
Diffusion in inhomogeneous media

Aristomenis Donos,1 Jerome P. Gauntlett,2 and Vaios Ziogas1
1Centre for Particle Theory and Department of Mathematical Sciences, Durham University,

Durham DH1 3LE, United Kingdom
2Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom

(Received 7 September 2017; published 11 December 2017)

We consider the transport of conserved charges in spatially inhomogeneous quantum systems with a
discrete lattice symmetry. We analyze the retarded two-point functions involving the charges and the
associated currents at long wavelengths, compared to the scale of the lattice, and, when the dc
conductivities are finite, extract the hydrodynamic modes associated with diffusion of the charges. We
show that the dispersion relations of these modes are related to the eigenvalues of a specific matrix
constructed from the dc conductivities and certain thermodynamic susceptibilities, thus obtaining
generalized Einstein relations. We illustrate these general results in the specific context of relativistic
hydrodynamics where translation invariance is broken using spatially inhomogeneous and periodic
deformations of the stress tensor and the conserved Uð1Þ currents. Equivalently, this corresponds to
considering hydrodynamics on a curved manifold, with a spatially periodic metric and chemical potential,
and we obtain the dispersion relations for the heat and charge diffusive modes.
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I. INTRODUCTION

Motivated by various strongly correlated states of matter
seen in nature, there has been a significant effort devoted to
obtaining a deeper theoretical understanding of thermo-
electric transport. It has long been appreciated that it is
necessary to work within a framework in which momentum
is not conserved. Indeed, for a translationally invariant
system in which momentum is exactly conserved, the ac
thermal response necessarily contains a delta function at
zero frequency leading to a nonphysical infinite dc thermal
conductivity. Thus, one is interested in setups in which
translation symmetry is explicitly broken.
In this paper we will present some general results for

thermoelectric transport in inhomogeneous systems. More
precisely, we will consider general quantum systems, with
one or more conserved currents, with a discrete, spatial
lattice symmetry. This could describe, for example, a
quantum field theory in which translation invariance has
been explicitly broken by deforming the theory with
operators which have a periodic dependence on the spatial
coordinates.
Of central interest are the retarded Green’s functions for

the current-current correlatorsGJJðt;x; t0x0Þ. At the level of
linear response these determine how the currents respond
after perturbing the system by a current source. Time
translation invariance implies that these Green’s functions
only depend on t − t0 which allows us to Fourier transform
and obtain GJJðω;x;x0Þ. In a translationally invariant
setting the Green’s functions would also only depend on
x0 − x and a Fourier transform leads to a correlator
depending on ω and a single wave vector k. When
translations are broken, this is no longer possible but a

discrete lattice symmetry allows us to define an infinite

discrete set of correlatorsGðfnigÞ
JJ ðω;kÞ, where fnig are a set

of integers. We will be particularly interested in studying

the correlator GJJðω;kÞ≡Gðf0gÞ
JJ ðω;kÞ. Indeed this corre-

lator, which satisfies a simple positivity condition, captures
the transport properties of the system at late times and for
wavelengths much longer than the scale of the lattice, and
thus we might call GJJðω;kÞ a “hydrodynamic-mode
correlator.”
By generalizing similar computations presented in [1] in

the translationally invariant setting, we will show that when
the thermoelectric dc conductivity is finite, subject to some
analyticity assumptions, there is necessarily a diffusion
pole in the hydrodynamic-mode correlator forω, εk → 0. If
the system has just a single conserved current then we
explain precisely when we get a dispersion relation for the
diffusion pole of the form

ω¼−iε2DðkÞþ…; DðkÞ ¼ ½σijdckikj�χð0Þ−1; ð1:1Þ

where σijdc is the dc conductivity and χðkÞ is the charge
susceptibility. This is our first Einstein relation for inho-
mogeneous media.
When there are additional conserved currents, there will

be additional diffusion modes when the associated dc
conductivities are finite. We analyze the dispersion rela-
tions for the diffusion modes and show how they can be
obtained from the eigenvalues of a specific “generalized
diffusion matrix” that is constructed from the dc conduc-
tivities and various thermodynamic susceptibilities. We
emphasize that, generically, the dispersion relations for
the diffusion modes are not of the form (1.1) and hence we
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refer to our result concerning the dispersion relation as a
“generalized Einstein relation.” This feature of diffusion
modes was also emphasized in [2] within a specific
hydrodynamic setting, which we will return to later.
These results concerning hydrodynamic modes of the

Green’s functions are very general. However, motivated by
recent experimental progress [3–5], there has been con-
siderable theoretical work using hydrodynamics to study
thermoelectric transport [2,6–18] and it is therefore of
interest to see how our general results on diffusion manifest
themselves in this particular context. More specifically, we
will study this within the context of relativistic hydro-
dynamics, describing the hydrodynamic limit of a relativ-
istic quantum field theory.
Within this hydrodynamic framework, we first need to

consider how momentum dissipation is to be incorporated.
A standard approach is to modify, by hand, the hydro-
dynamic equations of motion, i.e. the Ward identities of the
underlying field theory, by a phenomenological term that
incorporates momentum dissipation (e.g. [19,20]). An
alternative and more controlled approach is to maintain
theWard identities, which are fundamental properties of the
field theory, but to consider the field theory to be deformed
by spatially dependent sources. In this spirit, the hydro-
dynamic limit of a class of field theories which have been
deformed by certain scalar operators was analyzed in [7].
Subsequently, the universal class of deformations which
involve adding spatially dependent sources for the stress
tensor were studied in [14]. Since the stress tensor of the
field theory couples to the spacetime metric, the deforma-
tions studied in [14] are equivalent to studying the hydro-
dynamic limit of the quantum field theory on a curved
spacetime manifold. The spacetime metric is taken to have
a timelike Killing vector in order to discuss thermal
equilibrium. Then, while spatial momentum will, generi-
cally, no longer be conserved, energy still will be. It may be
possible to experimentally realize the deformations studied
in [14] in real materials, such as strained graphene [21–23].
In this paper we extend the analysis of [14] to cover

relativistic quantum field theories which have a conserved
Uð1Þ symmetry.As in [14]we can consider the field theory to
live on a static, curved manifold. Although not necessary, it
will be convenient to take the manifold to have planar
topology and with a metric that is periodic in the spatial
directions.Within the hydrodynamic frameworkwewill also
consider deformations that are associated with spatially
dependent sources for the Uð1Þ symmetry. This is particu-
larly interesting since it corresponds to allowing for spatially
dependent chemical potential or, equivalently, spatially
dependent charge density. One can anticipate that our results
will be useful for understanding thermoelectric transport in
real systems, such as charged puddles, with orwithout strain,
in graphene [24–27] as also discussed in [18].
As an application of our formalism, we show how to

construct long-wavelength, late-time hydrodynamic modes

that are associated with diffusion of both energy and
electric charge. We derive the dispersion relation for these
modes and explicitly obtain the generalized Einstein
relations. It is worth noting that this result is independent
of the precise transport coefficients that enter the con-
stitutive relations in the conserved currents. We also note
that a derivation of an Einstein relation for the diffusion of
electric charge in the context of hydrodynamics with
vanishing local charge density in one spatial direction
was carried out in Appendix A of [13] and this is consistent
with our more general analysis here.

II. GREEN’S FUNCTION PERSPECTIVE

We begin our discussion with a general quantum system
with a time-independent Hamiltonian H. We assume that
there is a lattice symmetry group which acts on the d spatial
coordinates via x → xþLj and U−1

Lj
Aðt;xÞULj

¼
Aðt;xþLjÞ, where Aðt;xÞ is an arbitrary local operator.
We assume that the Hamiltonian is invariant under this
symmetry and henceU−1

Lj
HULj

¼ H. We will also consider

the system to be at finite temperature T.
As usual, for two local operators Aðt;xÞ, Bðt;xÞ, the

retarded two-point functions are defined through

GABðt;x; t0;x0Þ ¼ −iθðt − t0Þh½Aðt;xÞ; Bðt0;x0Þ�i; ð2:1Þ

with hAðt;xÞi ¼ TrðρAðt;xÞÞ, where ρ ¼ e−βH=Trðe−βHÞ
and β ¼ 1=T. Using the fact that Aðt;xÞ ¼
eitHAð0;xÞe−itH and the lattice symmetry of H, we see
that the two-point functions will satisfy

GABðt;x; t0;x0Þ ¼ GABðt − t0;x; 0;x0Þ; ð2:2Þ

GABðt;xþLj; t0;x0 þLjÞ ¼ GABðt;x; t0;x0Þ: ð2:3Þ

The symmetry (2.2) allows us to define a function with
three arguments through GABðt−t0;x;x0Þ≡GABðt;x;t0;x0Þ.
We next recall that if we introduce a perturbative source

term in the Hamiltonian via

δHðtÞ ¼
Z

dxδhBðt;xÞBðt;xÞ; ð2:4Þ

then at the level of linear response, the change in the
expectation values of an arbitrary operator A is given by

δhAiðt;xÞ ¼
Z

dt0dx0GABðt − t0;x;x0ÞδhBðt0;x0Þ: ð2:5Þ

We note that the source, and hence the response, need not
be a periodic function of the spatial coordinates and indeed
this will be case of most interest in the following.
To proceed we Fourier transform the Green’s function on

all arguments and define
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GABðω;k;k0Þ≡
Z

dtdxdx0eiωt−ikxþik0x0GABðt;x;x0Þ:

ð2:6Þ

The discrete symmetry (2.3) implies that we can perform a
crystallographic type of decomposition to obtain

GABðω;k;k0Þ ¼
X
fnjg

G
ðfnjgÞ
AB ðω;k0Þδðk − k0 − njk

j
LÞ;

ð2:7Þ
where kj

L are the reciprocal lattice vectors satisfying ki
L ·

Lj ¼ 2πδij and fnjg are sets of integers. To see this, we
simply notice that if we define the function

GABðω;x;k0Þ≡
Z

dtdx0eiωtþik0x0GABðt;x;x0Þ; ð2:8Þ

then the real space lattice symmetry (2.3) implies the
periodicity condition

GABðω;xþLj;k0Þ ¼ eik
0LjGABðω;x;k0Þ; ð2:9Þ

and hence we can deduce that e−ik
0xGBB0 ðω;x;k0Þ is

periodic as a function of x. This lets us write it as a
discrete Fourier series, expressing

GABðω;x;k0Þ ¼ 1

ð2πÞd e
ik0x

X
fnjg

einjk
j
LxG

ðfnjgÞ
AB ðω;k0Þ;

ð2:10Þ
and (2.7) follows.
In the sequel, we will be particularly interested in the

zero modes,GABðω;kÞ≡Gðf0gÞ
AB ðω;kÞ. These can easily be

obtained by taking average spatial integrals over a period of

periodic functions. If we define
H ≡ðQLiÞ−1

R fLig
f0g dx then

we have

GABðω;kÞ≡ Gðf0gÞ
AB ðω;kÞ

¼
I

dx
Z

dx0GABðω;x;x0Þeikðx0−xÞ: ð2:11Þ

From (2.6) we can also write

GABðω;kÞ ¼ ðN
Y
i

LiÞ−1GABðω;k;kÞ; ð2:12Þ

whereN is the total number of spatial periods in the system.
We next examine the positivity of the spectral weight of

our operators. Working in the interaction picture, the
system absorbs energy at rate

d
dt

WðtÞ ¼
Z

dxδhBiðt;xÞ d
dt

δhBðt;xÞ; ð2:13Þ

where a summation over B is understood. Introducing the
notation

δhBðt;xÞ ¼
1

ð2πÞdþ1

Z
dωdkδhBðω;kÞe−iωtþikx; ð2:14Þ

we can show that the total energy absorbed by the system is

ΔW ¼ −
1

ð2πÞ2dþ1

Z
dωdkdk0δh�Bðω;kÞω½ImG�BB0

× ðω;k;k0ÞδhB0 ðω;k0Þ; ð2:15Þ

where ½ImG�ABðω;k;k0Þ≡ 1
2i½GABðω;k;k0Þ−G�

BAðω;k0;kÞ�.
To get to the last line we used GABðω;k;k0Þ ¼
GABð−ω;−k;−k0Þ� (for real frequencies and wave
vectors), which follows from the reality of GABðt;x;x0Þ.
Since δhBðω;kÞ are arbitrary we deduce that
−ω½ImG�ABðω;k;k0Þ is a positive semidefinite matrix,
with matrix indices including both the operator labels as
well as the wave vectors. Since the block diagonal elements
of a positive semidefinite matrix are positive semidefinite,
using (2.12) we can conclude that the zero modes
−ωImGABðω;kÞ are positive semidefinite. In particular
we have

−ωImGAAðω;kÞ ≥ 0; ð2:16Þ

with no sum on A. The positive semidefinite aspect of
−ω½ImG�ABðω;k;k0Þ also gives rise to additional condi-

tions for the G
ðfnjgÞ
AB ðω;kÞ, with fnjg ≠ f0g.

To conclude this subsection we examine how the Green’s
functions behave under time reversal invariance. For
simplicity we will assume that the periodic system is
invariant under time reversal. Recall that this acts on local
operators according to TAðt;xÞT−1 ¼ ϵAAð−t;xÞ, where
ϵA ¼ �1. Since T is an antiunitary operator we can deduce
that GABðt;x;x0Þ ¼ ϵAϵBGBAðt;x0;xÞ. Thus, we have
GABðω;k;k0Þ ¼ ϵAϵBGBAðω;−k0;−kÞ and hence

G
ðfnjgÞ
AB ðω;kÞ ¼ ϵAϵBG

ðfnjgÞ
BA ðω;−k − nlkl

LÞ: ð2:17Þ

Returning to the linear response given in (2.5), after
taking suitable Fourier transforms we can write

δhAiðω;xÞ

¼ 1

ð2πÞ2d
Z

dk
X
fnjg

eiðkþnjk
j
LÞxGðfnjgÞ

AB ðω;kÞδhBðω;kÞ:

ð2:18Þ

If we consider a source which contains a single spatial
Fourier mode δhBðt;xÞ ¼ eiksxδhBðtÞ, then we have
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δhAiðω;xÞ ¼ eiksx
X
fnjg

1

ð2πÞd e
injk

j
LxG

ðfnjgÞ
AB ðω;ksÞδhBðωÞ;

≡ eiksx
X
fnjg

einjk
j
LxδhAiðfnjgÞðω;ksÞ: ð2:19Þ

Notice, in particular, that the zero mode in the summation
is fixed by the zero mode of the Green’s function:
δhAiðf0gÞðω;ksÞ ¼ ð2πÞ−dGABðω;ksÞδhBðωÞ.
In the next subsections we will take A and B to be

components of conserved currents. In this context the
zero-mode correlator GABðω;kÞ captures transport of the
associated hydrodynamic modes and hence one can call it a
hydrodynamic-mode correlator.

A. Einstein relation for a single current

We now consider the operator A to be a current density1

operator Jμ, which satisfies a continuity equation of the
form ∂μJμ ¼ 0. From the definition (2.6) we have

−iωGJtBðω;k;k0Þ þ ikiGJiBðω;k;k0Þ ¼ 0; ð2:20Þ

for any operator B, whose equal time commutator with Jt

vanishes. Using the crystallographic decomposition (2.7) in
(2.20) we then have

−iωGðfnjgÞ
JtB ðω;kÞ þ iðkþ njk

j
LÞiG

ðfnjgÞ
JiB ðω;kÞ ¼ 0:

ð2:21Þ

We now2 focus on the hydrodynamic-mode correlators
with fnjg ¼ 0, which satisfy a positivity property dis-
cussed just above (2.16). Using (2.21) twice, we have

−iωGJtJtðω;kÞ þ ikiGJiJtðω;kÞ ¼ 0;

−iωGJtJjðω;kÞ þ ikiGJiJjðω;kÞ ¼ 0: ð2:22Þ

We next consider the time reversal invariance conditions
(2.17) with fnjg ¼ 0. Since ϵJt ¼ þ1 and ϵJi ¼ −1, we
obtain

GJiJtðω;kÞ ¼ −GJtJiðω;−kÞ;
GJiJjðω;kÞ ¼ GJjJiðω;−kÞ: ð2:23Þ

Combing (A3) with (2.22) we therefore have the key
result

1

iω
kikjGJiJjðω;kÞ ¼ −iωGJtJtðω;kÞ: ð2:24Þ

In general, taking the ω → 0 limit of the correlator
GABðω;kÞ gives rise to a static, thermodynamic suscep-
tibility. It will be useful to write

− lim
ω→0þi0

GJtJtðω;kÞ≡ χðkÞ; ð2:25Þ

where χðkÞ is a charge-charge susceptibility (the sign here
is explained in Appendix A). Note that (2.24) implies

lim
ω→0þi0

1

ω2
kikjGJiJjðω;kÞ ¼ −χðkÞ; ð2:26Þ

and in particular, the longitudinal part of the current-current
susceptibility vanishes, limω→0þi0kikjGJiJjðω;kÞ ¼ 0,
provided that χðkÞ is finite,3which we will assume.
In order to focus on studying the response to long-

wavelength sources, it will be convenient to now rescale the
wave-number k by ε and write (2.24) in the form

1

iω
kikjGJiJjðω; εkÞ ¼ −

iω
ε2

GJtJtðω; εkÞ: ð2:27Þ

We next note that the ac conductivity matrix is defined by
taking the following limit of the transport correlators:

σijðωÞ ¼ −lim
ε→0

1

iω
GJiJjðω; εkÞ: ð2:28Þ

Notice from the discussion above (2.16) that the real part of
σijðωÞ is a positive semidefinite matrix. In general, the ac
conductivity is a finite quantity for ω ≠ 0. On the other
hand, the dc conductivity, defined by σijdc ≡ limω→0σðωÞ, is
not necessarily finite. For example, if the system is trans-
lationally invariant or if the breaking of translation invari-
ance has arisen spontaneously, or more generally if there
are Goldstone modes present, generically the dc conduc-
tivity will be infinite, or more precisely there will be a delta
function on the ac conductivity at ω ¼ 0. By taking the
limit ε → 0 in (2.27) we have

kikjσ
ijðωÞ ¼ iωlim

ε→0

1

ε2
GJtJtðω; εkÞ: ð2:29Þ

Thus when the dc conductivity is finite, the function
GJtJtðω; εkÞ=ε2 must have a pole at ω ¼ 0 after taking
the ε → 0 limit. Note that (2.25) shows that before the limit
is taken this pole is absent (provided that χðkÞ is finite).

1In this section we find it convenient to work with current
vector densities. In Sec. III we will work with current vectors. We
also note that as our analysis will focus on two-point functions of
the current, we only require that the current to be conserved at the
linearized level.

2We have also presented some more general results in
Appendix A.

3Note that for a superfluid one can have χðkÞ diverging at
k → 0.
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To make further progress, it is helpful to write

GJtJtðω; εkÞχðεkÞ−1 ¼
−Nðω; εkÞ

−iωþ Nðω; εkÞ ; ð2:30Þ

where we have defined the quantity

Nðω; εkÞ ¼ GJtJtðω; εkÞ
1
iω ðGJtJtðω; εkÞ þ χðεkÞÞ : ð2:31Þ

We can now prove that Nðω; εkÞ is an analytic function of
ω provided that ImðωÞ ≠ 0. First, any poles in the numer-
ator GJtJtðω; εkÞ, which can only occur in the lower half
plane, will cancel out with those in the denominator. We
thus need to check whether or not the denominator in (2.31)
can vanish for ImðωÞ ≠ 0. That this cannot occur can be
seen by writing

1

iω
ðGJtJtðω; εkÞ þ χðεkÞÞ ¼

Z
C1

dω0

iπ
ImGJtJtðω0; εkÞ
ω0ðω0 − ωÞ ;

ð2:32Þ

where C1 is a contour that skirts just under the real axis.
Then writing ω ¼ xþ iy, with y ≠ 0, we can show that the
real part of the integral is nonvanishing after using the fact
that ImGJtJtðω0; εkÞ=ω0 ≤ 0, which we showed in (2.16).
We now return to (2.29), from which we deduce that, for
fixed ω, as ε → 0, we can expand

N ¼ ε2
kikjσ

ijðωÞ
χð0Þ þ � � � ; ð2:33Þ

with the neglected terms going to zero with a higher power
of ε.
We are now in a position to discuss the poles of

GJtJtðω; εkÞ that appear at the “origin,” by which we mean
when both ω → 0 and ε → 0. The simplest possibility is if
Nðω; εkÞ does not have any poles (or branch cuts) at
ω ¼ 0. In this case, we see that when the dc conductivity
matrix is finite, GJtJt will have a single diffusion pole with
dispersion relation

ω ¼ −iε2DðkÞ þ � � � ; DðkÞ ¼ ½σijdckikj�χð0Þ−1;
ð2:34Þ

and the neglected terms are higher order in ε. This is our
first result on Einstein relations for inhomogeneous media.
It is important to emphasize that is not the only

possibility. Indeed, as we discuss in the next subsection,
there are additional poles when there are additional con-
served currents. If, for example, we suppose that there are
two conserved currents in total then a second diffusion pole
can appear in GJtJtðω; εkÞ. To illustrate this situation
schematically, consider the behavior of the following
function for ω; εk → 0:

ε2
�

A
−iωþ ε2a

þ B
−iωþ ε2b

�

∼
ε2ðAþ BÞ

−iωþ ε2ðaAþbB
AþB − i ABða−bÞ

2

ðAþBÞ2
ε2

ω þOðε2ωÞ2Þ
; ð2:35Þ

corresponding to the function Nðω; εkÞ having additional
singularities at ω → 0. Another interesting situation in
which additional poles will appear is in the presence of
Goldstone modes arising from broken symmetries.
Additional general statements can be made using the
memorymatrix formalism, generalizing thediscussion in [1].
Returning now to the case in which there is just a single

conserved current with a single diffusion pole then a natural
phenomenological expression for the Green’s function is
given near the origin, ðω; εkÞ → 0, by

GJtJtðω; εkÞ ∼
−Dðω; εkÞ

−iωþDðω; εkÞ χðεkÞ; ð2:36Þ

with Dðω; εkÞ ∼ ε2
kikjσ

ijðωÞ
χðεkÞ . It is interesting to note that if,

by contrast, we are in the context of infinite dc conductivity
with σijðωÞ ∼ Kijð iω þ πδðωÞÞ for small ω, where Kij is
constant, then (2.36) is gives rise to sound modes for
the current density Jt, with dispersion relation ω� ¼
�ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kijkikj=χðεkÞ

q
. The transition between diffusion

modes and sound modes was also discussed in a homo-
geneous hydrodynamic setting, with a phenomenological
term to relax momentum, in [6].
To conclude this subsection, we briefly note that we can

carry out a similar analysis for the higher Fourier modes of
the current-current correlators. Starting with (2.21), the
analogue of (2.27) is

1

iω
ðkþ nrkr

LÞikjG
ðfnlgÞ
JiAJ

j
B

ðω;kÞ ¼ −iωGðfnlgÞ
JtAJ

t
B
ðω;kÞ;

ð2:37Þ
and this leads, mutatis-mutandis, to additional relations

concerning the poles of GðfnlgÞ
JtAJ

t
B
ðω;kÞ, which would be

interesting to explore in more detail. We note however, that
for fnlg ≠ 0, there is no longer a simple statement con-

cerning the positivity of ImGðfnlgÞ
JtAJ

t
B
ðω;kÞ=ω, which was

used in the above. We also point out that within a holo-
graphic context and for a specific gravitational model, some

of the GðfnlgÞ
JiAJ

j
B

ðω;kÞ were calculated in [28].

B. Generalized Einstein relations for
multiple currents

We now assume that we have multiple conserved
currents JμA. For example, one could have both a conserved
heat current and a conserved Uð1Þ current. Much of the
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analysis that we carried out for the case of a single current
goes through straightforwardly and we obtain

1

iω
kikjGJiAJ

j
B
ðω; εkÞ ¼ −

iω
ε2

GJtAJ
t
B
ðω; εkÞ: ð2:38Þ

We write the charge susceptibilities and the ac conductivity
via

χABðεkÞ ¼ − lim
ω→0þi0

GJtAJ
t
B
ðω; εkÞ;

σijABðωÞ ¼ −lim
ε→0

1

iω
GJiAJ

j
B
ðω; εkÞ; ð2:39Þ

respectively, and we now have

kikjσ
ij
ABðωÞ ¼ iωlim

ε→0

1

ε2
GJtAJ

t
B
ðω; εkÞ: ð2:40Þ

Generically this shows that for finite dc conductivities there
will be at least as many poles in the transport current
correlators as there are currents.
Proceeding much as before we write

Gðω; εkÞχðεkÞ−1 ¼ −½−iωþ Nðω; εkÞ�−1Nðω; εkÞ;
ð2:41Þ

where Gðω; εkÞAB ≡ GJtAJ
t
B
ðω; εkÞ and

Nðω; εkÞ≡Gðω; εkÞ
�
1

iω
ðGðω; εkÞ þ χðεkÞÞ

�
−1
:

ð2:42Þ

We can again argue that Nðω; εkÞ can only have poles on
the real ω axis. From (2.40) we deduce that for fixed ω, as
ε → 0, we can expand

Nðω; εkÞ ¼ ε2Σðω;kÞχðεkÞ−1; ð2:43Þ

where Σðω;kÞAB ¼ kikjσ
ij
ABðωÞ and the neglected terms

go to zero with a higher power of ε.
If we now assume that Nðω; εkÞ doesn’t have any poles

at ω ¼ 0, then we can conclude that at the origin, i.e. when
both ω → 0 and ε → 0, if the dc conductivities are finite
then the diffusion poles of the system are located at

ωAðkÞ ¼ −iDAðkÞε2 þ � � � ; ð2:44Þ

where DAðkÞ are the eigenvalues of what can be called the
“generalized diffusion matrix” DðkÞ defined by

DðkÞ ¼ Σð0;kÞχð0Þ−1; ð2:45Þ

and the dots involve higher order corrections in ε. In
particular when the dc conductivities are finite, the number

of diffusion poles is the same as the number of conserved
currents.
Furthermore, we emphasize that when there is more

than one conserved current, generically, these diffusion
modes do not satisfy a dispersion relation of the form
ω ∼ −iε2Σijkikj, with the matrix Σij a component of the dc
conductivities. As a consequence we refer to our result
(2.44), (2.45) as a “generalized Einstein relation.”
We conclude this section by noting that the general result

(2.44), (2.45) relates thermodynamic instabilities to
dynamic instabilities. Suppose that the system has a static
susceptibility matrix χð0Þ with a negative eigenvalue and
hence is thermodynamically unstable. Then (2.45) implies
that DðkÞ will have a negative eigenvalue, for small k, and
hence, from (2.44) we deduce that there will be a diffusion
pole in the upper half plane leading to a dynamical
instability.4

III. DIFFUSION IN RELATIVISTIC
HYDRODYNAMICS

We now discuss thermoelectric transport within the
context of relativistic hydrodynamics. As well as general-
izing the work of [14] to include a conserved Uð1Þ charge
(as also studied in [18]), we will also be able to use the
formalism to illustrate the results of the previous section.
In particular, associated with the heat current and the Uð1Þ
current we construct two diffusion modes with dispersion
relations satisfying the generalized Einstein relation (2.44).
We note that it will be convenient to use a slightly different
notation in this section, which implies that a little care is
required in directly comparing with the last section.

A. General setup

We will consider an arbitrary relativistic quantum field
theory with a global Uð1Þ symmetry in d ≥ 2 spacetime
dimensions. The field theory is defined on a static, curved
manifold, with metric gμν, and a nonzero background gauge
field, Aμ, of the form:

ds2 ¼ −f2ðxÞdt2 þ hijðxÞdxidxj;
At ¼ atðxÞ: ð3:1Þ

This corresponds to studying the field theory with f2 and
hij parametrizing sources for the stress tensor components
Ttt and Tij, respectively, and at parametrizing a source for
the Jt component of the conserved Uð1Þ current. We focus
on cases in which the manifold has planar topology, with
the globally defined spatial coordinates xi parametrizing
Rd−1, and f, hij,at all depending periodically on xi, with
period Li.

4An explicit example of such a dynamic instability can be seen
using the results of Appendix B.
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We will study the field theory at finite temperature in the
hydrodynamic limit keeping the leading order viscous
terms. In particular, we will consider temperatures5 that
are much greater than the largest wave number that appears
in the background fields in (3.1). The Ward identities are
given by

DμTμν ¼ FνλJλ; DμJμ ¼ 0; ð3:2Þ
where Dμ is the covariant derivative with respect to gμν and
Fμν ¼ 2∂ ½μAν�. For the special case of conformal field theory,
we should also impose Tμ

μ ¼ 0 and this implies, amongst
other things, that in (3.3) ζb ¼ 0 and ϵ ¼ ðd − 1ÞP.
The hydrodynamic variables are the local temperature,

TðxÞ, the local chemical potential, μðxÞ, and the fluid
velocity, uμ, with uμuνgμν ¼ −1. As in [29], the constitutive
relations are given, in the Landau frame, by6

Tμν ¼ Pgμν þ ðPþ ϵÞuμuν
− 2η

�
DðμuνÞ þ uρuðμDρuνÞ − ðgμν þ uμuνÞ

Dρuρ

d − 1

�

− ζbðgμν þ uμuνÞDρuρ;

Jμ ¼ ρuμ þ σQ

�
Fμνuν − Tðgμν þ uμuνÞDν

�
μ

T

��
;

ð3:3Þ
where P is the pressure density, ϵ is the energy density and
ρ is the Uð1Þ charge density. The dissipative terms in (3.3)
are the shear viscosity, η, the bulk viscosity, ζb and the
conductivity, σQ, which should not be confused with the
electrical dc conductivity, σdc, which we discuss later.
We also have the local thermodynamic relation and first law
which take the form

Pþ ϵ ¼ sT þ μρ; dP ¼ sdT þ ρdμ; ð3:4Þ
where s is the entropy density. It will also be helpful to
introduce the susceptibilities cμ, ξ and χ via

ds ¼ T−1cμdT þ ξdμ; dρ ¼ ξdT þ χdμ: ð3:5Þ

For any vector k, the Ward identities imply

Dμ½ðTμ
ν þ JμAνÞkν� ¼

1

2
LkgμνTμν þ LkAμJμ; ð3:6Þ

where Lk is the Lie derivative. Taking k ¼ ∂t we define the
heat current as

Qμ ¼ −ðTμ
t þ AtJμÞ; ð3:7Þ

which is conserved for stationary metrics with LkAν ¼ 0.
Thus, given such background metrics and gauge fields,
for time-independent configurations we therefore have
∂ið ffiffiffiffiffiffi−gp

QiÞ ¼ ∂ið ffiffiffiffiffiffi−gp
JiÞ ¼ 0.

In thermal equilibrium the fluid configuration is given by

ut ¼ −fðxÞ; ui ¼ 0; T ¼ T0ðxÞ; μ ¼ μ0ðxÞ;
ð3:8Þ

where T0ðxÞ and μ0ðxÞ are periodic functions, and from
(3.4) we have the equilibrium relations

P0 þ ϵ0 ¼ s0T0 þ μ0ρ0; ∂iP0 ¼ s0∂iT0 þ ρ0∂iμ0:

ð3:9Þ

For later use, we note that we also have

∇is0 ¼ T−1
0 cμ0∇iT0 þ ξ0∇iμ0;

∇iρ0 ¼ ξ0∇iT0 þ χ0∇iμ0: ð3:10Þ

By calculating Tμν, Jμ one can show that the Ward
identities are satisfied provided that

T0 ¼ f−1T̄0; μ0 ¼ f−1at; ð3:11Þ

where T̄0 is constant. Note, in particular, that in thermal
equilibrium the local hydrodynamic variable T0 is not
constant when f is not constant and, furthermore, there is a
factor of f that appears in the relationship between μ0 and
the background gauge field. We also note that we have set a
possible integration constant to zero in the second expres-
sion as we want μ0 to vanish when at does. Finally it will
be helpful to define the zero mode of at via μ̄0 ≡ H

at,
where we are again using the notation

H ≡ðL1 � � �LdÞ−1R fLig
f0g dx1 � � � dxd. This allows us to write μ0 ¼ f−1

ðμ̄0 þ ~atðxÞÞ, with
H
~at ¼ 0.

The nonvanishing components of the stress tensor and
current for this equilibrium configuration are then given by

Ttt ¼ ϵ0f2; Tij ¼ P0hij; Jt ¼ ρ0f−1: ð3:12Þ

In particular for the backgrounds we are considering, in
thermal equilibrium both the electric and the heat currents
vanish: Ji ¼ Qi ¼ 0. Note, since (3.1) provides a source for
the energy and the charge, we can immediately deduce that
the charge-current susceptibilities must vanish. The total
energy and charge of the equilibrium configuration are
defined by

5This temperature is the same as what is denoted as T̄0

below.
6Following [29], we have set to zero two other terms in Jμ

that are allowed by Lorentz invariance but are not consistent
with positivity of entropy and thermodynamics with external
sources.
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ϵtot ¼ −
I ffiffiffiffiffiffi

−g
p

Tt
t ¼

I ffiffiffi
h

p
fϵ0;

ρtot ¼
I ffiffiffiffiffiffi

−g
p

Jt ¼
I ffiffiffi

h
p

ρ0: ð3:13Þ

We can also define the total equilibrium entropy as

stot ¼
I ffiffiffi

h
p

s0: ð3:14Þ

For later use, using the fact that s0 is a function of T0 and
μ0, we observe that for suitable zero modes of the charge
susceptibilities we have

∂stot
∂T̄0

¼
I ffiffiffi

h
p

f−1T−1
0 cμ0;

∂stot
∂μ̄0 ¼

I ffiffiffi
h

p
f−1ξ0: ð3:15Þ

Similarly, we also have

∂ρtot
∂T̄0

¼
I ffiffiffi

h
p

f−1ξ0;
∂ρtot
∂μ̄0 ¼

I ffiffiffi
h

p
f−1χ0: ð3:16Þ

B. Generalized Navier-Stokes equations

In the following we want to study the behavior of small
perturbations about the equilibrium configuration, includ-
ing the possibility of adding external, perturbative thermal
gradient and electric field sources. Following [14] we will
do this by considering

ds2 ¼ −f2ð1 − 2ϕTÞdt2 þ hijdxidxj;

At ¼ at − fμ0ϕT þ ϕE; ð3:17Þ

along with

ut ¼ −fð1 − ϕTÞ; ui ¼ δui;

T ¼ T0 þ δT; μ ¼ μ0 þ δμ: ð3:18Þ

Here ϕT , ϕE, δui, δT and δμ are all functions of ðt; xiÞ. Note
that these need not be periodic functions of the spatial
coordinates. For later use, we also define the spatial
components of the external sources ζi, Ei via

ζi ¼ ∂iϕT; Ei ¼ ∂iϕE: ð3:19Þ

At linearized order, the perturbed stress tensor and Uð1Þ
current can then be written as

Ttt ¼ ϵ0f2ð1 − 2ϕTÞ þ δϵf2;

Tti ¼ −fðP0 þ ϵ0Þδui;

Tij ¼ ðP0 þ δPÞhij − 2η0f−1
�
∇ðiðfδujÞÞ −

hij
ðd − 1Þ∇kðfδukÞ

�
− ζb0hijf−1∇kðfδukÞ;

Jt ¼ ρ0f−1ð1þ ϕTÞ þ f−1δρ;

Ji ¼ ρ0δui þ σQ0f−1½Ei −∇iðfδμÞ − fμ0ζi þ μ0T−1
0 ∇iðfδTÞ�; ð3:20Þ

where ∇i is the covariant derivative with respect to the metric hij, which is also used to raise and lower indices. The Ward
identities (3.2) give

∂tδρþ∇iðfJiÞ ¼ 0;

f∂tδϵþ∇iðf2ðP0 þ ϵ0ÞδuiÞ − fJi∇iat ¼ 0;

f−1ðP0 þ ϵ0Þ∂tδuj − 2f−1∇iðη0∇ðiðfδujÞÞÞ þ f−1∇j

��
2η0

ðd − 1Þ − ζb0

�
∇kðfδukÞ

�

¼ −∇jδP − ðδϵþ δPÞf−1∇jf þ ðP0 þ ϵ0Þζj þ ρ0ðf−1Ej − μ0ζjÞ þ f−1δρ∇jat: ð3:21Þ

In the case when there is no Uð1Þ charge this agrees with the expression derived in Eqs. (A.10) of [14]. These expressions
can be further simplified. We use (3.11) as well as

δP ¼ s0δT þ ρ0δμ; δϵ ¼ T0δsþ μ0δρ;

δs ¼ T−1
0 cμ0δT þ ξ0δμ; δρ ¼ ξ0δT þ χ0δμ; ð3:22Þ

which we obtain from (3.4), (3.5). After also using (3.10) we eventually find that we can rewrite the system (3.21) in the
following form, which is the key result of this section,
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ξ0∂tδT þ χ0∂tδμþ∇iðfJiÞ ¼ 0;

fcμ0∂tδT þ fT0ξ0∂tδμþ∇iðfQiÞ ¼ 0;

ðP0 þ ϵ0Þ∂tδuj − 2∇iðη0∇ðiðfδujÞÞÞ

þ∇j

��
2η0

ðd − 1Þ − ζb0

�
∇kðfδukÞ

�

¼ ρ0½Ej −∇jðfδμÞ� þ fT0s0½ζj − ðfT0Þ−1∇jðfδTÞ�;
ð3:23Þ

with

Ji ¼ ρ0δui þ σQ0f−1½Ei −∇iðfδμÞ�
− σQ0μ0½ζi − ðfT0Þ−1∇iðfδTÞ�;

Qi ¼ fðP0 þ ϵ0Þδui − fμ0Ji: ð3:24Þ

Notice that the first two lines in (3.23) are just current
conservation equations for the linearized perturbation. We
emphasize that all background equilibrium quantities,
marked with a 0 subscript, are all periodic functions of
the spatial coordinates. It is interesting to note that the
system of Eqs. (3.23) is invariant under the interchange

Ej ↔ −∇jðfδμÞ; ζj ↔ −f−1T−1
0 ∇jðfδTÞ: ð3:25Þ

Finally, for later use, we note that when the sources are
set to zero, ϕT ¼ ϕE ¼ 0, we have for the total charges

I ffiffiffiffiffiffi
−g

p
Jt ¼

I ffiffiffi
h

p
ρ0 þ

I ffiffiffi
h

p
δρ;

I ffiffiffiffiffiffi
−g

p
Qt ¼

I ffiffiffi
h

p
fðϵ0 − μ0ρ0Þ þ T̄0

I ffiffiffi
h

p
δs: ð3:26Þ

C. Thermoelectric dc conductivity

We now explain how we can obtain the thermoelectric dc
conductivity, generalizing [14]. We begin by considering
the sources ϕT and ϕE to have space and time dependence
of the form e−iωteikix

i
, where ki is an arbitrary wave

number. After solving (3.23) for δuj, δμ, δT one obtains
the local currents Ji Qi, and hence the current fluxes J̄i Q̄i,
as functions of Ei and ζi. To obtain the thermoelectric dc
conductivity we should then take the limit ki → 0, followed
by ω → 0.
By considering approximating eikix

i ∼ 1þ ikixi we are
prompted7 to consider a time-independent source of the
form

ϕT ¼ xiζ̄i; ϕE ¼ xiĒi; ð3:27Þ

where ζ̄i, Ēi are constants and henceEi ¼ Ēi, ζi ¼ ζ̄i. After
substituting into (3.32) we obtain the system8

∇iðfJiÞ ¼ 0; ∇iðfQiÞ ¼ 0;

− 2∇iðη0∇ðiðfδujÞÞÞ þ∇j

��
2η0

ðd − 1Þ − ζb0

�
∇kðfδukÞ

�

¼ ρ0Ēj − ρ0∇jðfδμÞ þ fs0T0ζ̄j − s0∇jðfδTÞ:
ð3:28Þ

After solving these equations we obtain the local time-
independent, steady state currents JiðxÞQiðxÞ, periodic in
the spatial coordinate, as functions of ζ̄i, Ēi. We can now
define the heat and charge current fluxes via

Q̄i ≡
I ffiffiffiffiffiffi

−g
p

Qi ¼
I ffiffiffi

h
p

fQi;

J̄i ≡
I ffiffiffiffiffiffi

−g
p

Ji ¼
I ffiffiffi

h
p

fJi; ð3:29Þ

and the dc conductivities are obtained from

�
J̄i

Q̄i

�
¼

�
σijdc T̄0α

ij
dc

T̄0ᾱ
ij
dc T̄0κ̄

ij
dc

�� Ēj

ζ̄j

�
: ð3:30Þ

Since we are considering backgrounds which preserve time
reversal invariance the Onsager relations imply that σdc and
κ̄dc are symmetric matrices and αTdc ¼ ᾱdc.

D. Diffusive modes

We now discuss how we can construct a perturbative
diffusive solution of the system of Eqs. (3.23) that is
associated with diffusion modes. Our objective will be to
extract the associated dispersion relations for these modes.
We first set the source terms in (3.23) to zero:

Ei ¼ ζi ¼ 0. We will allow for a time dependence of the
form e−iωt and consider the expansion

ω ¼
X∞
α¼1

εαωðαÞ; ð3:31Þ

with ε ≪ 1. Since we are interested in wavelengths that are
much larger than the periods, Li, of the background fields
in (3.1), we introduce arbitrary wave numbers ki and
consider

7An alternative procedure is to consider sources that are linear
in time, as explained in a holographic context in [30,31].

8In the special case of conformal field theories, similar
equations were obtained in a holographic context in [32]. The
equations differ when there is a Uð1Þ symmetry due to a
difference in the expression for Qi in (3.24). The equations
should agree in the hydrodynamic limit, after a possible change of
frame and/or incorporating higher order terms in the hydro-
dynamic expansion, and it would be interesting to investigate this
in more detail.
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δT ¼ e−iωteiεkix
i
X∞
α¼0

εαδTðαÞðxÞ;

δμ ¼ e−iωteiεkix
i
X∞
α¼0

εαδμðαÞðxÞ;

δui ¼ e−iωteiεkix
i
X∞
α¼0

εαδuðαÞi ðxÞ; ð3:32Þ

with the functions inside the summations taken to be
periodic in the xi, with period Li.
We next note that the system of Eqs. (3.23) (with

Ei ¼ ζi ¼ 0) admit the simple time-independent solution
with fδT, fδμ both constant and δui ¼ 0. Indeed, from
(3.11) this corresponds to simply perturbing the parameters
of the thermal equilibrium configuration. The diffusive
modes are constructed as a perturbation of this time-
independent solution by using the expansions (3.31),
(3.32) and taking

fδTð0Þ ¼ constant; fδμð0Þ ¼ constant; δuð0Þi ¼ 0;

ð3:33Þ

as the zeroth order solution. We immediately see that the
associated expansion for Ji and Qi can be written as

Ji ¼ e−iωteiεkix
i
X∞
α¼1

εαJiðαÞðxÞ;

Qi ¼ e−iωteiεkix
i
X∞
α¼1

εαQiðαÞðxÞ: ð3:34Þ

At leading order in ε, the first two equations of (3.23)
then read

−iωð1Þξ0δTð0Þ − iωð1Þχ0δμð0Þ þ∇iðfJið1ÞÞ ¼ 0;

−iωð1Þcμ0fδTð0Þ − iωð1ÞT0ξ0fδμð0Þ þ∇iðfQið1ÞÞ ¼ 0:

ð3:35Þ

Integrating Eq. (3.35) over a period we obtain

iωð1Þ
I ffiffiffi

h
p

ðξ0δTð0Þ þ χ0δμ
ð0ÞÞ ¼ 0;

iωð1Þ
I ffiffiffi

h
p

fðcμ0δTð0Þ þ T0ξ0δμ
ð0ÞÞ ¼ 0: ð3:36Þ

Assuming thermodynamically stable matter, the matrix of
static susceptibilities, whose components appear in (3.36),
is positive definite and these equations can only be satisfied
by setting ωð1Þ ¼ 0. The leading order system (3.23) then
becomes

∇iðfJið1ÞÞ ¼ 0; ∇iðfQið1ÞÞ ¼ 0;

− 2∇iðη0∇ðiðfδuð1ÞjÞ ÞÞ

þ∇j

��
2η0

ðd − 1Þ − ζb0

�
∇kðfδukð1ÞÞ

�

¼ −iρ0kjfδμð0Þ − ρ0∇jðfδμð1ÞÞ − is0kjfδTð0Þ

− s0∇jðfδTð1ÞÞ; ð3:37Þ

with

Jið1Þ ¼ ρ0δuið1Þ þ σQ0f−1½−∇iðfδμð1ÞÞ�
− σQ0μ0½−ðfT0Þ−1∇iðfδTð1ÞÞ�;

Qið1Þ ¼ fðP0 þ ϵ0Þδuið1Þ − fμ0Jið1Þ: ð3:38Þ

Notice that this system is equivalent to the system of
Eqs. (3.28) that appeared for the calculation of the
thermoelectric dc conductivity if we identify Ēi ↔
−ikifδμð0Þ, ζ̄i ↔ −ikjT−1

0 δTð0Þ and note that the quantities
on the right-hand sides of these expressions are indeed
constant. Thus, we can express the heat current fluxes J̄ið1Þ

and Q̄ið1Þ in terms of −ikifδμð0Þ, −ikjT−1
0 δTð0Þ using the

thermoelectric dc conductivity matrix given in (3.30)
to get

J̄ið1Þ ≡
I ffiffiffi

h
p

fJið1Þ ¼ −iσijdckjfδμð0Þ − iαijdckjfδT
ð0Þ;

Q̄ið1Þ ≡
I ffiffiffi

h
p

fQið1Þ ¼ −iT̄0α
ij
dckjfδμ

ð0Þ − iκ̄ijdckjfδT
ð0Þ:

ð3:39Þ

Continuing the expansion, we next examine the first two
equations of (3.23) at second order in ε to find

− iωð2Þξ0δTð0Þ− iωð2Þχ0δμð0Þ þ ikifJið1Þ þ∇iðfJið2ÞÞ ¼ 0;

− iωð2Þcμ0fδTð0Þ − iωð2ÞT0ξ0fδμð0Þ þ ikifQið1Þ

þ∇iðfQið2ÞÞ ¼ 0: ð3:40Þ

Integrating these two equations over a period, substituting
the expression for the dc conductivity and using (3.15),
(3.16) we now deduce

iωð2Þ
�∂ρtot
∂T̄0

fδTð0Þ þ ∂ρtot
∂μ̄0 fδμð0Þ

�

− αijdckikjfδT
ð0Þ − σijdckikjfδμ

ð0Þ ¼ 0;

iωð2ÞT̄0

�∂stot
∂T̄0

fδTð0Þ þ ∂stot
∂μ̄0 fδμ

ð0Þ
�

− κ̄ijdckikjfδT
ð0Þ − T̄0α

ij
dckikjfδμ

ð0Þ ¼ 0: ð3:41Þ
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Writing this in matrix form as

M

�
fδTð0Þ

fδμð0Þ

�
¼ 0; ð3:42Þ

we have detðMÞ ¼ 0. This gives rises to a quadratic

equation for iωð2Þ which has two solutions, iωð2Þ
� , which

give the leading order dispersion relations for the diffusion
modes that we are after.
To write iωð2Þ

� in a compact way we first define the scalar
quantities depending on the dc conductivities that are
quadratic in the wave numbers ki:

κ̄ðkÞ≡ κ̄ijdckikj; αðkÞ≡ αijdckikj; σðkÞ≡ σijdckikj;

ð3:43Þ
as well as

κðkÞ≡ κ̄ðkÞ − αðkÞ2T̄0

σðkÞ : ð3:44Þ

Recall that κijdc ≡ κ̄ijdc − T̄0ðᾱdc · σ−1dc · αdcÞij is the dc ther-
mal conductivity for zero electric current and in general
κðkÞ ≠ κijdck

ikj. We also define the following susceptibil-
ities:

X ¼ ∂ρtot
∂μ̄0 ; Ξ ¼ ∂stot

∂μ̄0 ¼ ∂ρtot
∂T̄0

;

Cρ ¼
I ffiffiffi

h
p

cμ0 −
T̄0Ξ2

X
: ð3:45Þ

Note that if we consider the susceptibility cρ ¼
Tð∂s=∂TÞρ ¼ cμ − Tξ2

χ , in general Cρ ≠
H ffiffiffi

h
p

cρ0. Using
these definitions, we then find that

iωð2Þ
þ iωð2Þ

− ¼ κðkÞ
Cρ

σðkÞ
X

;

iωð2Þ
þ þ iωð2Þ

− ¼ κðkÞ
Cρ

þ σðkÞ
X

þ T̄0ðXαðkÞ − ΞσðkÞÞ2
CρX2σðkÞ :

ð3:46Þ
This is the main result of this section and it should be
compared with the general result given in (2.44), (2.45) that
we obtained in the previous section.
A number of comments are in order. First, for relativistic

hydrodynamics without aUð1Þ current, there is just a single
energy diffusion mode. In this case, the leading order
dispersion relation is given by

iωð2Þ ¼ κijdckikj
T̄0

∂stot∂T̄0

: ð3:47Þ

This result should be compared with (2.34). Similarly, we
can also consider charge neutral backgrounds which have

Ξ ¼ αijdc ¼ 0 and then the two equations in Eq. (3.41)
decouple. In particular we find a charge diffusion mode
with leading order dispersion relation given by

iωð2Þ ¼ σijdckikj
∂ρtot∂μ̄0

: ð3:48Þ

Our next comment concerns perturbative lattices. By
definition a perturbative lattice is one in which the metric
and gauge field deformations have a perturbatively small
amplitude. In this case the spatial momentum dissipation is
weak. Using the memory matrix formalism [33] or holog-
raphy [32] we have

κ̄ijdc ¼ 4πs0T0L−1
ij ; αijdc ¼ 4πρ0L−1

ij ;

σijdc ¼ 4πs−10 ρ20L
−1
ij : ð3:49Þ

Here the matrix Lij incorporates the leading order dis-
sipation and Lij → 0 when translation invariance is
retained. While all of these dc conductivities are large,
κijdc and also κ in (3.44) are parametrically smaller as
pointed out in [31,34]. Thus, from (3.46) we deduce that
one of the frequencies will be proportional to L−1 while the
other will be parametrically smaller.

1. Reduced hydrodynamics

When translations are broken, it should also be possible
to construct a “reduced” hydrodynamical description that
just involves the conserved charges i.e. the heat and the
Uð1Þ charge. At the level of linear response, this can be

done, in principle, by solving for δuðnÞi order by order in
Eq. (3.23), to, effectively, get a set of linear equations for
the variables δT and δμ and highly nonlocal in terms of the
background metric and gauge field. We will not carry out
this in any detail here, but instead highlight some interest-
ing features of the leading order terms that would arise.
In particular, we will be able to derive a set of reduced
hydrodynamical equations, at the level of linear response,
that generalize those discussed in [2].
We begin with the on-shell expressions for the currents in

the ε expansion given in (3.34). Focusing on the Uð1Þ
current for the moment, we recall that at each orderffiffiffi
h

p
fJiðnÞ are periodic functions of the xi. We have seen

that at leading order they are determined by the system of
linear equations given in (3.37), which is equivalent to the
system of Eqs. (3.28) that appeared for the calculation of
the dc conductivity if we identify Ēi ↔ −ikifδμð0Þ,
ζ̄i ↔ −ikjT−1

0 δTð0Þ. We can therefore write
ffiffiffi
h

p
fJið1Þ

linearly in terms of fδμð0Þ, fδTð0Þ as a sum of a constant
flux, expressed in terms of the dc conductivity matrix, and a
term which is co-closed and has vanishing zero mode (a
periodic magnetisation current). Thus, we can write for the
full current
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ffiffiffi
h

p
fJi ¼ e−iωteiεkix

i
ε½ðσijdc þ ∂kSkijÞð−ikjfδμð0ÞÞ

þ ðαijdc þ ∂kAkijÞð−ikjfδTð0ÞÞ þOðεÞ�; ð3:50Þ

where Skij ¼ −Sikj, Akij ¼ −Aikj and both are periodic
functions of the spatial coordinates. We can also obtain a
similar expression for the heat current and we can write
both of them in the following suggestive form:

ffiffiffi
h

p
fJi ¼ −ðσijdc þ ∂kSkijÞ∇jδμ̂ − ðαijdc þ ∂kAkijÞ∇jδT̂

þ � � � ;ffiffiffi
h

p
fQi ¼ −T̄0ðαijdc þ ∂kAkijÞ∇jδμ̂ −ðκ̄ijdc þ ∂kKkijÞ∇jδT̂

þ � � � ; ð3:51Þ

where δμ̂≡ e−iωteiεkix
i
fδμð0Þ, δT̂ ≡ e−iωteiεkix

i
fδTð0Þ and

Kkij ¼ −Kikj. In these on-shell expressions ω is fixed as an
expansion in ε in terms of ki and the background quantities
via the dispersion relations.
We next consider analogous expressions for the local

charge density and heat density. From (3.20) we obtain

ffiffiffi
h

p
fJt ¼

ffiffiffi
h

p
ρ0 þ e−iωteiεkix

i
ffiffiffi
h

p
½ξ0δTð0Þþ χ0δμ

ð0ÞþOðεÞ�;ffiffiffi
h

p
fQt ¼

ffiffiffi
h

p
fðϵ0 − μ0ρ0Þ þ e−iωteiεkix

i
ffiffiffi
h

p
f

× ½cμ0δTð0Þ þ T0ξ0δμ
ð0Þ þOðεÞ�; ð3:52Þ

where
ffiffiffi
h

p
ρ0 and

ffiffiffi
h

p
fðϵ0 − μ0ρ0Þ are the local charge

densities in equilibrium. Hence, for the perturbation we
can write

δ½
ffiffiffi
h

p
fJt� ¼

ffiffiffi
h

p
f−1ξ0δT̂ þ

ffiffiffi
h

p
f−1χ0δμ̂þ � � � ;

δ½
ffiffiffi
h

p
fQt� ¼

ffiffiffi
h

p
cμ0δT̂ þ T0

ffiffiffi
h

p
ξ0δμ̂þ � � � : ð3:53Þ

At this stage, from these on-shell expressions, we now
can see the leading order structure of an off-shell reduced
hydrodynamics. Specifically, if we take (3.53) to be
expressions for the local charge densities and (3.51) to
be the associated constitutive relations for the currents, the
continuity equations ∇μJμ ¼ ∇μQμ ¼ 0 at order ε2 will
lead to the same diffusive solutions that we had above with
exactly the same dispersion relations for the diffusion
modes. In particular, the magnetization currents in (3.51)
do not play a role in this specific calculation. It is also worth
emphasizing that in this reduced hydrodynamics, the
variables δT̂, δμ̂ need not be periodic functions and indeed
they are not in the diffusive solutions.
We can now compare these results with the hydro-

dynamics described in the “Methods" section of [2],
highlighting several differences. First, the constitutive
relations for the local currents given in [2] were declared
to be given in terms of the dc conductivity, whereas here we
have derived them from the underlying relativistic hydro-
dynamics. Second, the possibility of the terms involving

Skij, Akij, Kkij was not considered in [2]. Finally, the
expression for the local charge densities in [2] were not of
the form (3.53). To make a connection we note that using
(3.15), (3.16) we can rewrite (3.53) in the form

δ½
ffiffiffi
h

p
fJt� ¼

�∂ρtot
∂T̄0

þ � � �
�
δT̂ þ

�∂ρtot
∂μ̄0 þ � � �

�
δμ̂þ � � � ;

δ½
ffiffiffi
h

p
fQt� ¼

�
T̄0

∂stot
∂T̄0

þ � � �
�
δT̂ þ

�
T̄0

∂stot
∂μ̄0 þ � � �

�
δμ̂

þ � � � ; ð3:54Þ

where in the bracketed terms we have just written the
constant zero mode part of the relevant term. The expres-
sions (3.54) are what were considered in [2]; while the
neglected higher Fourier modes will not affect the calcu-
lation of the dispersion relations for the diffusive modes,
they are the same order in the ε expansion with the zero
modes and they should be included as they will affect other
calculations.

2. Green’s functions

Within the context of relativistic hydrodynamics, the
leading order solutions for the charge density and the
currents are given in the previous subsection. It is possible
to relate these expressions to the retarded Green’s func-
tions. At a first pass this seems problematic as the diffusive
solutions are source free solutions and yet to extract
Green’s functions we need to relate a response to a source.
This puzzle can be resolved by the following trick. We

view the solutions as having arisen after adiabatically
switching on sources for the charge density in the far past,
switching them off at time t ¼ 0 and then comparing the
solutions for t > 0 in the long-wavelength limit. As this is
somewhat technical we have explained how this can be
achieved, as well as presenting some results of general
validity, in Appendix B. For simplicity, we will carry out
the analysis just for the case when there is only a single
current present, which is the heat current. Hence, for
convenience we present the perturbed part of the diffusive
solution in this case here:

δ½
ffiffiffi
h

p
fQt� ¼ e−iωteiεkix

i ½
ffiffiffi
h

p
cμ0fδTð0Þ þOðεÞ�;ffiffiffi

h
p

fQi ¼ e−iωteiεkix
i
ε½ðκ̄ijdc þ ∂kKkijÞð−ikjÞfδTð0Þ

þOðεÞ�; ð3:55Þ

with iω ¼ κijdckikj
T̄0

∂stot
∂T̄0

. We also recall that fδTð0Þ is constant and
ffiffiffi
h

p
cμ0 is a local susceptibility whose constant zero mode

piece is T̄0
∂stot∂T̄0

.

DONOS, GAUNTLETT, and ZIOGAS PHYSICAL REVIEW D 96, 125003 (2017)

125003-12



IV. FINAL COMMENTS

In this paper we have made a general study of the
hydrodynamical diffusion modes associated with con-
served charges that arise in inhomogeneous media with
a lattice symmetry. When the dc conductivities are finite,
we showed that there are diffusive modes with dispersion
relations that are determined by the dc conductivities and
certain thermodynamical susceptibilities. This constitutes a
generalized Einstein relation for inhomogeneous media.
We also illustrated the general results, obtained by an
analysis of retarded Green’s functions, by considering the
specific context of relativistic hydrodynamics. For simplic-
ity, here we have focused on systems that are invariant
under time reversal. However, it should be straightforward
to generalize to the nonstatic case, after identifying suitably
defined transport currents as in [20,35–38].
In [14], for a general conformal field theory on a curved

manifold with a metric of the form (3.1) with f ¼ 1, hij ¼
Φδij and Φ a periodic function, the relativistic hydro-
dynamic equations [with vanishing Uð1Þ fields] were
solved for the local temperature and heat current, at the
level of linear response, after applying a dc thermal gradient
~ζi. In particular, it was shown that thermal backflow can
occur whereby the heat current is locally flowing in the
opposite direction to the dc source. These results can be
recast in terms of the diffusion results of this paper. Let ωð2Þ
be the leading order dispersion relation as in (3.47). Then,
focusing on real variables, we have leading order diffusing
solutions with δT ¼ e−ε

2ωð2Þt cosðεkixiÞðδTð0Þ þ εδTð1Þ þ
Oðε2ÞÞ, and the local heat current given by δQi ¼
e−ε

2ωð2Þt sinðεkixiÞεðδQið1Þ þOðεÞÞ, where δTð1Þ and δQið1Þ
are the local temperature and heat current obtained in [14]
for a dc thermal gradient given by ~ζi ¼ kiδTð0Þ. We can
consider these solutions as having been adiabatically
prepared in an initial state at t ¼ 0 (say) and then diffusing.
The solution shows that in each individual spatial period
there is an elaborate local structure, which includes thermal
backflow, with an overall damping of the current in time.
The existence of the same backflow current patterns that

emerge in the steady state setup provides a nontrivial test of
the validity of hydrodynamics for certain strongly corre-
lated systems of electrons for which backflows have been
observed. Finally, we note that the initial conditions at
t ¼ 0 that we are considering, arising from the construction
of specific long-wavelength diffusion modes, might seem
fine tuned. However, as long as short wavelength modes die
out faster in time, the diffusive modes will capture the
universal late-time behavior for generic initial conditions.
For systems with light, spatially modulated modes, this will
be case provided we examine long enough wavelengths.
The general results of this paper should also manifest

themselves within the context of holography. In particular,
it should be possible to obtain the Einstein relations in
terms of the dc conductivities and the thermodynamic

susceptibilities. It is now understood how, in general, the
thermoelectric dc conductivity of the boundary field theory,
when finite, can be obtained in terms of data on the black
hole horizon [32,34,37]. Thus, providing one can obtain the
susceptibilities in terms of horizon data, one should also be
able to extract the Einstein relations. This will be explored
in [39]. This line of investigation could also make contact
with the recent work on relating diffusion to a characteristic
velocity extracted from the black hole horizon, related to
out of time ordered correlators [40,41] and [13,42–50].
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Note added.—While writing up this work, Ref. [18]
appeared which also generalizes [14] to include a con-
served Uð1Þ charge and independently derived the hydro-
dynamic Eqs. (3.23), for the special case of no time
dependence and for curved manifolds with a unit norm
timelike Killing vector (i.e. f ¼ 1).

APPENDIX A: GENERAL RESULTS

Here we present some general results for Green’s
functions involving a single conserved current density
operator Jμ satisfying the continuity equation ∂μJμ ¼ 0.
We will present results for GJμJνðω;k;k0Þ; using the
crystallographic decomposition (2.7) we can easily extract

analogous results for the G
ðfnjgÞ
JμJν ðω;kÞ.

From (2.6) the current conservation condition ∂μJμ ¼ 0
implies

−iωGJtBðω;k;k0Þ þ ikiGJiBðω;k;k0Þ ¼ 0; ðA1Þ

for any operator B, whose equal time commutator with Jt

vanishes. From (A1) we have

−iωGJtJtðω;k;k0Þ þ ikiGJiJtðω;k;k0Þ ¼ 0;

−iωGJtJjðω;k;k0Þ þ ikiGJiJjðω;k;k0Þ ¼ 0: ðA2Þ

We next consider the time reversal invariance conditions
(2.17). Since ϵJt ¼ þ1 and ϵJi ¼ −1, we obtain
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GJiJtðω;k;k0Þ ¼ −GJtJiðω;−k0;−kÞ;
GJiJjðω;k;k0Þ ¼ GJjJiðω;−k0;−kÞ: ðA3Þ

Combing (A3) with (A2) we therefore have

kik0
jGJiJjðω;k;k0Þ ¼ −ðiωÞ2GJtJtðω;k;k0Þ;

ik0
jGJiJjðω;k;k0Þ ¼ ðiωÞGJiJtðω;k;k0Þ: ðA4Þ

Define the static susceptibility

lim
ω→0þi0

GJtJtðω;k;k0Þ≡ −χJtJtðk;k0Þ: ðA5Þ

We see that (A2) and (A4) imply

kiχJiJtðk;k0Þ ¼ 0;

kik0
jχJiJjðk;k0Þ ¼ 0: ðA6Þ

Note that the sign in (A5) is fixed as follows. From (2.5),
for a time-independent source for the charge density
δhJtðxÞ, we have

δhJtiðt;kÞ¼ 1

ð2πÞd
Z

dk0GJtJtðω¼0;k;k0ÞδhJtðk0Þ: ðA7Þ

On the other hand from (2.4) δH ¼ ð2πÞ−d R dkδhJt
ð−kÞδJtðkÞ and so we identify the perturbed chemical
potential, δμðkÞ, as δμðkÞ ¼ −δhJtðkÞ. Since the static
susceptibility χJtJt is defined by varying the charge density
with respect to the chemical potential we get the sign as
in (A5).

APPENDIX B: LINEAR RESPONSE FROM
A PREPARED SOURCE

We consider a perturbative deformation of the
Hamiltonian as in (2.4), with a prepared source that is
switched off at t ¼ 0, given by

hBðt;xÞ ¼
�
eεttþiksxδhB; t ≤ 0

0 t > 0
; ðB1Þ

with εt > 0. This source contains a single spatial Fourier
mode and we will be interested in taking the adiabatic
limit εt → 0þ.
The time dependent expectation value of an operator A is

given by the retarded Green’s function as in (2.5). Thus, at
t ¼ 0, when the sources are switched off, we have

δhAiðt ¼ 0;xÞ ¼
Z

dt0dx0GABð−t0;x;x0ÞδhBðt0;x0Þ;

¼
Z

dt0dx0GABðt0;x;x0Þe−εtt0þiksx0δhB;

¼ GABðiεt;x;ksÞδhB: ðB2Þ

In the εt → 0þ limit, after a Fourier transform, we have

δhAiðt ¼ 0;kÞ ¼ −χABðk;ksÞδhB; ðB3Þ

where χABðk;k0Þ≡ −limω→0þi0GABðω;k;k0Þ. Also, after
a Fourier transform of the source (B1), for any t > 0 we
deduce that

δhAiðt;xÞ ¼ 1

2π

Z þ∞

−∞
dω

1

εt þ iω
e−iωtGABðω;x;ksÞδhB:

ðB4Þ

Taking a Laplace transform in time we get

δhAiðz;xÞ≡
Z þ∞

0

dtδhAiðt;xÞeizt;

¼ −
1

2π

Z þ∞

−∞
dω

1

ω− iεt

1

ω− z
GABðω;x;ksÞδhB;

ðB5Þ

with, necessarily, Imz > 0 in order for the integrals to
converge. Performing a contour integral on the above
expression by closing it in the upper half plane and
assuming that the Green’s function vanishes fast enough
for large ω, we just pick up contributions from the poles at
ω ¼ iεt and ω ¼ z to obtain

δhAiðz;xÞ ¼ −
i

iεt − z
GABðiεt;x;ksÞδhB

−
i

z − iεt
GABðz;x;ksÞδhB: ðB6Þ

Thus, in the εt → 0þ limit we conclude that the spatial
Fourier transform is given by (B1):

δhAiðz;kÞ ¼ 1

iz
ðGABðz;k;ksÞ þ χABðk;ksÞÞδhB: ðB7Þ

Using (B3) we now obtain the following solution to the
initial value problem that is sourced by (B1) in the εt → 0þ
limit:

δhAiðz;kÞ ¼ −
1

iz
ðGABðz;k;ksÞχ−1BCðk;ksÞ

þ δACÞδhCiðt ¼ 0;kÞ: ðB8Þ

1. Conserved current

Let us now apply some of these results to conserved
currents. For simplicity we just consider the case of a single
conserved current and assume that there is a single
diffusion pole. We will assume that the source (B1) is a
source just for the charge density operator Jt. In particular
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at t ¼ 0 we write the source as eiksxδhð0ÞJt , with constant

δhð0ÞJt . We take the limit εt → 0 and then consider ks → 0.
From (B6), the time dependence of the charge density for

t > 0 is fixed by the Laplace transformed quantity

δhJtiðz;xÞ¼ eiksx
X
fnjg

einjk
j
Lx

1

iz

h
G

ðfnjgÞ
JtJt ðz;ksÞþ χ

ðfnjgÞ
JtJt ðksÞ

i

×
1

ð2πÞd δh
ð0Þ
Jt ; ðB9Þ

where χ
ðfnjgÞ
JtJt ðksÞ ¼ −limω→0þi0G

ðfnjgÞ
JtJt ðω;ksÞ. It is inter-

esting to now examine the zero mode of the periodic
function inside the sum [see (2.19)]:

δhJtifð0ÞgðzÞ ¼ 1

iz
½GJtJtðz;ksÞ þ χJtJtðksÞ�

1

ð2πÞd δh
ð0Þ
Jt ;

ðB10Þ

since we can draw some further general conclusions using
the results of Sec. II A. Indeed after considering ks → 0,
and recalling the general results (2.30) and (2.33), we have

δhJtifð0ÞgðzÞ ¼ −1
−izþ ksiksjσ

ijðzÞχð0Þ−1 χð0Þ
1

ð2πÞd δh
ð0Þ
Jt :

ðB11Þ

Taking the inverse Laplace transform and keeping just the
time dependence that is leading order in ks, we obtain

δhJtifð0ÞgðtÞ ¼ −e−iωðksÞtχð0Þ 1

ð2πÞd δh
ð0Þ
Jt ; ðB12Þ

with iωðksÞ ¼ σijdcksiksjχð0Þ−1.
We can now make a comparison with the diffusive

solutions given in (3.55) that we found within the context of
relativistic hydrodynamics. Recalling that in this appendix,
and also in Sec. II, we are considering current densities,
whereas in Sec. III we used current vectors, we therefore
should compare the local current δ½ ffiffiffi

h
p

fQtðt;xÞ� in (3.55)

with δhJtiðt;xÞ. Identifying the constant source 1
ð2πÞd δh

ð0Þ
Jt

here with −fδTð0Þ [see the discussion following (A7)], after
comparing (3.55) with (B9) and the above analysis, we
conclude that for these particular solutions we have that for
each fnjg, in the limit that ks → 0,

G
ðfnjgÞ
JtJt ðω;ksÞχðfnjgÞJtJt ðksÞ−1

þ 1 →
1

−iωþ ksiksjSfnjgijðωÞχð0Þ−1
; ðB13Þ

with SfnjgijðωÞ ¼ σijdc þOðωÞ, in order to get the correct
time dependence. In particular, all of these modes of
the Green’s function have the same diffusion pole at the
origin.
We next consider the spatial components of the current.

Starting with (B8) and using (A4) we can write

δhJiiðz;kÞ ¼
�

1

ðizÞ2GJiJjðz;k;ksÞð−iksjÞ

þ 1

iz
χJiJtðk;ksÞ

�
δhð0ÞJt : ðB14Þ

After a Fourier transform on the spatial coordinates we can
therefore write

δhJiiðz;xÞ ¼ eiksx
X
fnjg

einjk
j
Lx

�
1

ðizÞ2 G
ðfnjgÞ
JiJj ðz;ksÞð−iksjÞ

þ 1

iz
χ
ðfnjgÞ
JiJt ðksÞ

�
1

ð2πÞd δh
ð0Þ
Jt : ðB15Þ

Current conservation implies that kiχJiJtðk;ksÞ ¼ 0
[see (A6)] but in general χJiJtðk;ksÞ ≠ 0. However, in
the relativistic hydrodynamics in the static background
we do have χJiJtðk;ksÞ ¼ 0 [see the comment below
(3.12)]. Thus, comparing (B15) with (3.55) we deduce
that for the relativistic hydrodynamics, as ks → 0 we
have

1

ðiωÞ2G
ðfnjgÞ
JiJj ðω;ksÞð−iksjÞ

→
ðκ̄ijdc þ ∂kKkijÞðfnjgÞð−iksjÞ

−iωþ ksiksj
~SfnjgijðωÞχð0Þ−1 ; ðB16Þ

with ~SfnjgijðωÞ ¼ σijdc þOðωÞ in order to get the correct
time dependence.
A final comment is that if we consider (B3) with

χJiJtðk;ksÞ ¼ 0 then we deduce that δhJiiðt ¼ 0;xÞ ¼ 0.
This seems inconsistent with the t ¼ 0 limit of the diffusive
solution arising from hydrodynamics. The resolution of this
puzzle is that when we take the limit εt → 0 it leads to a
discontinuity in the current. The correct thing to do is
compare the currents for t > 0 as we did above.
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