependence that is leading order in k;, we obtain

1
sh'?

O 1) = —em(0) sy om)

(B12)

with io(k,) = o' kK, (0)7".

We can now make a comparison with the diffusive
solutions given in (3.55) that we found within the context of
relativistic hydrodynamics. Recalling that in this appendix,
and also in Sec. II, we are considering current densities,
whereas in Sec. III we used current vectors, we therefore
should compare the local current 5[\/5 fO'(1,x)] in (3.55)

with 8(J")(t.x e
here with f&T [see the discussion following (A7)] after
comparing (3.55) with (B9) and the above analysis, we

conclude that for these particular solutions we have that for
each {n;}, in the limit that k; — 0,

X). Identifying the constant

PHYSICAL REVIEW D 96, 125003 (2017)

(n;}) ({n;}) -
GJIJI ((/), kS)X]’]’ (kS) :
1

+1 - — — —,
—iw + ks,-ijS{”f}”(a)))((O) !

(B13)

with $117@) = 6" 1 O(w), in order to get the correct
time dependence. In particular, all of these modes of
the Green’s function have the same diffusion pole at the
origin.

We next consider the spatial components of the current.
Starting with (B8) and using (A4) we can write

‘ 1 .
5<J’>(Z, k) = |:(l?)2 GJij/'(Z, k, ks)(_lksj)
1
o ;{,[,,(k,ks)]éh??). (B14)

After a Fourier transform on the spatial coordinates we can
therefore write

X) _ eikxx§ m,k’

{n;}

)| o

577 (. [ L 6Um (2 k) (—ik,))

(iZ)2 J'

©
i (B15)

Current conservation implies that k;y;i(k,k;) =0
[see (A6)] but in general y;i;(k,K,) # 0. However, in
the relativistic hydrodynamics in the static background
we do have y,i;(k,k,) =0 [see the comment below
(3.12)]. Thus, comparing (B15) with (3.55) we deduce
that for the relativistic hydrodynamics, as k, — 0 we
have

(la)) j']] (w k )(_iksj>

(R, + 0 KD (ik )
T o+ kk, ST ()(0)7!

. (BI6)

with (i@ 6;’; + O(w) in order to get the correct
time dependence.

A final comment is that if we consider (B3) with
27y (K,Kg) = 0 then we deduce that §(J%)(z = 0,x) = 0.
This seems inconsistent with the # = 0 limit of the diffusive
solution arising from hydrodynamics. The resolution of this
puzzle is that when we take the limit ¢, — O it leads to a
discontinuity in the current. The correct thing to do is
compare the currents for # > 0 as we did above.
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