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ABSTRACT
Cosmological parameter constraints from observations of time-delay lenses are becoming in-
creasingly precise. However, there may be significant bias and scatter in these measurements
due to, among other things, the so-called mass-sheet degeneracy. To estimate these uncertain-
ties, we analyse strong lenses from the largest EAGLE hydrodynamical simulation. We apply
a mass-sheet transformation to the radial density profiles of lenses, and by selecting lenses
near isothermality, we find that the bias on H0 can be reduced to 5 per cent with an intrinsic
scatter of 10 per cent, confirming previous results performed on a different simulation data
set. We further investigate whether combining lensing observables with kinematic constraints
helps to minimize this bias. We do not detect any significant dependence of the bias on lens
model parameters or observational properties of the galaxy, but depending on the source–lens
configuration, a bias may still exist. Cross lenses provide an accurate estimate of the Hubble
constant, while fold (double) lenses tend to be biased low (high). With kinematic constraints,
double lenses show bias and intrinsic scatter of 6 per cent and 10 per cent, respectively, while
quad lenses show bias and intrinsic scatter of 0.5 per cent and 10 per cent, respectively. For
lenses with a reduced χ2 > 1, a power-law dependence of the χ2 on the lens environment
(number of nearby galaxies) is seen. Lastly, we model, in greater detail, the cases of two
double lenses that are significantly biased. We are able to remove the bias, suggesting that the
remaining biases could also be reduced by carefully taking into account additional sources of
systematic uncertainty.

Key words: gravitational lensing: strong – methods: numerical – galaxies: kinematics and dy-
namics – cosmological parameters.

1 IN T RO D U C T I O N

Strong gravitational lensing has long played an important role in as-
tronomy. In strongly lensed systems, the magnification of the lensed
source can allow for detailed studies of the source and the mass dis-
tribution of the lens. It can also place constraints on cosmological
parameters that are independent from those of other methods, such
as lensing of the cosmic microwave background and supernovae
distance measurements (see Jackson 2007, 2015, for a compari-
son of methods). By continuously monitoring the lensed images
of a time-variable source, such as a quasar, the delays in arrival
of photons at the image locations can be measured, which in turn
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are relatable to cosmology (Refsdal 1964). The time of arrival of
photons at a position in the lens plane, �x, is given by

t(�x) = 1 + zd

c

DdDs

Dds

(
1

2
|�x − �u|2 − φ(�x)

)
, (1)

where zd is the redshift of the lens; c is the speed of light; Dd,
Ds, and Dds are, respectively, the angular diameter distances from
the observer to lens, observer to source, and lens to source; �u is
the position of the unlensed source; and φ(�x) is the dimensionless
lens potential. Because of the dependence of the time delay on ra-
tios of cosmological distances, these measurements are particularly
sensitive to the Hubble constant, H0.

In the late 1990s, the first measurements of time delays and
inferences of the Hubble constant were made (see e.g. Ofek &
Maoz 2003; Barkana 1997; Burud et al. 2000; Biggs et al. 1999;
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Kochanek & Schechter 2004). The density profiles of these early
lenses were not always strongly constrained, but the addition of
kinematic information (Treu & Koopmans 2002) and emission
from the quasar host galaxy (Kochanek, Keeton & McLeod 2001)
helped to remove degeneracies present in the lens modelling. More
recently, advanced techniques and more detailed modelling have
increased the reliability of strong lensing measurements. The H0

Lenses in COSMOGRAIL Wellspring (H0LiCOW) program (Suyu
et al. 2016) are now using time-delay measurements from the
COSmological MOnitoring of GRAvItational Lenses (COSMO-
GRAIL; Courbin et al. 2005) to make precision measurements of
the Hubble constant. The H0LiCOW program addresses several sig-
nificant systematics in strong lens modelling by identifying galaxies
in the group of the lens or along the line of sight (Sluse et al. 2016),
quantifying effects of mass along the line of sight (Rusu et al. 2016),
minimizing confirmation bias through blind lens modelling, and uti-
lizing single- and multicomponent lens models (Wong et al. 2016).
Combining measurements from three time-delay lenses, Bonvin
et al. (2016) find, for the case of a �cold dark matter (�CDM) cos-
mology, a Hubble constant of H0 = 71.9+2.4

−3.0 km s−1 Mpc−1. This
result is independent of any other method and is not in significant
tension with other probes. For example, the measurement agrees
with the Planck 2015 results at the 1σ–2σ level. The authors also
go on to explore other cosmological models, constraining the cur-
vature parameter k and the dark energy equation of state w as well.

Given the increasing quality of data and modelling techniques,
tests of the methods using numerical simulations are critical for
understanding possible sources of bias. A well-known source of
uncertainty is the so-called mass-sheet degeneracy (MSD; Falco,
Gorenstein & Shapiro 1985; Schneider & Sluse 2013). Under the
MSD, a given convergence profile κ(�x) = �(�x)/�cr1 can be trans-
formed into another convergence given by

κλ(�x) = λκ(�x) + (1 − λ), (2)

where λ is a constant. This transformation leads to a simultaneous,
but unobservable, transformation of the unlensed source properties
and no change in the positions and fluxes of lensed images. How-
ever, the product of the Hubble constant and time delays is affected
such that H0
t → λH0
t. Thus, the inferred value of the Hubble
constant will be biased by the factor λ. In practice, it is typical for
lenses to be modelled using power-law density profiles, and because
power laws do not strictly map to power laws under the mass-sheet
transformation (MST), they mathematically break this degeneracy.
However, in doing so, they artificially pick out a particular trans-
formation among many possible solutions, leading to a direct bias
on the value of H0 inferred from such a model. Additionally, inde-
pendent constraints on the mass profile, such as those from velocity
dispersion measurements, can help break the degeneracy and mini-
mize this bias (see e.g. Wong et al. 2016; Suyu et al. 2013), but may
also introduce additional systematic uncertainties.

Until recently, cosmological N-body simulations have not been
able to realistically model galaxy-scale lenses. Dark matter only
simulations, such as Millenium-XXL (Angulo et al. 2012), simulate
large cosmological volumes, but the resolution is limited by the mass
of the dark matter particles and the gravitational softening length.
For the Millenium-XXL project, these correspond to particles with
masses of 8.5 × 109 M� and a softening length of 13.7 kpc, which
are not small enough to resolve the structure of galaxies. Moreover,

1 �(�x) is the projected surface mass density, and �cr is the critical surface
density for lensing.

dark matter only simulations do not take into account the effects
of baryons, which are a key component to analysing strong lenses,
since the Einstein radius is typically within the region where baryons
and dark matter are both present in significant amounts.

State-of-the-art simulations can now model both the baryons
and dark matter in galaxies, reproducing a wide range of their
observed properties. This increase in resolution and astrophysical
modelling comes at the cost of a smaller simulation box. Whereas
the Millenium-XXL simulation was 4.1 Gpc on each side, baryon
and dark matter simulations are typically done in ∼100 Mpc boxes.
Recent efforts include the Illustris project (Vogelsberger et al. 2014),
the EAGLE project (Schaye et al. 2015; Crain et al. 2015), the MU-
FASA project (Davé, Thompson & Hopkins 2016), and the ROMULUS

simulations (Tremmel et al. 2016). Although there are many similar-
ities between the simulations, there are several key differences. The
hydrodynamic scheme to simulate the fluid elements varies, with
EAGLE and ROMULUS using smooth-particle hydrodynamics (SPH),
MUFASA using meshless, finite-mass hydrodynamics and Illustis us-
ing a Voronoi tessellation adaptive mesh scheme. The codes used
to solve for the gravitational interactions between the particles or
fluid elements also differ between the simulations. ROMULUS specifi-
cally aims to capture the detailed formation and evolution of super-
massive black holes (BHs) with better subgrid models. All of the
simulations are calibrated to reproduce some particular property of
present-day galaxies. Illustris, EAGLE, and MUFASA were calibrated to
reproduce the observed low-redshift galaxy stellar mass function,
while ROMULUS calibrated on the observed stellar mass–halo mass re-
lationship. However, the EAGLE project is the only simulation which
is specifically calibrated to reproduce the observed low-redshift
galaxy mass–size relationship. Since the radial profile of a galaxy
and the concentration of matter within its central region play an
important role in determining its lens properties, EAGLE galaxies are
especially well suited to investigate strong lenses.

Recently, Xu et al. (2016), hereafter Xu+16, have examined the
average radial profile of galaxies in the Illustris simulation. The au-
thors extract the convergence at two different radii (representing the
positions of two lensed images) and, assuming power-law density
profiles for the lens, calculate the average density slope between the
two images. The convergence at the mid-point is also calculated, and
then an MST is applied to this density slope so that the three points
(the lensed image locations and the mid-point) lie on a line in log–
log space. We note that although the MSD can be thought of as being
due to a uniform sheet of mass at the redshift of the lens, there are
many manifestations of the degeneracy. In particular, Xu+16 focus
on local deviations of the mass density from a power law near lensed
images. In observations, these local deviations would lead to an in-
ferred power-law slope different from the average slope between
the two lensed images, introducing a multiplicative bias on H0.

In practice, the convergence at the three aforementioned radial
positions is not directly observed; positions, fluxes, and time delays
are the primary observables. Still, with rudimentary lensing infor-
mation alone, there exists a strong degeneracy between the mass
inside the Einstein radius, a robustly determined quantity for fixed
H0, and H0 itself. Here, we use mock observations of lens galaxies
in the EAGLE simulation to assess the ability to recover H0 given
positions of lensed images, time delays, and velocity dispersion in-
formation. We also investigate how adding additional information
from the extended light distribution of the quasar host galaxy and
from the lens environment can further help to break degeneracies
and to minimize bias.

The remainder of this paper is outlined as follows. Section 2 pro-
vides a brief description of the EAGLE simulation. Section 3 applies
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Table 1. Key statistics for the lens populations detailed in Section 3. (See the text for a description of selection criteria and methods.) Columns 2–4
represent a fixed source redshift of zs = 1.5 and varying lens redshift. Columns 5–7 represent a fixed lens redshift of zd = 0.615 and varying source
redshift. Rows 4–13 show, for various source–lens redshift combinations, fractions of meaningful MSTs, Einstein radii, and SIS velocity dispersions.
Rows 14–17 show total and stellar masses within R200, the spherical radius within which the mean density is 200 times the critical density of the
Universe, extracted from the raw particle data for the various lens redshifts. The total number of projections includes up to three projections of the
same galaxy. A meaningful MST requires that either λ, λ̄, or both are positive and non-zero. The minimum Einstein radii correspond to the SIS velocity
dispersion cut of σSIS > 160 km s−1. Cf. table 1 of Xu+16.

Sample sets zs = 1.5 zd = 0.615

Redshifts zd=0.183 zd=0.366 zd=0.865 zs=1 zs=1.5 zs=3
Total number of projections 841 1074 258 817 1066 1186
Meaningful MST for κ 97 per cent 96 per cent 97 per cent 96 per cent 98 per cent 97 per cent
Meaningful MST for κ̄ 93 per cent 94 per cent 97 per cent 93 per cent 95 per cent 96 per cent
Meaningful MST for both κ and κ̄ 92 per cent 92 per cent 95 per cent 92 per cent 94 per cent 94 per cent
rmin
Ein (kpc) 1.94 2.60 3.12 1.63 2.48 3.31

rmax
Ein (kpc) 12.61 23.35 11.54 9.69 17.42 26.98

Mean rEin (kpc) 3.17 4.14 4.30 2.64 3.89 5.16
Median rEin (kpc) 2.73 3.52 3.98 2.28 3.34 4.36
Standard deviation σrEin (kpc) 1.29 1.79 1.20 1.03 1.63 2.23

Median σ SIS (km s−1) 190.1 186.4 233.5 189.4 185.7 183.7
Standard deviation σ SIS (km s−1) 36.8 37.7 30.6 35.6 36.3 36.7

Median log10(M200,tot/M�) 12.72 12.63 12.92 – 12.54 –
Standard deviation log10(M200,tot/M�) 0.45 0.43 0.38 – 0.40 –
Median log10(M200,∗/M�) 11.17 11.11 11.34 – 11.02 –
Standard deviation log10(M200,∗/M�) 0.33 0.33 0.30 – 0.32 –

an MST to the radial profiles of EAGLE lenses to assess possible
biases on H0 measurements. The results are then compared to those
of Xu+16 . In Section 4, we use lensing observables and kinematic
constraints to constrain H0. We address the possible effects of lens
environment and constraints from the host galaxy in Section 5.
Finally, we summarize our findings in Section 6.

2 TH E EAGLE P RO J E C T

EAGLE is a project of the Virgo Consortium. It is a suite of cos-
mological hydrodynamical simulations of periodic cubic volumes
designed to study galaxy formation and evolution. The EAGLE code
is a modified version of P-GADGET-3, which is an updated version
of P-GADGET-2 (Springel 2005). We focus on the reference model in
the volume with a comoving side length of 100 Mpc, as this con-
tains the largest sample of possible lenses. This volume assumes
a �CDM cosmology with parameters taken from the Planck 2013
results (Planck Collaboration I 2014): �b = 0.0483, �M = 0.307,
�� = 0.693, h = 0.6777, σ 8 = 0.8288, and ns = 0.9611. Below,
we briefly describe the subgrid physics of the EAGLE model.

Radiative cooling and photoheating is implemented following
Wiersma et al. (2009), assuming a Haardt & Madau (2001) opti-
cally thin X-ray/UV background. Star formation is implemented in
a stochastical manner following Schaye & Dalla Vecchia (2008),
which by construction reproduces the observed Kennicutt–Schmidt
law. Stars form at a pressure-dependent rate above a metallicity-
dependent density threshold. Each star particle is assumed to be a
simple stellar population with a Chabrier (2003) initial mass func-
tion in the range 0.1–100 M�.

Stellar evolution is modelled following Wiersma et al. (2009),
where the metallicity-dependent release of 11 chemical elements
from asymptotic giant branch stars and Type Ia and Type II su-
pernovae is tracked. Stellar feedback is implemented by stochas-
tic heating particles by a fixed temperature increment (Dalla
Vecchia & Schaye 2012). The seeding, growth and feedback from
supermassive BHs is based on Springel, Di Matteo & Hernquist

(2005) with modifications from Booth & Schaye (2009) and Rosas-
Guevara et al. (2015). Feedback from BHs is implemented as a
single mode.

A critical aspect of state-of-the-art galaxy formation models is
the calibration of the subgrid physics. The EAGLE project calibrated
the free parameters associated with stellar feedback to reproduce
the observed low-redshift galaxy stellar mass function and the ob-
served low-redshift galaxy mass–size relation in the stellar mass
range 109–1011 M�. After this calibration, the simulation repro-
duces the observed evolution of both the galaxy mass function and
galaxy sizes (Furlong et al. 2015, 2017). The EAGLE galaxies are
ideally suited for a strong lens study as their stellar mass and their
extent are a good match to observational constraints. Therefore,
they should provide a more realistic lens population compared to
previous simulations.

3 C O M PA R I S O N TO PR E V I O U S WO R K

Xu+16 have used the Illustris simulation to show that there can
be a very strong bias and large scatter in measurements of H0 from
strong lensing. It is not immediately clear, however, if the results are
dependent on the choice of simulation. Here, we perform a similar
analysis using the EAGLE simulation, focusing on minimizing the
differences between the two analyses.

3.1 Extracting lens properties

To best match the lens criteria of Xu+16 and to ensure that only
well-resolved, realistic lens candidates are extracted from the red-
shift snapshots listed in Table 1, several selection cuts are applied.
For details of the calculations and methods described in this sec-
tion, see Appendix A1. First, a lower limit, friends-of-friends2 mass

2 The friends-of-friends method identifies haloes by including in the halo all
dark matter particles within a linking length of 0.2 times the mean particle

MNRAS 474, 3403–3422 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/474/3/3403/4693847
by University of Durham user
on 17 January 2018



3406 A. S. Tagore et al.

cut of 1011 M� is applied. Then, three projections along the coor-
dinate axes give three potential lens candidates for each galaxy
in the simulation. A galaxy is accepted as a lens if its circular-
ized Einstein radius3 is more than twice the gravitational soften-
ing length (2 × 700 pc). A final selection cut is made, requiring
the one-dimensional velocity dispersion (σSIS) to be greater than
160 km s−1.4

To obtain radial density profiles, a convergence map that suffi-
ciently resolves the relevant strong lensing regime of the lens is
created. We then follow Xu+16 and fit a 10th degree polynomial (in
log–log space) to the radial profile. This polynomial fit is used to
derive the lens properties that are under investigation and detailed in
Section 3.2. We note that another useful characteristic radius used
below is the effective radius reff , which we define as the projected
radius enclosing half of the stellar mass. See Appendix A1 for a
description of how reff is calculated.

3.2 Formalism

We apply the mathematical formalism of Xu+16 to the EAGLE lenses
to assess the bias on H0 and compare the two simulations to one
another. For more details of the calculations presented here, see
Xu+16. The main quantities of interest are the average slope be-
tween typical radii of lensed images, denoted s, and the deviation of
the radial profile form a pure power law (the curvature), denoted ξ .
Following Xu+16, we evaluate the convergence at 0.5 and 1.5 times
the Einstein radius and denote the radii as θ1 and θ2, respectively.
Similarly, we denote the values of the convergence at θ1 and θ2 as
κ1 and κ2, respectively. We can then define

s ≡ − ln(κ2/κ1)

ln(θ2/θ1)
, (3)

and the curvature

ξ ≡ κ(
√

θ1θ2)√
κ1κ2

. (4)

The MSD maps the true s and ξ into ‘measured’ values denoted
by sλ and ξλ, respectively. The latter two are similarly given by

sλ ≡ − ln(κλ(θ2)/κλ(θ1))

ln(θ2/θ1)
, (5)

and

ξλ ≡ κλ(
√

θ1θ2)√
κλ(θ1)κλ(θ2)

. (6)

Thus, by using power-law models, we implicitly set ξλ = 1, picking
out a particular MST; this condition leads to a bias of

λ = κ2 + κ1 − 2ξ
√

κ2κ1

κ2 + κ1 − 2ξ
√

κ2κ1 + (ξ 2 − 1)κ2κ1
. (7)

Note that if ξ = 1, the true radial profile κ(θ ) is a power law, and
λ = 1. If ξ 
= 1, then there will be a bias, and a fit to observational
data would infer a power-law slope that is different from the true
slope; we denote this inferred slope by sλ.

separation. Baryonic particles are assigned to the same halo, if any, to which
their nearest dark matter particle is assigned.
3 The angle within which the mean convergence is unity.
4 We assume a circular, isothermal lens, so that the Einstein radius is given by
4π(σSIS/c)2Dd/Dds, where σSIS is the one-dimensional velocity dispersion
for the SIS density profile. The SIS profile is given by ρ(r) = σSIS/(2πGr2).

We also perform a similar set of calculations for the mean con-
vergence within a particular radius, given by

κ̄(θ ) = 1

πθ2

∫ θ

0
κ(θ ′)2πθ ′dθ ′, (8)

where κ̄ can be related to the deflection angle; this can be useful if
the deflection angle is expected to follow a power law. Analogously
to the calculations of the convergence, slope, and curvature, we can
define similar quantities for the mean convergence: s̄, ξ̄ , and λ̄.

Observationally, the only meaningful MST is with respect to the
total mass density profile and results in λ > 0 or λ̄ > 0. Radial
profiles that require λ̄ < 0 have shallow density profiles and/or
large curvatures. Such an MST would result in sλ < 0; i.e. the
density would increase with radius. The above quantities can be
computed for the baryonic and dark matter components separately.
Theoretically, studying the individual components could possibly
help discover causes of bias or properties of lenses with the least
bias and scatter in H0. Finally, we note that although these quantities
do not take into account any lensing observables, they are still useful
indicators of the potential bias and scatter in measurements of the
Hubble constant. A more thorough analysis is given in Section 4.

3.3 Results

Table 1 presents key statistics about the lens populations. Qual-
itatively, the properties of the lenses in the three lowest (lens)
redshift bins are consistent with those of Xu+16. The number of
lenses, as well as the mean and median Einstein radii, show similar
trends as a function of the lens redshift. Depending on whether all
lenses are selected or only those which produce meaningful MSTs
(λ > 0, λ̄ > 0, or both), the number of lenses can vary significantly.
The Illustris lenses produce many more lens projections, but the
EAGLE lenses have a higher rate of meaningful MSTs. The EAGLE

lenses also have smaller mean and median Einstein radii, which are
70–85 per cent the size of Illustris lenses. Unsurprisingly, the stan-
dard deviations of the Einstein radii are also smaller. For the three
lowest lens redshifts, these effects persist after accounting for the
slight differences in redshift; we do not extrapolate the results of
Xu+16 to compare the highest redshift bin.

The reason for this difference could be due to the larger size
of Illustris galaxies, as they do not reproduce the observed galaxy
size–mass relation (Furlong et al. 2017). Assuming, for simplicity,
spherically symmetric density profiles, the Einstein radius depends
not only on how centrally concentrated the radial profile is but
also on the form of the profile. In other words, a more centrally
concentrated galaxy does not necessarily produce a smaller or larger
Einstein radius, compared to a more extended galaxy. Comparing
the detailed profiles of lenses in these simulations to one another and
their relation to the lens properties is beyond the scope of this work.
Nevertheless, we note that the largest discrepancy occurs for the
highest redshift bin, zd = 0.865, where we find a drastically smaller
number of lenses and much larger mean and median Einstein radii,
compared to the other lens redshift bins.

We further attempt to compare the two simulations by using EAGLE

lenses to reproduce several key figures in Xu+16; for consistency,
the results presented in this section are only for the zd = 0.183
and zs = 1.5 combinations. Fig. 1 shows two important proper-
ties of the lenses: the density slope and the curvature at a radius
between the two image positions. It also defines the separation of
the variously coloured lenses based on the slope and curvature pa-
rameter, which show no discernible difference from Xu+16. The
lenses are separated into those which are subisothermal (s < 0.95),
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Figure 1. Projected density slope versus curvature parameter. The plot-
ting style and colour-coding separate the lenses into those that are sub- or
superisothermal and concave or convex. They serve as a visual guide for
examining subsequent plots. Lenses that lie on the ξ = 1 line would give an
unbiased measurement of H0. Cf. fig. 1 of Xu+16.

Figure 2. Projected density slope of the baryons versus that of the dark
matter. The plotting style and colour-coding are consistent with Fig. 1. Cf.
fig. 6 of Xu+16.

superisothermal (s > 1.2), convex downwards (ξ < 0.98), and con-
cave upwards (ξ > 1.02). The lenses are centred around radial pro-
files that are isothermal with no curvature, but there is significant
scatter in both parameters. This is consistent with previous results
that have shown gravitational lenses to be, on average, isothermal
(see e.g. Koopmans et al. 2006).

Compared to those that only contain dark matter, simulations that
include baryons show cuspier central profiles, which is likely due
to mass-dependent effects of the baryons, such as adiabatic con-
traction (Schaller et al. 2015; Zhu et al. 2016). Fig. 2 decomposes
the lens slope into the constituent dark matter and baryonic com-
ponents. It confirms the superisothermal slopes of the baryons and
subisothermal dark matter profiles, and it shows a clear correlation
between the two, i.e. lenses that have steeper profiles (s > 1) also
have steeper baryonic density slopes (sb � 2).

The top row of Fig. 3 shows the density profiles for ten typical
galaxies from each of the four categories outlined in Fig. 1. The

baryonic (solid blue line) and dark matter (dashed red line) compo-
nents, as well as their sums (solid black), are shown separately. It
is clear that the baryons have a steeper density slope and are more
centrally concentrated; the dark matter, on the other hand, begins
to dominate somewhere between the 0.3 and 1 Einstein radii. The
bottom row of Fig. 3 shows the cumulative (dashed black line)
and local dark matter fractions (solid green line) for the same 10
galaxies shown in each panel of the top row. Due to the steepness
of the baryonic density profile in the left two columns (s > 1.2),
the dark matter fraction rises quickly inside the Einstein radius.
On the other hand, the right two columns, where s < 0.95, show
shallower dark matter fraction curves. Compared to Xu+16 , there
are two main differences. For lenses with ξ > 1.02, the radius at
which the dark matter begins to dominate is typically smaller. This
transition appears to occur near the Einstein radius for the Illustris
sample, but it occurs at ∼0.5rEin, or at even smaller radii, for EAGLE

lenses. Another notable difference is that (for EAGLE), the curvature
in lenses with s < 0.95 is, qualitatively, much less pronounced in
both the density profiles of the baryonic and total matter densities.
This could be, however, an effect of the difference in physical scales
being probed by the two simulations.

Fig. 4 shows the density slope and curvature as functions of the
equivalence radius θf50 (the radius at which the local, projected
density of baryons equals that of the dark matter) and the local,
projected fraction of dark matter at the Einstein radius. The differ-
ence in size between EAGLE and Illustris lenses is evident here. The
corresponding figure in Xu+16 shows that the density of baryons
can dominate in many cases up to 1.5 times the Einstein radius. The
equivalence radius for the EAGLE lenses, on the other hand, can be
as large as the Einstein radius but is typically smaller with a median
value of 0.50 times the Einstein radius. Aside from this, the only
other notable difference stems from the subisothermal lenses. In
this group, Xu+16 show a clear separation between the ξ < 0.98
(orange) and ξ > 1.02 (green) groups. The EAGLE lenses show a
significant overlap in these groups, which may be attributable to the
milder curvatures seen in Fig. 3.

To assess any possible bias on the Hubble constant, λ and λ̄ must
be evaluated. In Fig. 5, we show the distributions of these multiplica-
tive biases as functions of the velocity dispersion, the Einstein radius
(normalized by the effective radius), and the cumulative dark matter
fraction. Like Xu+16, we find a correlation of the bias with σSIS.
Lenses with smaller velocity dispersions (<200 km s−1) tend to be
heavily biased with values of λ and λ̄ that approach zero. Similarly,
we find that lenses with larger velocity dispersion are less biased but
still have significant scatter. For lenses with σSIS > 200 km s−1, the
median bias is 1.10 with a standard deviation of 0.48, or 44 per cent.
Additionally, there are several differences between the two lens
samples that can be seen here. There are fewer EAGLE lenses with
σSIS > 350 km s−1, and the distributions of θE/θeff extend several
factors higher. Consequentially, the larger Einstein radii lead to
larger fractions of dark matter within the Einstein radius itself (as
seen in the rightmost column). However, these differences are likely
linked to the previously seen difference in lens galaxy sizes between
the two simulations.

Fig. 6 shows a clear correlation of the bias with the density
slope after the MST has been applied. It is clear from both panels
that lenses near isothermality lead to the smallest bias and that the
scatter is significantly reduced in this regime to <20 per cent. It is
important to note that the transformed density slopes, sλ and s̄λ, are
what one would infer from observational data. These findings are
in good qualitative agreement with what Xu+16 find and motivate
the authors to extract only those lenses with ‘measured’ density
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Figure 3. Convergence and dark matter fraction as functions of the radius in units of Einstein radius. Top row: the convergence profile for the baryons (solid
blue) and dark matter (dashed red) components. The total convergence is also shown in solid black, but it has been scaled up by a factor of five for clarity.
The dashed green lines represents an isothermal slope between 0.5 and 1.5 Einstein radii, while the dashed orange curves represent the projected NFW halo,
assuming a scale radius of 10θE (Bartelmann 1996). Bottom: the solid green lines represent the projected fractional dark matter density, while the dashed black
lines represent the ratio of the enclosed projected dark matter mass to the total projected mass within a given radius. The columns distinguish between the
different plotting schemes of Fig. 1 (given in the bottom left of the top row). For each column, we only show results for ten typical lens profiles. Cf. fig. 3 of
Xu+16.

slopes between 0.9 and 1.1. They find that the bias on H0 from
these subsamples can be significantly reduced to less than 5 per cent.
Similarly, we focus on the subsamples of EAGLE lenses for which sλ

and s̄λ fall into the same range of density slopes. In Table 2, we show
key statistics for the various lens and source redshift combinations.
Like Xu+16, we find that selecting lenses with sλ or s̄λ near unity
significantly reduces the bias on H0. The standard deviations of λ or
λ̄ are also reduced to ∼10 per cent. Xu+16 see a further reduction
in scatter to 5 per cent when requiring that both sλ and s̄λ be near
unity. When a similar selection is applied to the EAGLE lenses, the
number of lenses in the selection set is reduced, but the scatter does
not significantly change.

The properties of the radial profiles of lenses from the EAGLE

simulation are broadly consistent with those of Xu+16. We suspect
that the primary differences arise due to the differences in the size
of galaxies between the two simulations. EAGLE galaxies reproduce
the observed galaxy size–mass relation, whereas Illustris galaxies
do not (Furlong et al. 2017). This has a significant effect on the
measured effective radii and Einstein radii of the galaxies, which,
in turn, affect several quantities, such as the equivalence radius.
However, the implications for measurements of the Hubble constant
remain the same. By selecting galaxies near isothermality, the bias
on H0 can be reduced to ∼5 per cent and the scatter can be reduced
to ∼10 per cent.

4 J O I N T L E N S A N D DY NA M I C A L
M O D E L L I N G

The results in the previous section are promising and suggest
that by selecting galaxies with large velocity dispersions and/or
near-isothermal density slopes, the bias and scatter on H0 can be

minimized. However, the underlying method in the analysis was to
transform the observed density of lens galaxies in the simulation
so that the curvature parameter became ξλ = 1. In other words, the
transformed convergence at 0.5, 1.5, and

√
0.5 × 1.5 Einstein radii

all lie on a line in log–log space; i.e. the transformed convergence
is a power law. Here, we attempt to assess what bias remains on
H0 after taking into account lensing observables for quasar images
and kinematic information. In Section 5, we also take into account
emission from the quasar host galaxy and the effects of the lens
environment.

In this section, we perform a joint lensing and dynamics anal-
ysis for a subset of the lenses presented in the previous sections.
Starting from a three-dimensional gravitational density, model pre-
dictions can be made in a self-consistent way under certain as-
sumptions discussed in Section 4.3. In other words, model predic-
tions for both the lensing observables and the velocity dispersion
measurements can be obtained from any given three-dimensional
density distribution model. Thirteen parameters, given in Table 3,
define the density model and include the position, mass, den-
sity slope, axes ratios, ellipsoid orientation, viewing angle (or
equivalently the position angle of the projected ellipticity), ef-
fective radius, core radius, and truncation radius. One additional
parameter is the Hubble parameter, which is, of course, free to
vary.

We use a hybrid code framework to do the modelling and sample
the parameter space. The actual model fitting is performed analyt-
ically (as opposed to numerically), and the code used is publicly
available.5 However, modelling hundreds of lenses and thoroughly

5 https://github.com/tagoreas/Lensing-code
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Figure 4. Projected density slope s and curvature parameter ξ versus the
equivalence radius θf50 (in units of the Einstein radius) and local, projected
fractional dark matter density at the Einstein radius. θf50 is defined as the
radius at which the local, projected dark matter and baryon fractions are
equal. The plotting style and colour-coding are consistent with Fig. 1. Cf.
fig. 7 of Xu+16.

exploring the parameter space can be computationally demand-
ing. We therefore use the PYTHON module EMCEE (Foreman-Mackey
et al. 2013) to run a Monte Carlo Markov Chain (MCMC) analy-
sis. The code uses an affine-invariant sampling method to achieve
fast convergence. 300 walkers suffice to fully explore the parameter
space, and after a burn-in phase of 150 steps, we take an additional
150 steps to compute the posterior probability distribution.

4.1 Simulating lenses and extracting kinematic observables

We wish to extract lensing and kinematic observables from the sim-
ulation. The lensing data we wish to extract include image positions
and time delays. Image fluxes or magnifications are related to sec-
ond derivatives of the lens potential; because of the limited mass
resolution, calculating the second derivatives can be unreliable, es-
pecially for less massive galaxies and images near a critical curve.
We, thus, do not use image fluxes as observational constraints.
Lastly, we also extract aperture velocity dispersions within reff/8 to
further constrain the density slope.

A number of practical considerations are made in transforming
the particle data into predictions of what would be observed in re-
ality; for a detailed description see Appendix A2. For each lens,
we calculate potential, convergence, and deflection maps; the mass
within the Einstein radius; the three- and two-dimensional axis ra-
tios and orientations; and the velocity dispersion within reff/8. These
properties give all the information needed to generate positions of
lensed images, time delays, and an aperture velocity dispersion.
Some of the galaxy properties, such as the three-dimensional ori-

entation of the galaxy, are not directly observable, but are directly
modelled (see Section 4), and we compare the fitted model param-
eters to those extracted from the simulation.

4.2 Lens models

As mentioned previously, the lenses are modelled as softened,
truncated, triaxial power-law ellipsoids (Chae, Khersonsky &
Turnshek 1998) with a three-dimensional density given by

ρ(r) = ρ0

[
(r2

c + r2)−γ /2 − (r2
t + r2)−γ /2

]
, (9)

where

r2 =
(

x

r3d

)2

+
(

y/q

r3d

)2

+
(

z/p

r3d

)2

(10)

and r3d is the three-dimensional effective radius measured along
the major axis, ρ0 is the density at r ∼ r3d, rc and rt are the core
and truncation radii, respectively, in units of r3d (rc < rt), γ is the
density slope, (x, y, z) are Cartesian coordinates along the principal
axes of the ellipsoidal density distribution, and 1 ≥ q ≥ p > 0. This
density profile is especially useful because it ensures a finite mass
given, for the spherical case, by

Minf = π3/2ρ0(r3−γ
c − r

3−γ
t )�

(
γ − 3

2

)
/�

(
γ

2

)
, (11)

where � is the gamma function.
The rapidly falling density outside the truncation radius and the

lack of a central cusp are desirable for numerical stability in the dy-
namical modelling (see Section 4.3). Additionally, because numer-
ical simulations cannot resolve the innermost regions of galaxies, a
profile with a core radius is practical, especially when modelling the
host galaxy, which can produce central images as seen in Fig. 7. The
near power-law behaviour close to the typical locations of lensed
images is desirable, since power laws are commonly used in the
literature for lens modelling.

In total, there are 13 free parameters in the model, given in
Table 3, that are used to derive the lensing and velocity dispersion
model predictions. For a given set of viewing angles, θxy and φz, and
position angle θPA the projected surface density can be calculated
analytically. Each term on the right-hand side of equation (9) has a
corresponding convergence of the form

κ(r, θ ) = κ0

⎡
⎣1 +

(
r

r0

)2(
1 + ε cos

[
2(θ − θPA)

])⎤
⎦

− γ−1
2

, (12)

where κ0, r0, and ε depend on the particular choice of model param-
eters (Chae et al. 1998). We follow the methodology of Chae et al.
(1998) and Chae (2002), who find fast-converging series solutions
for calculating deflections, magnifications, and time delays from
equation (12).

4.3 Kinematics

Given a two-dimensional lensing potential, there are, in general,
a number of ways to make a prediction of the velocity disper-
sion within an aperture. The simplest analytic approach is to as-
sume that the deprojected density is spherically symmetric and to
solve the spherical Jeans equation. Although this method is quick,
it may not be physically well motivated as galaxies are rarely spher-
ical. Another possibility includes using Jeans axisymmetric models
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Figure 5. Biases on H0 versus the velocity dispersion calculated from the Einstein radius assuming a singular isothermal model, the Einstein radius normalized
in units of the effective radius, and the fraction of dark matter within the Einstein radius. The top (bottom) row shows the bias, assuming a power-law profile
for the density slope (deflection angle). The plotting style and colour-coding are consistent with Fig. 1. Cf. fig. 8 of Xu+16.

(Cappellari 2008), which use only the surface brightness distribution
of the lens to model the galaxy kinematics (van de Ven et al. 2010).

If non-spherical density models are considered, a two-
dimensional lensing potential does not uniquely determine the dy-
namics of the galaxy. For example, a circularly symmetric lens po-
tential can be consistent with a wide range of velocity dispersions,
depending on whether the deprojected density is prolate, spherical,
or oblate. For this purpose, Barnabè et al. (2009) have developed
and tested the CAULDRON code, which uses axisymmetric models to
quickly predict velocity dispersions.

However, galaxies and their haloes are generally triaxial (see
e.g. Despali, Giocoli & Tormen 2014). In order to most realistically
model their three-dimensional shapes, we rely on the Schwarzschild
method, which is an approach to studying the orbits of particles
in a gravitational potential (Vasiliev 2013). Typically, this method
numerically follows the trajectories of a large ensemble of particles
in the potential. The positions and velocities of the particles are
tracked, but the density, computed over a number of grid cells, is
also computed. Then, each particle is weighted in such a way that
the grid-computed density of the particles and the potential used to
generate the trajectories are related to one another via the Poisson
equation.

We use the publicly available Schwarzschild orbit modelling code
SMILE (Vasiliev 2013). SMILE allows us to not only track the particles,
but it also creates N-body snapshots of the particles. Given a mass
density corresponding to equation (9), we can make predictions
for the positions and velocities of the particles. For creating N-body
snapshots, we are only interested in those particles corresponding to

the stars and not to the dark matter. We accomplish this by creating
a two-component mass model within the SMILE framework. The first
component, given by equation (9), contains 99.999 per cent of the
mass of the system and is the power-law component. The second
component, which contains negligible mass, is chosen to reproduce
the deprojected Sérsic profile (as described in the SMILE manual),
and its axes ratios, orientation, and scale radius are identical to those
of the first component. The N-body snapshots created only contain
the weighted orbits of particles that reproduce the second stellar
component and, thus, can be used to make model predictions for the
central velocity dispersions. Each snapshot contains 106 particles
and was created from 104 orbits, each sampled 100 times. SMILE

ranks the quality of each model as poor, fair, or good for a number
of criteria, such as its numerical feasibility and its uniformity of
particle weights. We only keep snapshots that SMILE reports as being
fair or good across all criteria. Models are poor only for the most
extreme model parameters, such as those with intermediate and
minor axes ratios near 0.2.

We note that although the orbit modelling can take into account
other properties of galaxies, such as net rotation of the galaxy,
velocity anisotropy, and the presence of a massive BH, we do not
include these possibilities here.

It is also worth noting that for a given velocity dispersion mea-
surement, there is a large range of model parameters that can repro-
duce the measurement. For example, both prolate and oblate ellip-
soids might be able to reproduce the measurement within the same
aperture, but they will likely have significantly different masses
within that same aperture. Lensing will be sensitive to this mass
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Figure 6. Bias on H0 versus projected density slope. Top: assumes power-
law profile in density. Bottom: assumes power-law profile in deflection
angle. The plotting style and colour-coding are consistent with Fig. 1. Cf.
fig. 9 of Xu+16.

difference. Our aim is to assess to what degree the addition of kine-
matic constraints will help break degeneracies already present in
the lensing observables.

Unfortunately, simulating the particle orbits is a time-consuming
process, and so we tabulate velocity dispersions on a seven-
dimensional grid of model parameters and interpolate for any given
set of parameters. Briefly, for each pair of viewing angles θxy and
φz on the grid, we interpolate between γ , q, p, rc, and rt using
non-localized radial basis functions, minimizing interpolation er-
rors. This is then followed by bilinear interpolation in θxy and φz.
For a more detailed description of the orbit modelling and details
about the interpolation method and errors, see Appendix B.

4.4 Lens sample

Due to a number of reasons, not all the galaxies that met the se-
lection criteria described in Section 3.1 also pass the requirements
detailed in Appendix A2. The majority of lens candidates are not re-
laxed, isolated systems. By visual inspection, many of them appear
to be in group environments with multiple nearby (within three Ein-
stein radii) companions and some are merging or recently merged

systems. We have also examined the SUBFIND catalogues to quan-
tify the environments of the EAGLE lenses. The effect of a particular
satellite on deflections and time delays will depend on its mass,
its distance from lensed images, and possibly its structure (see e.g.
Metcalf & Madau 2001; Keeton & Moustakas 2009). Although
there are many possible characterizations, we choose to count, for
each lens, the number of galaxies within three different distance
bins and three different minimum threshold masses: 5 × 109 M�
within 50 kpc, 1 × 1010 M� from 50 to 100 kpc, and 5 × 1010 M�
from 100 kpc to R200 (if R200 > 100 kpc). These choices ensure that
the satellite galaxies are capable of having a significant effect on the
lens modelling. In Fig. 8, we quote the number of neighbours a lens
has as the sum over all bins and compare this with the ratio of mass
in the lens galaxy to the total friends-of-friends mass. Because of
the scale-dependent selection criterion for identifying neighbours,
less massive lenses will naturally have fewer neighbours. Never-
theless, the figure suggests that lenses with high mass fractions can
have various masses, but generally have fewer neighbours. A dense
group environment does not automatically make a lens a poor can-
didate for inferring cosmological parameters, but it does make the
modelling more difficult, which could introduce biases.

There are also many disc-like galaxies that qualify as lenses.
These could present a problem because the Schwarzschild orbit
modelling used does not take into account galaxy rotation, leading
to a bias on the Hubble constant that is dependent on the partic-
ular viewing angle for a galaxy. To try and estimate the number
of rapidly rotating objects, we follow a similar procedure to that
outlined in Algorry et al. (2016) and examine, for each galaxy’s
stellar component, the minor-to-major axis ratio c/a and the veloc-
ity dispersion along the minor axis σz/σtot. We also calculate the
component of the ratio of the angular momentum about the minor
axis to the total angular momentum vector Lz/| �L|. Details of how
we compute these quantities can be found in Appendix C, and the
distribution of these quantities can be seen in Fig. 8. We identify
fast rotators as objects with σz/σtot < 0.5 and Lz/| �L| > 0.9. We do
not include the axis ratio as a discriminator because it can depend
strongly on the aperture radius chosen for measurement, and the
presence of a central bulge can strongly influence the ratio as well.
A total of 1061 out of 2195 projected lenses,6 corresponding to 249
out of 533 unique galaxies, satisfy these criteria. However, not all
of them are actually fast rotators; some may be merging systems
or have very little angular momentum in the first place. Regardless
of whether or not a galaxy is likely to be a rotating disc or merg-
ing system, we include in this analysis all lenses for which lensing
observables could be reliably derived from the simulation.

4.5 Results

4.5.1 Joint lens and dynamical modelling

As previously mentioned, we use the lensed image positions and
time delays, along with the aperture velocity dispersion, to constrain
the model parameters. We also include several other observational
constraints; the complete list along with assumed observational un-
certainties is given in Table 4. These assumed uncertainties will
affect the impact of including kinematic information. We have cho-
sen the listed uncertainties to reflect more precise measurements of

6 The same galaxy may be included multiple times if different projections
produce lenses or if a projection produces multiple source–lens configura-
tions (e.g. cusp and double).
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Table 2. Statistics for lenses with MST-transformed density slopes and/or mean convergence profiles near unity. Cf. table 2 of Xu+16.

Sample sets zs = 1.5 zd = 0.615
Redshifts zd = 0.183 zd = 0.366 zd = 0.865 zs = 1.0 zs = 1.5 zs = 3.0

Subsample I: sλ ∈ [0.9, 1.1]
Number of galaxy projections 168 217 37 131 189 220
Mean λ 1.01 1.03 1.08 1.00 1.03 1.02
Median λ 1.00 1.01 1.07 0.99 1.01 1.00
Standard deviation of λ 0.10 0.10 0.09 0.10 0.11 0.09

Subsample II: s̄λ ∈ [0.9, 1.1]
Number of galaxy projections 156 220 56 183 233 259
Mean λ̄ 0.98 1.05 1.05 0.97 1.03 1.04
Median λ̄ 0.96 1.03 1.04 0.96 1.01 1.02
Standard deviation of λ̄ 0.12 0.13 0.13 0.13 0.14 0.11

Subsample III: sλ ∈ [0.9, 1.1] and s̄λ ∈ [0.9, 1.1]
Number of galaxy projections 30 54 11 32 35 59
Mean λ 0.99 1.05 1.06 0.99 1.05 1.02
Median λ 0.99 1.04 1.04 0.98 1.03 1.01
Standard deviation of λ 0.09 0.09 0.08 0.10 0.08 0.08
Mean λ̄ 0.99 1.06 1.08 0.97 1.04 1.03
Median λ̄ 0.99 1.04 1.04 0.95 1.00 1.01
Standard deviation of λ̄ 0.10 0.13 0.10 0.11 0.11 0.09

Table 3. Model parameters and priors for modelling lensing and kinematic observables. The priors are not truly hard, uniform priors, but outside the
range specified, a steep penalty function is imposed.

Symbol Uniform priors Description

x −500 to 500 mas Offset of lens position in x-direction, relative to minimum of potential
y −500 to 500 mas Offset of lens position in y-direction, relative to minimum of potential
log10(MrEin /M�) 7–15 Projected mass within Einstein radius
γ 1.5–2.5 Three-dimensional density slope
q 0.2–1 Intermediate axis ratio, relative to major axis
p 0.2–q Minor axis ratio, relative to major axis
θxy 0–90◦ Viewing angle in x–y plane from +x-axis
φz 0–90◦ Viewing angle from +z-axis
θPA −90–90◦ Position angle of ellipticity
H0 10–150 km s−1 Mpc−1 Hubble constant
reff 0.05–10 arcsec Two-dimensional (circularized) effective radius
rc 0.01–1 reff Three-dimensional core radius
rt 10–100 reff Three-dimensional truncation radius

lensing and kinematic observables available in the literature. The
exception to this is the uncertainty in the lens ellipticity. We find
that the stellar ellipticity and the total matter ellipticity can vary
significantly from one another in EAGLE lenses; we thus set a large
uncertainty on this parameter. Because the lensing and kinematic
data are assumed to be measured independently from one another,
the joint likelihood is the product of the individual likelihoods. We
can therefore write the total χ2 for a given lens for a given set of
model parameters as

χ2 = χ2
pos + χ2

tdel + χ2
dyn + χ2

prop, (13)

where the terms on the right-hand side are the individual contribu-
tions to the total χ2 due to the (from left to right) image positions,
time delays, kinematic constraints, and observable lens properties
(gx, gy, reff , e, and PA). When all observables and model parame-
ters are considered, there are six (one) degrees of freedom for quad
(double) lenses.

In order to compare to the work of Xu+16 and the similar analysis
of EAGLE lenses, we categorize the lenses into two sample sets:
the full sample and the good sample. The full sample contains all
lenses, while the good sample contains only those lenses for which
a reduced χ2 (denoted χ2

ν ) fit of one or less was found for the best
set of model parameters. For simplicity, we refer to lenses from
the good sample as good lenses and lensed only found in the full
sample as bad lenses. The sets are further categorized by the lens–
source configuration: cusp, fold, cross, or double (see e.g. Meylan
et al. 2006, for a discussion of lens morphologies.). We find no strong
correlation of the χ2 fit with any lens property (either ‘observed’ or
extracted from the simulation). However, Fig. 10 shows, especially
for the bad lenses, a strong correlation of the goodness of fit with lens
environment. We performed a least-squares, power-law fit, given by

ln(Nneigh) = m ln(χ2
ν ) + b, (14)

where Nneigh is the number of neighbours. Because of the irregularly
spaced bins, we also weight the data points by the inverse of the local
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Figure 7. Simulated lensed surface brightness distribution from the quasar
host galaxy (left) and larger scale lens environment with detected satellite
galaxies encircled (right). The colour scale is linear for the simulated host
galaxy, but logarithmic for the lens environment so that the satellites are
visible. The top row corresponds to one of two lenses, L1, modelled in
Section 5. Similarly the bottom row corresponds to the other lens, L2. See
the text for details about the host galaxy simulation and satellite detection.

density of points. The fits give m = 0.30 ± 0.03 and b = 2.18 ± 0.04
for all lenses, m = 0.25 ± 0.06 and b = 2.18 ± 0.09 for lenses with
χ2

ν < 1, and m = 0.69 ± 0.07 and b = 1.65 ± 0.09 for lenses with
χ2

ν > 1. Not surprisingly, the lens environment plays an important
role in the ability of the model to fit the data, and we explore its
effects further in Section 5.

Fig. 9 shows several examples of good and bad lenses, and Table 5
lists some of their properties. Because double lenses can more easily
be fit than quad lenses, these representative lenses were selected
based on the χ2

ν fit to either cross, cusp, or fold configurations. There
are many possible reasons why the model could have provided a
poor fit to the data; one likely reason is the presence of a satellite
galaxy near the lens that needs to be accounted for explicitly in
the lens model. B1 appears to be a merging system, while B2 has
a massive companion within the multiply imaged region. There is
a less massive companion near the Einstein radius of B3, but there
is also a massive object at a distance of ∼5rEin. B4 appears to have
undergone a recent minor merger, as evidenced by a stellar stream. It
also has a flattened, disc-like morphology and was classified as a fast
rotator. The good lenses are typically in less crowded environments
and have fewer companions near the Einstein radius. For this reason,
they also have systematically smaller Einstein radii. Nevertheless,
there are still some systems, such as G2, that have satellites inside
the multiply imaged region but are still well fitted by the model.

In Table 6 for each sample set, we quote the total number of
lenses and attempt to quantify the fidelity of the model fitting. As
the lenses are drawn from the simulation, we know the true values
of several key parameters that are directly fit, such as the shape
and orientation of the galaxy, and we list the fraction of galaxies
for which the true values are recovered at 68 per cent confidence.
Because of the small number of cusp and fold lenses, it is difficult
to make a direct comparison between the full and good sample sets.
However, in general we note a consistent increase in the fraction
of good lenses for which the mass and H0 are recovered. The axis

Figure 8. Top: ratio of mass in lens galaxy to friends-of-friend group mass
versus the number of significant neighbours a lens has. The colour scale
denotes the projected mass within the Einstein radius. Bottom: fractional
velocity dispersion along the minor axis as a function of the minor axis
ratio. The normalized component of the angular momentum vector along
the minor axis is colour-coded as well. See the text for a description of how
neighbours are identified and how these quantities are calculated.

ratios and orientation of the galaxy, on the other hand, show poor
fits across many categories. This discrepancy is most likely due to a
combination of inaccurate estimation of these parameters from the
raw particle data and inaccurate modelling of the lens environment.
In the simulations, the size of the spherical aperture in which these
shape parameters are measured will significantly affect the fit. The
presence of a central bulge, disc, or a nearby/merging galaxy will
also play a significant role.

Focusing on the good sample set, we separate the lenses by red-
shift and configuration. Fig. 11 shows the marginalized posterior
probability distribution for H0, for each lens, and Table 7 shows the
medians and scatter for each redshift–configuration combination.
Combining results across all redshifts, the cross lenses show the
least bias among all lenses. The fold lenses are biased low, and
the double lenses are biased high. It is more difficult to come to
a conclusion about the cusp lenses. The good sample contains no
cusp lenses at two redshifts: zd = 0.183 and 0.615. Cusp lenses
at zd = 0.366 show no bias and peak near the correct value of
H0. On the other hand, there are ∼10 cusp lenses at zd = 0.865,
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Table 4. Observational constraints and assumed (Gaussian) uncertainties. For fractional uncertainties, a minimum uncertainty is required.

Symbol Uncertainty Minimum Description

gx 100 mas – x-coordinate of lens galaxy (assumed to coincide with peak in potential)
gy 100 mas – y-coordinate of lens galaxy (assumed to coincide with peak in potential)
reff 10 per cent 50 mas Half-mass radius
e 0.2 – Ellipticity (from Sérsic fit to surface brightness)
PA 10◦ – Position angle (from Sérsic fit to surface brightness)
ix 50 mas – x-coordinate of lensed image
iy 50 mas – y-coordinate of lensed image

t 3 per cent 0.5 d Time delay between images
σlos 10 km s−1 – Line-of-sight velocity disperion within reff/8

Figure 9. Stellar surface mass density of representative good and bad lenses. Top row, left to right: B1, B2, B3, and B4. Bottom row, left to right: G1, G2, G3,
and G4. The magenta circles denote the Einstein radii, and the scale, denoted by the magenta bars, is identical in all panels. The brightness scale is logarithmic
so that the satellite galaxies can be seen.

Table 5. Properties of representative good (Gi) and bad (Bi) lenses. From left to right: lens, source–
lens configuration, reduced χ2, Einstein radius, minor axis ratio, ratio of z-component to total angular
momentum, and derived Hubble constant.

Lens Configuration χ2
ν rEin(arcsec) c

a
Lz
| �L| H0(km s−1 Mpc−1)

Bad lenses
B1 Cusp 112.2 1.59 0.23 0.97 30.7+4.7

−3.2

B2 Cross 20.7 2.75 0.51 0.74 75.7+4.7
−5.9

B3 Fold 5.7 2.09 0.64 0.04 72.2+5.0
−4.4

B4 Fold 3.1 2.15 0.49 0.98 68.9+10.6
−9.0

Good lenses
G1 Cusp 0.5 0.50 0.71 0.21 45.9+25.8

−17.6

G2 Cross 0.4 1.37 0.72 0.52 70.6+16.6
−13.9

G3 Cross 0.2 1.40 0.72 0.98 69.7+14.0
−14.0

G4 Cross 0.2 1.03 0.60 0.98 64.7+17.7
−14.9

which all peak at low values of H0. There are, unfortunately, too
few cusp lenses to generalize these results. The method used to
produce lenses from the simulation was to place quasars uniformly
behind lenses (see Appendix A2), creating mock observations for
every quasar, which was not optimal for producing a large num-
ber of cusp lenses. Nevertheless, cusp lenses are morphologically
similar to double lenses. Three of the images in a cusp configura-

tion are very near one another and, accordingly, have similar time
delays. Thus, one can expect them to behave similarly to double
lenses.

Next we compare the analysis of Section 3 to this analysis. Fig. 12
shows the scatter in the s–H0 plane. Using the full sample set, there
is a slight correlation between density slope and the bias on H0,
suggesting that isothermal fits perform better, but focusing on the
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Table 6. Number of lenses and accuracy of model fitting for various configurations at four different lens redshifts (zs = 1.5) for two different samples. In each
table, row 1 gives the lens redshifts. Row 2 gives the configuration of the lens and source. CR, FO, CU, and DO refer to cross, fold, cusp, and double lenses.
Row 3 gives the number of lenses in each category. These do not represent unique projections of lens galaxies; e.g. a galaxy may produce lenses in both the
cusp and cross categories. The remaining rows give the fraction of lenses for which the corresponding model parameter (see Table 3) is inferred correctly with
68 per cent confidence. Top: the full sample includes all lenses that pass the selection criteria outlined in the text. Bottom: the good sample includes only those
lenses for which the best fit gave a reduced χ2 < 1 . The bold values only serve to highlight the key parameter of interest: H0.

Full sample

zlens 0.183 0.366 0.615 0.865
Configuration CR FO CU DO CR FO CU DO CR FO CU DO CR FO CU DO
Number 207 105 21 288 168 138 36 268 103 113 25 211 94 74 19 175
Mass 0.90 0.73 0.57 0.80 0.93 0.81 0.83 0.85 0.94 0.86 0.72 0.91 0.95 0.91 0.79 0.93
H0 0.92 0.70 0.71 0.81 0.93 0.80 0.89 0.76 0.93 0.83 0.80 0.88 0.97 0.93 0.74 0.97
q 0.33 0.33 0.29 0.72 0.21 0.22 0.11 0.66 0.22 0.29 0.32 0.73 0.35 0.35 0.53 0.80
p 0.29 0.36 0.24 0.54 0.15 0.22 0.17 0.44 0.12 0.30 0.40 0.49 0.26 0.27 0.47 0.64
θxy 0.60 0.54 0.52 0.67 0.64 0.62 0.72 0.73 0.64 0.54 0.44 0.67 0.64 0.64 0.63 0.72
φz 0.48 0.59 0.52 0.57 0.47 0.48 0.56 0.57 0.48 0.53 0.60 0.61 0.49 0.54 0.63 0.61
x 1.00 0.98 0.95 1.00 1.00 0.98 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00
y 1.00 0.98 1.00 1.00 1.00 0.99 0.97 1.00 0.96 0.99 1.00 1.00 0.99 0.99 1.00 1.00
reff 1.00 0.98 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Good sample
zlens 0.183 0.366 0.615 0.865
Configuration CR FO CU DO CR FO CU DO CR FO CU DO CR FO CU DO
Number 129 17 0 219 132 15 4 224 79 22 0 171 85 34 13 146
Mass 0.95 0.94 – 0.79 0.98 0.93 1.00 0.85 0.99 0.91 – 0.93 0.99 0.97 0.77 0.93
H0 0.96 0.94 – 0.81 0.98 0.93 1.00 0.76 0.99 0.91 – 0.91 1.00 0.97 0.77 0.98
q 0.26 0.35 – 0.69 0.23 0.27 0.00 0.64 0.27 0.32 – 0.74 0.35 0.26 0.62 0.79
p 0.21 0.41 – 0.52 0.16 0.33 0.50 0.46 0.13 0.41 – 0.48 0.26 0.26 0.62 0.62
xyang 0.62 0.82 – 0.68 0.65 0.80 1.00 0.74 0.68 0.45 – 0.68 0.66 0.68 0.69 0.73
zang 0.46 0.65 – 0.57 0.50 0.40 1.00 0.58 0.48 0.45 – 0.62 0.52 0.56 0.54 0.60
x 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00
y 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00
reff 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00

Figure 10. Number of neighbours versus best-fitting χ2 for cusp, fold, and
cross lenses (6 degrees of freedom). Each point represents at least 50 lenses,
and the error bars represent the intrinsic scatter, containing 68 per cent of
the lenses in that bin. The vertical, black line denotes where the reduced
χ2

ν = 1, and it separates good and bad lenses. The dot–dashed, green line
is a power-law fit to all lenses. The dashed, magenta line is fit to the good
lenses, and the solid, blue line is fit to the bad lenses.

good sample set shows that the shallower density profiles associated
with lower values of H0 are not well described by a power law
alone. This may be due to a number of reasons, some of which are
discussed in Section 4.5.1. The strong correlation in the s–H0 plane

seen in Section 3 is not present here; the remaining lenses that are
biased do not show any preference for density slope.

As we have seen, the χ2 fit depends on the lens environment. The
good sample, defined as those lenses with a reduced χ2 < 1, thus
naturally corresponds to less crowded environments. As a sanity
check, we have also confirmed that, when compared to the full sam-
ple, the recovered model parameters from the good sample are more
consistent with those corresponding parameters extracted from the
simulation. Focusing on the good sample, the double lenses are bi-
ased at the 5 per cent level with an intrinsic scatter of 10 per cent,
which is similar to the case without kinematics. The quad lenses,
on the other hand, are biased only at the 0.5 per cent level with a
10 per cent intrinsic scatter, which represents a significant reduction
in bias. As suggested by Fig. 10 and Section 5, taking into account
the lens environment may play a significant role in further reducing
the bias and scatter in H0 estimates.

4.5.2 Effect of velocity dispersion constraints

As seen in Section 4.5, the use of lensing observables and kinematic
data improves estimates of H0 significantly. Compared to the results
of Xu+16, the bias itself is driven towards unity, and the scatter is
minimized without having to perform any additional selection cuts
on the good sample. However, the lens samples in Sections 3.3 and
4.5 are not identical. Moreover, the former section assesses the bias
by fitting a power law to the convergence after an MST is applied;
the latter fits the observables and infers H0 directly. Because of these
significant differences, it is not clear what impact the inclusion of
kinematic information has had on the inference of H0.
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Figure 11. Marginalized posterior probability distributions for H0 from lenses in the good sample. Blue curves represent individual lenses, while the black
curves are the combined probability distributions. The vertical green lines denote the true value of H0 used in the simulation. The top four rows correspond to
different lens redshifts (zs = 1.5), while the bottom row includes all lenses from all redshifts. The leftmost four columns correspond to different lens and source
configurations, while the rightmost column includes lenses of all configurations. The number of lenses in each redshift–configuration combination are given
in Table 6. Note that the curves do not represent unique projections of lens galaxies; e.g. a galaxy may produce lenses in both the cusp and cross categories.

Table 7. Median values and scatter (symmetrized 68 per cent confidence interval) of bias on H0, computed from the combined marginal-
ized posterior probability distributions of lenses in Fig. 11. The number of lenses in each redshift–configuration combination are given
in Table 6.

zd Cusp Fold Cross Double All

0.183 0.000 ± 0.000 0.923 ± 0.050 0.952 ± 0.019 1.060 ± 0.010 1.034 ± 0.011
0.366 0.981 ± 0.142 0.981 ± 0.052 1.000 ± 0.017 1.093 ± 0.009 1.076 ± 0.009
0.615 0.000 ± 0.000 0.925 ± 0.060 1.016 ± 0.024 1.051 ± 0.012 1.040 ± 0.011
0.865 0.677 ± 0.091 0.894 ± 0.045 0.983 ± 0.028 1.023 ± 0.014 1.000 ± 0.010
all 0.753 ± 0.077 0.932 ± 0.020 0.985 ± 0.011 1.069 ± 0.007 1.045 ± 0.004

To address this question, we repeat the analysis of Section 4.5.
This time, we focus only on the double lenses since they are also
analogous to the lenses of Section 3, where it is assumed that only
two lensed images are observed. The difference is that we now
ignore any kinematic information. Because the double lenses are
already biased towards high values of H0 with the inclusion of
kinematic data, we do not necessarily expect these estimates to
improve on average without the constraints. We do, however, expect
the uncertainty on the derived Hubble constant to increase.

We combine the posterior probability distributions from double
lenses across all redshifts. With no kinematic information, we find
that bias on H0 (i.e. the ratio of the measured Hubble constant to the
true value used in the simulation, H0,measured/H0,true) is 1.080 and the
68 per cent and 95 per cent confidence intervals are [1.071, 1.089]
and [1.063, 1.098], respectively. After adding kinematic constraints,
the recovered bias is H0 = 1.055, and the confidence intervals are
[1.050, 1.060] and [1.046, 1.065]. There is still a significant bias
in both cases, but the bias has slightly reduced with the addition of
velocity dispersion information. Also, the uncertainties have nearly

halved after the inclusion of kinematic data, since there are now
more observational constraints.

5 L E N S E N V I RO N M E N T A N D H O S T G A L A X Y

The previous analyses ignored some information that would be read-
ily available from observations. Lens galaxies are rarely isolated,
and nearby galaxies can have a significant effect on the observ-
ables. Furthermore, mass along the line of sight must be considered
as well. If there is an external sheet of convergence κext that is unac-
counted for, the Hubble constant will be biased high by a factor of
(1 − κext)−1. For example, the double lenses are biased high, which
could be explained if there is an unaccounted group halo or a sig-
nificant number of neighbours nearby. Here, in addition to lensing
and kinematic data, we take into account massive satellite galaxies
near the lens and the extended surface brightness distribution of the
lensed host galaxy, which we presume is observable. We do not
consider line-of-sight mass because the EAGLE simulation box is not
large enough to generate such effects.
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Figure 12. Bias on H0 (ratio of the estimated Hubble constant to true value
used in simulation) versus three-dimensional density slope, γ , with median
values and 68 per cent confidence intervals. The lensing and kinematic data
were jointly modelled. Neither the quasar host galaxy nor the lens environ-
ment are accounted for. The upper (lower) panel includes lenses from the
full (good) sample set, as discussed in the text.

To account for the lens environment, we adopt a simplistic ap-
proach in which all visible nearby galaxies are modelled as singular
isothermal spheres (SISs), characterized by a constant velocity dis-
persion σSIS. However, to keep the number of parameters reasonable,
we assume these galaxies are all early-types and follow a Faber–
Jackson relation. We assume a constant mass-to-light ratio for each
of these galaxies so that σ 4

SIS ∝ LM, where LM is the luminosity, and
mass is used as a proxy for luminosity. We identify nearby galaxies
and estimate masses using SEXTRACTOR.7 The algorithm detects ob-
jects, which, by visual inspection, are not truly galaxies. However,
they are typically detected with relatively low stellar masses and
will therefore not significantly affect the lensing observables. Be-
cause the Faber–Jackson relation now fixes the velocity dispersions
of the satellite galaxies fixed with respect to one another, there is

7 We use a minimum detection threshold of 4 × 109 M�mas−2 and a min-
imum area of 12.5 mas2, which were chosen so that, by visual verification,
most galaxies were uniquely selected by SEXTRACTOR as a single object.

Table 8. Median values for bias on Hubble constant and
confidence intervals for L1 and L2. The bias is given by the
measured value of H0, scaled by the true value used in the
simulation.

Lens Time delays +group +group+host

L1 1.366+0.435
−0.388 1.039+0.360

−0.322 1.027+0.063
−0.053

L2 1.164+0.245
−0.218 0.980+0.217

−0.217 0.981+0.109
−0.124

only one free parameter, which we take as the velocity dispersion
of the brightest satellite.

Another key piece of information is the extended light distribution
of the quasar host galaxy. Although reconstructing the host galaxy
does not provide direct constraints on H0, it can tightly constrain
the parameter space in other dimensions and remove degeneracies.
For each quasar, we create mock data of the lensed host by plac-
ing a galaxy with an elliptical Sérsic light profile, with random
Sérsic index, shape and orientation,8 at the position of the quasar.
The data are constructed on a grid with a pixel scale of 0.05 arc-
sec pixel−1, convolved with a circular Gaussian point spread func-
tion of standard deviation one pixel, and Gaussian noise is added
so that the peak signal-to-noise ratio is 25. We apply the pixel-
and shapelets-based source reconstruction methods described in
Tagore & Keeton (2014) and Tagore & Jackson (2016), respec-
tively; we find no significant difference in using either technique.
Below, we use 15 × 15 shapelets and curvature regularization (opti-
mized within a Bayesian framework) to derive lens model parameter
uncertainties, image-plane model residuals, and source reconstruc-
tions.

A complete analysis of all the EAGLE lenses in such a manner is
beyond the scope of this work. However, to demonstrate the possi-
bility of reducing the bias on H0, we analyse two randomly chosen
double lenses, denoted L1 and L2, which meet several criteria.
They are not classified as fast rotating galaxies (see Section 4.4),
are not merging or recently merged, have at least five neighbouring
galaxies, have an Einstein radius of at least 1 arcsec, and show a
bias on H0 of �1σ . For reference, the environment of the lenses out
to R200 and the input data are shown in Fig. 7.

Because of the lensing equation can be written in a dimension-
less form, there is little to no sensitivity of the Hubble constant
to the quasar host galaxy reconstruction. Nevertheless, the large
number of observational constraints (i.e. the number of pixels in
the annulus of the strong lensing region of interest) available when
modelling the host galaxy allows certain model parameters, such as
the density slope, to be tightly constrained. Therefore, including the
host galaxy in the analysis can still break degeneracies and tighten
constraints on H0. We show two-dimensional joint posterior prob-
ability distributions for the model parameters in Fig. 13, separately
highlighting those from the time delays alone; the time delays and
the group environment; and the time delays, group, and host galaxy.
Table 8 gives the estimates of the Hubble constant for these different
analyses.

We chose lenses for which H0 is overestimated when not con-
sidering the group environment. After factoring the nearby galaxies
into the lens model, this bias has disappeared for both lenses, and
the uncertainties have shrunk by ∼15–20 per cent. After combining
constraints from the quasar host galaxy, the uncertainties shrink even

8 The Sérsic index is limited to the range 0.5–1.5. The ellipticity is limited
to 0–0.5, and the scale radius is fixed to 0.1 arcsec.
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Figure 13. Two-dimensional joint probability distribution for all model parameters. The upper (lower) triangular plots correspond to. The long-dashed,
magenta contours take into account the quasar and lens galaxy observables. The short-dashed, green contours result from also including the lens environment.
The solid, black lines include constraints from the lens environment and quasar host galaxy as well. The horizontal and vertical red lines denote the true values
of H0 (used in the simulation) and the mass inside REin (extracted from the particle data). See Table 3 for a description of the model parameters. The Env.
parameter controls the overall normalization of the neighbouring galaxies; it is the Einstein radius, in mas, of the most massive neighbour.

further (relative to the case with no group or host galaxy constraints)
by factors of approximately 7 and 2 for L1 and L2, respectively.
The drastic improvement seen for L1 is largely due to the presence
of a central image of the host galaxy. This allows the core radius
and density slope to be tightly constrained. The uncertainties on
the truncation radius are still large, but the mass inside the Einstein
radius is relatively insensitive to rt in this case. Consequently, the
large degeneracy in the MEin–H0 plane is significantly reduced.

6 C O N C L U S I O N S

Using galaxies in the EAGLE simulation, we have investigated the
bias on the Hubble constant estimated using strong lensing. In
Section 3, we perform an analysis similar to that of Xu+16 in which
an MST is applied to the radial density profile of lens galaxies, and
we arrive at similar key results. Lenses with larger (SIS) velocity
dispersions tend to show the least bias and scatter (Fig. 5). There
is also a strong correlation between density slope and bias, but by
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selecting those lenses that are nearly isothermal, the bias and scatter
can be significantly reduced (Fig. 6 and Table 2). On the other hand,
one of the key differences between the EAGLE galaxies and the Illus-
tris galaxies used by Xu+16 lies in their sizes. The EAGLE galaxies are
calibrated to reproduce the observed galaxy mass–size relationship
and are on average smaller in size than the Illustris lenses, since
Illustris overestimates galaxy sizes (Furlong et al. 2017). Conse-
quently, EAGLE lenses have, on average, smaller mean, median, and
scatter in their Einstein radii (Table 1). The equivalence radii (the
radii at which dark matter begins to dominate over baryons) is also
smaller for EAGLE lenses; almost all equivalence radii we measure
are within their corresponding Einstein radii (Fig. 4).

We next investigated whether combining lensing observables
with kinematic constraints can further reduce uncertainties by using
the EAGLE simulation to create mock observations of lensed quasars
and to extract central velocity dispersions. By combining the two
constraints and focusing on those lenses which are well described
by a cored and truncated power-law model, we are able to signifi-
cantly reduce the bias and scatter on H0. The correlation of the bias
with density slope also disappears (Fig. 12). Classifying the lens
configurations as either cross, fold, cusp, or double, we find that
cross lenses show the least bias of all lenses (Table 7). Fold lenses
seem to be biased low, while double lenses are biased high (Fig. 11).
For double lenses, the bias and intrinsic scatter are 6 per cent and
10 per cent, respectively, while for quad lenses, the bias and intrin-
sic scatter are 0.5 per cent and 10 per cent, respectively. We note that
the environment of the lens may play a significant role in improving
measurements of H0 (Fig. 10).

Focusing on two double lenses which show significant bias and
satisfy several criteria, we attempt to model the data in more detail.
We take into account the effect of the lens environment on the
modelling. By identifying massive objects near the lens galaxy and
using a simple prescription to relate the measured masses to SIS
models for each object, we directly model the galaxies along the
line of sight and find that the bias significantly decreases for these
two lenses. We also simulate the extended emission from the quasar
host galaxy and model this mock data using source reconstruction
techniques. The addition of the host galaxy does not introduce
any bias and significantly reduces the statistical uncertainty on H0

(Table 8). Modelling the extended emission cannot itself constrain
H0. However, when combined with time-delay measurements, as
we have done, modelling the extended surface brightness can break
degeneracies in the multidimensional parameter space and tighten
constraints on H0 (Fig. 13).

Strong lensing as a tool to probe cosmology is already proving
to be complementary and competitive. In this work, we find that
cross lenses are the least biased of all source–lens configurations.
Except for the lowest lens redshift, the true Hubble constant was
recovered at all redshifts using cross lenses. Across all redshifts
using 425 lenses, an unbiased 1 per cent precision was achieved for
cross lenses. As evidenced from two particular double lenses, care-
ful modelling of the host galaxy and environment can remove bias
and reduce statistical uncertainties. This suggests that by focusing
on cross lenses and carefully modelling the host and environment,
as well as accounting for additional systematics such as mass along
the line of sight, cosmological constraints from strong lensing can
be competitive.
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APPENDIX A : R AW DATA PROCESSING AND
M E T H O D S

A1 Radial density calculations

There are many possible definitions that can be used to define the
edge of a lens galaxy. When identifying a galaxy or the group within
which a galaxy resides, we select all particles inside R200, which is
the spherical radius within which the mean density is 200 times the
critical density of the Universe. For each projection along a coor-
dinate axis, the discrete particle positions must be converted into a
smooth representation of the data. The exact procedure depends on
the nature of the simulation.

SPH simulations describe the motions and interactions of fluids
using a finite number of discrete particles. When projecting the parti-
cles to make maps, the properties (e.g. mass, velocity) are convolved
with a smoothing kernel, and each particle has its own smoothing
length. When map making we use a cubic spline kernel with finite
extent for all particles. The smoothing length is defined as the radius
of the sphere, centred on a given particle, which encompasses 42
other particles. Thus, particles in more (less) dense regions have
smaller (larger) smoothing lengths and occupy a smaller (larger)
volume of the fluid.

After determining the smoothing lengths, all particles along a
given viewing axis are projected on to a two-dimensional plane.
The plane is divided into pixels, and the overlap of each particle’s
projected smoothing kernel with the grid is computed. The quantity
of interest can then be weighted appropriately for each particle and
pixel.

When evaluating the convergence in Section 3, we smooth all
particles within R200 on to a grid with pixel size of 50 physical pc.
The width of the grid is the larger of either 6reff,0 or 7rEin,0. Here,
reff,0 is the effective radius, which encloses half the projected mass,
and it is estimated (before smoothing and projection) from those
particles within 30 kpc. rEin,0 is the circularized Einstein radius,

estimated from the particle data, and is the radius which satisfies

M(< rEin,0)

π�crrEin,0
= rEin,0, (A1)

where M(<rEin,0) is the mass within rEin,0. We note that because we
examine various lens/source redshift combinations, �cr, the critical
surface mass density for lensing, itself varies with redshift.

The width and pixel scale of the grid ensure the convergence
map is well resolved in the relevant regions, down to the soft-
ening length. Thus, to extract the radial profile of the lenses, a
10th-degree polynomial is fit (in log–log space) to the convergence
map, with appropriate weighting to account for the larger number
of pixels at larger radii, from the softening length to the maximum
radius. Evaluation of the density below this region is only necessary
when computing the cumulative density distribution κ̄ . For this, we
perform a linear fit in log space to the radial profile between 1 and
1.5 times the softening length and extrapolate to smaller radii.

A2 Extracting lensing and kinematic observables from the
simulation

For the analysis described in Section 4.1, our general approach for
smoothing and projecting particles on to a grid is identical to that
described in Appendix A1. The choice of grid size and pixel scale
is also the same unless otherwise noted.

For calculating the half-light radius reff , we use an iterative
approach. Without visual inspection, it can be difficult to know
whether there exist any massive objects near the galaxy of interest.
The first estimate of reff is made from the stellar particle data. Star
particles within a spherical aperture of 30 kpc are projected (but not
smoothed), and reff is given by the projected radius that encloses
half of the mass. This gives an estimate of the effective radius, but
the 30 kpc aperture could exclude a significant fraction of particles
for larger galaxies. On the other hand, it could be too large for
smaller galaxies and include neighbouring companions. We there-
fore project and smooth the stellar particles out to five times our
original estimate. reff is then determined from the smoothed map,
by considering all pixels within a radius that is at least 20 kpc and
at most four times the original estimate. This procedure will still
fail for some galaxies with a nearby neighbouring galaxy, but we
expect it to perform better than the original estimate.

We calculate the lensing potential and deflections on square grids
that are 6rEin on each side and have pixel scales of 10 mas; rEin is
calculated as before. Although the lens redshift varies, the source
redshift is fixed at zs = 1.5. The potential and deflections can be
related to the convergence by

φ(n) = 1

π

∑
m

log |D[n, m]| κ(m)

and

α(n) = 1

π

∑
m

D[n, m]

|D[n, m]|2 κ(m), (A2)

where the sums are taken over all pixels in the convergence map,
n represents a pixel in the potential or deflection map, and D[n, m]
is the position vector pointing from n to m. For reference, we note
that the lens equation, Jacobian A, and magnification tensor μ are
given by

�u = �x − �α(�x),

A = ∂�u/∂�x,
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and

μ = A−1, (A3)

respectively. �u denotes positions in the source plane, while �x denotes
positions in the lens plane.

The smoothed convergence map used in equation (A2) is created
from all particles within R200. However, to limit the time needed to
compute the potential and deflection, the resolution of the conver-
gence map varies with distance. Within the innermost 6rEin × 6rEin

region, the pixel scale is 10 mas. Out to 12rEin × 12rEin, the scale is
20 mas. The resolution in the remaining region of the map differs
from lens to lens, but is typically ∼200 mas.

To generate quad lenses, we examine the lensing Jacobian and
identify the smallest rectangle in the source plane that encloses the
tangential caustic. The tangential caustic is identified by moving
outwards from the centre of the lens and noting where the deter-
minant of the Jacobian matrix changes sign. To produce a range
of lens morphologies while retaining computational efficiency, we
then take 2601 uniform samples in the region containing the caus-
tic as source positions of a potentially lensed quasar. We solve
the lens equation and accept the source position as viable if we
can identify five images, one of which is demagnified and near-
est to the lens centre. More specifically, we minimize the quantity
L ≡ |�x − �α(�x) − �u| for each pixel and identify each minimum as
an image position. Because of the finite-mass resolution of the sim-
ulation, L will not be exactly zero at the minima; we require that
L < 0.05rEin for a minimum to be considered a true image position.

We next classify the lens morphologies as being either cusp, fold,
cross, or neither; the image separation ratios between all pairs are
used to discriminate between the categories. For cross lenses for all
four images, we require the difference of the separations between
the two neighbouring images of opposite parity to be less than
20 per cent. For fold lenses, we first compute the minimum separa-
tion between any pair of images. We then require two of the images
(those straddling the critical curve) to be minimally separated from
one another and separated by more than twice the minimum separa-
tion from the remaining two images. We also require the remaining
two images (those not straddling the critical curve) to be separated
by more than twice the minimum separation from all other images.
For cusp lenses, we again first compute the minimum separation.
We require three of the images (those straddling the critical curve)
to be separated from two others by at most 125 per cent of the min-
imum separation and separated from the remaining image by more
than twice the minimum separation. The lensed sources that pass
these tests are then inspected by eye to verify their morphologies,
and we keep one lens from each category for analysis using the
methodology described in Section 4.

A P P E N D I X B: DY NA M I C A L M O D E L L I N G

B1 Orbit modelling

Section 4.3 describes the dynamical modelling of lens galaxies. As
described, SMILE simulates the orbits of particles in the gravitational
potential that corresponds to a given mass density. The resulting
N-body snapshot is then used to predict central velocity disper-
sions. Before orbit modelling can be done, however, initial particle
positions and velocities must be generated. This is accomplished
by first populating the volume with particles that approximate the
deprojected Sérsic profile, which is the density profile we choose
to represent the stellar particles. Then, initial velocities are derived

analytically by solving the Jeans equation for the axisymmetrized
version of the true density model (SMILE does this automatically.).
After the orbits are integrated in time, they are weighted (with a
uniform prior and a variable regularization on the weights) so that
the desired stellar population is reproduced. The particle positions,
velocities, and weights are then recorded.

The N-body snapshots can be used to calculate line-of-sight ve-
locity dispersions within an aperture, for any viewing angle. 105

particles are sufficient for calculating aperture velocity dispersions;
typical uncertainties, which are significantly smaller than observa-
tional uncertainties, are less than one percent. Although the particles
do not come from an SPH simulation, we find no significant differ-
ence between calculating the dispersion from the particle data (root-
mean-square velocity) or from the result of applying a smoothing
kernel to the particles (as is done for the EAGLE galaxies). Lastly, we
note that converting from N-body velocity units to physical units
requires a rescaling by

√
GMinf/r3d, where G is the gravitational

constant. Given a particular choice of model parameters in Table 3,
the total mass and three-dimensional radius can be calculated ana-
lytically or numerically.

B2 Multidimensional interpolation

As noted in the text, the Schwarzschild orbit modelling code SMILE is
computationally expensive. Therefore, when evaluating the velocity
dispersions for a set of lens model parameters, we use radial basis
functions to interpolate between pre-tabulated values. Specifically,
for a set of viewing angles (θxy and φz), we use the so-called thin-
plate spline (TPS), given in Bookstein (1989), to interpolate over the
remaining relevant parameters: γ , q, p, rc, and rt. Interpolation using
the TPS provides higher accuracy for smoothly varying functions,
which requires fewer velocity dispersion calculations.

In two dimensions, the TPS is the solution to the biharmonic
equation, ∇4U(r) = 0, whose fundamental solution is given by
U(r) = r2ln (r). U(r) is a non-localized (limr → ∞U(r) = ∞) radial
basis function and thus provides a global fit to the velocity dis-
persions. This is attractive from a physical perspective because the
TPS, as the name suggests, is the surface that fits a three-dimensional
surface such that the bending energy (an integral over the second
derivatives of the surface) is minimized. It can be thought of as
the shape a thin rubber sheet would take if fixed at set of given
points. Moreover, the TPS is scale-invariant and requires no manual
tweaking of parameters. In higher dimensions, the TPS no longer
minimizes the bending energy, but it is still useful for interpolation.
After interpolation using the TPS, we perform a simpler bilinear
interpolation over the viewing angles (θxy and φz).

To test the accuracy of the interpolation method, we compute
velocity dispersions (from the tabulated velocity dispersions) for
1000 sets of model parameters, randomly chosen from the allowed
parameter space. We compare these values to the those obtained
from simulations using SMILE. The fractional errors depend most
strongly on the minor axis ratio and are largest when the minor axis
ratio is smallest.

Converting the velocity dispersion to physical units requires a
rescaling by

√
GMinf/r3d. Because the total mass scales (roughly)

with axes ratios as Minf ∝ 1/(qp), the more triaxial objects have
larger total mass. However, these models also tend to have much
smaller velocity dispersions (in N-body units). Thus, a large frac-
tional error does not necessarily imply a large absolute error. To
investigate this, each of the 1000 model parameters evaluated is
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Table B1. Standard deviations of interpolation errors for various minor axis ratio bins.

Minor axis ratio (c/a) 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

Standard deviation of fractional error 0.11 0.08 0.06 0.04 0.03 0.03 0.02 0.02
Standard deviation of absolute error (km s−1) 11.74 8.07 6.51 4.69 3.73 3.68 2.89 1.88

scaled to physical units for 100 randomly masses and scale radii.9

In total, this yields 105 absolute errors. Table B1 shows the standard
deviations of the fractional and absolute errors for different minor
axis ratio values. The two measures of error are well correlated,
but more importantly, the standard deviation of the absolute errors
is typically much less than 10 km s−1, which is the 1σ uncertainty
assumed on velocity dispersions when modelling the data.

APPENDIX C : IDENTIFICATION O F FAST
ROTATO R S

To calculate the minor axis ratios (c/a), the ratio of the veloc-
ity dispersion along the minor axis to the total velocity dispersion
(σz/σtot), and angular momentum of each galaxy (�L), as presented
in Section 4.4, we use a modified version of the shape measurement
code distributed with SMILE. Briefly, the particles of a galaxy lying
within 30 kpc are placed into 20 radial bins. For each bin, starting
with the smallest bin, the moment of inertia tensor, computed from
all particles inside the bin, is diagonalized. An elliptical radius, as
opposed to the initial spherical radius, is then calculated for each

9 The masses and radii are taken from the MCMC samples of all lenses in
the full sample.

particle, using the eigenvalues of the moment of inertia tensor. Us-
ing the elliptical radius now, the moment of inertia tensor is again
diagonalized and the elliptical radii are updated. This processed is
repeated until the eigenvalues have converged. Additionally, this
process is iteratively performed from the smallest bin to the largest
bin, so that the algorithm is stable, and only the results from the last
bin are kept. Finally, the galaxy is rotated so that it lies along its prin-
cipal axes. Velocity dispersions and angular momenta are computed
along or about each axis, using appropriate mass weightings.

We note that Algorry et al. (2016), hereafter A+16, have investi-
gated similar properties for barred galaxies in the EAGLE simulation.
The authors compute, for a subset of the galaxies, the distributions
of c/a and σz/σtot. From visual inspection, the range of minor axis
ratios A+16 find differs from what we find. While A+16 find a sig-
nificant fraction of lenses with c/a between 0.2 and 0.5, we find sig-
nificantly fewer. On the other hand, the distribution of σz/σtot values
are quite similar. The discrepancies are not necessarily of concern,
however, as A+16 select their sample based on stellar mass, while
the sample presented here is based on the lens properties of the
galaxies.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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