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Highlights

• The proposed formulation overcomes finite deformation volumetric locking for near-incompressible non-linear solid mechanics.
• The method is applicable to all existing material point methods.
• No restriction is placed on the constitutive model.
• Quasi-static implicit implementation ensures asymptotic quadratic convergence.
• The formulation reduces spurious stress oscillations.

Abstract

Material point methods suffer from volumetric locking when modelling near incompressible materials due to the combination
of a low-order computational mesh and large numbers of material points per element. However, large numbers of material points
per element are required to reduce integration errors due to non-optimum placement of integration points. This restricts the ability
of current material point methods in modelling realistic material behaviour.

This paper presents for the first time a method to overcome finite deformation volumetric locking in standard and generalised
interpolation material point methods for near-incompressible non-linear solid mechanics. The method does not place any restriction
on the form of constitutive model used and is straightforward to implement into existing implicit material point method codes. The
performance of the method is demonstrated on a number of two and three-dimensional examples and its correct implementation
confirmed through convergence studies towards analytical solutions and by obtaining the correct order of convergence within the
global Newton–Raphson equilibrium iterations. In particular, the proposed formulation has been shown to remove the over-stiff
volumetric behaviour of conventional material point methods and reduce stress oscillations. It is straightforward to extend this
approach to other material point methods and the presented formulation can be incorporated into all existing material point methods
available in the literature.
c⃝ 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Lagrangian mesh-based methods dominate engineering numerical computations in solid mechanics. However, for
problems involving large deformations there are issues with pure Lagrangian formulations related to mesh distortion
which impact on the accuracy and stability of the methods. With these methods it is therefore necessary to re-mesh and
map state variables between the discretisations. One alternative numerical technique that has been demonstrated to
be applicable to problems involving very large deformations is the material point method. The material point method
was developed by Sulsky et al. [1] as a solid mechanics extension to the fluid implicit particle method [2] which
itself was developed from the particle-in-cell method [3]. In the material point method, computations take place on
a background grid but the calculations are based on information (stress, state variables, etc.) held at material points
that are convected through the background grid as the material deforms. This allows computations to take place on
an undistorted background mesh whilst modelling problems involving very large deformations. The simplest way to
summarise the material point method is: a finite element method where the integration points (material points) are
allowed to move independently from the mesh.

Allowing the material points to move through the background grid reduces the accuracy of the integration required
to map information between the material points and the background grid [4]. Therefore, material point methods
typically use more material points per element than would be adopted if the elements were integrated using Gauss–
Legendre quadrature. Combining this with the fact that material point methods generally use a low order background
grid (bi-linear quadrilaterals or tri-linear hexahedrals are a common choice) means that the method is susceptible to
volumetric locking (resulting in over-stiff behaviour) when modelling near-incompressible materials. This volumetric
locking is caused by excessive constraints placed on an element’s deformation by the points used to integrate the
stiffness of the element. That is, the constitutive model will require near-isochoric behaviour at the integration (or
material) point’s location within the element and each of these points places a constraint on the deformation of the
element. At a specific number of points the element will lock, resulting in over-stiff behaviour, where the number of
points to cause locking is linked to the basis of the element.

A common (and successful) technique to avoid volumetric locking in finite element methods is to use higher
order elements with reduced Gaussian integration. However, this is not viable in the material point method, primarily
due to the fact that at each step of a material point method analyses it is not known how many material points
will be in any given element. In the context of finite deformation solid mechanics, a number of formulations have
been proposed to overcome volumetric locking within finite elements, these include: mixed variational methods [5],
mixed displacement-pressure formulations [6], geometrically non-linear B̄ approaches [7], enhanced assumed strain
elements [8–10], co-rotational approaches [11], F̄ formulations [12,13] and finite deformation selective reduced
integration methods [14], amongst others. See de Souza Neto et al. [15] or de Borst et al. [16] for more detailed
reviews of the available methods.

To date the issue of volumetric locking in material point methods has mainly been focused on the analysis of
fluid mechanics problems (see for example Zhang et al. [17] and the references contained within), with the notable
exception of Mast et al. [18]. Mast et al. [18] investigated the issue of kinematic (volumetric and shear) locking
in the material point method and developed a Hu–Washizu multi-field variational principle based approach which
introduces independent approximations for the volumetric and the deviatoric components of the strain and stress
fields. Although the approach has been shown to overcome volumetric locking in dynamic fluid and solid mechanics
problems, it significantly increases the size of the linear system, introduces additional non-physical variables and was
only demonstrated for linear material behaviour.

This paper presents for the first time a method to overcome finite deformation volumetric locking in standard and
generalised interpolation material point methods for near-incompressible non-linear solid mechanics. In the standard
material point method the material points act as discrete lumped masses and only interact with the element that they
are located within whereas in the generalised interpolation method each material point has an associated domain
which interacts with any elements that it overlaps. To overcome the issue of volumetric locking we adopt the F̄
approach of de Souza Neto et al. [12] for the following reasons: (i) unlike mixed approaches it does not introduce
any additional unknowns into the linear system, (ii) it is simple to implement within existing finite element codes (and
therefore material point codes), (iii) the approach can be used with any constitutive model, (iv) it does not introduce
any additional tuning parameters into the code and (v) it does not introduce any additional material points to track the
volumetric behaviour.
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The layout of the paper is as follows, Section 2 details the adopted material point formulation including both
the standard and generalised interpolation material point methods. Section 3 details the modifications required to
overcome volumetric locking, including details on the numerical implementation. Numerical examples are presented
in Section 4 and, finally, conclusions are drawn in Section 5.

The majority of the mathematical development in the paper is presented in tensor form using index notation, the
notable exception is the numerics that are presented in matrix–vector form for ease of implementation.

2. Material point formulation

This section details the quasi-static implicit finite deformation elasto-plastic material point method formulation
adopted in this paper. The formulation is largely based on Charlton et al. [19] but with the resulting discrete equations
formulated point-wise rather than element-wise. The section starts with the continuum problem statement before
detailing the discrete material point formulation, boundary conditions, basis functions and domain updating. Finally
the computational procedure is outlined.

2.1. Continuum problem statement

In this paper we restrict the problem to that of isotropic finite deformation elasto-plasticity defined by the following
updated Lagrangian weak statement of equilibrium∫

ϕt (Ω)

(
σi j (∇η)i j − biηi

)
dv −

∫
ϕt (∂Ω)

(
tiηi

)
ds = 0. (1)

ϕt is the motion of the material body with domain, Ω , which is subjected to tractions, ti , on the boundary of the
domain (with surface, s), ∂Ω , and body forces, bi , acting over the volume, v of the domain, which lead to a Cauchy
stress field, σi j , through the body. The weak form is derived in the current frame assuming a field of admissible
virtual displacements, ηi . Within this updated Lagrangian formulation we adopt a multiplicative decomposition of
the deformation gradient into elastic and plastic components combined with a linear relationship between elastic
logarithmic strains and Kirchhoff stresses. This formulation is one of the most straightforward ways of implementing
large strain elasto-plasticity within a finite element framework as it allows conventional small-strain constitutive
formulations to be used without modification [20,21]. The finite deformation framework adopted in this paper is
based on the implementations given in Simo [20], de Souza Neto et al. [15], Coombs et al. [22], Coombs [23],
Charlton et al. [19], amongst others. It is also possible to extend the formulation to allow for both elastic and plastic
anisotropies [24] although here we restrict the material formulation to isotropic behaviour.

Within the context of finite deformation mechanics, the deformation gradient, Fi j provides the fundamental link
between the original and deformed configurations

Fi j =
∂xi

∂ X j
, (2)

where X i are the original (reference) coordinates and xi = ϕ(X i , t) are the updated coordinates in the current
(deformed) body. As stated previously, we assumed that the deformation gradient can be multiplicatively decomposed
into elastic and plastic components [25,26]

Fi j = Fe
ik Fp

k j , (3)

where the superscripts e and p denote the elastic and plastic components. In this paper we adopt logarithmic strains
and Kirchhoff stresses and combine these measures with an exponential map of the plastic flow rule to allow the use
of conventional small-strain stress integration algorithms with a finite deformation framework.1 This is a powerful
combination as it allows existing constitutive formulations to be used directly rather than reformulating them for the
particular choice of stress and strain measures used in the large deformation mechanics.

The elastic logarithmic strain is defined as

εe
i j =

1
2

ln
(
be

i j

)
, where be

i j = Fe
ik Fe

jk (4)

1 Details on the recovery of the small strain format of stress integration can be found in de Souza Neto et al. [15], Coombs [23], amongst others.
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is the left elastic Cauchy–Green strain and the Kirchhoff stress, τi j , can be obtained using

τi j = De
i jklε

e
kl , (5)

where De
i jkl is the linear elastic stiffness matrix. The Cauchy stress can be obtained from the Kirchhoff stress through

σi j =
1
J

τi j , where J = det(Fi j ) (6)

is the volume ratio between the deformed and reference configurations.
In order to advance the non-linear solution, the finite deformation equations are discretised in pseudo-time by

imposing the deformation over a number of load (or pseudo-time) steps. This allows the current deformation gradient
to be defined using

Fi j = ∆Fik(Fn)k j , (7)

where ∆Fi j is the increment in the deformation gradient between the previously converged state, denoted using
a subscript n, and the current state. In order to obtain the updated Kirchhoff stress state for the current deformation
gradient, a constitutive model requires an initial estimate (or trial) of the elastic strain (or stress) state. In this approach
the trial elastic Cauchy–Green strain tensor is given by

(be
t )i j = ∆Fik(be

n)kl∆F jl , (8)

where the subscript t denotes a quantity defined in the trial state. The previous elastic Cauchy–Green strain tensor,
(be

n)i j , can be obtained from the previous elastic strain state through

(be
n)i j = exp

(
2(εe

n)i j

)
(9)

and the trial elastic strain state follows as

(εe
t )i j =

1
2

ln
(

(be
t )i j

)
. (10)

The adopted constitutive algorithm can then be used to return the updated elastic strain, εe
i j , and Kirchhoff stress, τi j ,

states.

2.2. Discrete material point implementation

The displacements across the domain are discretised according to

ϕi =

n∑
v=1

(Svp)(di )v and ηi =

n∑
v=1

(Svp)(dη

i )v, (11)

where Svp are the shape functions that link the element vertices, v, and the material points, p. di and dη

i are the
physical and virtual nodal displacements and n is the number of nodes that influence the point of interest.

The Galerkin form of the weak statement of equilibrium over each background grid element, E , can be obtained
from (1) and (11) as

{ f R
} =

∫
ϕt (E)

[G]T
{σ }dv −

∫
ϕt (E)

[Svp]T
{b}dv −

∫
ϕt (∂ E)

[Svp]T
{t}ds = {0}, (12)

where [G] is the tensorial form of the strain–displacement matrix containing derivatives of the shape functions with
respect to the updated coordinates (see Section 2.4). The first term in (12) is the internal force within an element
and the combination of the second and third terms is the external force vector. Eq. (12) is non-linear in terms of the
unknown nodal displacements and can be efficiently solved using the standard Newton–Raphson (N–R) procedure.
The nodal displacements within a load step, {∆d}, can be obtained by iteratively updating the nodal displacements
until (12) is satisfied within a given tolerance using

{δdk} = [K ]−1
{ f R

k−1}, (13)

where k is the current iteration within the loadstep, [K ] is the global stiffness matrix and {δdk} is the iterative increment
in the displacements from that iteration. { f R

k−1} is the residual out of balance force vector associated with the previous
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displacement value; the difference between the internal forces due to the Cauchy stresses within the material and
the applied boundary conditions. The current displacement in a loadstep can be obtained by summing the iterative
increments within the loadstep, that is

{∆dk} =

k∑
n=1

{δdn}, (14)

where it is assumed that {δd0} = {0}. The global stiffness matrix can be obtained by linearising the discrete statement
of equilibrium with respect to the unknown nodal displacements to give

[k E ] =

∫
ϕt (E)

[G]T [A][G]dv. (15)

In (15), [A] is the spatial consistent tangent modulus for a point within the element

Ai jkl =
1

2J
Dalg

i jmn Lmnpq Bpqkl − Si jkl , (16)

where

Lmnpq =
∂ ln(be

mn)
∂be

pq
, Bpqkl = δpkbe

ql + δqkbe
pl , Si jkl = σi jδ jk (17)

and Dalg
i jmn is the small-strain algorithmic tangent obtained from the constitutive model. This tangent is the linearisation

of the stress integration algorithm and ensures that asymptotic quadratic convergence is obtained in the global N–R
iterations [27]. The derivative of the logarithm of the elastic Cauchy–Green strain tensor with respect to its argument
is a special case of the more general formulation given by Miehe [28]. Note that all of the components of Ai jkl should
be evaluated in the spatial frame, i.e. the current deformed configuration.

In material point methods the physical domain is discretised by a number of material points. These points are
used to numerically approximate the stiffness (15) of the elements in the background mesh, essentially replacing the
conventional Gauss points (or other integration method). The key difference between material point and finite element
methods is that these integration points move relative to the background mesh rather than being directly coupled to
the positions of the background grid nodes. The stiffness contribution of a single material point to the background
mesh is

[kp] = [G]T [A][G]Vp, (18)

where Vp is the volume associated with the material point in the spatial (updated) frame

Vp = det
(
∆Fi j

)
V n

p = det
(

Fi j

)
V 0

p , (19)

where V n
p and V 0

p are the volume associated with the previously converged state and the initial configuration,
respectively. The internal force contribution of a single material point to the background mesh is

{ f p
} = [G]T

{σ }Vp. (20)

Following the work of Charlton et al. [19], the increment in the deformation gradient is obtained from

∆Fi j = δi j +
∂∆ui

∂ X̃ j
= δi j +

n∑
v=1

(∆ui )v
∂(Svp)

∂ X̃ j
, (21)

where ∆ui is the displacement increment within the current loadstep, X̃ j are the coordinates at the start of the loadstep
and n is the number of nodes that influence the material point. This allows the increment in the deformation gradient
to be obtained from derivatives of the basis functions based on the coordinates of the nodes at the start of the loadstep.
This is essential as in material point methods there is no concept of the current (deformed) nodal coordinates as
information is lost between incremental steps. Also, the basis functions for material point methods are typically only
defined on a regular background grid. The spatial derivatives of the basis functions can subsequently be calculated
using the method proposed by Charlton et al. [19], that is

∂(Svp)
∂x j

=
∂(Svp)

∂ X̃ i

∂ X̃ i

∂x j
=

∂(Svp)

∂ X̃ i

(
∆Fi j

)−1
. (22)
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It is essential that the spatial derivatives are used in strain–displacement matrix, [G], to both ensure the correct order
of convergence in the N–R process and convergence towards the correct solution based on the partial internal force
contribution, (20).

2.3. External loads & boundary conditions

The body force in (12) is approximated by

{ f p
b } = [Svp]T

{b}Vp, (23)

where {b} is the body force associated with the material point. In this paper we ignore the external tractions as
their general implementation within material points has yet to be fully clarified due to the uncertain definition of the
boundary of the physical domain.2

In this paper, Dirichlet boundary conditions are imposed directly on the background mesh in the same way as the
standard finite element method. This places some restrictions on the form of the boundary conditions that can be
applied to the material point method, which have been overcome by the recent work of Cortis et al. [29], however the
focus of this paper is on volumetric locking rather than general boundary condition imposition.

2.4. Basis functions

We assume that the background finite element grid consists of regular two-dimensional bi-linear quadrilateral
or three-dimensional tri-linear hexahedral elements with their edges aligned with the global Cartesian coordinates.
In [19] an implicit formulation of the generalised interpolation material point method was presented where the basis
functions were defined locally over each element. Here we follow a different approach and define the basis functions
based on the global positions of the background grid nodes and the material points.

The basis functions for standard and generalised interpolation material point methods can be expressed as

Svp =
1

V n
p

∫
Ωp

χp Nv(X̃ p)dx, (24)

where Ωp is the influence domain associated with the material point, χp is the characteristic function associated
with the material point, V n

p is the volume associated with the material point at the start of the loadstep, Nv are the
underlying shape functions of the finite element grid which are dependent on the position of the material point at
the start of the loadstep, X̃ p. The basis functions provided below assume a regular background grid aligned with the
Cartesian coordinates (four noded quadrilaterals in two-dimensions and eight noded hexahedra in three-dimensions).
The functions are presented in one-dimension, the extension to 2D or 3D being obtained through the product of the
shape functions in each direction. The one-dimensional gradients of the basis functions are obtained through

∇X̃ Svp =
1

V n
p

∫
Ωp

χp∇X̃ Nv(X̃ p)dx . (25)

2.4.1. Standard interpolation
The basis functions for the standard material point method are obtained by replacing the characteristic function,

χp, with a Dirac delta function, giving

Svp = 1 + (X̃ p − X̃v)/h −h < X̃ p − X̃v ≤ 0

Svp = 1 − (X̃ p − X̃v)/h 0 < X̃ p − X̃v ≤ h,
(26)

where h is the size of the background grid (distance between the nodes in each direction) and X̃v is the position of the
node (or vertex) associated with the basis function. The gradients of the basis functions with respect to the material
point position at the start of the loadstep are

∇X̃ Svp = 1/h −h < X̃ p − X̃v ≤ 0

∇X̃ Svp = −1/h 0 < X̃ p − X̃v ≤ h.
(27)

2 Note that in domain-based material point methods (GIMP, CPDI1, CPDI2) it is possible to specify surface tractions on the outer boundaries of
the material point domains.
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Fig. 1. Generalised interpolation basis functions (top) and standard finite element (FE) shape functions (bottom), where the numbers are associated
with the grid nodes and the letters with the different conditions in (28).

2.4.2. Generalised interpolation
The particular form of the generalised interpolation material point method adopted in this paper assumes a unity

hat function of length 2lp centred on X̃ p as the characteristic function. This results in the following basis functions

A : Svp =
(h + lp + X̃ p − X̃v)2

4hlp
−h − lp < X̃ p − X̃v ≤ −h + lp

B : Svp = 1 +
X̃ p − X̃v

h
−h + lp < X̃ p − X̃v ≤ −lp

C : Svp = 1 −
(X̃ p − X̃v)2

+ l2
p

2hlp
−lp < X̃ p − X̃v ≤ lp

D : Svp = 1 −
X̃ p − X̃v

h
lp < X̃ p − X̃v ≤ h − lp

E : Svp =
(h + lp − X̃ p + X̃v)2

4hlp
h − lp < X̃ p − X̃v ≤ h + lp.

(28)

These one-dimensional generalised interpolation basis functions are shown in Fig. 1 for node 2 where the A through
E regions correspond to the five conditions in (28). In regions B and D, the generalised interpolation functions are the
same as the conventional finite element functions, as the material point’s influence domain lies entirely within the finite
element. The basis functions in regions A, C and E (grey regions in the top figure) depart from the conventional finite
element functions due to the material point domain overlapping multiple elements. The one-dimensional gradients of
the basis functions with respect to the material point position at the start of the loadstep are

∇X̃ Svp =
(h + lp + X̃ p − X̃v)

2hlp
−h − lp < X̃ p − X̃v ≤ −h + lp

∇X̃ Svp = 1/h −h + lp < X̃ p − X̃v ≤ −lp

∇X̃ Svp = −
(X̃ p − X̃v)

hlp
−lp < X̃ p − X̃v ≤ lp

∇X̃ Svp = −1/h lp < X̃ p − X̃v ≤ h − lp

∇X̃ Svp = −
(h + lp − X̃ p + X̃v)

2hlp
h − lp < X̃ p − X̃v ≤ h + lp.

(29)

As with the basis functions in (28), when a material point’s domain lies entirely within a finite element the gradient
of the basis functions equals that of the standard finite element functions.
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2.5. Material point & domain updating

At the end of each loadstep the material point positions, volumes and (if appropriate) domain half-lengths, lp,
should be updated. The updated positions of the material points at the end of the loadstep are given by

(x p)i = (X̃ p)i +

n∑
v=1

(Svp)(∆ui )v  
(∆u p)i

, (30)

where (∆u p)i is the displacement of the material point over the loadstep. The volumes of the material points are
updated according to (19).

In generalised interpolation methods it is necessary to update the size of the material point influence domains
(which then control the volume associated with the material point). Previously it has been proposed to use the
deformation gradient for this update, however problems arise when the rotational component of the deformation
gradient is non-zero.3 Following the approach of Charlton et al. [19], the domain half-lengths, lp, are updated
according to the symmetric material stretch, Ui j , defined as

Ui j =
√

Fki Fk j where Fi j = RikUk j (31)

and Ri j is the rotational component of the deformation gradient. It should be clear from the above equation that the
material stretch tensor is equivalent to the deformation gradient rotated back into the original reference coordinates.
The material point domains are updated according to

(lp)i = (lp0 )iUi i , (32)

where no summation is implied on the repeated index; Ui i simply indicates the diagonal components of Ui j .

2.6. Computational procedure

In the previous sub-section an implicit quasi-static large deformation elasto-plastic formulation of the material
point method has been described. The steps in the implemented algorithm are concisely summarised below.

The applied body forces and/or tractions are split into a number of loadsteps and for each of these steps the
following process is adopted:

1. calculate the stiffness contribution, [k p], of all of the material points using (18) and assemble the individual
contribution of each material point into the global stiffness matrix, [K ];

2. calculate the internal force contribution, { f p
}, of all of the material points using (20) and assemble the

contributions into the global internal force vector, { f R
}, in (12);

3. increment the external tractions and/or body forces in (12) and solve for the nodal displacements within a
loadstep, using the N–R process (13) until the out-of-balance force converges within a specified tolerance;

4. the material point positions, volumes and domain lengths can then be updated through interpolation from the
incremental nodal displacements, deformation gradient and stretch tensor using (30), (19) and (32); and

5. reset or replace the background grid.

In this paper we reset the background grid after each loadstep to the original regular background grid. However, at
step 5 the grid can be replaced by a completely new grid if required.

3. Volumetric locking

Fully integrated finite element methods for stress analysis suffer from volumetric locking when the constitutive
behaviour of the integration points is near-incompressible (isochoric flow plasticity, for example) leading to an over-
stiff response. For higher-order finite elements one way to mitigate this issue is to use reduced integration, however

3 Essentially material point domains spuriously vanish with large rotational deformation; see [19] and the numerical examples contained within
for a detailed explanation.
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it is not possible to adopt this approach for linear quadrilateral and hexahedral elements without introducing spurious
energy modes (such as hour-glassing). Material point methods usually adopt these low order elements and suffer from
severe volumetric locking due to the low order of basis of the background grid combined with the higher numbers of
material points required to ensure sufficient accuracy of the stiffness integration due to their non-optimum placement
(compared to a Gauss quadrature rule, for example).

One method for overcoming volumetric locking in low-order finite elements is the F̄ approach of de Souza Neto
et al. [12], where the volumetric and deviatoric components of the deformation gradient are sampled at different
locations. The deformation gradient becomes

F̄i j =

(
det(F0

i j )

det(Fi j )

)1/nD

Fi j , (33)

where nD is the number of physical dimensions and F0
i j is the deformation gradient obtained from the deformation

field at the centre of the element. Therefore the volumetric component of the deformation gradient for all of the
Gauss points within an element is obtained from a single point and this relaxes the volumetric constraint on the
element when the material behaviour is near incompressible. However, the location of the volumetric sampling point
is rather arbitrary and is not restricted to be at the centre of the element [15], what is essential is to reduce the
volumetric constraint on the element in order to mitigate volumetric locking. This approach appears to be similar to
the concept of selective reduced integration where the shear and/or volumetric strains are evaluated at the mid point
of the element through appropriate modification of the strain–displacement matrix. In the case of an element with a
linear basis, the centre is the obvious location for the volumetric sampling point as this corresponds to the location of
a single point Gauss quadrature scheme which is an order lower than the standard 2 point per local direction scheme
used to integrate the element. In material point methods the hierarchical numerical integration structure is lost and
therefore the appropriate location for the volumetric sampling point is less obvious. Despite the perceived similarity
with selective reduced integration, in the same way that the F̄ approach cannot be seen as a geometrically non-linear
extension to B̄ methods [7], the F̄ approach is fundamentally different to selective reduced integration. In particular,
selective reduced integration and B̄ methods directly modify the strain–displacement matrix (effectively modifying
the strain energy function), and use this revised strain–displacement matrix in the calculation of the internal force
and stiffness of the elements. In the F̄ approach the calculation of the deformation gradient is modified (changing the
stress constitutive function) and the appropriate spatial tangent formulated due to this change. See Section 15.1 of [15]
for a detailed discussion of this point. Despite their technical differences, all of the approaches share the common goal
of reducing the volumetric constraint placed on an element and avoiding locking.

In this paper we adopt the F̄ approach [12] to mitigate the issue of volumetric locking and make it applicable
to both standard and generalised interpolation material point methods. The F̄ approach has been adopted for the
following reasons:

1. it does not introduce any additional unknowns into the linear system;
2. it is straightforward to implement within existing material point formulations;
3. it does not place any restriction on the choice of constitutive model;
4. it does not introduce any tuning parameters into the code; and
5. it does not introduce any additional material points to track the volumetric behaviour.

3.1. Deformation gradient

Here we adopt the incremental equivalent of (33), giving the F̄ deformation gradient increment as

∆F̄i j =

(
det(∆F0

i j )

det(∆Fi j )

)1/nD

∆Fi j , (34)

where ∆F0
i j is the volumetric component of the deformation gradient increment. It is straightforward to modify the

standard material point method by replacing ∆Fi j with ∆F̄i j in the finite deformation formulation presented in
Section 2.1. This is because the shape functions are directly adopted from the finite element basis. However, it is
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more appropriate to use the geometric centre of the material points located within a given finite element rather than
the centre of the element. This is due to two key reasons:

1. when a single material point is used to integrate the background grid cell the F̄ deformation gradient, (34),
equals the standard deformation gradient; and

2. when a background grid cell is only partially filled with material points the volumetric behaviour is centred on
the physical region.

The increment in the deformation gradient used to approximate the volumetric behaviour can be obtained from (21)
with the derivatives of Svp evaluated at the appropriate position within the background element.

3.2. F̄ for generalised MPMs

While extending the standard MPM to a F̄ formulation is straightforward, the extension of generalised interpolation
material point methods to overcome volumetric locking is less obvious. The basic concept is that, consistent with the
F̄ approach [12], the volumetric behaviour of each background grid cell is spatially constant and controlled by the
basis functions (and derivatives) at the centre of the element. The shape functions of a generalised interpolation
point are then obtained through the convolution of these basis functions with the particle characteristic function as
in the standard generalised interpolation method. However, this does not imply that the material points contributing
to each element have the same volumetric behaviour as each point is influenced by the elements which they overlap.
Essentially the volumetric behaviour of a generalised interpolation material point will be dictated by a domain-overlap
weighted contribution from the background elements.

Assuming that the element basis functions take the value at the centre of the element (Ni = 1/2 for linear elements
in one dimension) across the entire element and that the characteristic function, χp, remains a unity hat function of
width 2lp, the one-dimensional generalised interpolation shape functions become

S0
vp =

1
V n

p

∫
Ωp

1
2

dx, (35)

which gives three conditions

A : S0
vp = (h + lp + X̃ p − X̃v)/4lp −h − lp < X̃ p − X̃v ≤ −h + lp

B : S0
vp = 1/2 −h + lp < X̃ p − X̃v ≤ h − lp

C : S0
vp = (h + lp − X̃ p + X̃v)/4lp h − lp < X̃ p − X̃v ≤ h + lp.

(36)

These basis functions are shown in Fig. 2 along with the corresponding finite element functions. Conditions A and C
(grey regions in Fig. 2) apply where the material point’s domain partially overlaps the non-zero basis function region,
whereas B applies when the material point’s domain fully overlaps the non-zero basis.

The one dimensional derivatives of the generalised interpolation shape functions are unchanged as they are already
constant within each background element. The derivatives in multiple dimensions come from the product of (36) with
the conventional derivatives (29), for example in two-dimensions

∂S0
vp(X̃ , Ỹ )

∂ X̃
=

∂Svp(X̃ )

∂ X̃
S0

vp(Ỹ ). (37)

Note that when constructing the spatial derivatives of the modified basis functions it is essential to use ∆F0
i j to map

(36) into the spatial frame, that is

∂(S0
vp)

∂x j
=

∂(S0
vp)

∂ X̃ i

(
∆F0

i j

)−1
. (38)

3.3. Linearisation: modified stiffness

Modifying the volumetric component of the deformation gradient results in an additional term in the stiffness
contribution of each material point to the background grid. The F̄ stiffness of a material point for three-dimensional
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Fig. 2. F̄ generalised interpolation basis functions (top) and shape functions sampled at the centre of the element (bottom), where the numbers are
associated with the grid nodes and the letters with the different conditions in (36).

analysis becomes

[k̄p] = [kp] + [G]T
(

1
3

{
[A]{1} − 2{σ }

}
{1}

T
)(

[G0] − [G]
)

Vp, (39)

where [kp] is given by (18), [G0] is the tensorial strain–displacement matrix associated with the volumetric component
of the deformation gradient increment, ∆F0

i j , and {1} = {1 1 1 0 0 0 0 0 0}
T is a 9 by 1 vector form of

δi j . For two-dimensional plane strain analysis the stiffness of a material point is

[k̄p] = [kp] + [G]T
(

1
2

{
[A]{1} − {σ }

}
{1}

T
)(

[G0] − [G]
)

Vp, (40)

where {1} = {1 1 0 0}
T . The remainder of the material point method remains unchanged.

Note that Vp, the current volume associated with the material points is the equivalent to det(∂xi/∂ξ j )wi in
conventional finite element methods where wi is the weight (or local volume) associated with the integration point, ξi
are the local coordinates and ∂xi/∂ξ j is the Jacobian. This Jacobian is obtained at the integration point position using
the basis function gradients at that location and is not modified by the F̄ approach. Therefore, the volume used in the
stiffness calculation should be obtained from (19) using the original increment in the deformation gradient, ∆Fi j , not
the F̄ modified increment, ∆F̄i j .

4. Numerical examples

This section presents five numerical examples to demonstrate the performance of the proposed material point
formulations. All cases adopt a linear-elastic perfectly-plastic associated flow von Mises model (also known as
Prandtl–Reuss) with the following yield surface

f = ρ − ρy = 0, (41)

where ρy is the yield strength of the material and ρ =
√

2J2 where J2 =
1
2 (si j s j i ) and si j = σi j − σkkδi j/3.

In this paper we adopt the exact stress integration approach of Wei et al. [30]4 which includes the derivation of the
algorithmically consistent tangent, [Dalg], to ensure the correct order of convergence of the global Newton–Raphson
process. Although exact stress integration routines are generally considered to be too computationally expensive for
routine numerical analysis [32], the stress integration routine removes the errors associated with the stress updating
process allowing better quantification of the errors associated with the boundary value solver.

4 Note that exact stress integration on the Prandtl–Reuss model was first formulated by Krieg and Krieg [31], in this paper we adopt the approach
of Wei et al. [30] as they were the first to linearise the algorithm to obtain the consistent tangent matrix.
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Fig. 3. Compression under self weight: stress versus vertical position for 24 elements and 4 material points per element.

4.1. Compression under self weight

The first example is an elasto-plastic column compressed under its own weight. The column had a height of
l0 = 50 m and a width of 2 m and was analysed with a plane strain assumption in the third direction. The base
of the column was restrained vertically and both sides of the column were restrained in the horizontal direction. The
column had a Young’s modulus of 1 MPa and Poisson’s ratio of 0, the yield strength of the material was set to 20 kPa
and an initial density of ϱ0 = 80 kg/m3. The body force of −800 N/m3 was applied in the vertical (Z , z) direction
over 50 equal loadsteps.

The analytical solution for the vertical Cauchy stress is

σzz = ϱ0g(l0 − Z ), (42)

where g is the gravitational acceleration (taken to be 10 m/s2), l0 is the initial height of the column and Z is the initial
vertical position within the column. If Poisson’s ratio is zero the stress in the horizontal directions is equal to zero
when the behaviour is elastic. Once the material yields, the Cauchy stress in the horizontal direction is given by

σxx = σyy =
1

Fzz
E ln(Fe

xx ), (43)

where the vertical deformation gradient, Fzz , and the elastic component of the deformation gradient in the horizontal
direction, Fe

xx , can be obtained using the method presented in Charlton et al. [19].
Fig. 3 shows the stress versus deformed vertical position response for the F̄ generalised interpolation material

point method where the analysis was conducted on a background grid with 16 elements in the vertical direction and 4
material points per initial background grid element. The numerical result (discrete points) shows good agreement with
the analytical solution (solid black line) for both the vertical and horizontal stresses. The material points undergoing
elasto-plastic behaviour are identified by the non-zero horizontal stress and the grey shaded region. The response for
the F̄ standard material point method with the same discretisation is also given (solid grey line), which demonstrates
the spurious stress oscillations caused by cell-crossing instabilities in the standard material point method. Fig. 3 only
shows the F̄ responses of the standard and generalised interpolation material point methods. However, as this problem
does not exhibit volumetric locking, it is not possible to distinguish between the non-F̄ and the F̄ formulations on
this figure and therefore the non-F̄ results have been omitted.

The convergence of the F̄ generalised interpolation method is shown in Fig. 4, where the dimensionless error is
defined as

error =

n p∑
p=1

∥(σp)zz − σ a
zz(Z p)∥ V 0

p

(ρ0gl0)V0
, (44)
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Fig. 4. Compression under self weight: convergence of the F̄ generalised interpolation formulation for (i) elastic and (ii) elasto-plastic material
behaviour.

where ∥(·)∥ is the L2 norm of (·), n p is the total number of material points, (σp)zz is the Cauchy stress in the vertical
direction at a material point, Z p is the material point’s original position, V 0

p is the original volume associated with the
material point and σ a

zz is the analytical stress solution in the vertical direction, given by (42). The denominator of (44)
is the product of the vertical stress at the base of the column multiplied by the column’s original volume, V0.

Fig. 4(i) shows the convergence behaviour of the F̄ generalised interpolation material point method under purely
elastic behaviour (same material parameters and loading as above but with ρy = ∞) compared to that of fully-
integrated bi-linear 4 noded and bi-quadratic 8 noded quadrilateral elements. As reported by Charlton et al. [19],
the error and convergence rate of the F̄ generalised interpolation material point method lies between that of linear
and quadratic finite elements. This is due to the basis functions being linear or quadratic depending if the material
point is fully contained within a single element or spanning between multiple elements (see Eq. (28)). There is little
difference seen in the convergence rates of the F̄ generalised interpolation approach with 4 or 9 material points per
initial background grid cell.

Fig. 4(ii) shows the convergence behaviour of the F̄ standard and generalised interpolation material point methods
with elasto-plastic material behaviour. Although the standard material point method converges for low numbers of
elements, as the number of elements in the vertical direction exceeds 8 (h = 6.25 m) the convergence stagnates
due to cell-crossing errors. This error is reduced by the generalised interpolation material point method which
continues to converge at a rate between linear and quadratic finite elements; the average convergence rate over the
four finest discretisations is approximately 1.3. As before, Fig. 4 only shows the F̄ convergence behaviour of the
standard and generalised interpolation material point methods. As this problem does not exhibit volumetric locking,
the convergence behaviour of the non-F̄ formulations are the same as their F̄ counterparts in this case. Volumetric
locking is not observed in this problem due to the simplicity of the deformation field. The deformation in each
background grid cell is zero in the x and y directions and linear or quadratic in the z direction for the standard
and generalised interpolation material point methods, respectively. The simplicity of this deformation field allows the
standard formulations to capture the volumetric behaviour without locking, with the background grid nodes deforming
in the vertical direction corresponding to the volumetric behaviour of their associated material points. This is not the
case for the other numerical examples that follow.

4.2. Double notched plate

The second example is the analysis of the plane strain stretching of a double-notched plate. The problem was
initially presented by Nagtegaal et al. [33] for small strain plasticity to demonstrate the spurious response of standard
finite elements and was subsequently re-analysed in a number of papers [8,12,34]. In this analysis the plate had a
Young’s modulus of 206.9 GPa, Poisson’s ratio of 0.29 and a yield stress of ρy = 0.45 GPa. Nagtegaal et al. [33]
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Fig. 5. Double notched plate: force displacement response for the generalised interpolation material point method with three different background
grids.

provided the small strain analytical limit load, controlled by the stress at the notch σlim ≈ 2.97σy . The specimen had
a total height and width of 30 mm and 10 mm respectively, with a 2 mm unit linking ligament at mid height. For this
geometry the small strain limit load is Flim ≈ 2.673 kN.

In the numerical analysis, due to symmetry only one quarter of the specimen was discretised, as shown in the middle
figure of Fig. 5. A displacement of 0.2 mm was applied in 80 equal displacement-controlled increments. The material
points for the generalised interpolation method with 4 material points per element are shown on the background grid
to the right of Fig. 5. Roller boundary conditions were applied to the left edge of the domain and the first 1 mm of
the base of the background grid. To impose the prescribed displacement on the top of the specimen the background
mesh was extended by 2 mm at the top of the sample (shown by the dark grey shaded region) and a rigid body vertical
displacement imposed on this region. The physical domain was also extended by 1 mm into this region.

Fig. 5 shows the force versus displacement response of both the standard generalised interpolation (grey lines)
and F̄ generalised interpolation (black lines) material point methods for three different discretisations (h = 1 mm,
h = 0.5 mm and h = 0.25 mm). In all cases the standard generalised interpolation method predicts an over-stiff
response due to volumetric locking induced by the isochoric flow rule. This is particularly evident for the h = 1 mm
and h = 0.5 mm meshes where a limit load is not reached. The F̄ approach removes this volumetric locking behaviour
and the resulting material point method response under predicts the small strain limit load of [33] due to the finite
deformation mechanics accounting for the necking of the linking ligament. A four noded quadrilateral F̄ finite element
response with h = 0.25 mm is also shown in Fig. 5 (thick grey dashed line) which agrees well with the F̄ generalised
interpolation response; 0.14% difference in the peak force.

Fig. 6 shows the force versus displacement response for h = 1 mm for (i) generalised interpolation and (ii) standard
material point methods with different numbers of material points per element in the initial discretisation. In Fig. 6(i) all
of the conventional generalised interpolation responses over-predict the external force and, as expected, the external
force increases as the number of material points is increased due to increasing the number of constraints placed on
the volumetric behaviour of the elements. The F̄ generalised interpolation force versus displacement responses are
very similar for 4, 9 and 16 material points per element. The force does increase slightly as increasing the number of
material points reduces the integration errors associated with the numerical approximation of the internal force. As
before, the F̄ generalised interpolation response agrees well with the finite element response (thick dashed grey line)
and all of the responses are below the small strain limit load. The two inset figures show the F̄ deformed material
points at the end of the analysis for 4 and 16 material points per element. The generalised interpolation domains have
been scaled by 0.8 for clarity between adjacent points.

Fig. 6(ii) gives the force versus displacement response of the standard material point (grey lines) and the F̄ material
point (black lines) methods. For a single material point per element both simulations under-predict the limit load and
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Fig. 6. Double notched plate: force displacement response with h = 1mm and different numbers of material points per element for: (i) generalised
interpolation and (ii) standard material point methods (where the displacement has been truncated for clarity).

Table 1
Double notched plate convergence: normalised out of balance force for F̄ generalised interpolation with h = 1 mm and 4 material points per
element for loadsteps 76 through 80.

NRit Loadstep

76 77 78 79 80

1 5.231×10−02 5.728×10−02 5.226×10−02 5.844×10−02 5.294×10−02

2 4.388×10−03 6.177×10−03 6.090×10−03 6.345×10−03 5.725×10−03

3 6.653×10−05 6.404×10−04 4.501×10−04 3.582×10−04 3.801×10−04

4 2.173×10−09 2.286×10−05 5.175×10−05 7.387×10−06 2.022×10−07

5 – 1.513×10−10 1.795×10−09 1.596×10−11 –

are very similar in their overall response. As the number of material points per element is increased to 4, volumetric
locking is observed in the standard material point method whereas the F̄ approach reaches a limit load similar to
that of the finite element method (shown by the thick grey dashed line). Note that the standard material point method
provides a reasonable response in this case due to the relatively small displacements in the problem.

The convergence rate of the F̄ generalised interpolation approach is demonstrated in Table 1 with h = 1 mm and
4 material points per initial background grid element for loadsteps 76 through 80. The tolerance on the normalised
out of balance force was set to 1 × 10−6, where the residual L2 norm was normalised by the L2 norm of the external
reactions. It is clear from the table that the algorithm achieves an asymptotic quadratic convergence rate, with the
final iteration in each loadstep being at (or near quadratic), thereby confirming the correct implementation of the
generalised interpolation F̄ method.

4.3. Elasto-plastic collapse

The next analysis presented in this paper is the collapse of a 16 m by 8 m plane strain block under self weight. A
background grid with h = 1 m in two directions was adopted and the domain was discretised by 9 material points per
initial background grid element (l0

p =
1
3 m in both directions). Due to symmetry only half of the body was modelled

and roller boundary conditions were imposed directly on the background mesh on the base and the line of symmetry
(see Fig. 7). The body had a Young’s modulus of 100 kPa, Poisson’s ratio of 0.3 and a yield stress of σy = 15 kPa and
was subjected to a body force of −625 N/m3 over 20 equal loadsteps. Although there is no analytical solution for this
problem, it serves as a useful demonstration of the ability of the proposed formulation to be used for the type of very
large deformation problems to which material point methods are typically applied.
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Fig. 7. 2D collapse: problem definition and initial discretisation.

Fig. 8 shows final positions of the material point domains for both the standard and F̄ generalised interpolation
methods. The F̄ method also experiences slightly higher displacements, particularly on the top surface of the
deforming body. The domains have been coloured according to the material points’ vertical, σyy (top), and horizontal,
σxx (middle), stresses. The F̄ method reduces the stress oscillations seen in the standard material point method by
relaxing the volumetric constraint on the deformation of the background finite elements. This is most evident in the
plot of the hydrostatic stress, p = σi i/3, at the bottom of Fig. 8, where the spurious stress oscillations are removed by
the F̄ approach. The susceptibility of material point methods to spurious stress oscillations is more clearly shown in
the next section.

4.4. Plane strain localisation

The penultimate analysis presented in this paper is the plane strain localisation of a body of half-width 6.413 mm
and half-height of 26.667 mm. The body was discretised using 1600 generalised interpolation material points (16 MPs
per background grid cell) and the background elements were arranged in a regular grid with lengths in the x and y
directions of 1.283 mm and 1.333 mm, respectively. The initial layout of the material points and the background grid
are shown in Fig. 9(i). The material had a Young’s modulus of 41.3 GPa and a Poisson’s ratio of 0.29 and a von Mises
yield strength of ρy = 0.45 GPa. In order to trigger the localisation, 16 material points within the outermost mid
height element had their yield strengths reduced by 10% (as shown by the dark grey shaded region in Fig. 9(i)). The
top edge of the specimen was subjected to a displacement of 0.64 mm over 10 loadsteps via direct imposition of the
displacements on the background grid.

Fig. 9(ii) and (iii) show the vertical, σyy , stress distribution and the deformed material point domains at the end of
the analysis. Even for the small imposed deformation, the standard generalised interpolation material point method
clearly shows spurious stress oscillations due to volumetric locking which are mitigated by the F̄ approach. The stress
patches seen in Fig. 9(iii) are due to the linear basis of the background finite element mesh and the stress concentration
on the top right corner of the domain, highlighted by the circle A, is due to the nature of the imposed boundary
condition, restricting x and specifying y motion, respectively.

4.5. Three-dimensional rigid footing

The final example presented in this paper is that of smooth square rigid footing bearing onto a weightless three-
dimensional domain. Due to symmetry only a quarter of the physical problem was modelled and the footing had a
half width of 0.5 m and the simulated domain was 5 m in length in each direction. The same material properties were
adopted as de Souza Neto et al. [15] for their plane strain analysis of a rigid footing: Young’s modulus of 10 GPa,
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Fig. 8. 2D collapse: deformed material point domains coloured according to their vertical, σyy (top), horizontal, σxx (middle), and hydrostatic,
p = σi i /3 (bottom), stresses for the standard and F̄ generalised interpolation material point methods.

Poisson’s ratio of 0.48 and von Mises yield strength of ρy = 693 kPa. The smooth footing5 was displaced vertically
(z-direction) by 0.002 m over 200 loadsteps and roller boundary conditions were imposed on the sides and the base
of the domain. All of the boundary conditions were imposed using the implicit boundary method of Cortis et al. [29].
A relatively coarse regular background grid of tri-linear hexahedral elements with h = 0.2 m was used to analyse the
problem and the physical domain was discretised using 8 standard material points per background grid cell (125,000
material points in total).

The force versus displacement response for the standard and F̄ material point methods are shown in Fig. 10.
The standard formulation locks and predicts an over-stiff response whereas the F̄ formulation reaches limit load,
as expected for this type of analysis. Due to the small imposed displacement, material points do not cross between
background grid cells and both formulations give a smooth response.

The minor principal (most compressive) stress distribution at the end of the analysis for the two formulations are
shown in Fig. 11. As with the previous examples, the standard material point formulation contains spurious stress

5 The term “smooth” is used to denote that the material if free to translate horizontally beneath the footing, only the vertical displacement is
specified.
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Fig. 9. 2D localisation: (i) initial discretisation and deformed material point positions shaded according to their vertical stress for: (ii) generalised
interpolation and (iii) F̄ generalised interpolation formulations.

Fig. 10. 3D footing: force displacement response for standard and F̄ MPMs.
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Fig. 11. 3D footing: minor principal stress for (i) standard and (ii) F̄ MPMs. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

oscillations caused by volumetric locking. In particular, the column of material points underneath the footing oscillate
between tensile and compressive stress states. The F̄ formulation stress distribution shown in Fig. 11(ii) demonstrates
the correct compressive region underneath the footing, as shown by the blue-shaded particles.

5. Conclusions

Material point methods typically use a low order background grid for numerical computation with high numbers of
material points per grid cell to combat the errors induced by non-optimum placement of integration points. Combining
this with near-incompressible material behaviour (such as isochoric flow plasticity models) leads to severe volumetric
locking and an over-stiff global response.

This paper has presented for the first time a general method to overcome volumetric locking in both standard and
generalised interpolation material point methods for near-incompressible non-linear solid mechanics. The method
does not place any restriction on the form of constitutive model used and is straightforward to implement into existing
implicit material point method codes.

The performance of the method has been demonstrated on a number of two and three-dimensional examples and
its correct implementation confirmed through convergence studies validated against analytical solutions and obtaining
the correct order of convergence within the global N–R equilibrium iterations. In particular, the proposed formulation
has been shown to remove the over-stiff volumetric behaviour of conventional material point methods and reduce
stress oscillations.

In the standard material point formulation the volumetric sampling point for the F̄ approach has been taken as the
geometric centre of the material points in each element rather than the centre of the background grid cell. Although the
position of the volumetric sampling point will change the results, it has been found that the location of the volumetric
sampling point has little influence on the global response. The key point on reducing volumetric locking in linear
background grid material point methods is lowering the volumetric constraint placed on the background grid cells such
that the volumetric behaviour is only sampled at a single point. For a given analysis there may be an optimum location
for this volumetric sampling point, however this paper has proposed a general methodology to avoid volumetric
locking whilst not introducing any special cases in the numerics.

It is straightforward to extend this approach to other material point methods. For example, in CPDI1 [35] and
CPDI2 [36] the basis functions (and their derivatives) are obtained by sampling the finite element basis functions at
the vertices of the material point domains and then assuming linear interpolation between these values to integrate
over the domain. Here, in a similar way to the generalised interpolation approach presented in this paper, one would
simply replace the standard basis functions with the value at the centre of the element. Therefore the F̄ approach for
overcoming volumetric locking presented in this paper is applicable to all material point formulations available in the
current literature. It would also be possible to apply the method to other material point methods that use non-standard
basis functions. For example, the mesh-grading of Lian et al. [37], which allows for hanging nodes within the material
point method by modifying the finite element basis, could adopt the proposed F̄ approach through selective volumetric
sampling of the modified basis functions.
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[12] E. de Souza Neto, D. Perić, M. Dutko, D.R.J. Owen, Design of simple low order finite elements for large strain analysis of nearly

incompressible solids, Int. J. Solids Struct. 33 (1996) 3277–3296.
[13] E. de Souza Neto, F.M.A. Pires, D.R.J. Owen, F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible

solids. Part I: formulation and benchmarking, Internat. J. Numer. Methods Engrg. 62 (3) (2005) 353–383.
[14] S. Doll, K. Schweizerhof, R. Hauptmann, C. Freischläger, On volumetric locking of low-order solid and solid-shell elements for finite

elastoviscoplastic deformations and selective reduced integration, Eng. Comput. 17 (7) (2000) 874–902.
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