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Abstract 

o-Aminophenol-N,N,O-triacetate, known as APTRA, is one of the most well-established ligands 

for targeting magnesium ions but, like other aminocarboxylate ligands, it binds Ca2+ much more 

strongly than Mg2+.  The synthesis of an O-phosphinate analogue of APTRA is reported here, 

namely o-aminophenol-N,N-diacetate-O-phosphinate, referred to as APDAP.  Metal binding 

studies monitored using UV-visible spectroscopy show that the affinity of APDAP for Ca2+ is 

reduced by over two orders of magnitude compared to APTRA, and for Zn2+ by over three orders 

of magnitude, whereas the affinity for Mg2+ is attenuated to a much lesser extent, by a factor of 

only about 7.  The selectivity towards Mg2+ is thus substantially improved.  DFT calculations 

support the notion that longer P–O and P–C bonds in APDAP (compared to corresponding C–O 

and C–C bonds in APTRA) favour a larger angle at the metal, an effect that is less unfavourable 

for smaller ions like Mg2+ than for larger ions such as Ca2+.  Derivatives of APDAP can be 

anticipated that will offer improved sensing of Mg2+ in the physiologically important millimolar 

concentration range, in the presence of Ca2+. 
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Introduction 

Amino carboxylates are pre-eminent amongst ligands used to bind to divalent Group 2 metals 

and hard transition metal ions such as Fe3+ and Mn2+.1,2  EDTA is produced on a huge scale for 

sequestration and regulation of metal ions in consumer products and inhibition of bacterial 

growth.3  Related aminophenolate-based ligands such as BAPTA {1,2-bis(O-aminophenoxy)-

ethane-N,N,N',N'-tetra-acetate, Figure 1} were developed in the 1980s by Tsien for the selective 

binding of Ca2+: the octadenticity favours coordination of the large Ca2+ ion.4 A number of 

fluorescent analogues of BAPTA were introduced through the incorporation of a fluorescent 

aromatic in place of, or attached to, one of the aminophenol units (e.g., Fura-2 and Indo-1).5,6,7  

In conjunction with fluorescent microscopy, they have been successfully used for the real-time 

monitoring of Ca2+ concentrations in cell biology, physiology and neurology.8 
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Figure 1  The structures of selected amino carboxylate ligands: the ubiquitous broad-spectrum 
ligand EDTA, the Ca2+-selective ligand BAPTA, the APTRA ligand for Mg2+ binding, and 

Mag-Fura-2, a fluorescent derivative of APTRA. 
 

The smaller Mg2+ ion, on the other hand, has seen far less attention – and much less success in 

terms of efforts to design ligands that bind it with high selectivity.  Perhaps the most well-known 

examples to date are based on the APTRA structure (APTRA = o-aminophenol-N,N,O-triacetate, 



- 3 - 

Figure 1) introduced by London and co-workers in the late 1980s.9  APTRA is a lower-denticity 

cousin of BAPTA – potentially pentadentate rather than octadentate – and features three as 

opposed to two carboxylates per aminophenol unit.  Available fluorescent indicators marketed 

for Mg2+ are typically based on the APTRA unit connected to, or incorporating, a fluorescent 

aromatic reporter group, e.g., Mag-Fura-2 (Figure 1) and related derivatives.6,10 

 

Yet, such ligands are not selective for Mg2+.  Although their affinity for Ca2+ is reduced 

compared to BAPTA, they still retain a higher affinity for Ca2+ than for Mg2+ (micromolar 

versus millimolar) and indeed can be employed as Ca2+ indicators to respond over higher 

concentration ranges than the standard Ca2+ probes.  Such selectivity issues apply equally to 

more recently described APTRA-based systems designed to offer longer-wavelength excitation 

and emission.11  Meanwhile, the use of bidentate β-keto acids, a quite different strategy explored 

for Mg2+ binding,12,13 suffers from other limitations, notably the fact that the low denticity 

favours the formation of mixed ligand species in vivo, in which the coordination sphere of the 

metal ion may be completed by endogenous molecules such as ATP.14 

 

Nevertheless, Mg2+ remains a highly interesting target bio-medically.15  It is the second most 

abundant divalent cation in cells,16 it plays a key role in the stabilisation of DNA structure,17 and 

it is implicated in hundreds of enzymatic reactions.18  A number of cardiovascular,19 

neurodegenerative20 and renal21 diseases have associated with them a mis-regulation of Mg2+ 

concentrations.  Greater effort is clearly required on the development of new classes of chelate 

ligand for selective binding of Mg2+, that can be used in the presence of competitor ions such as 

Ca2+ and Zn2+, yet function in the physiologically important millimolar range: the concentration 

of “free” Mg2+ is thought to be around 1 mM in the majority of mammalian cells.  
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Results and Discussion 

(i) Strategy 

Here we describe the synthesis and metal binding properties of a new ligand for Mg2+, namely o-

aminophenol-N,N-diacetate-O-methylphosphinate, which shall be referred to as APDAP.  The 

APDAP ligand is structurally similar to APTRA, but features a phosphinate group, 

–OCH2P(Me)O2
–, in place of the phenolate-bound carboxylate group, –OCH2CO2

– (Figure 2).  In 

the binding of divalent metal ions, pentadenticity can thus be maintained with formation of four 

5-membered chelate rings, but it was anticipated that the change from a C–O to a P–O bond 

within one of the chelate rings would serve to reduce the affinity for Ca2+ and thus enhance 

selectivity for Mg2+ over Ca2+.  The hypothesis has been borne out by the data described below. 
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Figure 2  The structure of the new phosphinate ligand APDAP shown alongside the 
tricarboxylate APTRA. 

 

(ii) Synthesis 

The synthesis of APDAP was achieved using the two sequences of reactions shown in Scheme 1.  

The first sequence was used to prepare the phosphinate-containing alkylating agent 4.  

Hydrolysis of diethyl methylphosphinate 1 with one equivalent of water led to ethyl 

methylphosphinate 2.  Condensation of 2 with paraformaldehyde gave alcohol 3, which was 

subsequently converted to its mesylate ester 4 in quantitative yield, upon treatment with mesyl 

chloride in the presence of triethylamine as a base.  Owing to the greater nucleophilicity of 

amines compared to phenols, O-alkylation of o-aminophenol would require prior protection of 

the amine.  We chose instead to start from o-nitrophenol, 5, which was O-alkylated using 4 

under basic conditions to give 6; completion of the reaction was visually evident from the loss of 
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the bright orange colour associated with the 2-nitrophenoxide ion.  Following chromatographic 

purification, reduction of the nitro group using hydrogen gas, catalysed by palladium on carbon, 

gave the O-alkylated aniline 7, which was then bis-N-alkylated using ethyl bromoacetate in the 

presence of base and catalytic NaI, leading to 8 over a period of 4 days.  Finally, hydrolysis of 

the two carboxylate esters and the phosphinate ester of 8 was accomplished using sodium 

deuteroxide in deuterated methanol / water mixture to give APDAP.  The use of deuterated 

conditions allows the progress of hydrolysis to be readily monitored by 1H and 31P NMR 

spectroscopy: the 31P resonance shifts from 48.3 to 36.5 ppm on hydrolysis.  The purity of the 

final product was assessed by analytical HPLC using acetonitrile / ammonium bicarbonate as the 

eluent. 
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Scheme 1  Synthesis of (a) the alkylating agent 4 and (b) APDAP from o-nitrophenol 
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(iii) Absorption spectroscopy: effect of pH 

We employed UV absorption spectroscopy as the method for assessing the metal-binding 

properties of the new APDAP ligand, which allows a direct comparison to be made with studies 

of APTRA.22  Evidently, fluorescence spectroscopy offers greater sensitivity and diversity of 

applications, but APDAP itself – like APTRA – is only weakly fluorescent and would require 

short-wavelength excitation that is impracticable for most applications.  The conjugation of the 

APDAP ligand to a fluorescent reporter unit can readily be envisaged to prepare fluorescent 

derivatives.   

 

The absorption spectrum of APDAP in aqueous solution at pH = 8.5 shows one main band 

centred at 254 nm (ε = 4480 M–1 cm–1) accompanied by a distinct shoulder at 285 nm.  The 

variation of the spectrum with pH was monitored over the pH range 4.5 – 8.5.  Acidification 

leads to a decrease in the absorbance across all wavelengths, particularly the main band at 

254 nm: the spectrum under acidic conditions features a broad band with a rather ill-defined 

maximum around 260 nm (Figure 3).  Such changes are consistent with those expected upon 

protonation of the formerly electron-donating amino group.  The sigmoidal fit of the absorbance 

at 254 nm against pH gave a ground-state pKa of 6.03(8) (Figure 3, inset).  This suggests that, 

over the normal physiological pH range (pH 6.5 – 7.5), the amine will be largely unprotonated 

and therefore available for metal ion binding, together with the less basic carboxylates and 

phosphinate.  It is encouraging that there is little change in the absorbance with pH over the 

above physiological range: metal ion probes that are targeted for use in biomedical areas should 

ideally not be affected by pH under the prevailing conditions, otherwise an observed response 

cannot be unequivocally attributed to metal ion binding but rather may arise from variation in 

pH.  Similarly, competitive protonation leading to decomplexation of the target metal ion once 

bound needs to be avoided.  A Mg2+-saturated solution of APDAP showed very little variation 

with pH in its UV-visible spectrum (Figure 3, inset). 
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In the case of APTRA, the pKa has not been accurately determined in the majority of its 

derivatives, owing to it being somewhat unstable in solution through decarboxylation and 

oxidation reactions;23 a pKa value of 5.5 was determined for one APTRA derivative by 

absorption spectroscopy.24  Magnesium-bound APTRA has similarly been found to be largely 

pH-insensitive. 

 
Figure 3  Absorption spectrum of APDAP in aqueous solution at varying pH values between 8.5 

and 4.5; concentration = 50 µM, in the presence of 100 mM KCl, T = 298 ± 3 K.  The inset 
shows the sigmoidal fit (red line) to the absorbance at 254 nm against pH (black diamond data 
points).  The blue circles in the inset show the change in the absorption at 254 nm with pH after 

saturation with Mg2+ (100 mM), with a trendline in black. 
 

(iii) Absorption spectroscopy: effect of divalent metal ions Mg2+, Ca2+ and Zn2+  

The effect of increasing concentrations of the above metal ions on the absorption spectrum was 

investigated in aqueous solution, buffered to pH = 7.21 using HEPES, at a temperature of 

298 ± 1 K.  The evolution of the spectra, together with the corresponding fits to estimate binding 

constants, are shown in Figure 4.  The standard deviations indicated were obtained from three 

independent sets of measurements in each case.  The binding affinities of APDAP for each metal 

ion are compared with those previously reported for APTRA in Table 1. 
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Figure 4  Absorption spectra (left) and binding curves with associated fits in red (right) for the 
addition of (A) Mg2+, (B) Ca2+, and (C) Zn2+ to APDAP in aqueous solution.  The metal chloride 

salts were used in each case; [APDAP] = 50 µM, [HEPES] = 50 mM, [KCl] = 100 mM, 
pH = 7.21, T = 298 ± 3 K.  The reported binding constants are an average from three separate 

metal ion titrations, with the standard deviation in parenthesis. 
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Table 1  Comparison of the metal binding affinities of APDAP and APTRA(a, b), obtained via 
absorption spectroscopy in aqueous solution. 

 
 APDAP APTRA 

pKa 6.03(8) 5.5 

K (Mg2+) / M–1 79(5) 560(30) 

Kd (Mg2+) 12.7(8) mM 1.79 mM 

K (Ca2+) / M–1 9.30(5) × 102 1.02(7) × 105 

Kd (Ca2+) 1.08(5) mM 9.80 µM 

K (Zn2+) / M–1 6(1) × 104 7(1) × 107 

Kd (Zn2+) 17(4) µM 14 nM 

(a) pKa value of APTRA is from reference 24. 
(b) Metal-binding data for APTRA are those of Buccella and co-workers, ref. 22.   

 

For each of the three metal ions investigated, it can be seen that the absorbance of the main 

bands progressively decreased with increasing concentration of the metal.  However, the change 

in the spectral profile is rather different.  In the case of Ca2+ and Zn2+, there is a large decrease in 

absorbance of the main band at 254 nm and of the long-wavelength shoulder, whilst a new band 

starts to emerge at about 273 nm (with an additional high-energy band at about 237 nm for Ca2+).  

In contrast, the spectral profile does not change substantially upon addition of Mg2+.  The 

changes with Ca2+ and Zn2+ are more similar to the effect of protonation (Figure 3) than those 

induced by Mg2+.  One may tentatively conclude, therefore, that the amine plays a less 

significant role in the binding of Mg2+ than Ca2+ or Zn2+: it is possible that the APDAP binds 

Mg2+ in a quasi-tetradentate O4 coordination mode, without much participation of the nitrogen 

lone pair, but for the larger Ca2+ ion and for the more polarisable Zn2+ ion it is pentadentate O4N 

(Figure 5). 

 

 



- 10 - 

N

O O
O

O

O P O

O N

O O
O

O

O P O

O

(A) (B)  
 

Figure 5  Plausible coordination modes for APDAP with divalent metal ions: the tetradentate 
mode (B) may be closer to that adopted by Mg2+, with the pentadentate (A) for Ca2+ and Zn2+.   

 

Inspection of the binding constant data in Table 1 reveals some intriguing differences between 

APDAP and APTRA.  The binding constant of APDAP for Mg2+ is 79(5) M–1 which is reduced 

by a factor of approximately 7 compared to that of APTRA.22  In contrast, the affinity for Ca2+ is 

lowered by a factor of 110.  Similarly, the affinity for Zn2+ ions plummets by a factor of > 103.  

Clearly, then, the selectivity for Ca2+ or Zn2+ over Mg2+ is reduced on going from O-carboxylate 

to the O-phosphinate, as desired.  Although the new ligand does not show the required selectivity 

profile for Mg2+, competition from Ca2+ and Zn2+ will clearly be lowered.  Pentadentate ligands 

showing sensitivity in the millimolar range for both Mg2+ and Ca2+ have not previously been 

reported. The bidentate β-keto acids mentioned earlier do show such a range, but do not offer the 

high denticities necessary to avoid formation of mixed ligand species. 

 

(iv) APDAP versus APTRA: a theoretical evaluation 

For possible insight into the differing effects of the change from carboxylate to phosphinate on 

Ca2+ and Mg2+ binding, a series of DFT calculations was carried out for complexes of the two 

ligands.  Details of the functionals and basis sets employed are given in the Experimental 

Section.  Crystal structures of the Mg2+ and Zn2+ complexes of APTRA have been reported by 

Buccella and co-workers, in which the metal ions are O4N-coordinated by the pentadentate 

ligand, with the sixth coordination site occupied by a bridging carboxylate from a neighbouring 

complex.22  For simplicity in the calculations, and as a more likely parallel of behaviour in 

solution, the DFT calculations were run with a water molecule occupying the sixth site.  The 
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optimised structures obtained in this way for the Mg2+, Ca2+ and Zn2+ complexes are shown in 

Figure S1 of the Supporting Information.  There is a good agreement between the calculated M–

L bond lengths and those determined crystallographically by Buccella and co-workers for the 

Mg2+ and Zn2+ complexes of APTRA (a comparison is provided in Table S1).  This offers 

confidence in the approach, in the absence of crystal structures of the APDAP complexes.  

Ideally, the calculation of relative metal binding energies would be helpful, but such a task is 

hampered by the likely increase in coordination number of Ca2+ beyond 6, probably up to 8, 

through coordination of additional water molecules.  Multiple anions of the form 

[Ca(APTRA)(H2O)n]– are likely in solution.  We focused instead on differences in key bond 

lengths and angles in the structures of the Mg2+ compared to the Zn2+ complexes, which are both 

expected to be 6-coordinate and which feature metal ions of very similar ionic radius. 

 

From the calculated bond lengths collated in Table 2, it can be seen that, for APTRA, the M–L 

bond lengths are very similar for the Mg2+ and Zn2+ complexes.  In contrast, for APDAP, there 

are significant differences between the Mg2+ and Zn2+ complexes for most of the M–L bonds.  In 

general, M–L bond lengths are shorter in [Mg(APDAP)(H2O)]– compared to 

[Mg(APTRA)(H2O)]–.  Comparing [Zn(APTRA)(H2O)]– and [Zn(APDAP)(H2O)]–, on the other 

hand, shows little difference between them in M–L bond lengths.  The Mg–L lengths are mostly 

shorter than corresponding Zn–L lengths, for both APTRA and APDAP.  The shorter Mg–N 

compared to Zn–N bond length that is calculated may appear somewhat inconsistent with the 

conclusions from UV-visible spectroscopy, summarised in Figure 5, that suggest a stronger 

interaction of the nitrogen lone pair with Zn2+ than with Mg2+.  However, the UV-visible data are 

obtained in aqueous solution, where an H2O molecule or an OH could occupy the sixth 

coordination site in place of the amine nitrogen atom.  The DFT calculations do not allow for 

this possibility, being based on the solid-state structure.  Some caution must therefore be 

exercised in using the theoretical data, with regard to the spectroscopic changes. 
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Table 3 summarises the bite angles around the metal for the four complexes.  Here again, it is 

evident that [Mg(APDAP)(H2O)]– differs from the other three: the bite angles are largest for this 

complex.  Such a trend is consistent with longer P–C and P–O bonds compared to corresponding 

C–C and C–O bonds (Table S2), but the effect is clearly more significant for the Mg2+ complex 

than for the Zn2+ complex (e.g., ArO–M–O angles of 83.9° and 78.6° respectively).  

 

Table 2  Calculated M–L bond lengths for the Mg2+ and Zn2+ complexes of APTRA and APDAP, 
bound in a pentadentate manner, with one H2O molecule completing the coordination sphere. 

 

Bond length / Å [Mg(APDAP)]– [Mg(APTRA)]– [Zn(APDAP)]– [Zn(APTRA)]– 

M–N 2.233 2.336 2.366 2.382 

M–OAr 2.088 2.161 2.350 2.251 

M–O(CO2CH2O) n/a 2.037 n/a 2.037 

M–O(PO2MeCH2O) 1.966 n/a 1.991 n/a 

M–O(CO2CH2N) 2.056 2.033 2.022 2.019 

M–O(CO2CH2N) 1.971 2.028 2.020 2.013 

M–O(H2O) 2.093 2.135 2.302 2.258 

 
 

Table 3  Calculated L^M^L bite angles for the Mg2+ and Zn2+ complexes of APTRA and APDAP, 
bound in a pentadentate manner, with one H2O molecule completing the coordination sphere. 

 

Angle / ° [Mg(APDAP)]– [Mg(APTRA)]– [Zn(APDAP)]– [Zn(APTRA)]– 

ArO–M–N 78.4 73.9 71.2 72.1 

N–M–O– 79.8 77.3 78.9 78.1 

N–M–O– 80.1 77.1 78.0 78.2 

ArO–M–O– (a) 83.9 75.2 78.6 74.6 
   (a) O– = phosphinate oxygen for APDAP, O-carboxylate for APTRA. 

 

(v) Discussion: the effect of structural changes in the chelate ring on metal ion selectivity 

It is well established that larger metal ions will tend to suffer a larger reduction in complex 

stability with increasing chelate ring size than smaller cations.1,25  Larger cations, such as Ca2+, 
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will favour the formation of 5-membered chelate rings over 6-membered, with an ideal bite 

angle of 69°.  Smaller cations are more amenable to the formation of 6-membered chelates.  A 

comparison between the bite angle in the O–carboxylate and O–phosphinate chelating units in 

APTRA and APDAP, respectively, is shown in Figure 6.  A schematic of 5-membered and 6-

membered chelates is also included for comparison.  The increase in the ArO–M–O bite angle 

and the shorter M–L bond lengths found for [Mg(APDAP)(H2O)]– suggest that the phosphinate-

based APDAP ligand sets up a structure on binding to Mg2+ that is somewhat more like a 6-

membered chelate.  In 6-membered chelates, the ideal bite angle is 109.5°, significantly larger 

than the value of 69° for a 5-membered chelate.  The larger ring chelate formed in 

[Mg(APDAP)(H2O)]– may thus explain why the relative affinity for Mg2+ versus Ca2+ is 

increased compared to APTRA, in line with the conclusions of landmark studies by Hancock and 

Martell 30 years ago on 5- versus 6-membered chelates in general.1  With regard to the specific 

case of phosphinates, a similar increase in affinity for smaller metal ions has been observed in 

phosphinate-substituted azamacrocycles, in binding studies with Cu2+, Ga3+ and Fe3+.26   
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Figure 6  Calculated ArO–M–O– bite angles in the Mg2+ complexes of (A) APTRA and (B) 
APDAP, showing the shorter M–O lengths with APDAP compared to APTRA and the longer P–

O (versus C–O in APTRA) and P–C (versus C–C in APTRA).  The blue circle represents the 
Mg2+ ion.  Structures (C) and (D) illustrate typical 5- and 6-membered chelates formed with 

ligands such as ethylenediamine and trimethylenediamine respectively; the black circle 
represents a generic metal ion with ideal bite angles as described by Martell and Hancock.1 
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Concluding remarks 

In summary, the new, pentadentate APDAP ligand has been synthesised in a four-step sequence 

starting from 2-nitrophenol.  Although it displays a weaker affinity towards Mg2+ than APTRA, 

the phosphinate-based ligand has a dramatically lower affinity for Ca2+.  The Kd values for Ca2+ 

are in the millimolar range compared to the mid-micromolar values typical of APTRA and its 

derivatives.  The affinity for Mg2+ remains of an order of magnitude that renders APDAP 

potentially suited to biomedical applications, given that [Mg2+] is of the order of 1 mM in most 

mammalian cells.  Moreover, the ligand offers high denticity, which is likely to ensure that the 

formation of undesirable mixed ligand species with Mg2+, as occurs with β-keto acids for 

example, is impeded.  The change in relative binding affinities of Mg2+ and Ca2+, compared to 

the all-carboxylate APTRA, is probably associated with the larger chelate ring associated with 

the incorporation of the phosphinate unit.  Future functionalization of APDAP with fluorescent 

groups may be anticipated to offer access to new sensors for Mg2+ with improved selectivity. 

 

Experimental  

(i) General 

Commercially available reagents were used as received from suppliers without further 

purification. Solvents used were laboratory grade; anhydrous solvents were dried over the 

appropriate drying agent. All moisture-sensitive reactions were carried out by Schlenk-line 

techniques, under an inert atmosphere of either argon or nitrogen.  For air sensitive reactions, 

solvents were degassed using the freeze-pump-thaw cycle method.  Water was purified by the 

‘PuriteSTILLplus’ system with a conductivity of < 0.04 µS cm–1.  Thin layer chromatography was 

performed on neutral alumina (Merck Art 5550) or silica (Merck Art 5554) and visualized under 

UV irradiation (254 nm) or by staining with either iodine or potassium permanganate.  Column 

chromatography was carried out either manually using neutral alumina or silica (Merck Silica 

Gel, 230 – 400 mesh) or using a Teledyne Combi-flash instrument equipped with RediSep Rf 

silica cartridges to perform automated elution.  1H (400 MHz) and 13C{1H} (101 MHz) and 
31P{1H} (162 MHz) NMR spectra were acquired on Bruker Avance or Varian Mercury 400 

NMR spectrometers.  Electrospray ionisation mass spectra were acquired on a Waters TQD mass 

spectrometer interfaced with an Acquity UPLC system. 
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(ii) Optical spectroscopy; determination of pKa and metal ion affinities 

UV-Vis absorption spectra were measured using a Uvikon XS spectrometer operating with 

LabPower software.  The sample was held in a quartz cuvette with a path length of 1 cm.  

Spectra were recorded against pure solvent in an optically matched cuvette.  pH measurements 

were recorded using a Jenway 3510 pH meter in combination with a Jenway 924 005 pH 

electrode.  The pH probe was calibrated before each independent titration using commercially 

available buffer solutions of pH 4, 7 and 10.  Samples were prepared with a background of 

constant ionic strength (I = 0.1 M KCl, 298 K).  Aqueous solutions were titrated to acid using 

0.025 M, 0.05 M and 0.1 M concentrations of HCl(aq).  The resulting sigmoidal curve of either 

absorbance or fluorescence intensity vs. pH was fitted by a non-linear least squares iterative 

analysis by Boltzmann using Origin 8.0 software.  

 
All metal binding studies were carried out in buffered solutions of 50 mM HEPES and 100 mM 

KCl maintained at pH 7.2.  Stock solutions of [M2+] contained the same concentration of the 

ligand in the cuvette, to avoid sample dilution over the course of the titration.  Small aliquots of 

[M2+] were added in each instance, with the absorbance spectrum recorded 5 minutes after each 

addition to ensure that the sample had equilibrated.  Dissociation constants (Kd values) were 

calculated from the experimental data as described in the Supporting Information. 

 

(iii) Computations 

All calculations were carried out with the Gaussian 09 package.27  The geometries were 

optimised at the hybrid-DFT B3LYP functional28 with no symmetry constraints using the 6-

311++G(d,p) basis set29 for all atoms.  The Gaussian default polarisation continuum model 

(IEFPCM)30 was applied to all calculations using water as solvent. Frequency calculations on 

these optimised geometries revealed no imaginary frequencies.  

 

(iv)  Synthetic procedures and characterisation data 

Ethyl methylphosphinate, 2 

2

3

1

P
O

OH 4
 

Water (264 µL, 14.7 mmol) was added to diethyl methylphosphinate 1 (2 g, 14.7 mmol) at room 

temperature.  The colourless solution was stirred vigorously for 18 h under an inert atmosphere 

of argon.  Reaction completion was determined by 31P NMR spectroscopy.  The title compound 

formed with one equivalent of ethanol as a by-product and was used in situ in subsequent steps 
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without any additional purification. 1H NMR (400 MHz, CDCl3) 7.25 (1 H, dq, J 538, 2, H1), 

4.17 – 3.16 (2 H, m, H3), 1.48 (3 H, dd, J 16, 4, H2), 1.24 (3 H, t, J 4, H4); 13C{1H} NMR (101 

MHz, CDCl3) 62.4 (d, J 24, C3), 16.2 (d, J 24, C4), 14.6 (d, J 97, C2); 31P{1H} NMR (176 MHz, 

CDCl3) + 33.4; ESI-LRMS [C3H9PO2]+ (+) m/z 109.0; ESI-HRMS calculated for [C3H9PO2]+ 

109.0419 found, 109.0414. 

 

Ethyl (hydroxymethyl)(methyl)phosphinate, 3 

2

3
41

P
O

OHO

 

The procedure adopted was based on one developed previously for related mesylated 

phosphinate esters.31  Ethyl methyl phosphinate 2 (14.7 mmol) was heated at 85oC in anhydrous 

THF (5 mL) for 30 min. Paraformaldehyde (707.9 mg, 23.60 mmol) was then added.  The 

reaction mixture was heated at 75 oC under an inert atmosphere of argon and monitored by 31 P 

NMR.  After 5 h the colourless solution was cooled to room temperature before the THF was 

removed under reduced pressure.  The residue was then dissolved in CH2Cl2 (20 mL) before the 

inorganic salts were removed by filtration.  The solvent was removed under reduced pressure to 

form a colourless oil.  Purification by silica gel chromatography (gradient from 100 % CH2Cl2 to 

90 % CH2Cl2/ 10 % MeOH) formed the title compound as a pale yellow oil (747 mg, 37 %).  Rf 

= 0.20 (silica, 95 % DCM; 5 % MeOH, visualisation with KMnO4); 1H NMR (400 MHz, CDCl3) 

4.13 (2 H, m, H3), 3.85 (2 H, m, H1), 3.07 (1H, br s, OH), 1.54 (3 H, d, J 12, H2), 1.35 (3 H, J 4, 

H4); 31P{1H} NMR (176 MHz, CDCl3) + 52.0; 13C NMR (101 MHz, CDCl3) 61.1 (d, J 7, C3), 

59.8 (d, J 110, C1), 17.7 (d, J 6, C4), 16.6 (d, J 91, C2); ESI-LRMS [C6H7
79BrN2]+ (+) m/z 139.0; 

ESI-HRMS calculated for [C6H7
79BrN2]+ 139.0456 found, 139.0449.  

 
(Ethoxy(methyl)phosphoryl)methyl methanesulfonate, 4 
 

2
3

4
5

1
P
O

OOS
O

O  

Methylsulfonyl chloride (0.65 mL, 8.4 mmol) was added to an ice cold solution of 3 (808.8 mg, 

5.95 mmol) and triethylamine (1.25 mL, 8.96 mmol) in anhydrous THF (5.7 mL).  The solution 

was warmed to room temperature and stirred for an additional 1 h under an inert atmosphere of 

argon.  After 1 h, THF was removed under reduced pressure, the dark orange residue was re-

dissolved in CH2Cl2 (20 mL) and washed with brine (15 mL).  The organic extracts were dried 



- 17 - 

over MgSO4, and the solvent was removed under reduced pressure to form an orange residue.  

Purification by silica gel column chromatography (gradient 100 % CH2Cl2 to 95 % CH2Cl2 / 5 % 

MeOH) formed the title compound as a yellow oil (1.03 g, 82 %). 1H (400 MHz, CDCl3) 4.46 – 

4.34 (2 H, m, H2), 4.25 – 4.11 (2 H, m, H4), 3.15 (3 H, s, H1), 1.63 (3 H, d, J 16, H3), 1.39 (3 H, 

t, J 8, H5); 31P{1H} (162 MHz, CDCl3) + 43.7; 13C (101 MHz, CDCl3) 63.0 (d, J 106, C2), 61.6 

(d, J 7, C4), 37.8 (s, C1), 16.5 (d, J 6, C5), 12.6 (d, J 100, C3). ESI-LRMS [C5H13O5PS]+ (+) m/z 

217.3; ESI-HRMS calculated for [C5H13O5PS]+ 217.0300 found, 217.0321. 

Ethyl methyl((2-nitrophenoxy)methyl)phosphinate, 6 

NO2

OPO

O 1 2

3
4

5

6

7
8

9

10

 
Anhydrous potassium carbonate (302.9 mg, 2.19 mmol) was added to a solution of 2-nitrophenol 

(98.9 mg, 0.71 mmol) and 4 (228.2 mg, 1.05 mmol) in anhydrous acetonitrile (1.2 mL).  The 

reaction mixture was heated at 85 oC for 48 h under an inert atmosphere of argon.  The pale 

yellow precipitate was removed by filtration and the solvent was removed under reduced 

pressure to form a yellow residue.  Purification by silica gel column chromatography (gradient 

100 % CH2Cl2 to 95 % CH2Cl2 / 5 % MeOH) formed the title product as a pale yellow oil (115.3 

mg, 63 %). 1H NMR (600 MHz, CDCl3) 7.88 – 7 85 (1 H, m) 7.58 – 7.54 (1 H, m), 7.13 – 7.09 

(2 H, m), 4.39 – 4.26 (4 H, m, H9 and H7), 1.69 (3 H, d, J 15, H8), 1.33 (3 H, t, J 7, H10); 13C{1H} 

(151 MHz, CDCl3,) 151.8 (d, J 13, C1), 140.1 (C2), 134.4 (CH), 125.8 (CH), 121.9 (CH), 114.7 

(C3), 61.4 (d, J 7, C9), 65.2 (d, J 111, C7), 16.5 (C9), 12.2 (C8); 31P{1H} NMR (242 MHz, CDCl3) 

+ 48.5; ESI-LRMS [C10H14NO5P]+ (+) m/z 260.1; ESI-HRMS calculated for [C10H14NO5P]+ 

260.0701 found 260.0699.  

 

Ethyl ((2-aminophenoxy)methyl)(methyl)phosphinate, 7 

NH2

OPO

O 1 2

3
4

5

6

7
8

9

10

 
Compound 6 (118.1 mg, 0.46 mmol) was dissolved in ethanol (20 mL).  Palladium on charcoal 

(10 wt. %, 51.6 mg, 0.03 mmol) was added and the reaction mixture was stirred at room 

temperature for 2 h under an atmosphere of hydrogen.  After this time, the reaction mixture was 

filtered through a celite plug.  The solvent was removed under reduced pressure to form a pale 

yellow oil (104 mg, 96 %).  Compound 7 was used in subsequent steps without any additional 
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purification.  1H NMR (600 MHz, CDCl3) 6.86 – 6.82 (2 H, m, H3, H4, H5 or H6), 6.74 – 6.70 (2 

H, m, H3, H4, H5 or H6), 4.29 – 4.07 (4 H, m, H7 and H9), 1.64 (3 H, d, J 14.6, H8), 1.34 (3 H, t, J 

7, H10); 31P{1H} NMR (162 MHz, CDCl3) + 47.4; 13C{1H} (151 MHz, CDCl3) 146.3 (d, J 11.9, 

C1), 136.4 (C2), 122.8 (C3, C4, C5 or C6), 118.5 (C3, C4, C5 or C6), 115.7 (C3, C4, C5 or C6), 112.2 

(C3, C4, C5 or C6), 64.6 (d, J 111, C7), 61.0 (d, J 7, C9), 16.6 (s, C10), 12.6 (d, J 98, C8); ESI-

LRMS [C10H16NO3P]+ (+) m/z 230.6; ESI-HRMS calculated for [C10H16NO3P]+ 230.0946 found 

230.0949. 

 

Diethyl 2,2'-((2-((ethoxy(methyl)phosphoryl)methoxy)phenyl) azanediyl) diacetate, 8 

N
OPO

O 1 2

3
4

5

6

7
8

9

10
O

OO

O
11
12 13

14  
N,N-Diisopropylamine (410 µL, 2.36 mmol) and ethyl bromoacetate (158 µL, 1.42 mmol) were 

added to a solution of 7 (107.5 mg, 0.46 mmol) and sodium iodide (125.6 mg, 0.97 mmol) in 

anhydrous acetonitrile.  The reaction was heated for 2 d at 85 oC under an inert atmosphere of 

argon before the addition of further N,N-diisopropylamine (120 µL, 0.69 mmol) and ethyl 

bromoacetate (50 µL, 0.45 mmol).  The reaction mixture was stirred at 85 oC for a further 2 d, 

before being cooled and diluted with ethyl acetate (10 mL).  Inorganic impurities were removed 

by filtration before the organic filtrate was washed with water (10 mL) and brine (10 mL).  

Organic extracts were combined and dried over MgSO4, and the solvent was removed under 

reduced pressure to form a pale brown residue.  Purification by silica gel column 

chromatography (gradient 1:1 hexane / ethyl acetate to 100 % ethyl acetate) formed the title 

compound as a pale brown oil (97.3 mg, 53 %).  1H NMR (700 MHz, CDCl3) 6.95 – 6.93 (3 H, 

m, H3, H4, H5 or H6), 6.90 – 6.88 (1 H, m, H3, H4, H5 or H6), 4.32 – 4.05 (14 H, m, H7, H9, H11 

and H13), 1.66 (3 H, d, J 15, H8), 1.33 (3 H, t, J 7, H10), 1.23 (6 H, t, J 7, H14); 31P{1H} NMR 

(283 MHz, CDCl3) + 48.3; 13C{1H} NMR (176 MHz, CDCl3,) 170.9 (s, C12), 150.9 (d, J 11, C1), 

139.4 (s, C2), 122.9 (s, C3, C4, C5 or C6), 122.7 (s, C3, C4, C5 or C6), 120.8 (s, C3, C4, C5 or C6), 

117.4 (s, C3, C4, C5 or C6), 64.8 (d, J 6, C7 or C9), 60.9 (d, J 7, C7 or C9), 60.7 (s, C11 or C13), 

53.2 (s, C11 or C13), 16.5 (d, J 6, C10), 14.2 (s, C14), 12.5 (d, J 97, C8); ESI-LRMS [C18H29NO7P]+ 

(+) m/z 402.6; ESI-HRMS calculated for [C18H29NO7P]+ 402.1682 found 402.1694; Reverse 

phase HPLC (0 % - 100 % - 0% CH3CN in ammonium bicarbonate buffer (25 mM), tR = 9.6 

min).  
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2,2'-((2-((Hydroxy(methyl)phosphoryl)methoxy)phenyl)azanediyl) diacetic acid, APDAP 

N
OPHO

O 1 2

3
4

5

6

7
8

9
10

O

OHO

OH

 
The tris-ester 8 (82.6 mg, 0.21 mmol) was dissolved in CD3OD (4 mL) and NaOD (0.4 M in 

D2O, 1.4 mL).  The pale yellow solution was stirred under an inert atmosphere of argon at room 

temperature for 20 h.  Hydrolysis of the ethyl esters was monitored by 1H NMR spectrometry, 
31P NMR spectrometry and ESI-LRMS.  The solution was lyophilized to form the title 

compound as an off-white solid in almost quantitative yield (62 mg, 93 %). 1H NMR (600 MHz, 

D2O) 6.95 (1 H, dd, J 1.8, 8, H6), 6.83 (2 H, m, H4 and H5), 6.78 (1 H, br m, H3), 3.93 (2 H, d, J 

9, H7), 3.71 (4 H, s, H9), 1.29 (3 H, d, J 14, H8); 31P{1H} NMR (283 MHz, D2O) + 36.54; 
13C{1H} NMR (176 MHz, D2O) 179.1 (C10), 150.6 (C1) 139.4 (C2), 121.6 (C4 or C5), 118.5 (C4 

or C5), 118.1 (C3), 113.4 (C6), 56.5 (C9), 14.2 (d, J 95, C8); Reverse phase HPLC (0 % - 100 % - 

0% CH3CN in ammonium bicarbonate buffer (25 mM), tR = 1.2 min).  
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