
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© 2019 Society for Industrial and Applied Mathematics
Vol. 7, No. 3, pp. 838–876 and American Statistical Association
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Abstract. Computer models are now widely used across a range of scientific disciplines to describe various com-
plex physical systems; however, to perform full uncertainty quantification we often need to employ
emulators. An emulator is a fast statistical construct that mimics the complex computer model and
greatly aids the vastly more computationally intensive uncertainty quantification calculations that
a serious scientific analysis often requires. In some cases, the complex model can be solved far more
efficiently for certain parameter settings, leading to boundaries or hyperplanes in the input param-
eter space where the model is essentially known. We show that for a large class of Gaussian process
style emulators, multiple boundaries can be formally incorporated into the emulation process, by
Bayesian updating of the emulators with respect to the boundaries, for trivial computational cost.
The resulting updated emulator equations are given analytically. This leads to emulators that pos-
sess increased accuracy across large portions of the input parameter space. We also describe how a
user can incorporate such boundaries within standard black box Gaussian process emulation pack-
ages that are currently available, without altering the core code. Appropriate designs of model runs
in the presence of known boundaries are then analyzed, with two kinds of general purpose designs
proposed. We then apply the improved emulation and design methodology to an important systems
biology model of hormonal crosstalk in Arabidopsis thaliana.
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1. Introduction. The use of mathematical models to describe complex physical systems
is now commonplace in a wide variety of scientific disciplines. We refer to such models as
simulators. Often they possess high numbers of input and/or output dimensions and are
sufficiently complex that they may require substantial time for the completion of a single
evaluation. The simulator may have been developed to aid understanding of the real-world
system in question, or to be compared to observed data, necessitating a high-dimensional
parameter search or model calibration, or to make predictions of future system behavior,
possibly with the goal of aiding a future decision process. The responsible use of simulators
in all of the above contexts usually requires a full (Bayesian) uncertainty analysis [6], which
will aim to incorporate all the major relevant sources of uncertainty, for example, parametric
uncertainty on the inputs to the model, observation uncertainties on the data, structural
model discrepancy that represents the uncertain differences between the simulator and the
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KNOWN BOUNDARY EMULATION OF COMPUTER MODELS 839

real system, both for past and future and the relation between them, and also all the many
uncertainties related to the decision process [41].

However, such an uncertainty analysis, which represents a critically important part of any
serious scientific study, usually requires a vast number of simulator evaluations. For complex
simulators with even a modest runtime, this means that such an analysis is utterly infea-
sible. A solution to this problem is found through the use of emulators: an emulator is a
statistical construct that seeks to mimic the behavior of the simulator over its input space
but which is several orders of magnitude faster to evaluate. Early uses of Gaussian process
emulators for computer models were given by [36, 13] with a more detailed account given in
[37]. A vital feature of an emulator is that it gives both an expectation of the simulator’s
outputs at an unexplored input location as well as an uncertainty statement about the emula-
tor’s accuracy at this point, an attribute that elevates emulation above interpolation or other
simple proxy modeling approaches. Therefore, emulators fit naturally within a Bayesian ap-
proach and help facilitate the full uncertainty analysis described above. For an early example
of an uncertainty analysis using multilevel emulation combined with structural discrepancy
modeling in a Bayesian history matching context see [9, 10], and for a fully Bayesian calibra-
tion of a complex nuclear radiation model, again incorporating structural model discrepancy,
see [27].

Emulators have now been successfully employed across several scientific disciplines, in-
cluding cosmology [41, 42, 8, 38, 20, 43, 32], climate modeling [46, 35, 25, 22] (the later
employing emulation to increase the efficiency of an approximate Bayesian computation algo-
rithm), epidemiology [2, 3, 1, 31, 30], systems biology [45, 24], oil reservoir modeling [11, 12],
environmental science [16], traffic modeling [7], vulcanology [5], and even Bayesian analysis
itself [44]. The development of improved emulation strategies therefore has the potential to
benefit multiple scientific areas, allowing more accurate analyzes with lower computational
cost. If additional prior insight into the physical structure of the model is available, it is of
real importance that emulator structures capable of incorporating such insights have been
developed to fully exploit this information.

Here we describe such an advance in emulation strategy that, when applicable, can lead
to substantial improvements in emulator performance. In most cases, complex deterministic
simulators have to be solved numerically for arbitrary input specifications, which leads to
substantial runtimes. However, for some simulators, there exist input parameter settings,
lying possibly on boundaries or hyperplanes in the input parameter space, where the simulator
can be solved far more efficiently, either analytically in the ideal case or just significantly faster
using a much more efficient and simpler solver. This may be due to the system in question,
or at least a subset of the system outputs, behaving in a much simpler way for particular
input settings, possibly due, for example, to various modules decoupling from more complex
parts of the model (possibly when certain inputs are set to zero, switching some processes
off). Note that this leads to Dirichlet boundary conditions, i.e., known simulator behavior on
various hyperplanes, that impose constraints on the emulator itself and that these are distinct
from Dirichlet boundary conditions imposed on the physical simulator model, which we do not
require here (which are, for example, analyzed approximately using KL expansions by [39]).
The goal, then, is to incorporate these known boundaries, situated where we essentially know
the function output, into the Bayesian emulation process, which should lead to significantly
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840 I. VERNON, S. E. JACKSON, AND J. A. CUMMING

improved emulators. We do this by formally updating the emulators by the information
contained on the known boundaries, obtaining analytic results, and show that this is possible
for a large class of emulators, for multiple boundaries of various forms (specifically collections of
parallel or perpendicular hyperplanes), and most importantly, for trivial extra computational
cost. We note that [40] have examined this problem; however, they used an approach which
requires multiple extra emulator parameters that have to be estimated, as they essentially
included substantial extra modeling to ensure both the mean and the variance of the emulator
were consistent with the known boundary a priori. In contrast, our approach includes no
extra modeling and zero additional parameters, instead updating the Gaussian process style
emulator with the boundary information in a natural way. We also detail how users can include
known boundaries when using standard black box Gaussian process software (without altering
the core code), although this method is less powerful than implementing the fully updated
emulators that we develop here. We then analyze the design problem of how to choose an
efficient set of runs of the full simulator, given that we are aware of the existence of one or
more known boundaries. Finally we apply this approach to a model of hormonal crosstalk in
Arabidopsis, an important model in systems biology, which possesses these features.

The article is organized as follows. In section 2 we describe a standard emulation approach
for deterministic simulators. In section 3 we develop the full known boundary emulation
(KBE) methodology, explicitly constructing emulators that have been updated by one or two
perpendicular (or parallel) known boundaries. In section 4 we discuss the design problem of
how to choose efficient sets of simulator runs. In section 5 we apply both the KBE and the
design techniques to the systems biology Arabidopsis model, before concluding in section 6.

2. Emulation of complex computer models. We consider a complex computer model
represented as a function f(x), where x ∈ X denotes a d-dimensional vector containing the
computer model’s input parameters, and X ⊂ Rd is a prespecified input parameter space
of interest. We imagine that a single evaluation of the computer model takes a substantial
amount of time to complete, and hence we will only be able evaluate it at a small number
of locations. Here we assume f(x) is univariate, but the results we present should directly
generalize to the corresponding multivariate case.

We represent our beliefs about the unknown f(x) at unevaluated input x via an emulator.
For now, we assume that the form of the emulator is that of a pure Gaussian process (or in a
less fully specified version, a weakly second order stationary stochastic process):

(2.1) f(x) = u(x).

We make the judgment, consistent with most of the computer model literature, that the u(x)
have a product correlation structure:

(2.2) Cov
[
u(x), u(x′)

]
= σ2r(x− x′) = σ2

d∏
i=1

ri(xi − x′i)

with ri(0) = 1, corresponding to deterministic f(x). Product correlation structures are very

D
ow

nl
oa

de
d 

07
/3

1/
19

 to
 1

29
.2

34
.3

9.
15

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

KNOWN BOUNDARY EMULATION OF COMPUTER MODELS 841

common, with the most popular being the Gaussian correlation structure given by

(2.3) r(x− x′) = exp{−|x− x′|2/θ2} =

d∏
i=1

exp{−|xi − x′i|2/θ2},

which can be generalized to have different θi in each direction, while maintaining the product
structure. As usual, we will also assume stationarity, but the following derivations do not
require this assumption.

If we perform a set of runs at locations xD = (x(1), . . . , x(n)) over the input space of interest
X , giving computer model outputs as the column vector D = (f(x(1)), . . . , f(x(n)))T , then we
can update our beliefs about the computer model f(x) in light of D. This can be done either
using the Bayes theorem (if u(x) is assumed to be a Gaussian process) or using the Bayes
linear update formulas (which, following De Finetti [14], treat expectation as primitive and
require only a second order specification [15, 17]):

ED [f(x)] = E [f(x)] + Cov [f(x), D] Var [D]−1 (D − E [D]),(2.4)

VarD [f(x)] = Var [f(x)]− Cov [f(x), D] Var [D]−1 Cov [D, f(x)] ,(2.5)

CovD

[
f(x), f(x′)

]
= Cov

[
f(x), f(x′)

]
− Cov [f(x), D] Var [D]−1 Cov

[
D, f(x′)

]
,(2.6)

where ED[f(x)], VarD[f(x)], and CovD[f(x), f(x′)] are the expectation, variance, and co-
variance of f(x) adjusted by D [15, 17]. Equation (2.5) is obviously a special case of (2.6),
but we include it explicitly to aid clarity in subsequent derivations. The fully Bayesian cal-
culation, using the Bayes theorem, would yield similar update formulas for the analogous
posterior quantities. Although we will work within the Bayes linear formalism, the derived
results will apply directly to the fully Bayesian case, were one willing to make the additional
assumption of full normality that use of a Gaussian process entails. In this case all Bayes
linear adjusted quantities can be directly mapped to the corresponding posterior versions,
e.g., ED[f(x)]→ E [f(x)|D] and VarD[f(x)]→ Var [f(x)|D]. See [15, 17] for discussion of the
benefits of using a Bayes linear approach and [41, 42] for its benefits within a computer model
setting.

The results presented in this article rely on the product correlation structure of the emu-
lator. As such, expansion of these methods to more general emulator forms requires further
calculation. For example, a more advanced emulator is given by [10, 41]

(2.7) f(x) =
∑
j

βjgj(xA) + u(xA) + v(x),

where the active inputs xA are a subset of x that are strongly influential for f(x), the first
term on the right-hand side is a regression term containing known functions gj(xA) and
possibly unknown βj , u(xA) is a Gaussian process over the active inputs only, and v(x) is
an uncorrelated nugget term, representing the inactive variables. See also [11] and [41, 42]
for discussions of the benefits of using an emulator structure of this kind, and see [27, 21] for
discussions of alternative structures. We will discuss the generalization of our results to (2.7)
in section 6, but currently we note that if the regression parameters βj are assumed known,
perhaps due to sufficiently large run number, and if all variables are assumed active, then
(2.7) reduces to the required form, and all our results will apply.
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842 I. VERNON, S. E. JACKSON, AND J. A. CUMMING

3. Known boundary emulation. We now consider the situation where the computer model
is analytically solvable on some lower dimensional boundary K. Hence we can evaluate {f(x) :
x ∈ K} a vast number of times m on K and use these to supplement our standard emulator
evaluations over X to produce an emulator that respects the functional behavior of f(x) along
K. We first examine the case of finite (but large) m, which can be analyzed using the standard
Bayes linear update, but structure our calculations so that they can be simply generalized
to continuous model evaluations on K, which will require a generalized version of the Bayes
linear update, as described in section 3.6.

Call the corresponding length m vector of model evaluations K. Unfortunately simply
plugging these m runs into the Bayes linear update equations (2.4), (2.5), and (2.6), replacing
D with K, would be infeasible due to the size of the m×m matrix inversion Var [K]−1. For
example, if the dimension dK of K is not small, we may need m to be extremely large (billions
or trillions, say) to capture all the information contained in K. Hence a direct update of the
emulator in light of the information in K is nontrivial. Here we show from first principles
that this update can be performed analytically for a wide class of emulators. We do this
by exploiting a sufficiency argument briefly described in the supplementary material of [27],
and in [34], but which, to our knowledge, has not been fully explored or utilized in the
context of KBE. The emulation problem is further compounded in the general case where
we have both evaluations K on the boundary, and in the main bulk D defined as above.
For this case we will develop a sequential update that first updates analytically by K to
obtain EK [f(x)], VarK [f(x)], and CovK [f(x), f(x′)], as developed in section 3.1, and then
subsequently updates by D, to obtain ED∪K [f(x)], VarD∪K [f(x)], and CovD∪K [f(x), f(x′)],
as described in section 3.3.

3.1. A single known boundary. We wish to update the emulator, and hence our beliefs
about f(x), at the input point x ∈ X in light of a single known boundary K, where K is a
d− 1 dimensional hyperplane perpendicular to the x1 direction (but we note that our results
naturally extend to lower dimensional boundaries). To capture the simulator behavior along
K, we evaluate f(x) at a large number, m, of points on K which we denote y(1), . . . , y(m). We
also evaluate the perpendicular projection of the point of interest, x, onto the boundary K,
which we denote as xK . We therefore extend the collection of boundary evaluations, K, to be
the m+ 1 column vector

K = (f(xK), f(y(1)), . . . , f(y(m)))T ,

which is illustrated in Figure 1 (left panel). We start by examining the expression for EK [f(x)]

(3.1) EK [f(x)] = E [f(x)] + Cov [f(x),K] Var [K]−1 (K − E [K]).

As noted above, this calculation is seemingly infeasible due to the Var [K]−1 term. However,
if we evaluate it at the point xK itself, which lies on K, and as we have evaluated f(xK), we
must find, for the emulator of a smooth deterministic function with suitably chosen correlation
structure, that EK [f(xK)] = f(xK) (and that VarK [f(xK)] = 0). This is indeed the case as
can be seen by examining the structure of the Var [K]−1 term. As f(xK) is included as the
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x1

x2 Known Boundary K
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●● xxK

y(1)
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x2 Known Boundary K
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●

●

●

●

y(1)
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Figure 1. The single known boundary case. Left panel: The points required for the EK [f(x)] and VarK [f(x)]
calculation. x is the point we wish to emulate at, xK its orthogonal projection onto the known boundary K at
distance a. Right panel: The points required for the CovK [f(x), f(x′)] calculation. x and x′ are points we wish
to update the covariance at, while xK and x′K are their orthogonal projection onto the known boundary K, at
distances a and a′, respectively. In both panels, the y(i) represent a large number of points for which we can
evaluate f(y(i)) analytically (or at least very quickly).

first element of K, we note that

I(m+1) = Var [K] Var [K]−1(3.2)

=


Cov[f(xK),K]

Cov[f(y(1)),K]

...

Cov[f(y(m)),K]

Var [K]−1 ,(3.3)

where I(m+1) is the identity matrix of dimension (m+ 1). Taking the first row of (3.3) gives

(3.4) Cov
[
f(xK),K

]
Var [K]−1 = (1, 0, . . . , 0).

Substituting (3.4) into the adjusted mean and variance naturally gives EK [f(xK)] = f(xK)
and VarK [f(xK)] = 0 as it must. While unsurprising, this simple result is of particular value
when considering the behavior at the point of interest, x. As we have defined xK as the
perpendicular projection of x onto K, we can write x = xK + (a, 0, . . . , 0) for some constant
a. Now we can exploit the symmetry of the product correlation structure (2.2) to obtain the
covariance expressions

Cov[f(x), f(xK)] = σ2
d∏

i=1

ri(xi − xKi ) = σ2r1(x1 − xK1 ) = σ2r1(a)

= r1(a) Cov[f(xK), f(xK)](3.5)
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since xi = xKi for i = 2, . . . , d and ri(0) = 1. Furthermore,

Cov[f(x), f(y(j))] = σ2
d∏

i=1

ri(xi − y(j)i ) = σ2r1(x1 − xK1 )
d∏

i=2

ri(xi − y(j)i )

= σ2r1(a)

d∏
i=2

ri(x
K
i − y

(j)
i )

= r1(a) Cov[f(xK), f(y(j))](3.6)

since the first components of xK and y(j) must be equal as they all lie on K (i.e., xK1 = y
(j)
1 ).

Combining (3.5) and (3.6), the covariance between point x and the set of boundary evaluations
is given by

Cov [f(x),K] =
(

Cov[f(x), f(xK)],Cov[f(x), f(y(1))], . . . ,Cov[f(x), f(y(m))]
)

= r1(a)
(

Cov[f(xK), f(xK)],Cov[f(xK), f(y(1))], . . . ,Cov[f(xK), f(y(m))]
)

= r1(a) Cov
[
f(xK),K

]
.(3.7)

Equations (3.4) and (3.7) are very useful results that greatly simplify the emulator calculations.
We can use them to write the adjusted emulator expectation for f(x) given in (3.1) as

EK [f(x)] = E [f(x)] + Cov [f(x),K] Var [K]−1 (K − E [K])

= E [f(x)] + r1(a) Cov
[
f(xK),K

]
Var [K]−1 (K − E [K])

= E [f(x)] + r1(a)(1, 0, . . . , 0)(K − E [K])

= E [f(x)] + r1(a)(f(xK)− E
[
f(xK)

]
).(3.8)

Thus we have eliminated the need to explicitly invert the large matrix Var [K] entirely by
exploiting the symmetric product correlation structure and the identity (3.4). Similarly, we
find the adjusted variance using (2.5), (3.4), and (3.7),

VarK [f(x)] = Var [f(x)]− r1(a)(1, 0, . . . , 0)Cov [K, f(x)]

= Var [f(x)]− r1(a)Cov[f(xK), f(x)]

= σ2(1− r1(a)2).(3.9)

Equations (3.8) and (3.9) give the expectation and variance of the emulator at a point x,
updated by a known boundary K. As they require only evaluations of the analytic boundary
function and the correlation function they can be implemented with trivial computational cost
in comparison to a direct update by K. Note that they critically rely on the projected point
f(xK) being in K.

Finally, we consider the Bayes linear update for the covariance between x and a second
input point x′ ∈ X given the boundary K. We define the orthogonal projection of x′ onto K
as x′K and denote its perpendicular distance from K as a′, as shown in Figure 1 (right panel).
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Equation (2.6) now gives

CovK

[
f(x), f(x′)

]
= Cov

[
f(x), f(x′)

]
− Cov [f(x),K] Var [K]−1 Cov

[
K, f(x′)

]
= Cov

[
f(x), f(x′)

]
− r1(a)(1, 0, . . . , 0)Cov

[
K, f(x′)

]
= Cov

[
f(x), f(x′)

]
− r1(a)Cov

[
f(xK), f(x′)

]
= Cov

[
f(x), f(x′)

]
− r1(a)Cov

[
f(xK), f(x′K)

]
r1(a

′),(3.10)

where in the final line we used the equivalent result to (3.6), rewritten for x′. Noting that we
can also write x′ = x′K + (a′, 0, . . . , 0), and that xK1 = x′K1 , (3.10) becomes

CovK

[
f(x), f(x′)

]
= σ2

d∏
i=1

ri(xi − x′i)− r1(a)r1(a
′)σ2

d∏
i=1

ri(x
K
i − x′Ki )

= σ2r1(a− a′)
d∏

i=2

ri(xi − x′i)− σ2r1(a)r1(a
′)r1(0)

d∏
i=2

ri(x
K
i − x′Ki )

= σ2r1(a− a′)
d∏

i=2

ri(x
K
i − x′Ki )− σ2r1(a)r1(a

′)

d∏
i=2

ri(x
K
i − x′Ki )

= σ2
(
r1(a− a′)− r1(a)r1(a

′)
)
r−1(x

K − x′K)

= σ2R1(a, a
′) r−1(x

K − x′K),(3.11)

where we have defined the correlation function of the projection of x and x′ onto K as

r−1(x
K − x′K) =

d∏
i=2

ri(x
K
i − x′Ki ) = Cov

[
f(xK), f(x′K)

]
and defined the “updated correlation component” in the x1 direction as

(3.12) R1(a, a
′) = r1(a− a′)− r1(a)r1(a

′).

We see of course that (3.9) is a special case of (3.11), with x = x′.
These expressions for the expectation and (co)variance updated by the information at the

simulator boundary provide several insights:
(a) Sufficiency: For the updating of our beliefs about the emulator at point x, we see

that f(xK) is sufficient for K. Hence, only the evaluation K = f(xK) is required and
the evaluations y(i) are redundant (note that under an assumption of an underlying
Gaussian process, this result corresponds to a conditional independence statement
discussed in the supplementary material to [27]). This has important ramifications
for users of black box Gaussian process packages, as we discuss in section 3.3. It also
implies that if we are interested in emulating at any point x ∈ X , we only require the
known boundary K to contain the projection of X . So, for example, K could be only
a bounded subset of a hyperplane, provided X is similarly bounded.

(b) The correlation structure is now no longer stationary: The contribution to the corre-
lation function from dimensions 2 to d, denoted r−1(x

K − x′K), is unchanged by the
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update (as we would expect from symmetry arguments); however, the contribution
in the x1 direction depends on the distance to the boundary K, through R1(a, a

′),
breaking stationarity.

(c) The correlation structure is still in product form: Critically, as the correlation structure
has maintained its product from, this suggests that we can update by further known
boundaries, either perpendicular to any of the remaining inputs xi, with i = 2, . . . , d,
hence perpendicular to K or indeed by a second boundary parallel to K. We perform
these updates in sections 3.4 and 3.5.

(d) Intuitive limiting behavior : As we move x toward K, the emulator tends toward the
known boundary function, and as we move away from K the emulator reverts to its
prior form, as expected:

lim
a→0

EK [f(x)] = f(xK), lim
a→0

VarK [f(x)] = 0,(3.13)

lim
a→∞

EK [f(x)] = E [f(x)] , lim
a→∞

VarK [f(x)] = Var [f(x)] ,(3.14)

as lima→∞ r1(a) = 0. Similarly, the behavior of CovK [f(x), f(x′)] is as expected,
tending to its prior form far from the boundary (with a − a′ finite) and to zero as
either a and a′ tend to zero:

lim
a→0

CovK

[
f(x), f(x′)

]
= lim

a′→0
CovK

[
f(x), f(x′)

]
= 0,(3.15)

lim
a,a′→∞

CovK

[
f(x), f(x′)

]
= σ2r(x− x′) = Cov

[
f(x), f(x′)

]
, a− a′ finite.(3.16)

3.2. Application to a two-dimensional model. For illustration, we consider the problem
of emulating the two-dimensional function

(3.17) f(x) = − sin (2πx2) + 0.9 sin (2π(1− x1)(1− x2))

defined over the region X given by 0 < x1 < 1, 0 < x2 < 1, where we assume a known boundary
K at x1 = 0, and hence have that f(xK) = f(0, x2) = −1.9 sin (2πx2). The true output of
f(x) over X is given in Figure 2(b) for reference. Using a prior expectation E [f(x)] = 0 and
a product Gaussian covariance structure with parameters θ = 0.4 and σ = 1, we apply the
expectation and variance updates (3.8) and (3.9) given the boundary K at x1 = 0 and find
that

EK [f(x)] = −1.9 exp{−x21/θ2} sin(2πx2),

VarK [f(x)] = 1− exp{−2x21/θ
2}.

Figure 2(a) shows the adjusted expectation EK [f(x)] over X , clearly illustrating how the ex-
pectation surface has been changed in the vicinity of K to agree with the simulator behavior.
Figure 2(c) shows the adjusted emulator standard deviation

√
VarK [f(x)] and demonstrates

the significant reduction in emulator uncertainty near K. Finally, Figure 2(d) shows simple
emulator diagnostics over X of the form of the standardized values SK(x) = (EK [f(x)] −
f(x))/

√
VarK [f(x)]. Thus any values of x for which SK(x) was far from 0 (a typical choice
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(a) The emulator expectation EK [f(x)].
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(b) The true 2-dimensional function f(x).
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(c) The emulator stan. dev.
√

VarK [f(x)].
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(d) Emulator diagnostics SK(x).

Figure 2. Updating by a single known boundary K at x1 = 0.

being |SK(x)| > 3) would indicate a conflict between emulator and simulator (see [4] for de-
tails). For our boundary-adjusted emulator, the standardized diagnostics all maintain modest
values lying well within ±1.5 standard deviations giving no cause for concern. We specify θ
and σ a priori here, according to the Bayesian paradigm and also mainly for simplicity, but
note that the known boundary approach that we describe can be used in combination with
various methods of assessing such covariance function parameters (and indeed covariance func-
tions). For example, if one wished to use maximum likelihood, the likelihood calculated given
D could also be reduced to tractable form using similar sufficiency arguments, by employing
(3.11).

3.3. Updating by further model evaluations. Most importantly, as we have analytic
expressions for EK [f(x)], VarK [f(x)] and CovK [f(x), f(x′)] we are now able to include addi-
tional simulator evaluations into the emulation process. To do this, we perform n (expensive)
evaluations, D, of the full simulator across X and use these to supplement the evaluations, K,
available on the boundary. We want to update the emulator by the union of the evaluations
D and K, that is, to find ED∪K [f(x)], VarD∪K [f(x)], and CovD∪K [f(x), f(x′)]. This can be
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achieved via a sequential Bayes linear update:

ED∪K [f(x)] = EK [f(x)] + CovK [f(x), D] VarK [D]−1 (D − EK [D]),(3.18)

VarD∪K [f(x)] = VarK [f(x)]− CovK [f(x), D] VarK [D]−1 CovK [D, f(x)] ,(3.19)

(3.20)

CovD∪K
[
f(x), f(x′)

]
= CovK

[
f(x), f(x′)

]
− CovK [f(x), D] VarK [D]−1 CovK

[
D, f(x′)

]
,

where we first update our emulator analytically by K, and subsequently update these quanti-
ties by the evaluations D [17]. As typically n is small due to the relative expense of evaluating
the full simulator, these calculations will remain tractable, as VarK [D]−1 will be feasible for
modest n.

Not only will the known boundary K improve the accuracy of the emulator compared to
just updating by D, for only trivial computational cost, it will also allow us to design a more
informative set of runs that constitute D. We discuss appropriate designs for this scenario in
section 4.

3.3.1. Incorporating known boundaries into black box emulation packages. Considera-
tion of the form of the sequential update given by (3.18)–(3.20), combined with the sufficiency
argument presented in section 3.1, shows that for the full joint update by D ∪K, a sufficient
set of points is composed of (a) the n points in D, (b) the n points formed from the projection
of D onto the boundary K, and (c) the projection xK of the point of interest x, giving a total
of 2n + 1 points. This has ramifications for users of black box Gaussian process emulation
packages (such as BACCO [19] or GPfit [29] in R, or GPy [18] for Python), which perhaps
cannot be easily recoded to use the more sophisticated analytic emulation formula of (3.8) and
(3.9) but for which the inclusion of extra simulator evaluations is trivial. Hence such a user
simply has to add the extra (n+1) projected points on K to their usual set of n runs, and their
black box Gaussian process package will produce results that precisely match (3.18)–(3.20).
This, however, will require inverting a matrix of size (2n + 1) and hence will be slower than
directly using the above analytic results, which only require inverting a matrix of size n.

3.4. Updating by two perpendicular known boundaries. Given the above results, we
now proceed to discuss the update of the emulator by a second known boundary, L. In the
first case, discussed here, L is assumed perpendicular to K, and in the second case, discussed
in section 3.5, L is parallel to K. Detailed derivations of the results presented can be found
in Appendices A and B, and the key results for single and dual boundaries are summarized
in Table 1, for ease of comparison.

First, we assume the second known boundary L is a d − 1 dimensional hyperplane, per-
pendicular to the x2 direction, as illustrated in Figure 3 (left panel). Our goal is to update
the emulator for f(x), x ∈ X , by our knowledge of the function’s behavior on both boundaries
K and L, and subsequently by a set of runs D within X . Thus we must find ED∪L∪K [f(x)]
and VarD∪L∪K [f(x)]. We do this sequentially by analytically updating by K followed by L,
then numerically by D.

As before, assume that the f(x) is analytically solvable and hence inexpensive to evaluate
along L, permitting a large but finite number, m, of evaluations on L, denoted z(1), . . . , z(m).
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Table 1
A summary for comparison of the updated emulator results found for the three main cases: a single bound-

ary, two perpendicular boundaries, and two parallel boundaries. The variance results, which are of course special
cases of the covariance results, are included for ease of interpretation.

When updating by one boundary K, with R1(a, a′) = r1(a − a′) − r1(a)r1(a′) and ∆f(.) ≡
f(.)− E [f(.)]:

EK [f(x)] = E [f(x)] + r1(a)∆f(xK)

CovK [f(x), f(x′)] = σ2R1(a, a′) r−1(xK − x′K)

VarK [f(x)] = σ2(1− r1(a)2)

When updating by two perpendicular boundaries K and L:

EL∪K [f(x)] = E [f(x)] + r1(a)∆f(xK) + r2(b)∆f(xL)− r1(a)r2(b)∆f(xLK)

CovL∪K [f(x), f(x′)] = σ2R1(a, a′)R2(b, b′) r−1,−2(xLK − x′LK)

VarL∪K [f(x)] = σ2(1− r21(a))(1− r22(b))

When updating by two parallel boundaries K and L:

EL∪K [f(x)] = E [f(x)] +

[
r1(a)− r1(b)r1(c)

1− r21(c)

]
∆f(xK) +

[
r1(b)− r1(a)r1(c)

1− r21(c)

]
∆f(xL)

CovL∪K [f(x), f(x′)] = σ2 r−1(xK − x′K)

1− r21(c)

{
r1(a− a′)(1− r21(c))− r1(a)r1(a′)− r1(b)r1(b′)

+ r1(c)
[
r1(a)r1(b′) + r1(b)r1(a′)

]}
VarL∪K [f(x)] = σ2 1

1− r21(c)

{
1− r21(c)− r21(a)− r21(b) + 2r1(c)r1(a)r1(b)

}

As in section 3.1, we define the corresponding length m+ 1 vector of boundary values L as

(3.21) L =
(
f(xL), f(z(1)), . . . , f(z(m))

)T
,

which includes the projection xL of x onto L. An analogous proof to that of (3.4) gives

(3.22) CovK

[
f(xL), L

]
VarK [L]−1 = (1, 0, . . . , 0),

while as the product correlation structure is not disturbed by the update by K, we also have

(3.23) CovK [f(x), L] = r2(b) CovK

[
f(xL), L

]
,

where b is the perpendicular distance from x to L and r2(·) is the correlation function in the
perpendicular direction to L, as shown in Figure 3 (left panel). Using (3.22) and (3.23) the
expectation of f(x) adjusted by K then L can now be calculated using the sequential update
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Figure 3. Left panel: Two perpendicular known boundaries. Right panel: Two parallel known boundaries.
In both cases x and x′ are the points of interest for the emulation calculation, while xK and x′K are their
orthogonal projection onto the known boundary K, and xL and x′L their orthogonal projection onto the known
boundary L. The y(i) and z(i) represent a large number of points on the boundaries K and L respectively for
which we can evaluate f(y(i)) and f(z(i)) analytically.

(3.18) giving

EL∪K [f(x)] = EK [f(x)] + r2(b)(1, 0, . . . , 0)(L− EK [L])

= EK [f(x)] + r2(b)(f(xL)− EK

[
f(xL)

]
)(3.24)

= E [f(x)] + r1(a)(f(xK)− E
[
f(xK)

]
) + r2(b)f(xL)

− r2(b)(E
[
f(xL)

]
+ r1(a)(f(xLK)− E

[
f(xLK)

]
))

= E [f(x)] + r1(a)∆f(xK) + r2(b)∆f(xL)− r1(a)r2(b)∆f(xLK),(3.25)

where we have also used (3.8) for EK [f(x)], defined ∆f(.) ≡ f(.) − E [f(.)] and denoted the
projection of xL onto K as xLK , which is just the perpendicular projection of x onto L ∩ K.
An expression for the covariance adjusted by K then L is obtained by a similar argument (see
Appendix A),

(3.26)

CovL∪K
[
f(x), f(x′)

]
= r2(b− b′)CovK

[
f(xL), f(x′L)

]
− r2(b)CovK

[
f(xL), f(x′L)

]
r2(b

′)

= σ2R1(a, a
′)R2(b, b

′) r−1,−2(x
LK − x′LK),(3.27)

where we have defined the correlation function of the projection of x and x′ onto L ∩ K as

(3.28) r−1,−2(x
LK − x′LK) =

d∏
i=3

ri(x
LK
i − x′LKi ) = Cov

[
f(xLK), f(x′LK)

]
.

The updated variance is trivially obtained by setting x = x′ to get

VarL∪K [f(x)] = σ2R1(a, a)R2(b, b)

= σ2(1− r21(a))(1− r22(b)).(3.29)
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(a) K ⊥ L: EL∪K [f(x)]
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(b) K ⊥ L:

√
VarL∪K [f(x)]
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(c) K ⊥ L: Diagnostics SL∪K(x)
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(d) K ‖ L: EL∪K [f(x)]
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(e) K ‖ L:
√

VarL∪K [f(x)]
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(f) K ‖ L: Diagnostics SL∪K(x)

Figure 4. Emulators updated by two boundaries K and L. Top row: Perpendicular boundaries, with
K : x1 = 0 and L : x2 = 0. Bottom row: Parallel boundaries, with K : x1 = 0 and L : x1 = 1.

As a consistency check, we see that all three expressions (3.25), (3.27), and (3.29) are
invariant under interchange of the two boundaries, represented as the transformation K ↔ L
and a ↔ b, as they should be. They also exhibit intuitive limiting behaviors as the distance
b from the boundary L tends to 0 or ∞ (see Appendix A). Again, we observe that were
we to sequentially update by a further n evaluations, D, and calculate ED∪L∪K [f(x)] and
VarD∪L∪K [f(x)], the only points we require for sufficiency are D and the projections of D
and x onto K, L, and K ∩ L. This represents only 4n+ 3 points, which is far fewer than the
2(m+ 1) + 1 + n points (with m extremely large) that we started with. Again, users of black
box emulators can easily insert these points, at the cost of having to invert a matrix now
of size 4n + 3, instead of a single inversion of size n were they to encode the above analytic
results directly.

An example of an emulator updated by two perpendicular known boundaries is shown in
Figures 4(a)–4(c), which give EL∪K [f(x)],

√
VarL∪K [f(x)], and SL∪K(x), respectively, for the

simple function f(x) introduced in section 3.2. A second known boundary L is now located
at x2 = 0, where we know that f(xL) = f(x1, 0) = −0.9 sin (2πx1). As expected, we see the
emulator expectation agrees exactly with the behavior of the simulator f(x) on K and L (as
given in Figure 2(b)). We note also the intuitive property that the variance of the emulator
reduces to zero as we approach the boundary but remains at σ2 = 1 when we are sufficiently
distant. This sensibly represents the increase in knowledge about the simulator behavior the
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closer we are to K or L, with the scale of the increase governed by the size of the correlation
length parameter θ. Diagnostics SL∪K(x) are again acceptable.

3.5. Updating by two parallel known boundaries. Consider now a second boundary L
located at x1 = c, that is therefore parallel to the original boundary K at x1 = 0. As updating
by K leaves the correlation structure CovK [f(x), f(x′)] still in product form, critically with
respect to the x1 term, we can still perform a subsequent analytic update by L. We define L
as before by (3.21) and denote the distance from point x to its perpendicular projection, xL,
onto L as b (see Figure 3, right panel), where now a+ b = c. See Appendix B for more details
of the following derivations.

In this parallel case, results analogous to (3.23) and (3.22) can be derived, which combine
to give

(3.30) CovK [f(x), L] VarK [L]−1 = R
(2)
1 (a, c)(1, 0, . . . , 0),

where R
(2)
1 (a, c) = R1(a, c)/R1(c, c) and R1(·, ·) is as in (3.12). Inserting into (3.18), the

emulator expectation adjusted by both L and K can be shown to be (see Appendix B)

EL∪K [f(x)] = EK [f(x)] +R
(2)
1 (a, c)(1, 0, . . . , 0)(L− EK [L])

= E [f(x)] +

[
r1(a)− r1(b)r1(c)

1− r21(c)

]
∆f(xK) +

[
r1(b)− r1(a)r1(c)

1− r21(c)

]
∆f(xL),(3.31)

where we have exploited the fact that the projection of xL onto K is just xK . Similarly, the
covariance adjusted by L and K can be shown to be (see Appendix B)

CovL∪K
[
f(x), f(x′)

]
= CovK

[
f(x), f(x′)

]
−R(2)

1 (a, c)(1, 0, . . . , 0)CovK

[
L, f(x′)

]
= σ2 r−1(x

K − x′K)

{
R1(a, a

′)− R1(a, c)R1(c, a
′)

R1(c, c)

}
,

which is just a generalized form of (3.11). We can expand the functions R1 to obtain

CovL∪K
[
f(x), f(x′)

]
= σ2

r−1(x
K − x′K)

1− r21(c)

{
r1(a− a′)(1− r21(c))− r1(a)r1(a

′)− r1(b)r1(b′)

+ r1(c)
[
r1(a)r1(b

′) + r1(b)r1(a
′)
]}
,(3.32)

which we note is now explicitly invariant under interchange of K and L (with a↔ b, etc.) as
expected. Again, the adjusted variance is obtained by setting x = x′

VarL∪K [f(x)] = σ2
1

1− r21(c)

{
1− r21(c)− r21(a)− r21(b) + 2r1(c)r1(a)r1(b)

}
.(3.33)

Again, by inspection of these results we see that the only relevant information for our updated
emulator at a general point x is the projections of x onto K and L. Thus to update the
emulator sequentially by K, L, then D, we only need to include the additional 2(n+ 1) points
of the projections of D and x onto K and L, noting that unlike in the perpendicular case, the
intersection L ∩ K is now empty.
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3.6. Continuous known boundaries. We now show how to generalize the above calcula-
tions from using a slightly artificial discrete and finite set of m known points on each boundary,
which only requires a standard Bayes linear update, to a more natural continuum of known
points on a continuous boundary, which requires a generalized Bayes linear update. Let the
points on the boundary K perpendicular to x1 be denoted K = {f(y) : y ∈ K}. The Bayes
linear update can be generalized from the case of finite points to that of a continuum of points
in the following way (we are unaware of this generalization having been performed previously,
but note that it follows from the foundational position that views the Bayes linear update as
a projection [17]). The adjusted expectation changes from the matrix equation,

EK [f(x)] = E [f(x)] + Cov [f(x),K] Var [K]−1 (K − E [K]),

to the integral equation,

(3.34) EK [f(x)] = E [f(x)] +

∫
y∈K

∫
y′∈K

Cov [f(x), f(y)] s(y, y′) (f(y′)− E
[
f(y′)

]
)dydy′,

and the covariance update becomes

CovK

[
f(x), f(x′)

]
= Cov

[
f(x), f(x′)

]
−
∫
y∈K

∫
y′∈K

Cov [f(x), f(y)] s(y, y′) Cov
[
f(y′), f(x′)

]
dydy′.

Here s(x, x′) represents the infinite dimensional generalization of Var [K]−1 and satisfies the
equivalent inverse property to that of (3.4) giving∫

y′∈K
Cov

[
f(y), f(y′)

]
s(y′, y′′) dy′ = δ(y − y′′) for y, y′′ ∈ K,

where δ(y − y′′) is the Dirac delta function, the generalization of the identity matrix. Again,
if we denote the projection of a general point x ∈ X onto K as xK , we have for y ∈ K that

(3.35) Cov [f(x), f(y)] = r1(a) Cov
[
f(xK), f(y)

]
,

which on substitution into (3.34) yields

EK [f(x)] = E [f(x)] +

∫
y∈K

∫
y′∈K

r1(a) Cov
[
f(xK), f(y)

]
s(y, y′) (f(y′)− E

[
f(y′)

]
)dydy′

= E [f(x)] + r1(a)

∫
y′∈K

δ(xK − y′) (f(y′)− E
[
f(y′)

]
)dy′

= E [f(x)] + r1(a) (f(xK)− E
[
f(xK)

]
)

in agreement with (3.8). Similarly the updated covariance becomes

CovK

[
f(x), f(x′)

]
= Cov

[
f(x), f(x′)

]
− r1(a)

∫
y′∈K

δ(xK − y′) Cov
[
f(y′), f(x′K)

]
r1(a

′) dy′

= Cov
[
f(x), f(x′)

]
− r1(a)Cov

[
f(xK), f(x′K)

]
r1(a

′)

in agreement with (3.10), and the derivation of (3.11) then follows in exactly the same way as
shown in section 3.1. The continuous versions of the two perpendicular and parallel boundary
cases follow similarly, are given in Appendix C, and also agree with the discrete results.
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4. Design of KBE experiments. The existence of known boundaries allows us to design
a more efficient set of runs over X to exploit this additional information. Standard computer
model designs involving Latin hypercubes or low-discrepancy sequences [36] are of limited
value here, as they seek uniform coverage over X . As highlighted by Figure 4, after the
boundary update the emulator variance will now exhibit clear (non-uniform) structure, which
the design should now reflect. We therefore investigate some simple methods of optimal
design and introduce a mechanism for transforming a uniformly space-filling design into a
more appropriate configuration for KBE problems. The general design problem is as follows
(see, for example, [26]):
• Given a simulator and corresponding emulator updated by known boundary K, select

input points XD ∈ X , that will give evaluations D = f(XD), chosen to optimize some
criterion c(XD).

Typically, the criterion is such that we seek to maximize the information content of the
chosen design XD, which in computer models typically translates to minimizing a function
of the emulator variance VarD∪K [f(x)] over X [37]. Due to the discrete nature of computer
experiments, the criterion over X is typically approximated by some discrete grid X over X .
The optimization problem then becomes one of a search over a collection of candidate designs
for the “best” candidate under the specified approximate criterion, yielding a locally (not
globally) optimal design. This is usually sufficient, as the identification of the global optimum
would only be warranted if all the assumptions used in the emulator construction process
were thought to be highly accurate, which is rarely the case. A sensible choice for the design
criterion, c(XD), suitable for our purposes is as follows:
• V-optimality : c(XD) = trace(VarD∪K [f(X)]), the trace of the adjusted emulator variance

matrix over the finite grid of points X, given the known boundary and the design XD.
V-optimality just seeks to minimize the sum (and hence also the mean) of the point

variances across X, calculated in the presence of known boundaries, and is a discrete ap-
proximation of the integrated mean squared prediction error criterion [37, 26]. To improve
efficiency we exploit the fact that

(4.1) trace(VarD∪K [f(X)]) = trace(VarK [f(X)])− trace(RVarD∪K(f(X)))

(see (3.19)) and so we simply need to seek designs that maximize trace(RVarD∪K(f(X))).
Figure 5 shows 10-point V-optimal designs XD (black points) and the corresponding em-

ulator standard deviation
√

VarD∪K [f(X)]) defined over X (colored contours) for the single
known boundary case (top left), two perpendicular known boundaries (middle left), and two
parallel known boundaries (bottom left). The V-optimality criteria c(XD) was assessed using
a grid X of size 30 × 30 and calculated for any particular candidate design XD using (4.1),
(3.20), and, for the single known boundary case, (3.11). The designs in Figure 5 were gener-
ated using the standard optim() function in R, using 10-point space filling Latin hypercube
designs as initial conditions. Note how the V-optimality criteria automatically moves the
design points away from the known boundaries toward the less explored regions of X , while
still maintaining excellent space filling properties. The toy model was subsequently evalu-
ated at X and the corresponding emulator diagnostics SD∪K(x) given in the right column of
Figure 5.
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Figure 5. Left column: 10-point V-optimal designs XD (black points) and the corresponding emulator
standard deviation

√
VarD∪K [f(X)]) defined over X (colored contours) for the single known boundary case

(top left), two perpendicular known boundaries (middle left), and two parallel known boundaries (bottom left),
respectively. Emulator diagnostics of the form SD∪K(x) = (ED∪K [f(x)]−f(x))/

√
VarD∪K [f(x)] are given over

X in the right column for each of the three cases.
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Despite the desirable properties of such V-optimal designs, the projections onto lower
dimensional subspaces of X can be less than satisfactory. For example, in the single and also
two parallel known boundary cases as illustrated in the top-left and bottom-left panels of
Figure 5, the projection of XD onto x1 only covers three distinct values of x1. This could
be very inefficient if it was found that x1 was highly influential (and hence deemed an active
input) while x2 was found to be inactive. This is important as active variables are extremely
useful in taming high-dimensional simulators [41].

Such projection concerns may promote the use of a more general purpose design. As men-
tioned above, in the computer model literature the maximin Latin hypercube is the standard
choice [36]. Therefore, to account for the nonuniformity of the boundary updated emulator
variance VarD∪K [f(X)], here we explore the use of simple “warped Latin hypercube designs”
that share the useful properties of standard Latin hypercubes but are adapted to be more
appropriate for a known boundary setting. These do not optimize any particular criteria but
have good space filling and projection properties.

The warped designs are created by taking a maximin Latin hypercube design and warping
it so that the marginal density of the design matches the marginal form of the new emulator
variance adjusted by the known boundaries, which in the single or two perpendicular boundary
cases is proportional to (1 − r2i (a)), as shown by (3.9) and (3.29). For example, in the two
perpendicular known boundary case, each point x(i) in a maximin Latin hypercube design is
warped via the transformation

x
(i)
1 → g1(x

(i)
1 )/g1(1), where g−11 (a) =

∫ a

0
(1− r21(a′))da′,(4.2)

x
(i)
2 → g2(x

(i)
2 )/g2(1), where g−12 (b) =

∫ b

0
(1− r22(b′))db′,(4.3)

x
(i)
j → x

(i)
j j 6= 1, 2,(4.4)

which ensures the marginal distributions π(x
(i)
j ) ∝ (1− r2j (x

(i)
j )), for j = 1, 2, as required.

Figure 6 (left panel) shows a 20-point maximin Latin hypercube as the red points and the
warped Latin hypercube as the black points. The black lines link the pre- and postwarped
points to highlight the effect of the warping. The right panel shows the emulator standard
deviation

√
VarD∪L∪K [f(X)] updated by both boundaries L and K and the warped design

D. Such designs are space filling, while they also maintain good projection properties. We
illustrate these designs further in the next section to explore improvements to the KBE of a
model of Arabidopsis thaliana.

5. Application to a systems biology model of ArabidopsisArabidopsisArabidopsis. In the previous sections of
this article we have presented methodology for utilizing knowledge of the behavior of a complex
scientific model along particular boundaries of the input parameter space to aid emulation of
the model across the whole input space, exploiting both emulation and design procedures. In
this section we apply this methodology to a model of hormonal crosstalk in the root of an
Arabidopsis plant.
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Figure 6. Left panel: A 20-point maximin Latin hypercube (red points) and the corresponding warped
Latin hypercube (black points). The black lines link the pre- and postwarped points to highlight the effect of the
warping. Right panel: The emulator standard deviation

√
VarD∪L∪K [f(X)] updated by both boundaries L and

K and the warped design D.

5.1. Model of hormonal crosstalk in Arabidopsis thalianaArabidopsis thalianaArabidopsis thaliana. Arabidopsis thaliana is a small
flowering plant that is widely used as a model organism in plant biology. Arabidopsis offers
important advantages for basic research in genetics and molecular biology for many reasons,
including the facts that it has a short life cycle, changes in it are easy to observe, and it is
genetically relatively simple. Arabidopsis was therefore the first plant to have its genome fully
sequenced [23]. Understanding the genetic structure of Arabidopsis may lead to increased
understanding of crop plants such as wheat and hence facilitate the future development of
crop plants that are robust to adverse climate conditions.

We demonstrate our KBE techniques on a model of hormonal crosstalk in the root of an
Arabidopsis plant that was constructed by Liu et al. [28]. This Arabidopsis model represents
the hormonal crosstalk of auxin, ethylene, and cytokinin in Arabidopsis root development as
a set of 18 differential equations, given in Table 2, which must be solved numerically. The
full model takes an input vector of 45 rate parameters (k1, k1a, k2, . . .), produces an output
vector of 18 chemical concentrations ([Auxin], [X], [PLSp], . . .), and has a typical runtime
of approximately 0.1 to 1 seconds, depending on parameter settings and target model time
[45]. This Arabidopsis model has been successfully emulated in the literature in the context
of history matching [24, 45]. For the purposes of this article, we are interested in modeling
the important output [PLSp], which represents the concentration of POLARIS peptide [28]
at early time, t = 2. We choose to explore six input rate parameters {k4, k6, k6a, k7, k8, k9} of
primary interest, although it is important to note that the benefits of using known boundaries
would scale to larger numbers of inputs. The ranges over which we allowed these six inputs
to vary is given in Table 6 in Appendix D. These ranges were square rooted and mapped to
a [−1, 1] scale. The remaining input rate parameters were fixed at values deemed reasonable
by biological experts [28].
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Table 2
Arabidopsis model differential equations.

d[Auxin]

dt
=

k1a

1 +
[X]

k1

+ k2 + k2a
[ET ]

1 +
[CK]

k2b

[PLSp]

k2c + [PLSp]

d[Re]

dt
= k11[Re∗][ET ]− (k10 + k10a[PLSp])[Re]

+
VIAA[IAA]

KmIAA + [IAA]

d[Re∗]

dt
= −k11[Re∗][ET ] + (k10 + k10a[PLSp])[Re]

−
(
k3 +

k3a[PIN1pm]

k3auxin+ [Auxin]

)
[Auxin]

d[CTR1]

dt
= −k14[Re∗][CTR1] + k15[CTR1∗]

d[X]

dt
= k16 − k16a[CTR1∗]− k17[X]

d[CTR1∗]

dt
= k14[Re∗][CTR1]− k15[CTR1∗]

d[PLSp]

dt
= k8[PLSm]− k9[PLSp]

d[PIN1m]

dt
=

k20a
k20b + [CK]

[X]
[Auxin]

k20c + [Auxin]

d[Ra]

dt
= −k4[Auxin][Ra] + k5[Ra∗] − k1v21[PIN1m]

d[Ra∗]

dt
= k4[Auxin][Ra]− k5[Ra∗]

d[PIN1pi]

dt
= k22a[PIN1m]− k1v23[PIN1pi]

d[CK]

dt
=

k18a

1 +
[Auxin]

k18

− k19[CK] − k1v24[PIN1pi] +
k25a[PIN1pm]

1 +
[Auxin]

k25b

+
VCK [cytokinin]

KmCK + [cytokinin]

d[PIN1pm]

dt
= k1v24[PIN1pi]− k25a[PIN1pm]

1 +
[Auxin]

k25b
d[ET ]

dt
= k12 + k12a[Auxin][CK]− k13[ET ]

d[IAA]

dt
= 0

+
VACC [ACC]

KmACC + [ACC]

d[cytokinin]

dt
= 0

d[PLSm]

dt
=

k6[Ra∗]

1 +
[ET ]

k6a

− k7[PLSm]
d[ACC]

dt
= 0

5.2. Known boundary emulation of the ArabidopsisArabidopsisArabidopsis model.

5.2.1. Establishing known boundaries. Establishing known boundaries requires some un-
derstanding of the scientific model. It is not uncommon for one or more known boundaries to
occur in a model system for some outputs. Often, setting certain parameters to specific values
will decouple smaller subsections of the system, which may allow subsets of the equations to
be solved analytically, for particular outputs. This is the case for the Arabidopsis model.

We establish the known boundaries for output [PLSp] by considering its rate equation:

(5.1)
d[PLSp]

dt
= k8[PLSm]− k9[PLSp].

A known boundary exists when rate parameter k8 = 0, since in this case

d[PLSp]

dt
= −k9[PLSp](5.2)

⇒ [PLSp] = [PLSp0]e−k9t,(5.3)
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where [PLSp0] is the initial condition of the [PLSp] output, and we see that [PLSp] has been
entirely decoupled from the rest of the system. The output [PLSp] can now be obtained along
the boundary k8 = 0 with negligible computational cost.

The second (perpendicular) known boundary for output [PLSp] occurs when k6 = 0. This
decouples the combined system of [PLSm] and [PLSp]. We can solve for [PLSm] first using

d[PLSm]

dt
= −k7[PLSm](5.4)

⇒ [PLSm] = [PLSm0]e−k7t(5.5)

Inserting this solution for [PLSm] into the rate equation for [PLSp] then yields

(5.6) [PLSp] = [PLSp0]e−k9t +
k8[PLSm

0]

k9 − k7
(e−k7t − e−k9t),

which again requires negligible computational cost to evaluate for any given input combination.
We now use these known boundaries to aid emulation of [PLSp] in the Arabidopsis model.

5.2.2. Emulator structure and parameter specification. The emulation strategy used is
as follows. As discussed in section 2, we restrict the form of our emulator to a pure Gaussian
process, as given by (2.1). We used a product Gaussian correlation function of the form given
in (2.3), as we assumed the solution to the Arabidopsis model would most likely be smooth
and that many orders of derivatives would exist. The prior emulator expectation and variance
were taken to be constant, that is, E [f(x)] = β and Var [f(x)] = σ2, where β and σ2 were
estimated to be the sample mean and variance of a set of previously evaluated scoping runs.
The correlation length parameter θ was set to θ = 0.7 for each input, a choice consistent with
the argument for approximately assessing correlation lengths presented in [41]. This value for
θ was also checked for adequacy using standard emulator diagnostics [4]. We have made this
relatively simple emulator specification for illustrative purposes, so that we can focus on the
effect of the inclusion of known boundaries.

5.2.3. Results. We now compare emulators of the above form constructed both with and
without use of the known boundaries K : k6 = 0 and L : k8 = 0, and with and without
the addition of training points. In this section we fix the design for the training points as a
maximin Latin hypercube design of size 60 across the six dimensional input space and explore
the effects of more tailored designs in section 5.3. Bayes linear updates by one and two known
boundaries were carried out using the single and two perpendicular boundary updates given
by (3.8), (3.9), (3.11) and (3.25), (3.27), (3.29), respectively. Additional updating using the
set of training points D was then performed using the sequential update formula given by
(3.18)–(3.20).

We use visual representations of the emulators and various diagnostics in order to compare
emulators built under the six scenarios of interest. These will be referred to using numerical
labeling as follows, with the data used to update the emulators given in parentheses:

1. prior emulator beliefs only, no training points and no known boundaries: (∅);
2. single known boundary k6 = 0, no training points: (K);
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860 I. VERNON, S. E. JACKSON, AND J. A. CUMMING

Figure 7. Results of emulating, without training points, a two-dimensional k6 (x-axes) by k8 (y-axes) slice
of the six-dimensional input space, with each of the inputs {k4, k6a, k7, k9} set to the mid-values of their square
root ranges. The first row shows the results when using prior emulator beliefs only, the second row shows the
results when updating by the boundary K : k6 = 0 only, and the third row shows the results when updating using
both boundaries K : k6 = 0 and L : k8 = 0. Each column from left to right shows emulator mean, standard
deviation, and diagnostics, respectively.

3. two perpendicular known boundaries k6 = 0 and k8 = 0, no training points: (L ∪K);
4. training points only: (D);
5. single known boundary and training points: (D ∪K);
6. two perpendicular known boundaries k6 = 0 and k8 = 0, and training points: (D ∪
L ∪K).

Plots equivalent to those shown in Figures 2 and 4 are substantially more difficult to visualize
across all dimensions of a high-dimensional space. Instead, to show intuitively the effect of the
various known boundaries, we first examine a slice of the full six-dimensional space. Figures
7 and 8 show the results of emulating, with and without training points using no, one, and
two boundaries, respectively, a two-dimensional k6 (x-axes) by k8 (y-axes) slice of the six-
dimensional input space, with each of the inputs {k4, k6a, k7, k9} set to the mid-values of their
square root ranges. The rows are labeled in terms of the above six scenarios, and the columns
give the emulator mean, standard deviation, and diagnostics, defined as in section 3.2. These
figures can be compared to the true function, shown in Figure 9.
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Figure 8. Results of emulating, with training points, a two-dimensional k6 (x-axes) by k8 (y-axes) slice of
the six-dimensional input space, with each of the inputs {k4, k6a, k7, k9} set to the mid-values of their square
root ranges. The first row shows the results when updating by the training points only, the second row shows
the results when updating by the training points and the known boundary K : k6 = 0, and the third row shows
the results when updating by the training points and the two known boundaries K : k6 = 0 and L : k8 = 0. Each
column from left to right shows emulator means, variances, and diagnostics, respectively.

Figure 9. A k6× k8 cross section of the simulator output with each of the inputs {k4, k6a, k7, k9} set to the
mid-values of their square root ranges. This should be compared with the left column of Figures 7 and 8.
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862 I. VERNON, S. E. JACKSON, AND J. A. CUMMING

Figure 7 shows that updating using the boundary k6 = 0 results in an updated mean
near to the boundary which closely reflects the true function, while further away from the
boundary it tends back toward the prior mean. The standard deviation tends to zero at
the boundary and increases further away from it, tending back toward the prior standard
deviation. The diagnostic plots show that the emulator gives acceptable predictions across
the input space, tending to zero at the boundary. Introducing the second boundary results
in accurate predictions close to both boundaries and acceptable diagnostic plots. Behavior of
the mean and variance tends to the prior specification in the sections of the input space far
from both boundaries.

Figure 8 shows that emulator variance modestly decreases when the 60 training points
are incorporated, a result which is sensitive to how close any of the training runs are to this
particular slice. The emulator mean does show noticeable improvement, but note that the
inclusion of the two boundaries K and L still has a far more significant effect on the emulator
than that of the 60 runs. The diagnostic plots are comparable to those in Figure 7, the
most notable difference being the diagnostic values at the top right corner of the input space,
which have now been reduced. Diagnostic plots such as these have been compared at several
combinations of the other input values with similarly adequate results, and we examine more
comprehensive diagnostics below. Since the correlation structure is more heavily influential
for updating our beliefs of simulator behavior when known boundaries are utilized, it is even
more important to ensure that parameters of the correlation function have been adequately
specified, in particular the correlation lengths. Large amounts of poor diagnostics for points
near the boundary may indicate that the correlation length has been overestimated—an easy
mistake if the function rapidly changes its behavior as it moves away from the boundary.

Figures 7 and 8 demonstrate a major advantage of being able to update simulator beliefs
using known boundaries over just using individual points. Individual points are usually large
distances away from each other in high dimensions. However, as can be seen from these
variance plots (and would similarly be shown by any other slice with different values of the
four fixed inputs), the known boundaries here are d− 1 dimensional objects and hence carry
far more information than individual runs (which are 0-dimensional objects), which results
in significant variance resolution across substantial amounts of the input space for very little
computational cost.

We now perform a more detailed comparison by evaluating the emulators over a fixed
set of 2000 diagnostic points, which form a maximin Latin hypercube. Figure 10 shows f(x)
against ED[f(x)] for the set of 2000 diagnostic points for the six scenarios outlined above.
We divide the points according to their (k6, k8) coordinates (each scaled to [−1, 1]) as follows:
blue points are such that k6 > −0.5 and k8 > −0.5, green points have k6 < −0.5 and
k8 > −0.5, purple points have k6 > −0.5 and k8 < −0.5, and orange points have k6 < −0.5
and k8 < −0.5. The red line is the function y = x. Panel 2 shows that updating the emulator
mean by the single boundary K : k6 = 0 results in larger changes in the mean prediction
toward the true value for (green and orange) points close to that boundary. We notice that,
although they are affected, there are relatively large numbers of blue and purple points for
which the prediction is largely unchanged from the prior specification. Panel 3 shows that
incorporating the second boundary into the emulation process results in (purple) points close
to that boundary having greatly altered emulator mean values toward the true simulator
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Figure 10. f(x) against ED[f(x)] for the diagnostic set of 2000 points. Blue points are such that k6 > −0.5
and k8 > −0.5, green points are such that k6 < −0.5 and k8 > −0.5, purple points are such that k6 > −0.5 and
k8 < −0.5, and orange points are such that k6 < −0.5 and k8 < −0.5. The red line is the function y = x. The
columns (from left to right) show the results of emulating without boundaries, with one boundary and with two
boundaries. The rows show the results of emulating without training points on the top and with training points
on the bottom.

values. Orange points, which are close to both boundaries, have their accuracy increased
even further, with many of them lying very close to the line y = x. Panels 4 to 6 show the
effect of using training points in the construction of the emulators. The effect of updating
our beliefs about the simulator output at any particular point in the input space depends on
its location relative to the training points. In the case when beliefs have been updated using
both boundaries, subsequent updating using training points informs us most about the blue
points, namely, those which are far from the boundaries. This suggests that training point
design should be affected by knowledge of boundary behavior such that a greater increase in
accuracy in those areas largely unaffected by (that is far from) the boundaries is obtained.
We now explore these design issues in section 5.3. We also give further diagnostic analysis of
the 2000 points in Appendix D.

5.3. Simulation study of KBE design. We now compare emulators constructed using
various training point designs, introduced in section 4, that exploit the known boundaries.
We wish to explore the improvements to the emulators due to such designs, compared to the
improvements seen from just using the known boundaries directly, as were examined in the
previous section. We do this by comparing the use of several designs using the root mean
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Table 3
A table of RMSEs of the 2000 diagnostic points using emulators constructed with and without both the

known boundaries K and L for a maximin Latin hypercube design and the warped version of this design for two
choices of correlation length θ. The numbers in bold correspond to the preferred strategy for the given knowledge
of the boundaries.

θ Known boundaries Maximin LH Warped maximin LH

0.7
Without 0.9247 0.9489

With 0.6763 0.5886

1.2
Without 0.4427 0.6601

With 0.2986 0.2530

square error (RMSE) of the 2000 diagnostic training points obtained in section 5.2.2 under
knowledge of the boundaries K : k6 = 0 and L : k8 = 0. First, we demonstrate that a warped
maximin Latin hypercube is preferable to a standard maximin Latin hypercube. We then
compare the chosen design of three V-optimality design procedures; two take account of the
known boundaries and one doesn’t.

5.3.1. Warped maximin Latin hypercube designs. We generated 1000000 Latin hyper-
cubes of size 60 over the six-dimensional input space and chose the one with maximal minimum
distance between any two of its points. We compare the emulator constructed using this design
with that constructed using the warped version of this design, constructed using (4.2), (4.3),
and (4.4). Table 3 shows the RMSEs of the 2000 diagnostic points for emulators constructed
with and without both the known boundaries for each of these two designs for two choices of
correlation length parameter θ.

We observe that the RMSE is greatly improved when the known boundaries are incorpo-
rated into the construction process of the emulator, relative to when they are not included,
as expected. It is also the case that the RMSE shows noticeable improvement for the emula-
tors constructed using the warped design, compared to the standard design, when the known
boundaries are utilized, for both choices of correlation length. This suggests that a warped
maximin Latin hypercube is indeed a reasonable general purpose design to use if known bound-
aries are present, which maintains the good projection properties of a Latin hypercube, as
discussed in section 4.

5.3.2. Approximate V-optimality designs. Finding global V-optimal designs such as
shown in Figure 5 is extremely computationally demanding and is impractical for a moderate
to high run number. We instead investigate three approximately V-optimal 60-point designs,
constructed as follows, the first being constructed without including the known boundaries
and the second two including them.

For the first design, which ignores the known boundaries, we iteratively chose individual
design points that optimize the current V-optimal criteria, that is, the ith point was chosen
to optimize trace(VarDi∪Di−1 [f(X)]), given that the previous (i− 1) points, as represented by
Di−1, had already been chosen in the previous iterations. This is highly unlikely to lead to
a global solution but should result in designs which are quick to generate and that have high
V-optimality criteria that are good enough for our purposes. The second design was created
by warping the first design, using (4.2), (4.3), and (4.4) as in the previous section. The third
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Table 4
A table of RMSEs of the 2000 diagnostic points using emulators constructed with and without the known

boundaries K and L for three designs, namely, a standard iterative V-optimal design without the known bound-
aries, the warped version of this design, and an iterative V-optimal design which takes account of the known
boundaries.

θ
Known Iterative Warped Iterative V-optimal

boundaries V-optimal iterative V-optimal with known boundaries

0.7
Without 0.8166 0.9013 0.9700

With 0.5815 0.5091 0.5101

1.2
Without 0.4476 0.6687 0.9028

With 0.2830 0.2340 0.2414

design used the known boundaries K and L and was generated in a similar iterative manner to
the first design, but now the ith point was chosen to optimize trace(VarDi∪Di−1∪K∪L[f(X)]).
In this case we expect the points to land further away from the two boundaries, similar to
the designs shown in Figure 5. In all three cases X was chosen to be a 66 grid across the
six dimensional input space, which represents a pragmatic approximation to limit the design
calculation time.

Table 4 shows the RMSEs of the 2000 diagnostic points for emulators constructed with
and without the known boundaries K and L for each of the above three designs: iterative
V-optimal, warped iterative V-optimal, and iterative V-optimal with known boundaries. We
give the results for two values of the correlation length θ. The RMSE numbers in bold
correspond to the appropriate design for that scenario, with the other numbers provided for a
fair comparison, for example, if we are not aware of the known boundaries we would use the
first design, but if we include them we would use either the second or the third design. We
observe that there is a substantial drop in RMSE when known boundaries are incorporated
into the construction of the emulator, as expected. For example, when using the standard
iterative V-optimal design the RMSE drops from 0.8166 to 0.5815 when known boundaries are
included. We also see a further drop in RMSE when the existence of the known boundaries
is used in the design process, for example, the RMSE drops from 0.5815 (iterative V-optimal)
to 0.5091 (warped iterative V-optimal) and to a similar 0.5101 for the full iterative V-optimal
with known boundaries design. We note that the second and third designs give similar RMSEs
in the bold cases, up to the noise resulting from the finite size of the 2000 diagnostic runs
(Table 5 gives the calculated V-optimality criteria c(XD) for each of the cases in Table 4
and shows that this criterion is very similar for the second and third designs in these cases).
Comparing Tables 3 and 4 we can see that the approximate V-optimal designs have lower
RMSEs than their Latin hypercube counterparts, which is mainly due to their better space
filling properties, justifying their use, provided we are not too concerned about their projection
properties, as discussed in section 4. This improvement is less for the larger value of θ = 1.2.

The results of this design simulation study suggest that knowledge of known boundaries
should affect our choice of training point design, which can lead to substantial benefits in
addition to those obtained by the direct incorporation of the boundaries into the emulator.

6. Conclusion. We have discussed how improved emulation strategies have the potential
to benefit multiple scientific areas, allowing more accurate analyzes with lower computational
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Table 5
A table of the V-optimality criterion values c(XD) of the 66 grid of points, using emulators constructed

with and without the known boundaries for three designs, namely, a standard iterative V-optimal design without
the known boundaries, the warped version of this design, and an iterative V-optimal design which takes account
for the known boundaries.

θ
Known Iterative Warped Iterative V-optimal

boundaries V-optimal iterative V-optimal with known boundaries

0.7
Without 55605 56018 56464

With 28673 27707 27675

1.2
Without 33668 36839 40015

With 7993 6627 6607

cost, and therefore if additional prior insight into the physical structure of the model is avail-
able, it is of real importance that emulator structures capable of incorporating such insights
are indeed developed.

Here it was shown that if a simulator has boundaries or hyperplanes in its input space
where it can be either analytically solved or just evaluated far more efficiently, these known
boundaries can be formally incorporated into the emulation process by Bayesian updating of
the emulators with respect to the information contained on the boundaries. It was also shown
that this is possible for a large class of emulators, for multiple boundaries of various forms1

and, most importantly, for trivial extra computational cost. This analysis also demonstrated
how to include known boundaries when using standard black box Gaussian process software
(for users who do not have access to alter the code), by simply incorporating all the projections
of the input points of interest and the simulator runs into the emulator update. This method
is simple to implement but is of course less powerful than direct implementation of the fully
updated emulator equations that we have developed here, especially if one needs to evaluate
the emulator at a large number of points.

The design problem of how to choose an efficient set of runs of the full simulator, given
that we are aware of the existence of one or more known boundaries, was then examined.
V-optimal and warped Latin hypercube designs were suggested as reasonable choices in this
context, and their relative strengths and weaknesses were explored. Finally, we applied this
approach to a model of hormonal crosstalk in Arabidopsis, an important model in systems
biology, which possesses two perpendicular known boundaries, and analyzed the improvements
to the emulator of the [PLSp] output, first due to the known boundaries, and then due to the
use of more careful designs of simulator runs.

Obviously, the applicability of this approach depends on whether any such boundaries can
be found for the complex model in question. We note that in some scenarios the input space of
interest X ⊂ Rd may be defined such that X does not contain a known boundary K; however,
a boundary may exist just outside of X (for example, when some physical parameter was set
to zero, but the lower limit of X for that parameter is just above zero), such that were K to

1We note that although for a general product correlation structure we require the boundary to be a hy-
perplane perpendicular to one (or more for lower dimensional boundaries) input direction, for the Gaussian
correlation structure the boundary can be a hyperplane in any orientation. Our analysis also naturally extends
to lower dimensional boundaries.
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be included in the emulation process, the resulting emulator would still be improved over a
significant proportion of X , with the extent of the improvement dependent on the correlation
parameters and on the distance from K to X . This may in fact be fairly common as when
specifying X the domain expert may be aware that the boundary K is not of primary physical
interest, as the more complex model that is employed away from K has been constructed for
a reason, and hence they may not have originally included K within X . As the benefits of
using K in the emulation process come with trivial computational cost, all such boundaries
should be included.

A further point we would make is that, as was seen in the application to the Arabidopsis
model, known boundaries may exist only for a subset of the simulator outputs. This can still
be useful, especially in applications of emulation such as history matching [41, 42] whereby the
input parameter space X is searched to find acceptable matches between model and observed
data, by iteratively discarding regions of X that seem unlikely to lead to good matches based
only on subsets of the outputs that are easy to emulate. Further outputs are included as the
history match progresses and are usually found to be easier to emulate in later iterations,
after X has been substantially reduced (see [41, 42, 24] for extended discussions and examples
of this). Therefore the iterative structure of the history matching approach may still allow
substantial exploitation of known boundaries that improve the emulation of only a subset of
the outputs.

The results presented here can of course be extended in several directions, for example, to
collections of multiple parallel or perpendicular boundaries of varying dimension, or to multi-
variate emulators providing suitable product correlation structures are used [33]. Extensions
to the case of uncertain regression parameters (the βj in (2.7)) are also possible, although
the formal update would now depend on the specific form of the correlation function r1(a)
which may not be tractable for many choices. Curved boundaries of various geometries could
of course be incorporated, provided both that suitable transformations were found to con-
vert them to hyperplanes and that we were happy to adopt the induced transformed product
correlation structure as our prior beliefs. We leave these considerations to future work.

Appendix A. Two perpendicular boundary emulator derivations. Here we provide the
full derivation of the expectation and covariance of f(x), adjusted by perpendicular boundaries
L and K as discussed in section 3.4.

We perform the update byK using the results of section 3.1. We then use a proof analogous
to that of (3.4) but now applied to the vector L after performing the update2 for K:

VarK [L] VarK [L]−1 = I(m+1)

⇒ CovK

[
f(xL), L

]
VarK [L]−1 = (1, 0, . . . , 0).(A.1)

We can also use (3.7), which is a direct consequence of the product correlation structure,
which still holds after the update by K, now with K replaced by L to give

(A.2) CovK [f(x), L] = r2(b) CovK

[
f(xL), L

]
,

2We are assuming there are no problems here due to the nonempty K ∩ L. In fact the full Bayes linear
update would instead use the generalized inverse if L contains points on K (which would possess zero variance),
but (A.1) will remain the same.
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where b is the perpendicular distance from x to L, as shown in Figure 3 (left panel). The ex-
pectation as given by (3.25) can now be calculated using the sequential update equation (3.18)
as

EL∪K [f(x)] = EK [f(x)] + CovK [f(x), L] VarK [L]−1 (L− EK [L])

= EK [f(x)] + r2(b)(1, 0, . . . , 0)(L− EK [L])

= EK [f(x)] + r2(b)(f(xL)− EK

[
f(xL)

]
)(A.3)

= E [f(x)] + r1(a)(f(xK)− E
[
f(xK)

]
) + r2(b)f(xL)

− r2(b)(E
[
f(xL)

]
+ r1(a)(f(xLK)− E

[
f(xLK)

]
))

= E [f(x)] + r1(a)(f(xK)− E
[
f(xK)

]
) + r2(b)(f(xL)− E

[
f(xL)

]
)

− r1(a)r2(b)(f(xLK)− E
[
f(xLK)

]
)

= E [f(x)] + r1(a)∆f(xK) + r2(b)∆f(xL)− r1(a)r2(b)∆f(xLK),(A.4)

where we have also used (3.8) for EK [f(x)], defined ∆f(.) ≡ f(.)− E [f(.)], and denoted the
projection of xL onto K as xLK , which is just the perpendicular projection of x onto L ∩ K.
The corresponding expression for the covariance as shown in (3.27), adjusted by L and K, is

CovL∪K
[
f(x), f(x′)

]
= CovK

[
f(x), f(x′)

]
− CovK [f(x), L] VarK [L]−1 CovK

[
L, f(x′)

]
= CovK

[
f(x), f(x′)

]
− r2(b)(1, 0, . . . , 0)CovK

[
L, f(x′)

]
= CovK

[
f(x), f(x′)

]
− r2(b)CovK

[
f(xL), f(x′)

]
= r2(b− b′)CovK

[
f(xL), f(x′L)

]
− r2(b)CovK

[
f(xL), f(x′L)

]
r2(b

′)(A.5)

= (r2(b− b′)− r2(b)r2(b′))CovK

[
f(xL), f(x′L)

]
= σ2R1(a, a

′)R2(b, b
′) r−1,−2(x

LK − x′LK),

where we have defined the correlation function of the projection of x and x′ onto L ∩ K as

r−1,−2(x
LK − x′LK) =

d∏
i=3

ri(x
LK
i − x′LKi ) = Cov

[
f(xLK), f(x′LK)

]
.

The limiting behavior looks to be as expected in the large and small a, a′, b, b′ limits, e.g.,

lim
b→0

EL∪K [f(x)] = f(xL), lim
b→0

VarL∪K [f(x)] = 0,

lim
b→∞

EL∪K [f(x)] = EK [f(x)] , lim
b→∞

VarL∪K [f(x)] = VarK [f(x)] ,

and similarly for the covariances

lim
b→0

CovL∪K
[
f(x), f(x′)

]
= lim

b′→0
CovL∪K

[
f(x), f(x′)

]
= 0,

lim
b,b′→∞

CovL∪K
[
f(x), f(x′)

]
= CovK

[
f(x), f(x′)

]
, b− b′ finite.
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Appendix B. Two parallel boundary emulator derivations. Here we now provide the
full derivation of the expectation and covariance of f(x), adjusted by parallel boundaries L
and K, as discussed in section 3.5.

First we need to find the analogous version of (3.23), which relates CovK [f(x), L] to
CovK [f(xL), L]. Noting that

(B.1) CovK

[
f(xL), f(z(j))

]
= σ2R1(c, c) r−1(x

K − y(j))

it follows that

CovK

[
f(x), f(z(j))

]
= σ2R1(a, c) r−1(x

K − y(j))

=
R1(a, c)

R1(c, c)
σ2R1(c, c) r−1(x

K − y(j))

=
R1(a, c)

R1(c, c)
CovK

[
f(xL), f(z(j))

]
= R

(2)
1 (a, c) CovK

[
f(xL), f(z(j))

]
,(B.2)

where we have defined R
(2)
1 (a, c) = R1(a, c)/R1(c, c). Therefore we have

(B.3) CovK [f(x), L] = R
(2)
1 (a, c)CovK

[
f(xL), L

]
.

Here (3.22) holds as before, implying we can again avoid explicit evaluation of the intractable
VarK [L]−1 term. Hence the adjusted expectation, as given by (3.31), can be calculated using
the sequential update equation (3.18) as

EL∪K [f(x)] = EK [f(x)] + CovK [f(x), L] VarK [L]−1 (L− EK [L])

= EK [f(x)] +R
(2)
1 (a, c)CovK

[
f(xL), L

]
VarK [L]−1 (L− EK [L])

= EK [f(x)] +R
(2)
1 (a, c)(1, 0, . . . , 0)(L− EK [L])

= EK [f(x)] +R
(2)
1 (a, c)(f(xL)− EK

[
f(xL)

]
)(B.4)

= E [f(x)] + r1(a)(f(xK)− E
[
f(xK)

]
)

+
r1(b)− r1(a)r1(c)

1− r21(c)

{
f(xL)−

(
E
[
f(xL)

]
+ r1(c)(f(xK)− E

[
f(xK)

]
)
)}

= E [f(x)] +

[
r1(a)− r1(b)r1(c)

1− r21(c)

]
∆f(xK) +

[
r1(b)− r1(a)r1(c)

1− r21(c)

]
∆f(xL),(B.5)

where we have used the fact that for parallel boundaries the projection of xL onto K is just
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xK . Similarly we find the covariance adjusted by L and K to be

CovL∪K
[
f(x), f(x′)

]
= CovK

[
f(x), f(x′)

]
− CovK [f(x), L] VarK [L]−1 CovK

[
L, f(x′)

]
= CovK

[
f(x), f(x′)

]
−R(2)

1 (a, c)(1, 0, . . . , 0)CovK

[
L, f(x′)

]
= CovK

[
f(x), f(x′)

]
−R(2)

1 (a, c)CovK

[
f(xL), f(x′)

]
= CovK

[
f(x), f(x′)

]
−R(2)

1 (a, c)CovK

[
f(xL), f(x′L)

]
R

(2)
1 (c, a′)(B.6)

= σ2R1(a, a
′) r−1(x

K − x′K)

− R(2)
1 (a, c)σ2R1(c, c) r−1(x

K − x′K)R
(2)
1 (c, a′)

= σ2 r−1(x
K − x′K)

{
R1(a, a

′)−R(2)
1 (a, c)R1(c, c)R

(2)
1 (c, a′)

}
= σ2 r−1(x

K − x′K)

{
R1(a, a

′)− R1(a, c)R1(c, a
′)

R1(c, c)

}
,

which is just a generalized form of (3.11). To make the invariance under interchange of
boundaries explicit, we expand out the R1(., .) terms giving

CovL∪K
[
f(x), f(x′)

]
= σ2

r−1(x
K − x′K)

R1(c, c)

{
(r1(a− a′)− r1(a)r1(a

′))(1− r21(c))

− (r1(b)− r1(a)r1(c))(r1(b
′)− r1(c)r1(a′))

}
,

= σ2
r−1(x

K − x′K)

1− r21(c)

{
r1(a− a′)(1− r21(c))− r1(a)r1(a

′)− r1(b)r1(b′)(B.7)

+ r1(c)
[
r1(a)r1(b

′) + r1(b)r1(a
′)
]}
,

which is now explicitly invariant under the interchange of the two boundaries K ↔ L (as
c = a+ b is invariant under a↔ b, a′ ↔ b′, as is a− a′ = b− b′).

The emulator variance is given by (3.33), but we note that it is now bounded from above
and will attain its maximum at the midpoint between the two parallel boundaries. Setting
a = b = c/2 in (3.33) shows that this maximum bound is given by

(B.8) VarL∪K [f(x)] ≤ σ2
{

1−
2r21( c2)

1 + r1(c)

}
.

In addition, we note that the emulator expectation, covariance, and variance update cal-
culations for a single boundary will easily generalize to a boundary of lower dimension than
d− 1. However, for multiple boundaries there will be some additional constraints, specifically
on the dimension and intersection of the boundaries in the perpendicular case (the parallel
case is easier), a full discussion of which we leave to future work.

Appendix C. Continuous known boundary proofs.

C.1. Two perpendicular continuous boundaries. For the two perpendicular boundaries
continuous case, after the update by boundary K, we use sK(z, z′) to represent the infinite
dimensional generalization of VarK [L]−1, which satisfies the corresponding inverse property:

(C.1)

∫
z′∈L

CovK

[
f(z), f(z′)

]
sK(z′, z′′) dz′ = δ(z − z′′) for z, z′′ ∈ L.
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Then, noting that CovK [f(x), f(z)] = r2(b) CovK [f(xL), f(z)], the emulator expectation ad-
justed sequentially by first K and then L becomes

EL∪K [f(x)]

= EK [f(x)] +

∫
z∈L

∫
z′∈L

CovK [f(x), f(z)] sK(z, z′) (f(z′)− EK

[
f(z′)

]
)dzdz′

= EK [f(x)] +

∫
z∈L

∫
z′∈L

r2(b)CovK

[
f(xL), f(z)

]
sK(z, z′) (f(z′)− EK

[
f(z′)

]
)dzdz′

= EK [f(x)] + r2(b)

∫
z′∈L

δ(xL − z′) (f(z′)− EK

[
f(z′)

]
)dz′

= EK [f(x)] + r2(b) (f(xL)− EK

[
f(xL)

]
),

which is identical to (A.3), and the rest of the proof of (A.4) follows as before. Similarly for
the covariance we have

CovL∪K
[
f(x), f(x′)

]
= CovK

[
f(x), f(x′)

]
− r2(b)

∫
z′∈L

δ(xL − z′) CovK

[
f(z′), f(x′L)

]
r2(b

′) dz′

= r2(b− b′)CovK

[
f(xL), f(x′L)

]
− r2(b)CovK

[
f(xL), f(x′L)

]
r2(b

′),

which agrees with (A.5), and the rest of the proof follows as before.

C.2. Two parallel continuous boundaries. The proof for continuous parallel boundaries
follows a form similar to the perpendicular case. We use sK(z, z′) as before, which still satisfies
(C.1). However, here we have instead from (B.2) that

CovK [f(x), f(z)] = R
(2)
1 (a, c) CovK

[
f(xL), f(z)

]
, z ∈ L.

Therefore the emulator expectation adjusted sequentially by first K and then L becomes

EL∪K [f(x)]

= EK [f(x)] +

∫
z∈L

∫
z′∈L

R
(2)
1 (a, c)CovK

[
f(xL), f(z)

]
sK(z, z′) (f(z′)− EK

[
f(z′)

]
)dzdz′

= EK [f(x)] +R
(2)
1 (a, c)

∫
z′∈L

δ(xL − z′) (f(z′)− EK

[
f(z′)

]
)dz′

= EK [f(x)] +R
(2)
1 (a, c) (f(xL)− EK

[
f(xL)

]
),

which is identical to (B.4), and the rest of the proof of (B.5) follows as before. Similarly for
the covariance we have

CovL∪K
[
f(x), f(x′)

]
= CovK

[
f(x), f(x′)

]
−R(2)

1 (a, c)

∫
z′∈L

δ(xL − z′) CovK

[
f(z′), f(x′L)

]
R

(2)
1 (c, a′) dz′

= CovK

[
f(x), f(x′)

]
−R(2)

1 (a, c)CovK

[
f(xL), f(x′L)

]
R

(2)
1 (c, a′),

which agrees with (B.6), and the rest of the proof of (B.7) again follows as before.D
ow

nl
oa

de
d 

07
/3

1/
19

 to
 1

29
.2

34
.3

9.
15

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

872 I. VERNON, S. E. JACKSON, AND J. A. CUMMING

Table 6
A table of parameter ranges for Arabidopsis thaliana (which were square rooted and converted to [−1, 1]

for the analysis).

Input rate Minimum Maximum
parameter

k4 0 10
k6 0 1
k6a 0 20
k7 0 10
k8 0 10
k9 0 1

Figure 11. f(x) against ED[f(x)] ± 3
√

VarD[f(x)] for the diagnostic set of 2000 points. Blue points are
such that k6 > −0.5 and k8 > −0.5, green points are such that k6 < −0.5 and k8 > −0.5, purple points are
such that k6 > −0.5 and k8 < −0.5, and orange points are such that k6 < −0.5 and k8 < −0.5. The red line
is the function y = x. The columns (from left to right) show the results of emulating without boundaries, with
one boundary and with two boundaries. The rows show the results of emulating without training points on the
top and with training points on the bottom.

Appendix D. ArabidopsisArabidopsisArabidopsis model details and emulator diagnostics. Table 6 gives the
parameter ranges for the Arabidopsis thaliana model, used throughout section 5.

Figure 11 shows f(x) against ED[f(x)]± 3
√

VarD[f(x)] for each of the six emulator sce-
narios for the diagnostic set of 2000 points, with the color scheme the same as for Figure 10.
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Figure 12. (f(x)−ED [f(x)])√
VarD [f(x)]

for the diagnostic set of 2000 points. The columns (from left to right) show the

results of emulating without boundaries, with one boundary and with two boundaries. The top row shows the
results of emulating without training points and the bottom row shows the results of emulating with the training
points.

These plots show how the variance at each point is updated in correspondence to its ex-
pectation. We observe that the error bars on some of the points decrease as the bound-
aries get utilized, particularly for points which lie close to at least one or the other of the
boundaries. The majority of the error bars still cross the line y = x, indicating that the
emulator expectation lies within three emulator standard deviations of the true simulator
value.

Figure 12 shows (f(x)−ED[f(x)])√
VarD[f(x)]

for each of the six emulator scenarios for the diagnostic

set of 2000 points. A value with magnitude greater than 3 is equivalent to the corresponding
error bar in Figure 11 not containing the true simulator value. We conclude that the diagos-
tic plots are acceptable for all emulators, with those points far from the boundary k6 = 0
having larger values once the boundaries have been utilized. The small diagnostic values
corresponding to points close to the boundary k6 = 0 may suggest that a larger correlation
length could be appropriate, particularly in certain dimensions of the input space such as k6
itself.
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