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Céline Degrande, Valentin V. Khoze, Olivier Mattelaer

Institute for Particle Physics Phenomenology, Department of Physics

Durham University, Durham DH1 3LE, United Kingdom

celine.degrande, valya.khoze, o.p.c.mattelaer@durham.ac.uk

Abstract

We carry out a detailed study of multi-Higgs production processes in the gluon fusion channel
in the high energy regime relevant to Future Circular hadron colliders and in the high-Higgs-
multiplicity limit (≥ 20). Our results are based on the computation of the leading polygons
–the triangles, boxes, pentagons and hexagons– to the scattering processes, further combined
with the subsequent branchings to reach high final state multiplicities. The factorial growth
of the number of diagrams leads to an exponential enhancement of such large multiplicity
cross-sections and, ultimately, in breaking of perturbativity. We find that the characteristic
energy and multiplicity scales where these perturbative rates become highly enhanced and
grow with increasing energy are within the 100 TeV regime with of the order of 130 Higgses
(or more) in the final state. We also show that already for a 50 TeV hadron collider the
perturbative cross-sections for 140 bosons are at picobarn level.
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1 Introduction

At very high energies, production of multiple Higgs and electro-weak vector bosons becomes
kinematically possible. The cross-sections for such processes, computed in perturbation theory,
become unsuppressed above a certain critical value of final state multiplicities, and continue to
grow with energy eventually violating perturbative unitarity [1, 2, 3]. This results in the break-
down of a weakly coupled perturbation theory and a transition into a non-perturbative regime
where the intermediate state formed during the collision is characterised by a collective multi-
boson configuration with large occupation numbers. The critical energies were the perturbative
high-multiplicity rates become large were estimated recently in [4, 5] and were found to be in
the 102 - 103 TeV range – i.e. nearly in the reach of current and future experiments. The aim of
this paper is to further improve and quantify the critical values of energies and multiplicities for
the multi-Higgs boson production. We will argue that already for a 50 TeV hadron collider, the
rapid growth of perturbative rates in our model can lead to picobarn cross-sections for processes
with & 140 Higgs bosons.

There is a strong similarity, already noted in [4], between these novel perturbative unitar-
ity problems at high multiplicities with hundred TeV energies, and the well-known unitarity
problem for simple 2 to 2 scattering processes of massive vector bosons. This resulted in a
powerful and far-reaching conclusion formulated in [6] that one of the three options has to be
realised: either (1) there exists a Higgs boson with a mass below ∼ 1 TeV, or (2) there should
be new physics beyond the Standard Model, or, finally (3) scattering processes of electroweak
gauge bosons become non-perturbative. This three-fold way forward for electro-weak physics
was answered and resolved by the observation of a Higgs boson at 125 GeV. Now, with the high-
multiplicity scatterings at 50− 100 TeV centre of mass energies, the perturbative electro-weak
physics faces a similar cross-roads.

To obtain a reliable estimate for multi-Higgs production processes at energies relevant for
future circular hadron colliders (FCC) which kinematically allow for very high Higgs multiplici-
ties in the final state, one has to overcome a number of complications. There are two immediate
technical problems one encounters already at the leading order in perturbation theory:

1. The dominant Higgs production is via the gluon fusion process gg → n×h, and it requires
a computation of Feynman diagrams involving 1-loop polygons with 2 + k edges where k
is the number of the outgoing Higgs lines, for all k ≤ n. The number of the contributing
polygon types and of the corresponding kinematic invariants they depend on, grow with n
and ultimately explode in the high multiplicity limit n� 1. This provides for a challenging
computation.

2. The number of Feynman diagrams describing the subsequent tree-level branching pro-
cesses h∗i → ni × h from each of the polygon’s external lines h∗i , is known to grow facto-
rially with n, and this is reflected in a factorial explosion of perturbative amplitudes, as
shown in Refs. [7, 8, 9, 10].

Based on these considerations it was argued in [4, 5] that the standard weakly coupled
perturbation theory in the electro-weak sector of the Standard Model breaks down for
multi-particle production of Higgses and massive vector bosons at energy scales as low as
∼ 102−103 TeV. The energies where electro-weak processes could enter a novel effectively
strongly-coupled regime, where the ultra-high multiplicity production of relatively soft

1



bosons would become unsuppressed and dominate the total rates may be potentially
within the reach of the next generation of colliders.

We will address the two problems listed above in stages: first we will consider the polygon
contributions to the multi-Higgs cross-sections by working in the high-energy limit

√
s → ∞

with a fixed number of Higgses, k =fixed. Then we will combine these fixed-multiplicity loop-
level results in the ultra-high-energy limit with the subsequent tree-level branchings. Here each
intermediate highly energetic Higgs particle h∗i emitted at the end of the polygon-production
stage, undergoes the tree-level production h∗i → ni × h into the high multiplicity n-Higgs final
state, n =

∑
i ni. The full amplitude chain for this process is,

Agg→n×h =
∑

polygons

Apolygons
gg→k×h∗

∑
n1+...+nk=n

k∏
i=1

Ah∗i→ni×h . (1.1)

The 1∗i → ni amplitudes1 appearing as the right-most factor in (1.1) can be computed very
efficiently for all ni using the classical generating functions technique. For convenience and
future reference in we will now present the result for these amplitudes on multi-Higgs mass
thresholds.

The computation of polygons contributions to the processes (1.1) combined with the sub-
sequent branchings and the resulting estimate for the multi-Higgs production cross-sections,
which is the main motivation of this paper, will be addressed in Sections 2-4.

1.1 Ah∗→n×h from classical solutions

At tree-level, all n-point scattering amplitudes for an off-shell field h to produce n Higgs par-
ticles, A1→n, can be obtained from a classical solution of the Euler-Lagrange equations corre-
sponding to the Higgs Lagrangian

Lh =
1

2
∂µh ∂µh −

λ

4

(
h2 − v2

)2
, (1.2)

following the generating functions technique initiated in Ref. [7] (λ is the Higgs self-coupling
and v the vacuum expectation value). For an overview of the classical generating functions
technique and its applications, the interested Reader can consult the Appendix. In the rest of
the current section we will simply state the features of this approach which are relevant for our
study.

As the final state is made out of the outgoing particles, the relevant solution hcl(x) should
contain only the positive frequency modes, e+inMht where Mh =

√
2λ v is the Higgs boson mass.

This specifies the initial conditions, or equivalently the analytic structure of the solution – its
time-dependence is described by the complex variable z,

z(t) = z0 e
iMht , (1.3)

on which the configuration hcl depends holomorphically,

hcl(~x, t) = v +

∞∑
n=1

an(~x) z(t)n . (1.4)

1We will always adopt the short-hand convention that the propagator for the incoming virtual Higgs was not
LSZ amputated, i.e. Ah∗

i→ni×h := 1
si−M2

h
ALHZh∗

i→ni×h.
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As there is no dependence on the complex conjugate variable z∗, the required solution is complex
(even though the original scalar filed h was real) and will also contain singularities in the
Euclidean space-time.

We now consider the simplest kinematics, where all the final state particles are produced at
their mass threshold (i.e. with vanishing spacial momenta). In this case, the classical solution
in question, hcl, is uniform in space and solves the ordinary differential equation,

d2th = −λh3 + λv2 h , (1.5)

with the initial conditions, hcl = v + z +O(z2). This solution is known in closed-form [7]:

hcl(t) = v
1 + z(t)

2v

1− z(t)
2v

. (1.6)

This is the exact solution of the classical equation (1.5), as can be readily checked for example
in Mathematica. In the Appendix we also explain how to derive this expression analytically.

We note that (in real time) this expression is complex and that it is singular on the complex
time plane at z = 2v. The singularity of the solution is the consequence of the finite radius of
convergence of the Taylor expansion of (1.6),

hcl(t) = v + 2v
∞∑
n=1

(
z(t)

2v

)n
. (1.7)

The classical solution hcl defines the generating functional for the tree-level scattering ampli-

tudes. All n-point tree-level amplitudes at threshold are simply given by differentiating n-times
with respect to z, [7]

A1→n =

(
∂

∂z

)n
hcl

∣∣∣∣
z=0

= n! (2v)1−n , (1.8)

and exhibit the factorial growth with the number of particles in the final state. Equations (1.6)
and (1.8) describing the tree-level amplitudes on the multi-particle mass thresholds, will play
an important role in our approach in the main part of this paper.2

Such threshold amplitudes were further generalised to other scalar field theories and also
computed at one-loop and resummed multi-loop level in Refs. [11, 12, 13, 14, 15, 16]. The
multi-particle amplitudes on threshold were also computed in the gauge-Higgs theory in [10],
confirming their factorial growth in reference to probing the electroweak sector at high FCC
energies [4, 5].

For general kinematics, with momenta above the multi-particle mass threshold, the scatter-
ing amplitudes A1→n at tree-level are still given by the classical solution hcl(~x, t) of equations
of motion – they are no longer uniform in space, having instead the O(3) spherical symme-
try. These solutions are uniquely specified by the same initial conditions as z → 0, and are
singular on hypersurfaces in the Euclidean space-time. They could be found numerically by
searching for classical extrema of the path integral on the appropriate singular complex-valued
field configurations as explained in [17, 18, 19, 20]. This is a complicated procedure, and the

2These are exact results for the tree-level n-point amplitudes on mass thresholds for arbitrary values of n.
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closed-form expressions for such O(3) symmetric solutions are presently unknown even in the
simplest scalar QFT models.

Alternatively, one can derive the amplitudes and cross-sections dependence on the external
states kinematics at tree-level by solving the full (3 + 1)-dimensional Euler-Lagrange equations
recursively in n. This is achieved by writing down the perturbative recursion relations corre-
sponding to the classical solutions, as explained in Refs. [9, 21, 22], and solving them first in
the non-relativistic limit, and then in general kinematics. The latter step is required to enable
the integration over the n-particle phase space to obtain the cross-section. This programme
was carried out in Ref. [5] using MadGraph5 aMC@NLO [23, 24]. The approach followed in
this paper will not require the knowledge of the ~x-dependent singular solutions, instead we will
use the formalism and results of [5] based on combining the known scaling behaviour at large
n inferred from the mass-threshold amplitude (1.8), with a numerical computation of tree-level
cross-sections at fixed n directly.

This paper is organised as follows. In Section 2 we will compute the gluon fusion cross-
sections for the double, triple, and quadruple Higgs production at fixed center-of-mass gluon
energies in the range between 10 and 160 TeV. We will identify the contributions coming from
the triangles, boxes, pentagons and hexagons and represent them in the high-energy regime
in terms of effective vertices with energy-dependent form-factors. We will demonstrate that
this approximation is well-justified in the high-energy kinematics where

√
s is much greater

than masses of the Higgs and the top quark. We will then combine the effective vertices with
the classical generating functions for tree-level amplitudes describing the subsequent multi-
Higgs branchings. In this way we will obtain the generating functions for scattering amplitudes
describing gg → n × h processes in the high multiplicity regime near the multi-particle mass
thresholds. We will use these results in Section 3 to estimate the multi-particle cross-sections
based on their scaling behaviour with multiplicity and energy [9, 5]. Finally in Section 4 we
will convolute the partonic cross-sections with the parton distribution functions (PDFs) of the
gluons. Our projections for the high-multiplicity Higgs production cross-sections at proton-
proton colliders are summarised in Fig. 6 and our conclusions are presented in Section 5.

2 Polygons and effective vertices in the
√
s→∞ limit

We now consider the first stage of the process (1.1) involving the high-energy fixed multiplicity

k-Higgs production Apolygons
gg→k×h∗ . The double and triple Higgs production at colliders was studied

in Refs.[25, 26, 27, 28] and [29, 30, 31, 32] and is rather suppressed at the LHC and the
FCC energies. Our main goal, however, is to determine whether the high multiplicity rates
with n � 2, 3 Higgses can become unsuppressed in perturbation theory. As explained in the
Introduction, we will address the large-n limit by computing the fixed multiplicity gg → k × h∗
1-loop processes in the high-energy limit and combine them with the subsequent h∗ → ni × h
branchings, cf. Eq. (1.1).

Using the MadGraph5 aMC@NLO framework [34] we computed the double, triple and
quadruple Higgs production cross-sections in the gluon fusion channel at 1-loop level in the
high-energy regime. Specifically, with the applications to the FCC hadronic colliders in mind,
we concentrate on the centre of mass energies

√
s much greater than the Higgs and top quark

masses.
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Figure 1: Cross-sections for the 2-Higgs, 3-Higgs and 4-Higgs production in the gluon fusion
process separated into contributions from triangles, boxes, pentagons and hexagons, as indi-
cated. Gluons are scattered at fixed energy (i.e. no gluon PDFs included) in order to simplify
the s-dependence of these cross-sections at partonic level.

The first panel in Figure 1 shows our results for the Higgs pair production and the triple
Higgs production, and the second panel gives the cross-sections for the quadruple Higgs. The
contributions from each type of polygons are shown separately (and we do not compute the
interference terms between different polygon types). For example, the triangles category corre-
sponds to the sum of all Feynman diagrams containing the gg → h∗ 1-loop triangles contributing
to the gg → h∗ → n× h amplitude for n = 2, 3, 4. The resulting amplitude is squared and inte-
grated over the phase space to obtain the cross-section contributions induced by the triangles.
The process is then repeated for higher polygons: boxes, pentagons and hexagons.3

The interference terms between polygons with different numbers of sides (e.g. interferences
between the triangles-induced and the boxes-induced contributions to the cross-sections) are
not accounted in the computation presented in Fig. 1. However, based on the fact that different
polygon types give a very clear numerical hierarchy of the cross-sections values, as seen from
Fig. 1, (and similarly have the different analytic dependence on the parameters, as will be seen
in Tables 1 and 2 below) we expect that the missing interference terms will not modify our
results dramatically.

Varying the Higgs and top masses as well as the centre of mass energy
√
s we can extract

from these data the analytic scaling properties for different polygonal contributions to the
cross-sections applicable in the high-energy regime. These scaling properties are summarised
in Table 1. The polygons with different numbers of edges are treated separately, so that the
different entries in the Table do not mix e.g. triangles with boxes; each horizontal entry is
specific to a particular type of polygons as indicated and contains no cross-terms between
polygons with different numbers of edges. We have also fixed the energy of the gluon (i.e.
we are considering partonic cross-sections with no gluon PDFs) in order to focus on the s-
dependence of the cross-sections at partonic level.4 It follows that all even polygons (boxes,
hexagons, etc) exhibit the same 1/s scaling in the high-energy limit

√
s � Mh , mt. At the

3To be clear, in our notation the polygon ranks (i.e. the number of polygon edges) is 2 + k where 1 ≤ k ≤ n
so that e.g. pentagons (k = 3) contribute to gg → 3× h∗ → n× h processes with n = 3, 4, . . .

4The proton-proton collisions and the convolution of the partonic cross-sections with gluon PDFs will be
discussed in Section 4.
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σgg→hh σgg→hhh σgg→hhhh

Triangles y2t
m2
tM

2
h

s3
log4

(
mt√
s

)
M2
h

v2
y2t

m2
t

s2
log4

(
mt√
s

)
M4
h

v4
y2t

m2
t

s2
log4

(
mt√
s

)
M6
h

v6

Boxes y4t
1
s y4t

1
s
M2
h

v2
y4t

1
s
M4
h

v4

Pentagons – y6t
m2
t

s2
log4

(
mt√
s

)
y6t

m2
t

s2
log4

(
mt√
s

)
M2
h

v2

Hexagons – – y8t
1
s

Table 1: High-energy scaling behaviour of each polygon-type contributions to the gluon fusion
multi-Higgs production cross-sections, extracted from numerical data as in Fig. 1, and shown
as the function of s, Mh and mt and yt :=

√
2mt/v in the s� mt , Mh limit. All cross-sections

also contain the common factor of α2
s(
√
s). Gluon PDFs are not included.

same time the odd polygons (triangles, pentagons, and so on) are sub-dominant and go as
1/s2 log4(mt/

√
s) (with the exception of the leading double-Higgs case where the suppression

is even stronger).
The high-energy behaviour of the leading-rank polygons in Table 1 can now be easily gen-

eralised to higher multiplicities and higher polygon ranks following the same pattern. For
polygons with 2 + k edges their contribution to the gg → n× h process is:

(2 + k)−polygons : σgg→n×h ∝
1

s
y2kt

(
Mh

v

)2(n−k)
×

{
1 : k = even
m2
t
s log4

(
mt√
s

)
: k = odd .

(2.1)

The only exception from this rule is the k = 1, n = 2 case, i.e. left-most triangle in Table 1,
which has an additional factor of M2

h/s. As a matter of fact, the squared amplitude in multi-
Higgs production with a odd number of three Higgs vertices is enhanced compared to a naive
counting by a factor s/M2

h when the invariant mass appearing in the propagator is close to its
minimal value of order Mh. In the case of pair production, the only invariant mass is fixed at√
s and therefore such enhancement is absent.

The pattern established in Table 1 and Eq. (2.1) enables us to simplify the full 1-loop
Feynman diagrams-based computation in Fig. 1 by reducing it to contributions from effective
multi-Higgs vertices of the form

V eft
k ∼ αstr(GµνGµν)hk , (2.2)

where ∼ indicates that the dimension-(4 + k) operators on the right hand side should be mul-
tiplied by the appropriate energy-dependent form-factors Fk(s). These form-factors will be
determined momentarily.

To proceed we first consider the contributions to cross-sections from the bare effective op-
erators (2.2), i.e. not including the form-factors. The corresponding cross-sections are found
to grow with s, as summarised in Table 2, and this is of course also consistent with a simple
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σeftgg→hh σeftgg→hhh σeftgg→hhhh

αstr(GµνG
µν)h1

M2
h

v2
s0

M4
h

v4
s0

M6
h

v6
s0

αstr(GµνG
µν)h2 s

M2
h

v2
s

M4
h

v4
s

αstr(GµνG
µν)h3 – s2

M2
h

v2
s2

αstr(GµνG
µν)h4 – – s3

Table 2: High-energy scaling behaviour for multi-Higgs production cross-sections with the bare
effective vertices Eq. (2.2) obtained with FeynRules [33] and Madgraph5 aMC@NLO.

dimensional analysis in the high-energy limit. The form-factors Fk(
√
s) can now be determined

by matching the contributions from Vk := V eft
k × Fk(

√
s) of Table 2 to Table 1. We find the

following expressions for the effective vertices [including the form-factors]:

Vk = Ck
αs(
√
s)

π
tr(GµνG

µν)

(
yt h√
s

)k
×

{
1 : k = even ≥ 2
mt√
s

log2
(
mt√
s

)
: k = odd ≥ 3 .

(2.3)

Here Ck’s are the constant coefficients to be determined by matching to the full numerical
cross-section results, and yt is the top quark Yukawa coupling.

The coefficients Ck can now be found from matching the cross-sections σeft computed from
the Effective Field Theory (EFT) vertices (2.3) to our numerical results for the complete partonic
cross-sections shown in Fig. 1. Specifically the two-point effective vertices are matched to boxes,
the tree-point EFTs – to pentagons, and the four-point vertices are matched to the hexagon-
induced contributions to the cross-sections. For each effective vertex of rank k, the coefficient
Ck can be obtained in n− k independent ways from matching:

C2 : σgg→n×h [V2] ←→ σgg→n×h [Boxes] , for n = 2, 3, 4, . . . (2.4)

C3 : σgg→n×h [V3] ←→ σgg→n×h [Pentagons] , for n = 3, 4, . . . (2.5)

C4 : σgg→n×h [V4] ←→ σgg→n×h [Hexagons] , for n = 4, . . . (2.6)

and for different values of the centre of mass energy
√
s. Their values are shown in Table 3.

We conclude that the extracted numerical values of these coefficients do not appear to depend
strongly on the number of Higgses in the final state. This is an important test for our approach;
it guarantees the robustness of the effective vertices approximation (2.3) for the multi-Higgs
production cross-sections in the high energy limit.

Our construction up to this point was derived from taking the high-energy limit and holding
the Higgs multiplicity fixed. The next step is to use of the effective vertices (2.3) combined with
the classical generating functionals for the tree-level amplitudes introduced in Section 1.1, to
address the desired high multiplicity limit n � 1. This is achieved by substituting the Higgs
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C2
√
s = 10 TeV

√
s = 20 TeV

√
s = 40 TeV

√
s = 80 TeV

√
s = 160 TeV

gg → hh 1.12 1.13 1.14 1.14 1.14

gg → hhh 1.11 1.13 1.14 1.14 1.14

gg → hhhh 1.21 1.23 1.23 1.23 1.21

C3
√
s = 10 TeV

√
s = 20 TeV

√
s = 40 TeV

√
s = 80 TeV

√
s = 160 TeV

gg → hhh 7.91 7.95 8.16 8.59 8.60

gg → hhhh 8.52 8.42 8.43 8.68 8.86

C4
√
s = 10 TeV

√
s = 20 TeV

√
s = 40 TeV

√
s = 80 TeV

√
s = 160 TeV

gg → hhhh 4.34 5.10 5.55 6.11 6.04

Table 3: Operator coefficients in Eq. (2.3). Each Ck appears to be largely independent of the
number of Higgses in the full matching process gg → n× h and describes the rates well at all
energies in the high-energy range

√
s�Mh,mt.

fields h in the effective vertices by the generating functionals for 1∗ → n scattering amplitudes
Ah∗→n×h.

The resulting generating functionals for the two gluons into any number of Higgses processes
are given by the effective vertices Vk in Eqs. (2.3) with the substitutions hk → hcl[z]

k and
tr(GµνG

µν)→ (p1µε
a
1ν − p1νεa1µ)(pµ2 ε

aν
2 − pν2ε

aµ
2 ). Here p1, p2 are the gluon momenta and εa1, εb2

are their helicities, while hcl[z] is the generating functional (1.4).
Using the classical solution (1.6) (shifted by the vacuum expectation value) hcl → hcl − v,

we can immediately write down the the generating functional of multi-Higgs amplitudes on the
multi-particle mass threshold in closed form:

Ak=even[z] = Ck
αs
π

(p1µε
a
1ν − p1νεa1µ)(pµ2 ε

aν
2 − pν2ε

aµ
2 )

(
yt√
s

z

1− z
2v

)k
. (2.7)

Here we took the polygons/EFT vertex rank k to be even-valued, since for odd k the effective

vertices in (2.3) are suppressed by the factor mt√
s

log2
(
mt√
s

)
� 1.

The high-multiplicity regime of interest for us is

√
s� all other mass scales , and n� 1 , (2.8)

and it will also be convenient to define the average final state kinetic energy per particle per
mass, ε, via

ε :=

√
s− nMh

nMh
. (2.9)

On the multi-particle mass-threshold ε = 0, but more generally, above the threshold we will
work in the limit where ε is held fixed at some non-vanishing value5 as

√
s and n become � 1.

5Corresponding to either a non-relativistic (ε < 1) or a highly relativistic (ε > 1) regime.
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The n-Higgs amplitudes on the multi-particle mass thresholds read (cf. (1.8)),

Ak thr.gg→n×h = Ck
αs
π

(p1µε
a
1ν − p1νεa1µ)(pµ2 ε

aν
2 − pν2ε

aµ
2 )

(
∂

∂z

)n( yt√
s

z

1− z
2v

)k ∣∣∣∣∣
z=0

∼ Ck
αs
π
ykt

(
1

1 + ε

)k−2 ( 1

nMh

)k−2 ( ∂

∂z

)n( z

1− z
2v

)k ∣∣∣∣∣
z=0

, (2.10)

where in the final expression we used the substitutions (p1 + p2)
2 = s and

√
s = (1 + ε)nMh.

Of course the true threshold amplitude is obtained from (2.10) by setting ε = 0.
We now note that since(

∂

∂z

)n
hcl[z]

∣∣∣∣
z=0

=

(
∂

∂z

)n( z

1− z
2v

) ∣∣∣∣
z=0

= n!

(
1

2v

)n−1
, (2.11)

the same operation applied to the k-th power of the classical solution will lead in the large-n
limit to (

∂

∂z

)n( z

1− z
2v

)k ∣∣∣∣∣
z=0

→ nk−1 n!

(
1

2v

)n−k−1
. (2.12)

In particular, it can be verified that for k = 2 (Boxes) the expression valid for all values of n is(
∂

∂z

)n( z

1− z
2v

)2
∣∣∣∣∣
z=0

= (n− 1)n!

(
1

2v

)n−3
, (2.13)

and for k = 4 (Hexagons) one gets,(
∂

∂z

)n( z

1− z
2v

)4
∣∣∣∣∣
z=0

=
1

6
(n3 − 6n2 + 11n− 6)n!

(
1

2v

)n−5
, (2.14)

To summarise, the threshold amplitudes (ε = 0) in the large-n limit read,

Ak thr.gg→n×h

∣∣∣
ε=0
→ nn!

(
λ

2M2
h

)n−1
2 Ck

κk

αs
π
M2
h

(
2mt

Mh

)k
, (2.15)

where κ2 = 1 and κ4 = 6. Above the threshold we should also include the multiplicative factor
1/(1 + ε)k−2 present on the right hand side of (2.10). Hence one can write for the above-the-
threshold amplitude,

Akgg→n×h = n

(
1

1 + ε

)k−2 Ck
κk

αs
π
M2
h

(
2mt

Mh

)k
Ah∗→n×h , (2.16)

and in addition, one should remember that the tree-level amplitude on the right hand side will
itself contain dependence on the kinematics. For example, in the double-scaling large-n, ε� 1
limit with nε held fixed, the tree-level amplitudes in the Higgs model were computed in [22],

Ah∗→n×h = n!

(
λ

2M2
h

)n−1
2

exp

[
−7

6
n ε

]
. (2.17)
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We will postpone the discussion of the full kinematic dependence for these processes to the next
section.

The main conclusions we would like to draw from the discussion up to now is that in the high-
energy, large-n limit the dominant contributions to the multi-particle amplitudes are succinctly
characterised by the set of EFT vertices (2.3) or generating functionals (2.10) with even values
of k ≥ 2. Further simplification occur in the highly-relativistic kinematics where ε is large. In
this case, the factor 1/(1 + ε)k−2 � 1 in (2.16) suppresses all contributions from k > 2 – hence
in this case the dominant contributions come from the Boxes.

In the kinematic regime where ε . 1 all even-k polygons contribute and are described by
the amplitudes (2.15). The constants C2 and C4 were computed in Table 3 together with
κ2 = 1 and κ4 = 6. Hence the numerical prefactors for the boxes and the hexagons are fully
accounted for. But the main point of our analysis is that all even polygons contribute to the
same n-dependence of the amplitudes in (2.15), and the cross-sections at large-n will have the
characteristic same exponential behaviour which will be determined in the following section.

3 Exponential form of the multi-particle cross-section

Let us consider the multi-particle limit n � k ≈ 1 and scale the energy
√
s = E linearly

with n, E ∝ n, keeping the coupling constant small at the same time, λ ∝ 1/n. Based on
the characteristic form ∼ n!λn/2 of the multi-particle scattering amplitudes on and above the
multi-particle thresholds, it was first pointed out in [9], and then argued for extensively in the
literature, that in this double-scaling limit the production cross-sections σn have a characteristic
exponential form,

σn ∼ enF (λn, ε) , for n→∞ , λn = fixed , ε = fixed , (3.1)

where ε is the average kinetic energy per particle per mass in the final state (2.9), and F (λn, ε)
is a certain a priori unknown function of two arguments, often referred to as the ‘holy grail’
function for the multi-particle production. At tree-level, the dependence on λn and ε, factorises
into individual functions of each argument,

F tree(λn, ε) = f0(λn) + f(ε) , (3.2)

and the two independent functions are given by the following expressions in the Higgs model
(1.2) (See Refs. [9, 22]):

f0(λn) = log

(
λn

4

)
− 1 , (3.3)

f(ε)|ε→0 → f(ε)asympt =
3

2

(
log
( ε

3π

)
+ 1
)
− 25

12
ε . (3.4)

These formulae is the result of integrating the tree-level amplitudes expressions (2.17) over the
Lorentz-invariant phase-space, σn = 1

n!

∫
Φn |An|2, in the large-n non-relativistic approxima-

tion. In particular, the ubiquitous factorial growth of the large-n amplitudes (2.17) translates
into the 1

n! |An|
2 ∼ n!λn ∼ en log(λn) factor in the cross-section, which determines the function

f0(λn) in (3.3). The energy-dependence of the cross-section is dictated by f(ε) in Eq. (3.1),

10
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Figure 2: Plot of f(ε) extracted from the log σtree7 /σtree6 MadGraph data in Ref. [5]. The results
perfectly match f(ε)asympt for ε < 1 shown as the dashed curve. In the UV regime the function
asymptotes to a constant f(ε = 250) ' −2.2

and this function arises from integrating the ε-dependent factors in (2.17) over the phase-space,
giving rise to the small-ε asymptotics in (3.4). While the function f0(λn) is fully determined
at tree-level, the second function, f(ε), characterising the energy-dependence of the final state,
is determined by (3.4) only at small ε, i.e. near the multi-particle threshold.

The function f(ε) in the entire range of 0 ≤ ε <∞ was obtained in Ref. [5] from the direct
computation of tree-level perturbative cross-sections with up to n = 7 Higgs particles, combined
with the known large-n scaling of the cross-section as defined by f0(λn) in Eqs. (3.2)-(3.3). The
function f0(ε) is shown in Fig. 2. This plot also shows a perfect match to the known f(ε)asympt

expression (3.4) at ε < 1, which is shown as a dashed curve in light blue.

Having determined the n-independent kinetic energy function f(ε) allows to us to compute
multi-particle cross-sections at any n in the large-n limit.

Let us now consider the effect of higher loop corrections in a single tree process6 h? →
n× h. It was shown in Ref. [9], based on the analysis of leading singularities of the multi-loop
expansion around singular generating functions in scalar field theory, that the 1-loop correction
exponentiates and results in the modified expression for f0

f0(λn)NLO−resummed = log

(
λn

4

)
− 1 +

√
3
λn

4π
. (3.5)

Finally we can now use the expression for the EFT vertex (2.15) and represent the cross-
section via

σn = Kk
n2

s

(
1

1 + ε

)2(k−2)
en(f0(λn)+ f(ε)) = Kk

1

M2
h

(
1

1 + ε

)2k−2
en(f0(λn)+ f(ε)) . (3.6)

In the above formula, all even values of k ≥ 2 can contribute. We think of k as a characteristic
k-value for which the prefactor, denoted as Kk in (3.6), would be maximal. This prefactor

6Therefore including only the factorable loop for process with k > 1.
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contains numerical factors appearing in the squared amplitude (2.15),

Kk ∼
(
Ckαs
κkπ

)2
(

2
√

2mt

Mh

)2k

'

{
0.1 : k = 2

20 : k = 4 .
(3.7)

For a practical calculation we can take k = 2 and k = 4 and plot the logarithm of the cross-

1005020 30 70

-40

-20
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20

40

E HTeVL

lo
g

Σ
n

log HΣn

leading loops�pbL

n=150

n=140

n=130

n=120

n=110

Figure 3: The logarithm of the cross-section (3.8) (in picobarns) is plotted as the function of
energy for a range of final-state multiplicities between n = 110 and n = 150. We used the
1-loop-improved expression (3.5) for f0(λn). The plot corresponds to k = 2 (boxes) but there
are only slight visible differences with the higher case k = 4 (hexagons) cf. Fig. 4.

section (3.6) for these two cases using the formulae,

log(σn/pb) '

{
n (f0(λn) + f(ε))− 2 log(1 + ε) + 8 : k = 2

n (f0(λn) + f(ε))− 6 log(1 + ε) + 13 : k = 4 .
(3.8)

The plot in Fig. 3 plots these cross-sections as the function of energy for a range of final-state
Higgs multiplicities between n = 110 and n = 150. The specific form of the prefactor for k = 2
and k = 4 has an almost negligible effect on the logarithm of the cross-sections, and the plot
depicts only the minimal k = 2 case. In Fig. 4 we choose a ‘relatively low’ final state Higgs
multiplicity of n = 130 and show the limits derived in the earlier work [5] (based on using
the dimension-5 EFT vertices with form-factors)7 versus the cross-section expressions obtained
with prefactors based on boxes (k = 2), hexagons (k = 4), and with no prefactors. We conclude
that there is little difference in practice between the latter three cases, while they all show
improvement relative to the dimension-5 EFT vertices.

The fact that the leading-loop correction to the tree-level amplitudes on multi-particle mass-
thresholds exponentiate and result in Eq. (3.5) is a well-established fact [9, 21, 16] based on
a complete multi-loop computation in the background of the classical solution (1.6) at its
singular point. The fact that loop correction (the last term in (3.5)) is positive in the Higgs
theory (1.2) is instrumental in lowering the energy scale where the cross-sections stop being

7The choice n = 130 is motivated by being on the very edge of potential observability log σn → 1 at 100 TeV
in the set-up of [5].
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Figure 4: The logarithm of the n-particle cross-section (3.8) for n = 130 shown as the function
of energy. The four contours represent four different choices for the prefactor: the first two
correspond to the k = 2 and k = 4 expressions in (3.8), the third contour contains no prefactor,
while the fourth case depicts the triangle EFT formfactor used in Eqs. (3.12)-(3.13) of Ref. [5].

small to O(100 TeV) and n ∼ 130. If one wished to use the pure tree-level expression for f0(λn)
in Eq. (3.3), both the desired energy scale and the multiplicity will increase by an order of
magnitude, as can be seen from Figure 5 of Ref. [5].

Of course, one should keep in mind that there are even higher-order corrections to the
exponent of the multi-particle cross-sections arising from the higher loop effects. Moreover,
only the loop inside the trees are included and not those connecting different trees. Hence the
use of the 1-loop-improved expression in (3.5) should be seen as an optimistic phenomenological
model. In general the higher-order effects of loop exponentiation will amount to

f0(λn)all loops = log

(
λn

4

)
− 1 +

√
3
λn

4π
+ const

(
λn

4π

)2

+ const′
(
λn

4π

)3

+ . . . , (3.9)

and can change the cross-sections contours in Fig. 3.8 Furthermore, the exponentiation of loop-
level effects which was proven for amplitudes on mass thresholds, is not the full story; one
expects that there are additional multi-loop contributions to the holy grail function F (λn, ε)
which depend on both λn and ε and cannot be separated into f0(λn) and f(ε).

However what we can state with certainty is that the perturbation theory becomes strongly-
coupled and breaks down for multi-particle processes when of the order of 130 higgses are
produced at energies ∼ O(100 TeV).

We also expect that a similar conclusion will hold for the production of the massive vector
bosons (W ’s and Z’s) in the electroweak gauge sector. In the preliminary studies in Ref. [10] it
was shown that similarly to the case of massive scalars, the high-multiplicity production of the
longitudinal components of the massive vector bosons also exhibits the factorial growth of the
tree-level amplitudes. We plan to return to these studies in near future.

8Note that the loop expansion parameter λn
4π

is ' 1 for n = 100 and ' 1.4 for n = 140.
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4 Convolution with Parton Distribution Functions

The PDFs have a huge influence for the production of a few Higgs bosons as can be seen in
Fig. 5 where we plot the Leading Order cross-sections with up to 4 Higgs bosons computed by
Madgraph5 aMC@NLO. The lower panel in this figure shows the ratio of these cross-sections
to the ones obtained at 8 TeV. The larger the number of Higgses produced, the bigger is the
enhancement with the collider energy, as expected from the PDF enhancement effect of a more
energetic collider. On the other hand, the cross-sections drop by a few orders of magnitude for
each extra Higgs in the final state. As a matter of fact, the PDF rapid fall heavily suppresses
the rate of processes with a higher threshold.
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Figure 5: Leading Order cross-sections with up to 4 Higgs bosons computed by Mad-
graph5 aMC@NLO using MSTW2008 PDF [35]. The band correspond to the scale systematics
by changing the scales by factor of two.

Although the energy of the exponential growth for the production of many Higgses is within
the reach of the FCC, one could wonder if this effect is not completely washed away by PDF
suppression due to the very high threshold. We show in Fig. 6 that this is not the case, and the
rapid growth of partonic rates leads to picobarn cross-sections already for a 50 TeV collider for
the production of &140 bosons. For lower energy collider, the PDFs are killing the cross-section
before reaching the fast growth regime. On the right plot of Fig. 6, we display the cross-sections
with a lower cut on the average kinetic energy ε per particle per mass. Since this variable is
directly related to the partonic centre of mass energy,

√
ŝ = (ε+ 1)nMh, (4.1)

this cut is equivalent to a cut on the partonic energy of the collision. It should be noted that
the largest contribution to the cross-section occurs when ε is ∼ a few (neither large nor small).
Much higher value of ε are just not kinematically available. On the other side, the threshold is
quite suppressed such that the contribution of the region ε . 1 is also negligible. The plot only
includes the contribution of the boxes since these are expected to be dominant for large values
of ε, and are of the same size as the other even polygons for ε ∼ 1, as shown in the previous
section.
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Figure 6: Left panel: Cross-sections for multi-Higgs production (3.6) at proton colliders includ-
ing the PDFs for different energies of the proton-proton collisions plotted as the function of
the Higgs multiplicity. Only the contributions from the boxes are included. The right panel
illustrates the dependence on average energy variable ε by applying a sequence of cuts on ε at
100 TeV.

5 Conclusions

We have carried out a detailed study of multi-Higgs production processes in the gluon fusion
channel in the high energy regime relevant to Future Circular hadron colliders and in the high-
Higgs-multiplicity limit. Our results are based on the computation of the leading polygons –
the triangles, boxes, pentagons and hexagons – to the scattering processes, further combined
with the subsequent branchings to reach high final state multiplicities.

We find that the characteristic energy and multiplicity scales where these perturbative rates
become observable and grow exponentially with increasing energy are within the 50 and 100
TeV regime with of order of 130 Higgses (or more) in the final state. This is the regime
where a dramatic change away from the usual weakly-coupled perturbative description of the
electro-weak physics should occur. One can speculate that this is related to transitioning to a
classicalization regime [36, 37] (albeit in non-gravitational QFT settings) where the dominant
processes above the critical energy scale correspond to the higher and higher numbers of the
relatively soft Higgs and vector bosons appearing in the final state (before their decay). It is
not expected that the perturbation theory would be a valid description in this regime, but it
does provide an indication for the critical values of the energy and occupation numbers.
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Appendix: Tree-level amplitudes at threshold

Here we will provide a brief overview of the generating functions approach for computing
tree-level scattering amplitudes on multi-particle mass thresholds. This elegant formalism pio-
neered by Lowell Brown in Ref. [7] is based on solving classical equations of motion and bypasses
the summation over individual Feynman diagrams. The overview below is included primarily
for the reader’s convenience, our presentation follows closely an earlier discussion of the Brown’s
technique in Section 2 of Ref. [10].

The amplitude A1→n for a scalar field φ to produce n particles with mass M and momenta
pµ1 , . . . p

µ
n, is found by taking the matrix element of φ between the vacuum states in the presence

of an external source, ρ(x), 〈0out|φ(0)|0in〉ρ, differentiating it n times with respect to the source
ρ, and applying the LSZ reduction,

〈n|φ(x)|0〉 = lim
ρ→0

 n∏
j=1

lim
p2j→M2

∫
d4xje

ipj ·xj (M2 − p2j )
δ

δρ(xj)

 〈0out|φ(x)|0in〉ρ . (A.1)

The approach of course is general, but for concreteness we will consider first the simplest scalar
φ4 field theory with the Lagrangian (including the source term ρ φ),

Lρ(φ) =
1

2
(∂φ)2 − 1

2
M2φ2 − 1

4
λφ4 + ρ φ , (A.2)

We now make use of two simplifying conditions which will reduce dramatically the technical
complexity of the problem. The first simplifying point is that we intend to sum up only the
tree-level processes, hence we can work at the zeroth order in the loop expansion parameter h̄.
This is captured by the classical dynamics. Specifically, the tree-level approximation is obtained
by replacing the matrix element 〈0out|φ(x)|0in〉ρ on the r.h.s. of (A.1) by a solution φcl(ρ;x) to
the classical field equations. corresponding to the Lagrangian Lρ(φ). The presence of the source
ρ(x) in the Lagrangian Lρ(φ) implies that the classical field is a functional of of the source and
can be differentiated with respect to it, as required by (A.1).

The second simplification arises from reducing the 1→ n kinematics to the n-particle mass
threshold limit. This corresponds to making all outgoing particles to be produced at rest, ~pj = 0.
In this limit, it is sufficient to consider the spatially-independent source ρ(t). Specifically, before
taking the p2j → M2 limit in (A.1), we set all outgoing momenta to pµj = (ω,~0), and choose

ρ(t) = ρ0(ω) eiωt. This amounts to the second substitution on the r.h.s. of (A.1):

(M2 − p2j )
δ

δρ(xj)
φcl(ρ;x) → (M2 − ω2)

δ

δρ(tj)
φcl(ρ; t) =

δ

δz(tj)
φcl(z; t) . (A.3)

In the right-most part of the above equation we have absorbed the factor of M2 − ω2 into the
definition of the source by writing ρ0(ω) = (M2 − ω2) z0(ω) and defining the rescaled source
variable z(t) = z0 e

iωt. Importantly, one can now take the required on-shell limit ω → M
simultaneously with sending ρ0(ω) to zero such that z0 remains finite [7],

z(t) =

(
ρ0(ω)

M2 − ω2
eiωt
)
ω→M

→ z0 e
iMt . (A.4)

The resulting classical field φcl(z(t)) expressed as the function of the rescaled source z(t), now
solves the homogeneous classical equation since we arranged for the source term ρ(t) to vanish
in our double-scaling on-shell limit ω →M , ρ0 → 0.
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It then follows from Eqs. (A.1), (A.3) that the tree-level amplitude A1→n at the n-particle
threshold is obtained by a simple differentiation of φcl(z(t)),

A1→n = 〈n|φ(0)|0〉 =

(
∂

∂z

)n
φcl

∣∣∣∣
z=0

. (A.5)

The generating function φcl(t) is a solution of the ordinary differential equation without source;
in the theory (A.2) the equation is

d2tφ+M2φ+ λφ3 = 0 . (A.6)

To give the generating function of amplitudes at multiparticle thresholds, the solution must
contain only the positive frequency components of the form e+inMt where n is the number of
final state particles in the amplitude A1→n. This follows immediately from (A.5). Thus, the
solution we are after is given by the Taylor expansion in powers of the complex variable z(t),

φcl(t) =
∞∑
n=1

an z(t)
n (A.7)

In the limit where interactions are switched off, λ = 0, the correctly normalised solution is
φcl = z(t) and this fixes the first coefficient a1 = 1 on the r.h.s. of (A.7). As the solution
contains only positive frequency harmonics, it is a complex function of Minkowski time. This
also fixes the initial conditions of the solution, φcl(t)→ 0 as Im(t)→∞. In Euclidean time the
solution is real.

The Taylor expansion coefficients an in (A.7) determine the actual amplitudes via (A.5)
giving A1→n = n! an. The classical generating function approach of [7] amounts to finding the
~x-independent solution of the Euler-Lagrange equations as an analytic function of z in the form
(A.7), and computing the amplitudes via (A.5).

The classical generating function for the theory defined by (A.2) is surprisingly simple and
can be written in closed form [7],

φcl(t) =
z(t)

1− λ
8M2 z(t)2

. (A.8)

It is easily checked that the expression in (A.8) solves the classical equation (A.6) and has the
correct form, φcl = z+. . . as z → 0. The corresponding tree-level amplitudes on mass-thresholds
in the theory (A.2) are then given by

A1→n =

(
∂

∂z

)n
φcl

∣∣∣∣
z=0

= n!

(
λ

8M2

)n−1
2

, (A.9)

and exhibit the factorial growth with the number of particles n in the external state.

This general approach is also readily applied to the theory (1.2) with the non-vanishing
VEV relevant to the high-multiplicity Higgs production studied in the present paper. In this
case the classical equation is given by Eq. (1.5) and one searches for the particular solution in
the form hcl = v+z+O(z2), where the z0 term is the VEV. Instead of solving the second-order
ordinary differential equation (1.5), one can consider an equivalent problem which results from
computing the first integral of motion of the associated to the theory (1.2) Euclidean problem.
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In this case one considers the first integral of motion – the energy E – in the Euclidean time.
E must be constant on the classical trajectory, and in the case at hand, E = 0,

E :=

∫
dt

(
1

2
(dτh)2 − λ

4

(
h2 − v2

)2)
= 0 , (A.10)

where dτh denotes the derivative of the field with respect to the imaginary time τ = it. This
amounts to solving the first-order differential equation,

dτh =
√
λ/2 (h2 − v2) , (A.11)

or in Minkowski time:
−idth =

√
λ/2 (h2 − v2) . (A.12)

The general solution of the first-order differential equation easily found by the separation of
variables, and, in particular, the imaginary-time equation (A.11) is solved by the hyperbolic
tangent. It’s analytic continuation to real time is

hcl(t) = v
1 + z(t)

2v

1− z(t)
2v

, where z = z0e
i
√
2λvt . (A.13)

This is precisely the Brown’s solution (1.6) used in the body of the paper, and it can also
be checked by direct substitution that the expression (A.13) solves both the original classical
second-order differential equation (1.5), and the first-order equation (A.12). Taylor expanding
(A.13) in z gives

hcl(t) = v + 2v

∞∑
n=1

(
z(t)

2v

)n
, (A.14)

which has the z correct boundary conditions hcl = v + z +O(z2) at z → 0.
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