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Abstract 

Unravelling the long-term evolution of the subglacial landscape of Antarctica is vital for 

understanding past ice sheet dynamics and stability, particularly in marine-based sectors of 

the ice sheet. Here, we model the evolution of the bedrock topography beneath the 

Recovery catchment, a sector of the East Antarctic Ice Sheet characterized by fast-flowing 

ice streams that occupy overdeepened subglacial troughs. We use 3D flexural models to 

quantify the effect of erosional unloading and mechanical unloading associated with motion 

on border faults in driving isostatic bedrock uplift of the Shackleton Range and Theron 

Mountains, which are flanked by the Recovery, Slessor and Bailey ice streams. Inverse 

spectral (free-air admittance) and forward modeling of topography and gravity anomaly data 

allow us to constrain the effective elastic thickness of the lithosphere (Te) in the Shackleton 

Range region to ~20 km. Our models indicate that glacial erosion, and the associated 

isostatic rebound, has driven 40–50% of total peak uplift in the Shackleton Range and 

Theron Mountains. A further 40–50% can be attributed to motion on normal fault systems of 

inferred Jurassic and Cretaceous age. Our results indicate that the flexural effects of glacial 

erosion play a key role in mountain uplift along the East Antarctic margin, augmenting 

previous findings in the Transantarctic Mountains. The results suggest that at 34 Ma, the 

mountains were lower and the bounding valley floors were close to sea-level, which implies 

that the early ice sheet in this region may have been relatively stable. 

1. Introduction  

Antarctica’s bedrock topography is an important boundary condition that influences the 

dynamics of the overlying ice sheet [Gasson et al., 2015]. In particular, Antarctic ice sheet 

stability in regions proximal to the grounding line is heavily dependent on the local ice 

thickness and bedrock elevation and slope [Pollard et al., 2015]. Near-coastal regions of 

Antarctica where the ice sheet is marine-based (i.e. the bed is below present-day sea-level) 

are particularly susceptible to rapid grounding line retreat via marine ice sheet instability 

[Schoof, 2007] and calving mechanisms such as hydrofracturing and ice cliff failure [Pollard 

et al., 2015]. 

The Recovery catchment in East Antarctica is located on the eastern margin of the Weddell 

Sea (Figure 1). It is one of the largest and yet least explored marine-based sectors of the 

East Antarctic Ice Sheet (EAIS) that may be susceptible to such instability mechanisms [Le 

Brocq et al., 2008]. The area of the catchment is 1.5 million km2; it drains ~10% of the EAIS 

and contains ~5 m of sea-level equivalent, which is approximately equivalent to the entire 

West Antarctic Ice Sheet [Rignot et al., 2008]. The regional ice velocity field shows that ice 

flow in the catchment is focussed through three major outlet glaciers - Recovery, Slessor 
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and Bailey - where velocities reach almost 1000 m/yr at the grounding line [Rignot et al., 

2011]. These glaciers are the major arteries that drain the EAIS into the Filchner Ice Shelf 

(Figure 1).  

Situated between these outlet glaciers are the Shackleton Range and Theron Mountains, 

over which ice velocities are less than 10 m/yr. The strong bimodality in the ice velocity field 

is reflected in, and caused by, the bedrock topography (Figure 1). The summits of the 

Shackleton Range and Theron Mountains protrude above the EAIS as nunataks at up to 1.8 

km above sea-level, while the bed at the floor of the Recovery, Slessor and Bailey troughs is 

as deep as 2.5 km below sea-level; the ice thickness in these glaciers exceeds 3 km 

[Fretwell et al., 2013]. The troughs trend E–W, and are 300–500 km long and 50–100 km 

wide. This fjord-like landscape renders the Recovery catchment particularly susceptible to 

ice sheet retreat in a warming world [DeConto and Pollard, 2016]. However, if the subglacial 

landscape has evolved significantly in the past 34 Ma, the response of this sector to climatic 

and oceanic change in the past may have been very different compared to that of its modern 

configuration. 

The timing and mechanism(s) responsible for the uplift of the Shackleton Range and Theron 

Mountains and the subsidence of the Recovery, Slessor and Bailey troughs remain 

outstanding questions. Apatite fission track (AFT) and (U–Th)/He dating indicate multiple 

phases of denudation and burial of the Shackleton Range in the Mesozoic before final uplift 

and formation of the present landscape since EAIS inception at 34 Ma [Krohne et al., 2016]. 

Previous studies have suggested that the uplift of the mountain ranges and subsidence of 

the troughs are inherently coupled. Sugden et al. [2014] hypothesise that post-Eocene uplift 

of the Shackleton Range was driven by the regional isostatic response to glacial 

overdeepening and erosion within the Recovery and Slessor troughs. Furthermore, they 

speculate that the observed tilt of the Shackleton block, with the highest elevations along the 

southern escarpment (Figure 2, 3), occurred because excavation of the larger Recovery 

Trough caused more flank uplift than the smaller Slessor Trough. 

The Recovery, Slessor and Bailey glaciers likely exploited pre-existing fault systems that 

separate the metamorphic basement of the Shackleton Range [Tessensohn et al., 1999b; 

Will et al., 2009; 2010] from the Palaeozoic Beacon sediments and Jurassic dolerite sills 

exposed in the Theron Mountains and the isolated Whichaway Nunataks [Brook, 1972] 

(Figure 2). These fast-flowing glaciers are bounded by ice surface lineaments that reflect the 

trend of major subglacial fault systems (Figure 1) [Marsh, 1985]. These lineaments trend 

parallel to E–W-trending ca. 500 Ma thrust faults in the Shackleton Range [Tessensohn et 

al., 1999b], regional aeromagnetic lineaments interpreted as reflecting major basement 

faults [Jordan et al., 2016], and inferred half-graben basins upstream of the Slessor Glacier 
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[Bamber et al., 2006; Shepherd et al., 2006]. These observations support the hypothesis that 

the deep subglacial troughs are structurally controlled [Patton et al., 2016]. Jurassic 

extension and horst-and-graben formation have been recognized in the adjacent Weddell 

Sea Rift System [Jordan et al., 2016 and references therein] and also onshore, in particular 

in Dronning Maud Land where the Jurassic Jutulstraumen Rift has been imaged [Ferraccioli 

et al., 2005a,b]. The Shackleton Range and Theron Mountains may therefore represent 

fault-bounded horst blocks that experienced tectonic uplift and tilting [Skidmore and 

Clarkson, 1972]. 

The relative roles of erosion-driven and tectonic uplift in driving Shackleton Range and 

Theron Mountains uplift have yet to be quantified, in contrast to the Gamburtsev Subglacial 

Mountains (GSM) [Ferraccioli et al., 2011; Paxman et al., 2016] or the Transantarctic 

Mountains (TAM) [Stern et al., 2005], where the relative roles of these processes have been 

addressed with the aid of quantitative modeling. In this study, we use 3D flexural isostatic 

models to quantify for the first time both the mechanical unloading associated with normal 

border faults and erosional unloading associated with Cenozoic glacial incision in the 

Shackleton Range and Theron Mountains region. Our results have significant implications 

for understanding the evolution of paleotopography in this part of East Antarctica and for 

assessing how these changes in topography may have influenced the early history of the 

EAIS. 

2. Geophysical Datasets 

This study utilises bedrock elevation and free-air gravity data acquired during a number of 

recent airborne geophysical surveys over the previously unexplored Recovery catchment. 

2.1. Bedrock Topography 

We collated onshore ice thickness data from a series of recent airborne radio-echo sounding 

(RES) surveys over Coats Land and the Recovery catchment, including ICEGRAV (2013) 

[Ferraccioli et al., 2014], Operation IceBridge (2009–2012) [Leuschen et al., 2010, updated 

2016], and a 2001/2002 survey of the upper reaches of the Bailey Ice Stream and Slessor 

Glacier [Rippin et al., 2003; Bamber et al., 2006; Shepherd et al., 2006]. We also include 

direct ice thickness measurements that were previously incorporated into Bedmap2 [Fretwell 

et al., 2013] (data coverage is shown in supporting information Figure 1).  

RES profiles reveal that the Theron Mountains exhibit a lightly dissected mesa-like 

topography, whereas the Shackleton Range is more heavily incised (Figure 2). The mesas in 

the Theron Mountains resemble those observed westwards of the TAM, which are 

interpreted as the result of the Ferrar dolerite sills capping Beacon Supergroup sedimentary 
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rocks [Ferraccioli et al., 2001; 2009; Studinger et al., 2004]. Both lithologies are also present 

in the Theron Mountains [Brook, 1972], hinting at a common mode of formation. A number of 

plateau surfaces are also exposed at up to 1.8 km above sea-level in the Shackleton Range 

(Figure 2) [Skidmore and Clarkson, 1972; Kerr and Hermichen, 1999]. The plateau surfaces 

in the Shackleton Range cut different geological units; they do not reflect a stratigraphic dip 

slope, but instead are surfaces that experienced erosion and were subsequently uplifted. 

These plateaux have been interpreted as remnant fragments of the Devonian Kukri 

Peneplain, a flat, once-continuous undulating erosion surface which is extensively observed 

in the TAM [Stern and ten Brink, 1989; Fitzgerald, 1994; Tessensohn et al., 1999a]. 

We gridded the new flight line data together with the existing direct ice thickness 

measurements from Bedmap2 [Fretwell et al., 2013] using a 2 km grid mesh with a 

continuous curvature tensional spline algorithm [Wessel et al., 2013]. The grid was masked 

to remove interpolated values more than 10 km from the nearest data point. These grid 

nodes were replaced by ice thickness values from the Bedmap2 compilation; while there are 

no direct ice thickness estimates in these areas in Bedmap2, approximate ice thicknesses 

have been computed using satellite-derived gravity field models [Fretwell et al., 2013]. We 

then subtracted the ice thickness grid from the surface digital elevation model (DEM) 

[Fretwell et al., 2013] to produce a bedrock DEM (Figure 3). Offshore bathymetry data were 

taken from Bedmap2. 

We took the spectral average [see e.g. Bassett and Watts, 2015] of an ensemble of five 

profiles crossing the mountain ranges. The ensemble average enhances the 'common' 

features of the topographic profiles, such as the tilted plateau surface and the deep U-

shaped glacial troughs, while at the same time suppresses the effects of the more localized 

dissection of the plateau surface by cirques and rivers. It can be seen that the Shackleton 

Range is on average tilted by 1.2º to the north, and the Theron Mountains are tilted by 0.8º 

to the south (Figure 3).  

2.2. Free-Air Gravity Anomaly 

Our new free-air gravity anomaly (FAA) grid for the Recovery catchment (Figure 3) was 

generated from flight line data from the Operation IceBridge [Cochran and Bell, 2010, 

updated 2016] and ICEGRAV 2011 and 2013 surveys [Ferraccioli et al., 2014]. Continuation 

to 500 m above the bedrock elevation, cross-over analysis and leveling of the lines was 

performed and a satisfactory standard deviation of 1 mGal at cross-overs between 

intersecting flight tracks was achieved. Gravity data were gridded at 2 km horizontal spacing 

using a continuous curvature tensional spline algorithm [Wessel et al., 2013]. The grid was 

masked to remove interpolated values more than 10 km from the nearest data point. 
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Uncertainties in the FAA grid were estimated to be ±2 mGal. The FAA grid was used in 

conjunction with the bedrock topography grid to estimate the regional flexural rigidity of the 

lithosphere (section 3.1).  

 

3. Methods 

3.1. Effective Elastic Thickness Estimation 

The isostatic response of the lithosphere to (un)loading may be computed by modeling the 

lithosphere as a flexed elastic plate overlying an inviscid (non-viscous) fluid [Watts, 2001]. 

The amplitude and wavelength of the isostatic response is determined by the effective 

elastic thickness (Te), a proxy for the integrated strength of the lithosphere [Watts and Burov, 

2003]. We employed two independent methods to determine the appropriate Te for the 

Recovery catchment to see whether the Te values converged.  

3.1.1. 2D forward modeling 

The bedrock topography along two RES flight lines exhibits intermediate-wavelength (100–

500 km) warping characteristic of plate flexure in response to surface loading (Figure 4a,b). 

In these profiles, the Bailey Trough is downwarped towards the elevated Theron Mountains 

mesa. We envisage that this topography is largely the product of regional erosion of material 

from within the Bailey Trough and normal fault action. Unloading of the material within the 

trough is equivalent to the loading of a flat sheet by the mesa. The topography is therefore 

analogous to the loading of a seamount on the ocean floor, except the mesa displaces ice 

rather than water. We do not explicitly model the mechanism of loading; our 2D forward 

model comprised a distributed load approximating the shape of the mountain range (with a 

topographic density of 2670 kgm–3) (Figure 4a,b), which was applied to a thin elastic plate 

with a uniform Te overlying an inviscid fluid mantle (with density 3330 kgm–3) (Equation 1). 

The density of the material displaced by the load and infilling the flexure was that of ice (915 

kgm–3). We modeled the topography for a series of Te values between 10 and 50 km. The 

wavelength of flexure is consistent with Te values of 20–30 km. The best-fitting Te values (24 

and 25 km for the two models) were determined using the root mean square (RMS) misfit 

(Figure 4a,b). 
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3.1.2. 3D inverse (spectral) modeling  

The gravitational admittance is a transfer function that describes the relationship between 

the FAA and the bedrock topography for a range of load sizes (wavelengths) on an elastic 

plate with a given Te. The observed admittance was computed by taking Fourier transforms 

of our newly compiled bedrock topography and FAA grids over a 900 km x 900 km window 

(Figure 3) [following McKenzie and Fairhead, 1997; McKenzie, 2003]. Theoretical 

admittance functions for an elastic plate subject to surface loading were computed for a 

range of Te values [Watts, 2001] and compared to the observed admittance (Figure 4c), 

providing an estimate of the average Te value across the region. This method recovers a 

best-fitting Te value of 11 km. However, taking a Fourier transform of datasets with limited 

lateral extent causes spectral leakage into the result, downward biasing the recovered Te 

[Kirby, 2014]. A calibration that accounts for the consequent underestimation of Te [Kalnins 

and Watts, 2009] was used to correct the recovered Te to 18 km (supporting information 

Figure 2).  

Despite the uncertainties associated with the interpretation of the admittance for 

topography/gravity datasets of limited lateral extent, such as spectral leakage and the fact 

that the window-based spectral estimates reflect a wide range of spatial and temporal loads 

[Kirby, 2014], the corrected Te value of 18 km is broadly consistent with the 24 and 25 km 

results from our 2D forward models. In our subsequent flexure calculations, we used a 3D 

elastic plate model with a uniform Te of 20 km, which is intermediate between our estimates, 

and tested the sensitivity of our model by running the calculations for Te values between 5 

and 50 km (supporting information Figure 3). 

3.2. Calculation of Erosional Unloading 

3.2.1. Spatial Distribution of Erosion 

In order to determine the 3D distribution of eroded material, we used a peak accordance 

method [Stern et al., 2005; Champagnac et al., 2007]. This approach involves the 

identification of peaks and flat-topped surfaces in the bedrock topography that are assumed 

to have not experienced any erosion and the interpolation of a smooth surface between 

them. The resulting ‘peak accordance surface’ represents the restoration of the eroded 

material to the topography without accounting for the associated isostatic response. The 

difference between the accordance surface and the bedrock topography is the eroded 

material. 
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We identified over 80 flat-topped surfaces in the vicinity of the Shackleton Range and 

Theron Mountains in RES flight lines (Figure 2), Google Earth satellite imagery and field 

photographs (Figure 2). We assumed that these now high elevation plateau surfaces 

originally formed a contiguous, low elevation and flat landscape prior to incision into it and 

thus have not experienced erosion since the onset of continental glaciation at 34 Ma. This 

assumption is supported by very low (0.10–0.35 m/Myr) long-term cosmogenic nuclide-

derived erosion rates on the plateau surfaces in the Shackleton Range [Fogwill et al., 2004; 

Sugden et al., 2014], and also by a lack of glacial modification of these surfaces [Kerr and 

Hermichen, 1999]. If the peaks have been lowered since 34 Ma, the amount of erosion will 

be an underestimate. In addition, we used a spatial filter to identify local highs in the bedrock 

topography DEM within a circular moving window with a fixed radius of 15 km [following 

Champagnac et al., 2007; Paxman et al., 2016]. Peaks where the present-day ice velocity 

exceeds 10 m/yr, and have therefore likely experienced significant erosion, were discarded. 

The remainder were assumed to have experienced negligible erosion since 34 Ma; a smooth 

surface was interpolated between the peaks and flat-topped surfaces to produce a peak 

accordance surface that was assumed to exist just prior to the onset of glaciation at 34 Ma 

(Figure 5).  

The accordance surface was constructed by (1) adjusting the DEM to account for the loading 

of the present-day ice sheet using our preferred elastic plate model with a Te of 20 km (see 

section 3.2.3), (2) sampling the adjusted DEM at the location of each peak, and (3) 

interpolating between peaks using a continuous curvature tensional spline [Wessel et al., 

2013]. The eroded material was calculated by subtracting the ice-free bedrock topography 

from the peak accordance surface (Figure 5). 

The assumption that the difference between the peak accordance surface and the bedrock 

topography is entirely due to removal of material by glacial (post-34 Ma) erosion is probably 

reasonable within the Theron Mountains and Shackleton Range themselves. However, this 

may not be the case over the large troughs, where some of the difference may also be 

attributable to tectonic subsidence, due, for example, to movement on the border faults. For 

this reason there is uncertainty in the amount of material eroded from the troughs. We 

envisage two end-member scenarios for the amount of material that has been eroded from 

the troughs: 

1. Minimum erosion scenario – tectonic subsidence has contributed to trough depth. In 

this scenario the peak accordance surface is dipped over troughs (Figure 5), 

representing a pre-existing depression caused by mechanical subsidence on border 

faults (section 3.3). We dipped the surface such that when the contributions of 

erosional unloading and fault motion were summed (see section 3.3), the modeled 
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trough depth matched the observed trough depth. It is therefore assumed that the 

tectonic subsidence was not infilled with sediment. 

2. Maximum erosion scenario – subsidence of the trough floors below sea-level is 

entirely attributable to glacial erosion. In this scenario, the peak accordance surface 

is stretched across the tops of the troughs (Figure 5) and the difference between the 

accordance surface and the bedrock topography is all glacially eroded material. 

Under this maximum erosion scenario, it is assumed that any fault movement pre-

dated glaciation and the resulting subsidence of the hanging wall blocks was 

completely infilled with sediment [Bamber et al., 2006; Shepherd et al., 2006].  

Assuming an average eroded rock density of 2300–2700 kgm−3 (reflecting sedimentary and 

basement rock end-members), the minimum and maximum estimated mass of eroded 

material were 1.0 x 1018 kg and 1.5 x 1018 kg, respectively. 

3.2.2. Offshore Sediment Estimates 

The estimated mass of eroded material was compared to the mass of sediment located 

offshore on the continental shelf. Isopach maps for the Weddell Sea shelf north of the 

calving front (Figure 5) have been constructed by interpolating sediment package 

thicknesses measured from seismic reflection lines [Huang et al., 2014]. Sediments are 

divided into pre-glacial (145–34 Ma), transitional (34–14 Ma) and full-glacial (14–0 Ma) 

sequences based on correlation of seismic stratigraphic facies across lines and age 

constraints from sediment cores [Huang et al., 2014]. Because of the uncertainties 

associated with the volume, provenance, and post-depositional reworking of sediment, we 

determine a maximum and minimum total 34–0 Ma sediment volume under the following 

assumptions:  

1. Material eroded from the Recovery catchment is now located on the southeastern 

Weddell Sea shelf (eastward of 50ºW and south of 75ºS), including the Crary Fan 

[Diekmann and Kuhn, 1999] (Figure 5). However, the Support Force Glacier and 

(during glacial periods) the Foundation Ice Stream also drain into the southeastern 

Weddell Sea via the Filchner Ice Shelf (Figure 1), so some fraction of the sediment 

will have been derived from this catchment. We assume that between 50 and 100% 

of the detrital sediment entered the Weddell Sea via the Recovery, Slessor and 

Bailey glaciers, since they drain a larger area than the Support Force and Foundation 

glaciers. 

2. 5–15% of the total offshore sediment is pelagic (biogenic) rather than detrital and 

therefore was not derived from onshore [Wilson et al., 2012]. 
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3. The average bulk density of offshore sediment is between 2100 and 2300 kgm−3 

[Wilson et al., 2012]. This accounts for uncertainties in the amount of pore space 

between the grains (i.e. the degree of mechanical compaction), and their lithology. 

By computing the total volume of sediment and applying these assumptions, the mass of 

34–0 Ma Recovery catchment-derived detrital sediment in the Weddell Sea basin was 

determined to be 0.66–1.6 x 1018 kg. The mass of rock eroded from onshore (1.0–1.5 x 1018 

kg) is therefore within the range of uncertainty of the mass of offshore material. It might be 

expected that the mass of eroded material exceeds the mass of offshore sediment, since 

material has likely been lost from the shelf and reworked in the Weddell Gyre or by 

contourite currents, and some sediment may have instead been deposited within interior 

sedimentary basins [e.g. Shepherd et al., 2006] during the early stages of EAIS 

development. Therefore, even our maximum erosion scenario does not obviously 

overestimate the amount of post-34 Ma erosion from the region. Due to a lack of constraints, 

we do not incorporate post-34 Ma sediment deposition onshore or beneath the Filchner Ice 

Shelf or the associated isostatic response in our models.  Although this leads to an 

unrealistic gradient in sediment thickness/erosion at the calving front (Figure 5), sensitivity 

testing indicates that onshore flexural uplift is insensitive to the amount of offshore 

erosion/deposition (supporting information Figure 3). 

3.2.3. Flexural Isostasy 

The flexural isostatic adjustment (w(x,y)) to erosional unloading and sediment loading 

(Figure 5) was computed by solving the general equation for the (un)loading (h(x,y)) of an 

elastic plate overlying an non-viscous fluid [Turcotte and Schubert, 1982]. 

                                                                             

where 

       
         

        
          

is the flexural rigidity as a function of spatial dimensions x and y. Density terms represent the 

load (ρload), the material infilling the flexure (ρinfill), the material displaced by the (un)loading 

(ρdisplace) and the mantle (ρmantle). We assumed values of 9.81 ms–2 for the acceleration due to 

gravity (g), 100 GPa for Young’s modulus (E) and 0.25 for the Poisson ratio (v). By solving 

Equation (1), we calculated the flexural uplift/subsidence due to the removal of the modern-

day ice sheet (assuming an ice density of 915 kgm−3), the removal of the eroded material 

(assuming an average eroded material density of 2500 kgm−3), and the loading of offshore 

sediments (assuming an average sediment density of 2200 kgm−3).  
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The unloads were our updated ice thickness grid (section 2.1) and the grid of eroded 

material (section 3.2.1); the offshore sediment load was the post-glacial (34–0 Ma) sediment 

isopach of Huang et al. [2014]. The modeled flexure is most sensitive to Te, since this 

governs the amplitude and wavelength of the flexural response; sensitivity testing was 

carried out by computing the flexure for Te values between 5 and 50 km, a typical range of 

values for the continental lithosphere [Watts, 2001]. Since crustal-scale faults may introduce 

a discontinuity in the plate where the flexural rigidity is effectively zero [Watts, 2001], we also 

tested a ‘broken plate’ scenario where Te was decreased to zero at the plate break along 

one or more of the major faults bounding the Shackleton Range and Theron Mountains. We 

used a Fast Fourier Transform method [Watts, 2001] to solve Equation (1) analytically for 

spatially uniform Te scenarios, and a numerical centred finite-difference technique [e.g. 

Stewart and Watts, 1997] for spatially variable Te scenarios. 

3.3. Calculation of Mechanical Unloading 

The bedrock topography of the Recovery catchment, with broad valleys bounded by faults 

and uplifted flanks, is typical of extensional terranes. Vening Meinesz [1950] proposed a 

model for the uplift of rift flanks as a consequence of failure of the lithosphere by normal 

faulting. In this case, slip on a normal fault causes unloading of the footwall block by removal 

of the hanging wall; the result is flexural isostatic rebound and uplift of the footwall. 

Concomitant replacement of footwall crustal rock by the mantle causes isostatic subsidence 

of the hanging wall block. Long-term normal fault displacement may therefore be modeled as 

the flexural isostatic adjustment to the rigid uplift/subsidence of the footwall/hanging wall 

blocks, assuming that the lithosphere retains a finite flexural rigidity during extension 

[Weissel and Karner, 1989]. The resulting topography resembles a half-graben, and the 

footwall is flexurally uplifted. Uplift on the shoulders of normal faults is therefore the result of 

this so-called ‘mechanical unloading’ of the lithosphere [Weissel and Karner, 1989; Watts, 

2001].  

To determine the contribution of mechanical unloading associated with the border faults to 

Shackleton Range and Theron Mountains uplift, we modeled the displacement across each 

fault as the flexural isostatic adjustment to the rigid uplift and subsidence of the footwall and 

hanging wall [following Weissel and Karner, 1989] (Figure 6). The amount of flexure 

depends on the elastic thickness, thickness of the faulted layer (the crust), material 

densities, and dip and heave of the faults. We used our preferred uniform Te scenario (20 

km), and a crustal thickness of 35 km [An et al., 2015]. The assumed densities of the crust, 

infill (air) and mantle were 2670, 1, and 3330 kgm–3, respectively. For simplicity, we 

assumed that each fault is continuous, dips at 60º towards the downthrown side and exhibits 

a constant vertical displacement (throw) along-strike. We tested the sensitivity of the results 
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to the elastic and crustal thicknesses and the fault dip, and found that only Te strongly 

influences the distribution of flexure (supporting information Figure 4). The amount of 

extension (heave) was tuned so the modeled displacement matched the observed 

topography next to the fault(s).  

We also incorporated the diffusion of the scarp due to mass wasting processes, which is 

given by [Watts, 2001] 

             
     

  
  

           
           

where 

       
   

   
   

  

         

is the flexural response function, ht(k) is the topography after time t, h0(k) is the initial 

topography,   is the ‘subduing coefficient’, and k is the wavenumber (the computation is 

carried out in the frequency domain). This equation assumes that erosion is a diffusive 

process that transports mass from the uplifted side of the fault to the subsided region (and 

the resulting flexural isostatic adjustment is computed). The result is to smooth the edge of 

the fault-generated topography so it is more exponential in form. Values of t and   were 

chosen so the modeled scarp slope matched the observed slopes of the mountain ranges. 

The (diffused) flexure was calculated in 2D along a series of 1000 km-long profiles (with 10 

km horizontal spacing) trending orthogonal to the faults (Figure 6). These profiles were then 

gridded to produce a 3D map of flexure driven by mechanical unloading (Figure 6). The 

displacement on the four major border faults was superimposed in various combinations to 

produce the total 3D fault-driven displacement. We estimated the throw on the faults 

bounding the Recovery and Bailey troughs by measuring the difference in elevation of the 

bedrock on either side of the troughs. Elevation differences of 600–700 m provide first-order 

estimates of the cumulative long-term throw on the faults, assuming the flexure associated 

with erosional unloading is approximately symmetrical either side of the troughs (Figure 5). 

4. Results 

4.1. Erosion-driven Uplift 

We calculated the contribution of erosional unloading to Shackleton Range and Theron 

Mountains uplift for our minimum and maximum erosion scenarios. For our preferred Te 

scenario of 20 km, we find that erosion in the Recovery, Slessor and Bailey troughs has 

driven on average between 600 m (minimum erosion scenario) and 800 m (maximum 

erosion scenario) of flexural uplift throughout the Shackleton Range and Theron Mountains 
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(Figure 5). This represents ~40–50% of the total elevation of the mountain blocks. The 

greatest amount of flexural uplift (~1 km in the maximum erosion scenario) occurs along the 

southern flank of the Shackleton Range, which is bounded by the Recovery Trough. The 

Recovery Trough is deeper and wider than the Slessor and Bailey trough, resulting in a 

larger magnitude and longer wavelength erosional unload [Sugden et al., 2014]. However, 

this differential erosional unloading only confers a maximum northward tilt of 0.2º on the 

upper surface of the Shackleton Range, compared to the observed tilt of 1.2ºN (Figure 5, 7). 

The flexure onshore is very insensitive to the amount and distribution of sediment offshore 

(supporting information Figure 3). Offshore sediment loading accounts for <3% of 

uplift/subsidence in the Shackleton Range, Theron Mountains and bounding glacial troughs. 

We suggest this is because the locus of sediment loading (the southeastern Weddell Sea) is 

too distal for significant isostatic uplift/subsidence to be transmitted to the inland fjord 

system, even if a flexurally rigid (Te = 50 km) lithosphere is assumed. 

We tested the sensitivity of the model to the assumed Te scenario (Table 1; supporting 

information Figure 3). However, we found that while the pattern of erosion-driven flexure is 

sensitive to the assumed Te, no value between 5 and 50 km was able to produce a 

satisfactory agreement with the observed magnitude and wavelength of mountain uplift. 

Intermediate Te values of 20–30 km give the best agreement with the observed wavelength 

of tilting, but the modeled tilt is only ~0.2º. We also tested a scenario where the elastic plate 

was broken along faults bounding the Shackleton Range and Theron Mountains, to 

investigate whether this could reproduce the observed tilting of the mountain ranges 

(supporting information Figure 3). However, the difference between continuous- and broken-

plate flexure is relatively minor except for regions very close to the faults.  

We find that irrespective of the assumed erosion and Te scenario, erosion-driven flexure 

accounts for ~40–50% of the total elevation (and only ~0.2º of tilting) of the mountain blocks 

(Figure 7). The misfit between the modeled and observed topography is small on the flanks 

of the mountain ranges bounding the Slessor Trough, but increases towards the flanks of the 

Recovery and Bailey troughs, where flexure underestimates the topography by up to 800 m 

(Figure 7).  
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4.2. Fault-driven Uplift 

Erosional unloading due to the removal of material (rock) from the troughs cannot account 

for the total observed elevations of the northern Theron Mountains and southern Shackleton 

Range, nor the observed tilt of the mountain surfaces (Figure 7). We therefore invoked 

mechanical unloading due to the unloading of the footwall by normal faults bounding the 

Bailey and Recovery troughs. For the maximum erosion scenario, the depressions created 

due to subsidence of the hanging wall blocks were assumed to be filled to sea-level. For the 

minimum erosion scenario, the subsidence was not filled. The throw on the faults was 

estimated as 600–700 m (section 3.3). Incorporating mechanical unloading on these two 

major fault systems significantly improved the match between the observed and modeled 

flexural uplift and tilting of the Shackleton Range and Theron Mountains (Figure 7). Modeled 

tilts agree very well with the 1.2ºN and 0.8ºS tilting of the Shackleton Range and Theron 

Mountains, respectively (Figure 7). We find that erosional unloading accounts for 40–50% of 

the uplift of the mountains and mechanical unloading accounts for a further 40–50%. There 

is a small residual misfit; some of the topographic signature is likely the result of non-flexural 

processes, such as brittle deformation on faults. The maximum erosion scenario, where 

tectonic subsidence is infilled, produces a better overall fit with the observed topography that 

the minimum erosion scenario (Figure 7; Table 1). This suggests fault activity and 

subsequent sedimentation pre-dated glaciation (section 5.2).  

In order to calculate a 34 Ma paleotopography, we restored the eroded material to the ice-

rebounded topography, and computed and subtracted the associated isostatic response 

(Figure 8). This calculation was based on the assumption that fault activity mostly pre-dated 

the onset of Antarctic glaciation at 34 Ma (section 5.2), and has therefore not contributed to 

mountain uplift or trough subsidence since glacial inception. Since we determined a 

maximum and a minimum erosion scenario, which differ in their respective assumptions of 

how deep the troughs were prior to glaciation, we present a minimum and a maximum 

paleotopography (Figure 8).  

Our key finding is that the model scenario that produces a best fit between process-oriented 

model topography and the observed modern topography requires major contributions from 

both erosion- and mechanically-driven flexure (as well as slope diffusion, which is needed to 

explain the regrading of the fault scarps). Both processes, operating together, are necessary 

to achieve a satisfactory agreement with the observed elevation and tilt of the Shackleton 

Range and Theron Mountains. None of the processes alone can satisfactorily explain these 

observations. The model results are summarised in Table 1.  
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5. Discussion 

5.1. Other Mechanisms for Shackleton Range and Theron Mountains Uplift 

Glacial erosional unloading combined with mechanical unloading provides a simple and 

elegant model for the asymmetric uplift (tilting) of the Shackleton Range and Theron 

Mountains. Our results indicate that the flexural effects of glacial erosion have driven 40–

50% of mountain uplift in this region near the Antarctic margin, which is similar to previous 

findings in the TAM [Stern et al., 2005]. Ongoing glacial erosion of the Recovery, Slessor 

and Bailey troughs and associated flexural isostatic uplift also provides a simple explanation 

for the emergence of the Shackleton Range from beneath the EAIS at 2.5 Ma [Sugden et al., 

2014]. Are there other processes that could account for the observed asymmetric pattern of 

uplift of the Shackleton Range and Theron Mountains (Figure 2)? 

Bedrock uplift in the Recovery catchment could be linked to rift flank uplift on the margin of 

the Jurassic Weddell Sea Rift System. Such a mechanism has been suggested for the early 

Cenozoic uplift of the TAM on the flank of the West Antarctic Rift System [ten Brink and 

Stern 1992; ten Brink et al., 1997]. However, the TAM are very wide (~300 km) for a rift 

flank, which is in part attributed to a major inferred contrast in Te across the lithospheric 

boundary between East (Te = 85 km) and West Antarctica (Te = 5 km) [ten Brink et al., 1997]. 

In contrast, this study indicates that the Recovery catchment is characterized by Te values of 

~20 km). Moreover, the highest elevations of the Shackleton Range are >300 km from the 

Filchner Rift, which marks the easternmost extent of the Weddell Sea Rift System [Jordan et 

al., 2013; 2016] (Figure 1). In addition, the trends of the faults inferred flanking the 

Shackleton Range are approximately orthogonal to the Weddell Sea Rift System. Together, 

this suggests that although Jurassic rift flank uplift and passive margin development can 

explain the uplift of the Antarctic margin (e.g. in Coats Land north of the Bailey Ice Stream 

(Figure 1)), it is unlikely that they can explain the observed patterns and extent of uplift 

farther inland in the Recovery catchment. 

Another option is that the observed asymmetry in the topography is the result of spatially 

variable erosion rather than spatially variable uplift. However, this is unlikely to be the case, 

since the tilt is observed in the mesa/plateau surfaces (Figure 2), which have experienced 

negligible incision and cut different geological units [Kerr and Hermichen, 1999; Sugden et 

al., 2014; Krohne et al., 2016]. The presence of surfaces that all tilt away from the region of 

unloading and have slopes that are not the same as geological dip slopes is strong evidence 

for flexural tilting [Watts et al., 2000].  
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Krohne et al. [2016] have proposed a model in which thick (up to 3.4 km) sedimentary basins 

formed in the region following the opening of the Weddell Sea. Post-Jurassic sediments are 

not observed in the regional outcrops, suggesting these sequences have been eroded. 

Could erosion of this overburden, which is not considered in our models, have driven 

isostatic uplift of the Shackleton Range and Theron Mountains? Erosion of sediments would 

indeed drive isostatic uplift of the underlying bedrock. However, removal of a spatially 

uniform overburden is not capable of driving spatially variable (asymmetric) bedrock uplift as 

is observed. Moreover, if the top of the sedimentary basin were close to sea-level [Krohne et 

al., 2016], sediment erosion could not uplift the top of the bedrock (i.e. the basin floor) to 

above sea-level, because the unload (the sediment) is less dense than the material it 

displaces (the mantle). 

5.2. Timing of Fault Activity 

While the timing of glacial incision is well constrained to the last 34 Ma [Coxall et al., 2005; 

Thomson et al., 2013; Krohne et al., 2016], the timing of fault activity remains a source of 

uncertainty. The inferred faults that bound the Shackleton Range and Theron Mountains lie 

approximately parallel to major Pan-African age thrust faults and proposed crustal-scale 

transpressional shear zones recognized within the Shackleton Range itself and in western 

Dronning Maud Land [e.g. Jacobs et al., 2015]. Recent thermochronology studies indicate a 

period of significant exhumation in the Shackleton Range area at ca. 190–180 Ma, which is 

attributed to the onset of crustal extension in the Weddell Sea Rift System [Jordan et al., 

2013; 2016] and widespread mafic magmatism associated with Ferrar Large Igneous 

Province [Krohne et al., 2016]. A renewed period of exhumation at ca. 120–100 Ma is 

attributed to a change in spreading direction in the oceanic crust north of the Weddell Sea 

Rift System, which may have triggered oblique transtension onshore [Krohne et al., 2016]. 

Because 120–100 Ma is the most recent episode of exhumation prior to glaciation at 34 Ma 

[Krohne et al., 2016], it is the most likely time at which the faults inferred to bound the 

Shackleton Range and Theron Mountains were last active. The time between the conclusion 

of fault activity and the onset of glaciation was likely relatively short in order to preserve the 

(asymmetric) topography associated with faulting (Figure 2). Although the faults may have 

been moving since 34 Ma, as has been inferred in other regions of East Antarctica [Cianfarra 

and Salvini, 2016], there is no geological evidence for this in the Shackleton Range region. 

Furthermore, the presence of fluvial valley slopes flowing towards the Slessor Trough close 

to sea-level would appear to rule out significant post-34 Ma tectonic uplift [Sugden et al., 

2014]. However, valley incision can have a strong positive feedback on the growth and life-

span of major range-bounding normal faults in extensional systems [Olive et al., 2014]. The 

offsets on the range-bounding faults in the Shackleton Range region may therefore, in part, 
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be the result of glacial or pre-glacial (fluvial) erosion within the troughs. We speculate that 

the ongoing process of erosion-driven isostatic uplift is accommodated on these faults, as 

has been suggested for the Lambert Glacier region [Phillips and Läufer, 2009]. The resultant 

unloading of the footwall by the hanging wall would also contribute to the total flexural uplift, 

highlighting that the faults were likely the cause and effect of uplift.  

5.3. Landscape Evolution 

The landscape evolution of the Shackleton Range region since Gondwana break-up was 

likely dominated initially by rifting in the Weddell Sea (commencing at ca. 180 Ma [Jordan et 

al., 2016]), uplift of the passive continental margin, and dissection of the landscape by 

continental river systems [Sugden et al., 2014; Krohne et al., 2016]. With the locus of uplift 

along the continental margin, it is likely that Jurassic–Cretaceous river systems initially 

flowed eastwards. At some stage, the passive margin was breached at the location of the 

present-day confluence of the Recovery, Slessor, and Bailey glaciers; this could have 

occurred prior to or after glaciation. The modern ice streams exploit this breach today – it is 

the point through which the entire catchment drains into the Filchner Ice Shelf (Figure 1). 

Plate reorganization at ca. 120–100 Ma triggered activity on the faults inferred to flank the 

Shackleton Range and Theron Mountains, and drove exhumation of the region [Khrone et 

al., 2016]. Our models indicate that the fault systems that drove the majority of mountain 

uplift were those bounding the Recovery and Bailey troughs. However, magnetic modeling 

indicates that further upstream the Slessor Glacier is underlain by a sediment-filled half-

graben [Shepherd et al., 2006]. Because the topography prior to faulting is unconstrained, 

our models cannot be used to estimate the total amount of uplift on the faults. Our models 

suggest that the amount of uplift driven by the Recovery and Bailey faults was ~600–700 m 

greater than by the Slessor faults. As well as following the location of the pre-existing fault 

systems (see below), the location of the Slessor Glacier was likely controlled by the flexural 

downwarping induced by mechanical unloading on the faults bounding the Recovery and 

Bailey troughs (Figure 7). 

Assuming fault activity had ceased by the Late Cretaceous, significant (500–1000 m) 

topography must have existed in the Shackleton Range region prior to glaciation (Figure 8, 

9). During or shortly after faulting, the grabens bounded by the faults were likely infilled with 

sediment [Krohne et al., 2016] and rivers exploited the structurally-controlled topography and 

cut the valley floors to base level [Sugden et al., 2014] (matching our ‘maximum erosion 

scenario’ – Figure 5). These river networks (Figure 8, 9) would have flowed westwards if the 

passive margin had been breached by this time; near the head of the Recovery Trough, 

rivers may have drained east into the Recovery Lakes [Bell et al., 2007] (Figure 8).  
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From 34 Ma onwards, the landscape has been shaped significantly by glaciation. The 

modern landscape of the Recovery catchment bears the hallmarks of selective linear erosion 

[Sugden and John, 1976] by the EAIS. For selective linear erosion to occur, an existing 

(lower amplitude) topographic feature must have existed prior to glaciation [Sugden and 

John, 1976; Wilson et al., 2012]. The Recovery, Bailey and Slessor glaciers therefore likely 

exploited pre-existing depressions controlled by the faults flanking by the mountains and 

occupied by rivers prior to glaciation (Figure 9). The focussing of ice through the pre-existing 

troughs initiated a strong positive feedback whereby the troughs were rapidly overdeepened 

by fast-flowing, warm-based erosive ice, while the peaks of the neighboring mountain blocks 

were protected (and isostatically uplifted) beneath slow-moving, cold-based non-erosive ice 

[Kessler et al., 2008]. We estimate that ~2 km of rock has been eroded from the Recovery, 

Slessor and Bailey troughs. This implies long-term average vertical erosion rates of ~0.06 

mm/yr, which is consistent with observed erosion rates beneath modern polar glaciers 

[Koppes et al., 2015].  

5.4. Implications for Past Ice Sheet Dynamics 

The evolution of the bedrock topography of the Recovery catchment has significant 

implications for the dynamics and stability of past Antarctic ice sheets. With more subdued 

topographic relief at 34 Ma (Figure 8), topographic steering of the ice sheet would have been 

less effective during the early stages of glaciation. Early ice sheets may therefore have 

simply overridden the mountains and troughs. As the bed within the troughs was 

progressively overdeepened, topographic steering will have become more effective, allowing 

ice and subglacial erosion to be focussed through the troughs [Kessler et al., 2008]. 

Gradually, ice thicknesses and flow velocities will have increased in the troughs, and 

decreased over the mountain blocks [Sugden et al., 2014]. 

By correcting for erosion and erosion-driven uplift, we have shown that the Shackleton 

Range and Theron Mountains were ~700 m lower at the time of EAIS inception at the 

Eocene–Oligocene climate transition (34 Ma) than today (Figure 8). Furthermore, the Bailey, 

Slessor and Recovery trough floors were likely close to sea-level at this time (Figure 8), 

compared to almost 2.5 km below sea-level today. This paleotopography therefore provides 

a new input for models of early ice sheet initiation and evolution. Crucially, the implication of 

the reconstructed topography is that the early ice sheets were less responsive to climate and 

ocean forcing, because the bed was not significantly overdeepened below sea-level. 
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6. Conclusions 

In this study, we have presented new compilations of radar and gravity data over the 

previously largely unexplored Recovery catchment, and used the datasets to quantify for the 

first time the roles of erosion-driven and tectonic uplift. 2D forward and 3D inverse (spectral) 

modeling indicates that the Recovery catchment is characterized by Te values of around 20 

km. Our 3D flexural models show that erosion-driven uplift has driven a substantial amount 

(~700 m) of post-Eocene uplift of the Shackleton Range and Theron Mountains, augmenting 

the previous study of Sugden et al. [2014]. However, the model results show that erosion 

alone cannot account for the elevation nor the tilt of the Shackleton Range and the Theron 

Mountains. We propose that the Recovery, Slessor and Bailey glaciers are structurally 

controlled. The glacially overdeepened troughs were superimposed on pre-existing fault-

bounded half-grabens that may have been active during Jurassic rifting and Cretaceous 

intraplate faulting as proposed from independent recent thermochronology studies [Krohne 

et al., 2016]. Overall, our results indicate that the Shackleton Range and Theron Mountains 

were likely ~700 m lower and the bounding valley floors were close to sea-level at the 

Eocene–Oligocene climate transition at 34 Ma. This has important implications for 

developing more robust models of the dynamics and stability of the early EAIS. 
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Figure 1. Regional setting of the Recovery catchment within Antarctica. (a) Ice sheet 

velocities [Rignot et al., 2011]. EAIS = East Antarctic Ice Sheet. Inset - major Antarctic ice 

divides [Rignot et al., 2008]; the area bounded by the red colored polygon is the Recovery 

catchment; the black box denotes the area shown in the main figure. (b) Bedrock 

topography. Red lines show major onshore basement faults that bound the Shackleton 

Range and Theron Mountains [Marsh, 1985]. The submarine Thiel Trough is bounded by the 

Filchner Rift (magenta lines, ticks point to the downthrown side) [Jordan et al., 2013; 2016]. 

Black dashed box marks our main study area. 
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Figure 2. (a) Perspective image of the bedrock of the Recovery catchment (vertical 

exaggeration (VE) = 50x). The traces of inferred range-bounding faults [Marsh, 1985] are 

marked by the red dashed lines. Arrow marks the direction of grid North in the adopted Polar 

Stereographic projection. The inset shows the location of the study area within Antarctica.  

(b) Field photograph of a peneplanation surface exposed on Stephenson Bastion in the 

Shackleton Range (location marked by blue star in panel a). (c) Profile X–Y across the 

Recovery catchment (VE = 50x). Bedrock (black line) and ice surface (blue line) topography 

were assembled from three RES flight lines. Ice flow direction is out of the page. Green 

dashed lines highlight the tilting of the mountain blocks. Schematic red lines mark the 

position of the faults (arrows show inferred sense of dip-slip motion). 
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Figure 3. (a) Bedrock topography DEM. Solid lines show the location of profiles 1–5 used to 

construct panel c. Red lines show the location of the profiles used in our elastic thickness 

forward models (Figure 4). (b) Free-air gravity anomaly gridded from IceBridge and 

ICEGRAV line data. Red box shows the area of the grids used to compute the free-air 

admittance (Figure 4). Both grids are projected in Antarctic Polar Stereographic with true 

scale at 71ºS. (c) Ensemble averaging of bedrock topography. Topographic profiles (colored 

lines) were constructed by sampling the DEM (panel a) along five equally spaced (~20 km 

spacing), parallel lines. The profiles were isostatically rebounded to remove the effect of 

present-day ice sheet loading using an elastic plate model with Te = 20 km, which 

corresponds to our regional Te estimate (section 3.1). Only lines 1, 3 and 5 are shown for 

clarity. The black line is an ensemble average of profiles 1–5. The Shackleton Range and 

Theron Mountains are tilted (in the absence of ice loading) by ~1.2ºN and ~0.8ºS, 

respectively. Abbreviations: BIS = Bailey Ice Stream; TM = Theron Mountains; SG = Slessor 

Glacier; SR = Shackleton Range; RG = Recovery Glacier.  
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Figure 4. Effective elastic thickness modeling. (a) and (b) Forward modeling of observed 

bedrock topography (red lines) along two flight lines (A–A’ and B–B’) crossing the Bailey Ice 

Stream and Theron Mountains (locations are marked in Figure 3a). Comparison of predicted 

topography from elastic plate models (black lines) with the observed topography indicates a 

best-fitting Te of (a) 25 and (b) 24 km. (c) Comparison of the observed free-air gravitational 

admittance (red dots with standard error bars) with model curves for Te = 0, 5, 10, 20, and 40 

km. The admittance recovers a best-fitting Te of 11 km, which is calibrated to 18 km (see 

supporting information Figure 2). 
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Figure 5. Erosional unloading modeling. (a) Present-day bedrock topography adjusted for 

ice sheet loading (Te = 20 km). Dashed lines show traces of range-bounding faults. Symbols 

mark points used to construct the peak accordance surface. Blue diamonds = subglacial flat-

topped surfaces (mesas). Green stars = plateau surfaces exposed in the Shackleton Range. 

Yellow circles = local maxima within a fixed (15 km) radius. (b) Peak accordance surface. 

This represents the maximum erosion scenario (see text for description). (c) Distribution of 

eroded material (warm colors) and offshore sediment (cool colors). SR = Shackleton Range; 

TM = Theron Mountains. (d) Computed flexural response (Te = 20 km) to unloading of 

eroded material and loading of sediment. (e) Maximum and (f) Minimum erosion scenario 

along Profile A–B (location marked in panels a–d). Black line = bedrock topography; 

magenta = peak accordance surface; yellow shaded region = eroded material; red = 

modeled flexure. 

 



 

 
© 2017 American Geophysical Union. All rights reserved. 

 
Figure 6. Mechanical unloading modeling. (a) Location of profiles used to produce the 3D 

flexural uplift distribution due to motion on a single fault (dashed line). The 2D flexure profile 

(black line in d) was sampled onto each 1000 km-long profile at 1 km spacing. Each profile 

trends perpendicular to the fault trace. (b) Gridded flexural uplift due to mechanical 

unloading associated with dip-slip motion on the border fault (dashed line). (c) Flexural uplift 

due to mechanical unloading on four border faults, calculated by superimposing the 
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individual displacements (e.g. as shown in b). SR = Shackleton Range; TM = Theron 

Mountains. (d) Profile X–Y (location marked in panel b). Dashed line = flexural uplift due to 

normal faulting [Weissel and Karner, 1989]; Solid line = diffused topography; red line = 

topography sampled from the grid (b) along the same profile. Gridding causes a minor 

reduction in the amplitude of the topography, but retains the distinct flexed pattern. (e) Profile 

A–B (location marked in panel c). Locations of faults, with sense of motion, are shown 

schematically. Black line = bedrock topography; red line =modeled flexure due to mechanical 

unloading. 
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Figure 7. Contribution of erosional unloading and mechanical unloading to Shackleton 

Range and Theron Mountains uplift. (a) Rebounded bedrock topography. (b) Sum of glacial 

erosion and associated isostatic rebound (maximum erosion scenario). (c) Normal fault-

driven uplift (mechanical unloading). (d) Total model uplift (sum of (b) and (c)). A continuous 

elastic plate model with a Te of 20 km was used. SR = Shackleton Range; TM = Theron 

Mountains. (e) Profile A–B across the Shackleton Range and Theron Mountains for the 

maximum erosion scenario. Under this scenario, fault-driven hanging wall subsidence was 

filled to sea-level. The sum of the modeled erosion- and fault-driven uplift (blue line) 

compares well with the observed topography (black line). (f) Profile A–B for the minimum 

erosion scenario. Under this scenario, hanging wall subsidence was not infilled, meaning the 

contribution of erosion was reduced. The match between observed and modeled topography 

is worse than the maximum erosion scenario, but the relative contributions of erosional and 

mechanical unloading remain similar.   
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Figure 8. Reconstructions of pre-glacial topography in the Shackleton Range region. (a) 

Maximum paleotopography prior to the onset of continental glaciation at 34 Ma. This 

reconstruction corrects for glacial erosion and the resulting flexure assuming the minimum 

erosion scenario and no fault movement since 34 Ma. (b) Minimum 34 Ma paleotopography. 

This reconstruction corrects for glacial erosion and the resulting flexure assuming the 

maximum erosion scenario and no fault movement since 34 Ma. Bedrock elevations are 

relative to present-day sea-level. Blue lines show estimated pathways of pre-glacial river 
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networks. RL = Recovery Lakes; SR = Shackleton Range; TM = Theron Mountains. (c) 

Profile A–B across the Shackleton Range and Theron Mountains. Black line = present-day 

(ice free) topography, red line = maximum 34 Ma paleotopography; blue line = minimum 34 

Ma paleotopography. 
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Figure 9. Cartoon showing the proposed landscape evolution of the Shackleton Range 

region. The geometry of the region has been simplified to two elongate, sub-parallel 

mountain ranges bounded by three sub-parallel troughs. (a) Fault activity in the 

Jurassic/Cretaceous uplifted the Shackleton Range (SR) and Theron Mountains (TM) 

blocks. The troughs were filled with sediment. Large river networks drained the continental 

interior, flowing westwards towards the Jurassic-age passive margin. (b) After 34 Ma, the 

region was covered by the early East Antarctic Ice Sheet (EAIS). Valley floors subsided due 

to the loading effect of the ice sheet. (c) By the Quaternary, the EAIS had grown to 

continental-scale, and three large ice streams had excavated large overdeepened troughs. 

The location of these troughs was controlled by the pre-existing fault structure and river 

networks. Ice flow is from east to west. Erosional unloading in the troughs drove isostatic 

bedrock uplift of the Shackleton Range and Theron Mountains, causing the peaks to emerge 
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from beneath the EAIS as nunataks [Sugden et al., 2014]. As a result of ice sheet loading 

and glacial erosion, the floors of the glacial troughs now lie up to 2.5 km below sea-level. 
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Table 1. Misfit between observed and modeled bedrock topography for various erosion and 

flexural uplift scenarios. The root mean square (RMS) misfit is the average misfit along five 

parallel and equally spaced 2D profiles (the five ensemble profiles in Figure 3) crossing the 

Shackleton Range and Theron Mountains.  

 

Flexural uplift scenario Minimum erosion 
scenario RMS misfit (m) 

Maximum erosion 
scenario RMS misfit (m) 

Erosional unloading only; 
continuous elastic plate; Te 
= 20 km 

590 540 

Erosional unloading and 
sediment loading; 
continuous elastic plate; Te 
= 20 km 

580 530 

Erosional unloading and 
sediment loading; 
continuous elastic plate; Te 
= 5 km 

640 650 

Erosional unloading and 
sediment loading; 
continuous elastic plate; Te 
= 50 km 

610 570 

Erosional unloading and 
sediment loading; broken 
elastic plate; Te = 20 km 

570 520 

Mechanical unloading only; 
faults bounding Recovery 
and Bailey only; Te = 20 km 

580 580 

Mechanical unloading only; 
faults bounding Recovery, 
Bailey and Slessor; Te = 20 
km 

620 620 

Erosional unloading, 
sediment loading, and 
mechanical unloading; faults 
bounding Recovery and 
Bailey only; Te = 20 km 

330 240 

 

 


