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ABSTRACT

We present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object,
discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3±0.3 au (   0. 618 0. 004)
from the star. With the high astrometric precision afforded by GPI, we have confirmed, to more than 5σ, the
common proper motion of HR 2562B with the star, with only a month-long time baseline between observations.
Spectral data in the J-, H-, and K-bands show a morphological similarity to L/T transition objects. We assign a
spectral type of L7±3 to HR 2562Band derive a luminosity of log(Lbol/ = - L 4.62 0.12) , corresponding to
a mass of 30±15 MJup from evolutionary models at an estimated age of the system of 300–900Myr. Although the
uncertainty in the age of the host star is significant, the spectra and photometry exhibit several indications of youth
for HR 2562B. The source has a position angle that is consistent with an orbit in the same plane as the debris disk
recently resolved with Herschel. Additionally, it appears to be interior to the debris disk. Though the extent of the
inner hole is currently too uncertain to place limits on the mass of HR 2562B, future observations of the disk with
higher spatial resolution may be able to provide mass constraints. This is the first brown-dwarf-mass object found
to reside in the inner hole of a debris disk, offering the opportunity to search for evidence of formation above the
deuterium burning limit in a circumstellar disk.
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1. INTRODUCTION

There is considerable interest in determining whether Jovian
planets on wide orbits representa continuum that extends to
brown dwarf massesor whether there is a strong cutoff in the
number of companions as a function of mass (e.g., Kratter
et al. 2010). This relates to possible formation pathways for
substellar companions: either companions form within a
circumstellar disk and reach a mass above the deuterium
burning limit (e.g., Vorobyov 2013) or via cloud fragmenta-
tion, as in binary systems with a high mass ratio (q; Bate 2012).
Population statistics from direct imaging provide essential
observational parameters for testing formation history. From
numerous surveys, only a handful of imaged substellar
companions are <100 au from their host stars. In particular,
this separation regime has shown a lack of brown dwarfs with
<q 0.1 (the “brown dwarf desert”; e.g., Kraus et al. 2008)

around stars with >M 0.5M. However, this parameter space
has recently begun to be populated by direct imaging (e.g.,
Hinkley et al. 2015; Mawet et al. 2015).

Since the contrast of a substellar object is more favorable for
imaging with youth, direct imaging surveys tend to target
sources with evidence of a relatively young age (<300 Myr).
The presence of a debris disk, leftover from planet formation, is
a clue for a younger-than-field age, since the dust luminosity is
known to decrease with time (see Wyatt 2008). However, the
dust can persist for longer times if small planetesimals are
dynamically perturbed by an orbiting companion, hence other
youth indicators are necessary to constrain the age of a star. An
accurate estimate of the age of the star is necessary since
companion properties are often derived from evolutionary
models. Membership in nearby young associations (e.g., Malo
et al. 2013) provides the tightest constraints on the age of a star;
otherwise, large variation in the derived companion masses
exists (e.g., Kuzuhara et al. 2013; Fuhrmann & Chini 2015).

Among the brown dwarf-mass companions that have been
discovered around stars with infrared excess, none have been
previously seen inside the inner hole of a resolved disk, which
offers the opportunity to study dynamical interactions. Using
the Gemini Planet Imager (GPI; Macintosh et al. 2014), we
report the discovery of a companion to the debris disk host HR
2562. HR 2562B has a projected separation within the “brown
dwarf desert,” and within a possible cleared inner hole. We
derive properties for this companion based on spectra and
colors, and discuss the potential role it plays in maintaining and
shaping the debris disk.

2. HR 2562

HR 2562 is a F5V star with an estimated mass of 1.3 M
(Gray et al. 2006; Casagrande et al. 2011). It has a distance of
33.63±0.48 pc and a proper motion of ∼110 mas yr−1 (van
Leeuwen 2007). It was identified as having a debris disk with
data from IRAS and Spitzer by Moór et al. (2006). Gray et al.
(2006) identify the source as active based on the Ca II H and K
lines, while Torres et al. (2000) identify it as an X-ray source.
Several groups have also computed metallicity estimates,
which range from [M/H]=[−0.05,+0.08] (Gray

et al. 2006; Casagrande et al. 2011; Maldonado et al. 2012),
with possible evidence of peculiar individual abundances
(Casagrande et al. 2011).
Currently there are several disparate age estimates for HR

2562 in the literature. An estimate of 300±120Myr was
made by Asiain et al. (1999), who used a combination of space
motions and evolutionary model-derived ages to suggest that
the source is part of a nearby Local Association subgroup
called B3. In their identification of the source using IRAS, Rhee
et al. (2007) use space motions, a lithium non-detection, and
X-ray luminosity to give a rough age estimate of ∼300 Myr.
Conversely, analysis of data from the Geneva–Copenhagen
survey, in which metallicities and temperatures were used to
derive ages from models, gives an estimated age of 0.9–1.6 Gyr
(Casagrande et al. 2011). In their assessment of age based on
Ca II H and K lines, Pace (2013) also derived an age of ∼900
Myr. Most recently, Moór et al. (2015) used photometric
modeling with atmosphere models to derive an age range of
300-

+
180
420 Myr. The BANYAN II group/field membership

estimation code (Gagné et al. 2014) gives low probabilities
for the star as belonging to any known young nearby group, but
suggests the star is younger than field stars, giving a wide range
of possible ages between ∼20Myr and ∼1 Gyr. While the age
of the star remains uncertain, sufficient evidence of moderate
youth led to the inclusion of HR 2562 in the sample for the
Gemini Planet Imager Exoplanet Survey (GPIES). For the
purposes of this paper, we adopt a nominal age range of
300–900Myr.

3. GPI OBSERVATIONS AND DATA ANALYSIS

HR 2562 was observed in 2016 January. GPIES observa-
tions are taken in the angular differential imaging (ADI; Marois
et al. 2006) H-band spectroscopic mode. A candidate
companion was identified in this initial data set. Follow-up
observations were made within a month in the K1-, K2-, and J-
bands. Sky frames were also obtained right after the K2
sequence. Table 1 gives the log of these observations. Weather
conditions were median, with DIMM seeing around 1 when
available. Another (longer) K2 sequence was acquired to
provide higher a signal-to-noise ratio for the companion and
was used for spectroscopy. All data were acquired with the H-
band apodizer providing a near-IR constant star-to-satellite-
spot35 ratio of 9.23±0.06 mag (Perrin et al. 2016). Astro-
metric calibrator observations were obtained in 2016 January
and February, and were analyzed following Konopacky et al.
(2014). These observations showed no change in the IFS
calibration as measured in previous GPIES observations.
Therefore, following De Rosa et al. (2015), a pixel scale and
a position angle offset of 14.166±0.007 mas/px and
−0.10±0.13 deg were used.
Data were processed using the GPI data reduction pipeline

version 1.3.0 (Perrin et al. 2016 and the references therein) to
obtain calibrated lx y, ,( ) datacubes. Further processing to
suppress the star point-spread function was performed as

35 Satellite spots are diffraction spots created by a square grid placed in the
pupil plane.
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described in Macintosh et al. (2015) and De Rosa et al. (2015),
using four independent pipelines and several ADI algorithms:
cADI (Marois et al. 2006), TLOCI (Marois et al. 2014), and
KLIP/PYKLIP (Soummer et al. 2012; Wang et al. 2015). The
post-processed cubes were then combined to create broadband
images, examples of which are shown in Figure 1. From each
of these pipelines, positions and contrast-per-slice and
associated errors were extracted following the forward-

modeled and minimization techniques described in Marois
et al. (2010), Lagrange et al. (2010), and Pueyo (2016). The
final astrometric errors were combined in quadrature from the
errors on the measurements (0.20–0.35 px depending on the
data set), astrometric calibration, and star center (0.05 px). For
the spectroscopy, the errors on the measurements and on the
star-to-spot ratio were similarly combined. Final values for
astrometry and contrasts for the companion are derived by

Table 1
Observations and Astrometry of HR 2562B

Date Filter l dl Total Int. Field ρ θ Contrast Absolute
(UT) Time (minutes) Rot. (deg) (mas) (deg) (mag) Mag.

2016 Jan 25 H 45 37 20.2 619±3 297.56±0.35 11.7±0.1 14.2±0.1
2016 Jan 28 K1 65 23 11.9 618±5 297.40±0.25 10.6±0.1 13.0±0.1
2016 Jan 28 K2 75 24 11.3 618±4 297.76±0.37 10.4±0.1 12.8±0.1
2016 Feb 25 K2 75 47 25.7 619±2 297.50±0.25 10.4±0.1 12.8±0.1
2016 Feb 28 J 35 54 26.6 620±3 297.90±0.25 12.6±0.1 15.3±0.1

Figure 1. Collapsed datacubes showing HR 2562B in each of the four modes observed with GPI and reduced using KLIP. The K2 image is from 2016 February and
demonstrates two possible solutions for the inner edge of the disk (38 and 75 au are indicated with dashed and dot–dashed lines, respectively) assuming an inclination
of 78° and a position angle of 120°.
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averaging the results of each pipeline. Table 1 gives the
astrometry and photometry derived from each observation set.
The spectra of the companion were then obtained after
normalization with a calibrated template F5V spectrum from
the Pickles library (Pickles 1998), the 2MASS JHK magnitudes
of the host star, and the GPI response functions. Figure 3 shows
the final spectrum from each bandpass.

4. PROPERTIES OF HR 2562B

4.1. Companionship

At the distance of HR 2562, the projected separation of the
companion is 20.3±0.3 au (   0. 618 0. 003). We assessed
whether the candidate companion is comoving with the star.
We compared all relative astrometric measurements with the
predictions of the location of an infinitely far background
object. The companion being an infinitely far background
object is ruled out to 5σ (Nielsen et al. 2013). Additionally,
following De Rosa et al. (2015), we estimate likely orbit tracks
for bound objects. The results of this assessment are shown in
Figure 2. The astrometry falls clearly in the realm of bound
orbits, with a preferred range of semimajor axes of ∼15–42 au.

Archival Hubble Space Telescope NICMOS data from 2007
were found for HR 2562 (PI: Rhee, ID 11157). These data were
processed as part of the Archival Legacy Investigation of
Circumstellar Debris Disks (ALICE; Choquet et al. 2014).

Although the contrast achieved in these images is insufficient to
detect the companion at its present location, we searched for
point sources at the location the companion would have been if
it were a background object (∼1 3). No source is detected at
this location.
As we demonstrate in Section 4.2, the companion photo-

metry and spectroscopy are inconsistent with an infinitely far
background star. A more likely source of contamination might
instead be a non-stationary foreground or slightly background
L/T dwarf. Following the methodology in Macintosh et al.
(2015), we determine the probability of finding a L5-T5 type
object in the GPI field of view by combining L and T dwarf
space densities36 and absolute magnitudes (Reylé et al. 2010;
Pecaut & Mamajek 2013). We calculate a false alarm
probability of 7×10−7 within the GPI field of view for L5-
T5 dwarfs. Since the companion was found after observing 203
targets, the final false alarm probability is 1.4×10−4.
Therefore, the chance alignment of a non-stationary, unbound
brown dwarf is unlikely and the bound status is more probable.

4.2. Spectral Comparisons to HR 2562B

Photometric and spectral comparisons were made to assess
the likely properties of HR 2562B. First, we used several
libraries of spectra and routines to determine the best-matching
spectral type for HR 2562B. We used the SPLAT toolkit,
which makes use of the SpeX prism library, to determine which
spectral types match HR 2562B (Burgasser 2014). We find that
the best-matching source comparing all three spectral bands
simultaneously is WISE J174102.78-464225.5 (WISE 1741-
4642), a recently discovered peculiar L7±2 type brown dwarf
with an estimated age of 10–100Myr (Schneider et al. 2014).
Classifying the HR 2562B using spectral standards in SPLAT
returns a spectral type of L7±0.5.
In a separate analysis, we used a c2 goodness of fit test with

data from the SpeX Prism Library supplemented by spectra
from Filippazzo et al. (2015). The c2 fits were produced by
normalizing the empirical spectra to HR 2562B with a constant
based on the flux and uncertainties of both spectra, following
Cushing et al. (2008). The c2 values were then calculated
between the empirical spectrum and HR 2562B and assessed as
a function of spectral type. In this analysis, we considered all
three bands simultaneously and separate fits to each of the
bands individually. We find that sources with spectral types
between L3.5 and T2 provide the best fits to the data,
depending on the band. The best fit to the J-band is a T2 type
object, while L3.5 and L4.5 sources best match H and K,
respectively. The simultaneous fit to all bands returns the same
best fit as SPLAT, WISE 1741–4642.
In our analysis of c2 as a function of spectral type, we

find that while earlier spectral types are preferred at H and
K, mid-to-late L types have nearly equivalent c2. We also
find that two other young L/T transition objects, VHS
J125601.92–125723.9B (VHS 1256B, Gauza et al. 2015) and
PSO J318.5338-22.8603 (PSO 318, Liu et al. 2013), are
reasonable matches to the spectra in individual bands. When
considering the bands simultaneously, it is clear that the overall
flux in each wavelength is not perfectly matched by any other
object, including the best-fit WISE 1741–4642. However,

Figure 2. Astrometric data points for HR 2562B as a function of epoch. The
gray lines show the path of a background object, while the blue shaded regions
show the path of possible orbits for a bound companion.

36 We assume a uniform space density of brown dwarfs, given that our
observations could only detect L5-T5 objects at less than the scale height of the
thin disk.
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brown dwarfs can have similar spectral features despite varying
flux in different wavelength bands (i.e., a range of colors), as
shown, for example, by Leggett et al. (2003) and Cruz et al.
(2016). To investigate this, Cruz et al. (2016) created band-
normalized templates from optically classified field L0-L8 and
L0γ–L4γ objects and found that objects with a range of J−K
colors as large as 0.60 can match band-normalized templates
with an average c > 0.92 . We therefore adopt a spectral type
of L7±3 for HR 2562B. Figure 3 shows the spectrum of HR
2562B, along with the spectra of the best-fitting objects in each
band and other similar young objects.

We then compare the colors of HR 2562B with other objects
in color–magnitude diagrams (see Figure 4). The source
clusters with the sequence of young, red, L-type objects in
the MJ versus J−K and MH versus H−K diagrams. Its
H−K is similar to VHS 1256b and PSO 318. It is somewhat
bluer in J−K, though it is still near PSO 318 in absolute
magnitude at MJ. Its consistency with young L-type objects is
an additional suggestion of youth (e.g., Gagné et al. 2015).

We can also compare absolute photometry to other brown
dwarfs in both the field and young moving groups. The
variation of the J-band magnitude with spectral type has been
commonly used as a method of distinguishing between field
and potentially young objects (e.g., Faherty et al. 2012), with
younger L-type objects tending to be fainter at the J-band than
older objects of the same spectral type. This is thought to be a
natural consequence of changes in surface gravity with age

impacting atmospheric properties such as clouds (e.g., Marley
et al. 2012). Figure 4 shows the J-band magnitude variation
with spectral type. At a spectral type of L7, HR 2562B clusters
strongly with members of nearby moving groups below the
field population.
Following the methods of Filippazzo et al. (2015), we

constructed a spectral energy distribution (SED) using the
spectra and photometry to determine an empirical log(Lbol/L)
of −4.62±0.12. Using this value and an age range of
300–900Myr, we then use the evolutionary models from
Saumon & Marley (2008) to estimate the physical properties
of HR 2562B (solar metallicity, hybrid cloud). We find a mass
of 30±15 MJup, a radius of 1.11±0.11 RJup, a glog( ) of
4.70±0.32, and a temperature of 1200±100 K. This
temperature is somewhat lower than field L7 type objects,
but is consistent with estimates for young objects of this
spectral type.

5. HR 2562B AND THE DEBRIS DISK

The identification of a brown dwarf in a system with a debris
disk presents interesting opportunities for constraining system
properties. In Herschel PACS images, the disk is marginally
resolved. Moór et al. (2015) use this data to derive an average
dust radius of 112.1±8.4 au, with evidence for an inner hole
of radius between ∼18–70 au. The average outer radius is
found to be 187 au. Interestingly, they find that the disk has a

Figure 3. The spectrum of HR 2562B (gray) shown with the best-fitting objects (solid lines) per band (middle row), and the best fit (solid aqua line, WISE J1741-
4642) across all bands (bottom row). Also shown are the young objects VHS 1256B and PSO 318 (dashed blue and red lines), which are both reasonable matches to
the spectra. The corresponding c2 as a function of spectral type is plotted for each band (top row).

(The data used to create this figure are available.)
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high inclination of 78°.0±6°.3 and a position angle on the sky
of 120°.1±3°.2. Given the separation of HR 2562B of ∼20 au
and an average position angle of ∼298°, the source appears to
be interior to the hole in the disk and coplanar with the disk to
within the uncertainties (see Figure 1). This is the first example
of a brown dwarf-mass companion within the inner hole of a
debris disk.

The existence of a companion interior to the disk provides
the exciting possibility of independently constraining the
properties of the HR 2562 system. Moór et al. (2015) discuss
the possibility of a self-stirring mechanism generating the
resolved disk material for a source as old as HR 2562A. In this
mechanism, secular perturbations from a companion generate
enhanced collisions of smaller planetesimals, leading to the
generation of dust at wide separations (Mustill & Wyatt 2009).
Using Equation (6) in Moór et al. (2015), and assuming their
nominal disk parameters, we find that a mass of only 13MJup
would be required to generate collisions out to ∼187 au in
900Myr, assuming an eccentricity of 0.01. If we use 30 MJup
for HR 2562B, we derive a crossing time of ∼385 Myr,
consistent with the lower end of our adopted age range. While
the uncertainties in the outer radius of the disk and mass of the

planet allow for crossing times of >1 Gyr, the nominal
parameters are consistent with the scenario that HR 2562B is
responsible for generating the observed disk.
A more complicated question is whether the inner hole can

also be used to place an upper limit on the mass of the
companion. Though Moór et al. (2015) derive an average inner
radius of 38±20 au from Herschel images, the uncertainty on
this value is fairly large. Moór et al. (2015) also performed a
separate SED fit to available photometry and derived an inner
radius of 64 ±6 au. Since these two values are not consistent,
we performed a quick analysis in which we simultaneously fit
the SED and the Herschel PACS image using MCFOST (Pinte
et al. 2006). We used the geometric parameters from Moór
et al. (2015), a flat surface density profile, and a minimum grain
size of about 1 micron. We find that the SED and image
together are best reproduced using an inner radius of ∼75 au.
This radius is consistent with the upper end of the uncertainty
range and SED fit of Moór et al. (2015). For completeness, we
use both an inner radius of 38 au and our derived value of 75 au
to roughly determine whether mass constraints are possible.
Using the dynamical stability criterion proposed by Petro-

vich (2015), we estimate the mass of the HR 2562B, assuming

Figure 4. Top row and bottom left: color–magnitude diagrams ( JHK ) with the MLT sequence of 180 field objects (light gray symbols) from Filippazzo et al. (2015).
Young brown dwarfs or directly imaged companions are also shown (black symbols), and a few peculiar objects (specific symbols) from Best et al. (2015), Faherty
et al. (2016), and J. Gagné et al. (2016, in preparation). Bottom right: the J-band absolute magnitude as a function of spectral type. The gray line shows the field
sequence with the s1 spread marked by the gray shaded area following Filippazzo et al. (2015).
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it is responsible for clearing the inner hole and that it has an
eccentricity of zero. We find that if the inner hole is 38 au, the
upper limit on the mass of the companion is ∼20 MJup. The
difference between an age of 300 and 900Myr is negligible
given our other assumptions. If instead we use an inner radius
of 75 au, the upper limit on the mass is ∼0.24 M , well beyond
the highest estimates from evolutionary models. If the inner
radius is indeed >75 au, it might suggest an elevated
eccentricity for HR 2562B. Future observations that constrain
the orbital parameters of the companion and high-resolution
images of the disk will offer insight into the potential history of
interaction between the bodies in this system and provide
meaningful mass limits.

6. CONCLUSIONS

The HR 2562 system offers a relatively rare opportunity to
probe the direct dynamical interaction of a substellar object
with a Kuiper Belt analog. The overall system architecture may
provide interesting clues to the formation of the companion.
With a mass ratio of = q 0.02 0.01, HR 2562B is a new
object in the growing list of substellar companions within 30 au
(e.g., Hinkley et al. 2015; Mawet et al. 2015). These are
excellent candidates for formation via disk instability, which
has been shown to naturally produce objects as massive as 42
MJup at separations 70 100– au (e.g., Rafikov 2005; Kratter
et al. 2010). Several challenges to this picture remain, however,
particularly the proximity of observed objects to their host
stars. At such close separations the fast cooling needed for the
disk fragmentation into bound objects becomes difficult to
realize, precluding in situ formation of these brown dwarfs by
gravitational instability (e.g., Rafikov 2005). However, it is
plausible that the relatively massive HR 2562B formed beyond
50–70 au and migrated inward to its current location (e.g.,
Vorobyov 2013). Constraining the true mass and orbit of the
companion is essential for determining its possible origin,
which could offer evidence of planet formation above the
deuterium burning limit.
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