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ABSTRACT
We study the vertical structure of polytropic centrifugally supported gaseous discs embedded
in cold dark matter (CDM) haloes. At fixed radius, R, the shape of the vertical density profile
depends weakly on whether the disc is self-gravitating (SG) or non-self-gravitating (NSG).
The disc ‘characteristic’ thickness, zH, set by the midplane sound speed and circular velocity,
zNSG = (cs/Vc)R, in the NSG case, and by the sound speed and surface density, zSG = c2

s /G�,
in SG discs, is smaller than zSG and zNSG. SG discs are typically Toomre unstable, NSG
discs are stable. Exponential discs in CDM haloes with roughly flat circular velocity curves
‘flare’ outwards. Flares in mono abundance or coeval populations in galaxies like the Milky
Way are thus not necessarily due to radial migration. For the polytropic equation of state
of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations,
discs that match observational constraints are NSG for Md < 3 × 109 M� and SG at higher
masses, if fully gaseous. We test these analytic results using a set of idealized smoothed
particle hydrodynamic simulations and find excellent agreement. Our results clarify the role
of the gravitational softening on the thickness of simulated discs, and on the onset of radial
instabilities. EAGLE low-mass discs are NSG so the softening plays no role in their vertical
structure. High-mass discs are expected to be SG and unstable, and may be artificially thickened
and stabilized unless gravity is well resolved. Simulations with spatial resolution high enough
to not compromise the vertical structure of a disc also resolve the onset of their instabilities,
but the converse is not true.

Key words: galaxies: formation – galaxies: fundamental parameters – galaxies: haloes –
galaxies: structure.

1 IN T RO D U C T I O N

The vertical structure of centrifugally supported gaseous discs is
a classic astrophysical problem with applications that range from
protostellar and protoplanetary discs to spiral galaxies. The physics
is well understood: gas discs are systems that result from energetic
losses (‘cooling’) and the conservation of angular momentum and
whose equilibrium vertical structure is determined by the balance
between the effective gas pressure and the vertical compressive
force of the gravitational potential.

Complications arise, however, because the characteristic time-
scales for the various physical mechanisms at work might differ;
because equilibrium might be disturbed by frequent accretion and
interaction events; because the gas thermal pressure might be sup-
plemented by bulk and turbulent motions; and, perhaps more im-
portantly in the case of galaxy discs, because the gas may condense
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into stars that interact with their surrounding gas through energetic
feedback processes that may profoundly alter the disc.

Because of these complexities, our understanding of the forma-
tion of disc galaxies in a cosmological context, where systems form
hierarchically in a Universe whose matter content is dominated
by dark matter, [such as the current � cold dark matter (�CDM)
paradigm for structure formation], is still incomplete. This is per-
haps most apparent in direct hydrodynamical simulations, where
early attempts led to simulated discs whose mass and size were
quite different from those of their observed counterparts (see e.g.
Navarro & White 1994; Navarro & Steinmetz 1997).

These simulations, however, were useful to diagnose the main
shortcomings of those early attempts, most notably insufficient res-
olution, inefficient feedback and a far too simplistic modelling of
the multiphase, star forming, interstellar medium (ISM; see e.g.
Scannapieco et al. 2012, and references therein for an overview of
earlier work).

Recent improvements on all of these issues have ushered
in a new generation of simulations that now reproduce almost
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routinely the expected mass, size and scaling laws linking the var-
ious structural parameters of galaxy discs (Okamoto et al. 2005;
Governato et al. 2007; Brook et al. 2011; Guedes et al. 2011;
Stinson et al. 2013; Hopkins et al. 2014; Vogelsberger et al. 2014;
Schaye et al. 2015; Wang et al. 2015; Grand et al. 2016; Ferrero
et al. 2017). Despite these successes, simulations still struggle to
reproduce faithfully the observed vertical structure of discs, and, in
particular, of those resembling the thin disc of the Milky Way: with
few exceptions, simulated discs tend to be too thick by comparison
(see e.g. Trayford et al. 2017).

The origin of this discrepancy has not been properly elucidated,
but a common suggestion is that limited numerical resolution is
the main culprit (e.g. Governato et al. 2004; Grand et al. 2016). In
particular, the use of a finite number of particles and softened gravity
is often cited, but with little quantitative supporting evidence. An
additional possibility is that the numerical techniques may be at fault
(see e.g. Nelson 2006). Indeed, many simulations utilize particle-
based hydrodynamics solvers where discreteness effects and the
crude treatment of shocks and discontinuities could, in principle,
induce spurious effects that might affect disc scaleheights.

We examine these issues here using an analytic framework, to-
gether with a suite of numerical simulations designed specifically to
study the vertical structure of exponential gaseous discs embedded
in the gravitational potential of a CDM halo. The simulations use
GADGET-2 (Springel 2005), a code based on the smoothed particle
hydrodynamics (SPH) technique, and evolve gaseous discs that set-
tle in a rigid spherical potential modelled after the well-understood
mass profile of CDM haloes. Although idealized, our analytic treat-
ment and simulations are none the less useful to clarify a number of
issues regarding the performance of SPH as well as the importance
of the spurious effects introduced by softened gravity and limited
mass resolution on the vertical structure of simulated galaxy discs.

We begin in Section 2 with an analytic approach to the problem,
which allows us to introduce useful notation and to identify a num-
ber of key results that may be used to benchmark the numerical
simulations. Section 3 summarizes the key parameters of the code
and of the simulation series. Section 4 presents our main simulation
results and compares them with the analytic expectations. We end
by summarizing our main conclusions in Section 5.

2 A NA LY TIC R ESULTS

2.1 Preliminaries

The scaleheight (‘thickness’) of a gaseous disc in centrifugal and
pressure equilibrium in a dark matter halo is set by the balance
between the pressure, P, of the gas and the vertical gravity of the disc
and the dark matter halo. We present here an order-of-magnitude
account of the main parameters that set the aspect ratio of discs and
its radial dependence, before presenting, in the following section,
a more detailed analysis of polytropic discs that we compare in
detail with numerical simulations. In what follows, we shall assume
for simplicity that the disc is fully gaseous, and that the halo is
spherical. We use cylindrical coordinates, where z is the rotation
axis of the disc and R is the distance to that axis.

The disc vertical structure is described by the hydrostatic equi-
librium equation:

1

ρg

∂P

∂z
= − ∂

∂z

(
�g + �dm

)
, (1)

where ρg is the local gas density, and �g and �dm are the gravita-
tional potential of the disc and the dark matter halo, respectively.

In the thin-disc approximation (z/R �1), the contribution of the
dark matter halo to the vertical acceleration, at a given point, (R, z),
in the space, is given by

∂�dm

∂z
(R, z) = −V 2

dm(R)

R

( z

R

)
, (2)

where V 2
dm(R) = GMdm(<R)/R and Mdm( <R) is the enclosed dark

matter mass within a sphere of radius R, respectively. In most cases
of interest the dark matter dominates the centripetal acceleration,
so the circular velocity, Vc, is very well approximated by Vdm; we
shall therefore assume that Vc(r) = Vdm(r) in the remainder of this
section.

The contribution of the disc to the vertical component of the grav-
itational acceleration is obtained by integrating Poisson’s equation1

to yield

∂�g

∂z
(R, z) = −2πG�(R, z), (3)

where �(R, z) is the (z-dependent) surface density of the disc defined
by

�(R, z) = 2
∫ z

0
ρg(R, z′)dz′. (4)

We shall say that a disc is non-self-gravitating (NSG) if the
vertical acceleration profile is primarily described by equation (2).
In contrast, we will say that a disc is self-gravitating (SG) if the
vertical acceleration profile of the system is primarily described by
equation (3). Discs of thickness zH therefore are SG when

2πG�(R) � V 2
c (R)

R

zH

R
, (5)

and NSG when the inequality is reversed.
Let us consider first the NSG case, taking for illustration an

isothermal disc where pressure and density are linked by a (constant)
sound speed, c2

s = (P/ρg). As we show below (Section 2.2.1), in
that case, the ‘characteristic’ disc scaleheight is

zNSG = cs

Vc
R. (6)

On the other hand, in the SG case, the ‘characteristic’ scaleheight
is (Section 2.2.2)

zSG = c2
s

G�(R)
, (7)

where �(R) is the total surface density at radius R.
Note that, in either case, for galaxy discs where �(R) decreases

with R, and where Vc is roughly constant, the disc thickness in-
creases with radius; in other words, most galaxy discs are expected
to ‘flare’ in the outer regions.

The actual scaleheight of the disc will be the smallest of those
given by equations (6) and (7) when they differ, or smaller than
either when locally the vertical gravitational pull of the disc and
halo are comparable.

In practice, we find that the scaleheight may be approximated by

1

z2
H

= 1

z2
NSG

+ 1

2 zNSGzSG
+ 1

z2
SG

. (8)

For a given scaleheight, the z-dependence of the density at R,
ρg(R, z), expressed in units of the midplane density, ρg(R, 0), is

1 Note that the vertical symmetry of the disc with respect to its midplane
ensures that ∂�g/∂z = 0 at z = 0.
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not very different for the SG and NSG cases. For example, for an
isothermal NSG disc, the density declines exponentially from the
midplane (ρg(z) ∝ exp [−(z/zH)2]), whereas for an isothermal SG
disc we have ρg(z) ∝ sech2[−(z/zH )], which are similar in shape.

Note that SG discs are prone to radial instabilities, which develop
when Toomre’s parameter, Q, defined by (Toomre 1964)

Q = csκ

πG�
(9)

is less than a some critical value, Qcrit, of order unity in the case
of infinitesimally thin discs and about Qcrit ∼ 0.6 for discs of finite
thickness (see e.g. Wang et al. 2010). SG discs are generally Toomre
unstable, since the epicyclic frequency, κ , is of order of the angular
frequency, κ ∼ Vc/R, so that Toomre’s criterion for instability may
be rewritten as

G� >
1

πQcrit

csVc

R
, (10)

or, equivalently,

c2
s

G�
< (πQcrit)

cs

Vc
R, (11)

which we recognize from equations (6) and (7) as

zSG

zNSG
< πQcrit. (12)

The latter condition is generally true for SG discs.
SG discs are, therefore, almost always unstable.2 Conversely, it

is straightforward to show that NSG discs are, in general, Toomre
stable.

The above discussion shows that the thickness of a gaseous disc
and its stability are governed, at a given radius, by the combination
of cs, Vc, and � (for a fixed equation of state). It is illustrative to
consider the simple case of an exponential, isothermal disc with
a ‘flat’ rotation curve (i.e. constant circular velocity). In this case,
zNSG/R is a constant. zSG/R, on the other hand, diverges at small and
large radii and has a minimum at the exponential scale radius, Rd.
Therefore, when (cs/Vc)Rd < c2

s /G�(Rd), or, equivalently, when

G�(Rd) Rd

cs Vc(Rd)
< 1 (13)

the disc will be NSG and, consequently, stable everywhere. If, on
the other hand, zSG < zNSG at Rd then there will be a region around
Rd where the disc will likely be Toomre unstable.

Radial instabilities introduce an additional scale in the problem,
namely the characteristic size (or mass) of the clumps that first
develop. This is well approximated by the ‘critical’ wavelength that
results from the linear stability analysis of differentially rotating
discs (see e.g. Section 6.2.3 of Binney & Tremaine 2008),

λcrit = 4π2 G�

κ2
. (14)

This wavelength usually exceeds the disc scaleheight by a fairly
large factor. Indeed, for SG discs

zSG

λcrit
∝ c2

s V
2

c

(2πG�R)2
<< 1, (15)

where the latter inequality follows from equation (10). This implies
that numerical simulations with spatial resolution adequate enough

2 We refer the reader to the Appendix B, where we show that there is a
narrow range of parameters for which discs can be SG and stable.

to resolve the scaleheight of a SG disc also resolve the onset of
radial instabilities. The converse, however, is not necessarily true.

NSG discs, on the other hand, are generally stable and have
scaleheights determined by the halo rather than by the disc, thus
placing much less stringent constraints on the spatial resolution
needed to simulate their evolution.

Finally, it is interesting to compare this instability scale with the
‘Jeans length’, HJ, often used in the literature and defined by

H 2
J = πc2

s

Gρg
. (16)

It is straightforward to show that λcrit is generally much greater than
HJ. Indeed, for SG discs we have that

λcrit

HJ
∼

(
csR

zH Vc

)2

∼
(

zNSG

zH

)2

� 1, (17)

where we have used zH ≈ zSG = c2
s /G� (equation 7) and that the

epicyclic frequency is of order of the angular frequency; κ ∼ Vc/R.
This implies that the spatial resolution required to follow the

onset of radial instabilities in the disc are much less stringent than
those required to resolve the Jeans length. In other words, we expect
SG discs to become unstable even when the numerical resolution
is too poor to properly resolve the true vertical height, or when
the number of particles is too small to properly resolve the Jeans
length. The main requirement for such instabilities to grow is that
self-gravity be faithfully approximated on scales smaller than λcrit,
which places an upper value on the gravitational softening used in
simulations that attempt to resolve them.

Instabilities play an important role in numerical simulations like
the ones we describe below. Stable discs transform gas into stars
roughly uniformly throughout the disc but unstable discs break up
into self-bound clumps before turning into stars. The subsequent
evolution of these stellar clumps may play an important role in
setting the vertical structure of simulated galaxy discs, an issue to
which we return in Section 4.6.

2.2 Polytropic discs

Following the approach of Section 2.1, we consider separately the
NSG and SG cases before deriving a simple formula that approxi-
mates well the general solution for the scaleheight of a gaseous disc
in a spherical dark matter halo. Our solutions apply to a polytropic
equation of state (EoS) for the gas, of the form

P = Peos

(
ρg

ρeos

)	

= c2
s ρg

	
, (18)

where Peos and ρeos determine the normalization of the relation, 	

is the polytropic index, and cs = (∂P/∂ρ)1/2 is the sound speed.
Isothermal discs (	 = 1) have constant sound speed, but cs increases
with density for 	 > 1.

A common assumption in cosmological numerical simulations
such as those of the Evolution and Assembly of GaLaxies and
their Environments (EAGLE) project (Crain et al. 2015; Schaye
et al. 2015) is to adopt 	 = 4/3, Peos ∼ 1.10 g cm−1 s2 and
ρeos/mp = 0.1 cm−3, where mp is the proton mass, which gives

cs = cs,eos

(
ρg

ρeos

)(	−1)/2

(19)

with cs,eos = (Peos	/ρeos)1/2 ∼ 9.4 km s−1. We will refer to this
equation state as the EAGLE EoS.
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Figure 1. Disc vertical density profiles, as a function of (z/H), for different
values of 	. Solid and dashed line types correspond to the NSG and SG
solutions, respectively. Blue curves correspond to isothermal (	 = 1) discs;
orange to 	 = 4/3; and green to 	 = 2. Note that the shape of the normalized
vertical density profile depends weakly on whether the disc is SG or not,
but it is a strong function of the polytropic index, 	. Note as well that the
height parameter, H, has a different physical meaning for different values of
	. See the text for details.

The choice of 	 = 4/3 is motivated by the fact that the Jeans
mass scale, MJ ∝ ρgH

3
J ∝ ρ−2+3	/2

g , becomes independent of den-
sity for that polytropic index and is implemented to prevent spu-
rious fragmentation due to finite numerical resolution as unstable
clumps develop in the disc (Bate & Burkert 1997; Schaye & Dalla
Vecchia 2008).

2.2.1 NSG discs

Recalling that the vertical structure of thin (z � R) NSG discs is
set by the balance between the pressure gradient and the vertical
acceleration profile of the halo, we have in the NSG regime that

1

ρg

∂P

∂z
= −V 2

c (R)

R

( z

R

)
. (20)

Inserting equation (18) into equation (20), we can solve for the
vertical density profile of the disc

ρg(R, z)

ρg(R, 0)
=

{[
1 − (z/HNSG)2

]1/(	−1)
, if 	 
= 1

exp[−(z/HNSG)2], if 	 = 1
(21)

where the NSG height parameter is defined as

HNSG = α(	)(cs,0/Vc)R, (22)

cs,0 is the midplane sound speed and α(	) is given by

α(	) =
⎧⎨
⎩

√
2

	 − 1
if 	 
= 1

√
2, if 	 = 1.

(23)

The solid lines in Fig. 1 show the resulting z-dependence of the
density profile for various values of 	. The height parameter HNSG

defined by equation (22) is numerically convenient, but has different
meanings for different values of 	. A more physically meaningful
definition of scaleheight is provided by the value of zf that contains
a given fraction, f, of the disc column mass at each radius.

We show this in the top panel of Fig. 2, where we plot, in units of
the ‘characteristic’ NSG scaleheight, zNSG (equation 6), the heights

Figure 2. The z-coordinate enclosing a given fraction (in percentage), f, of
the disc’s column mass, for different values of 	. The top panel corresponds
to NSG discs, with zf normalized to the ‘characteristic’ scaleheight, zNSG

(equation 6). The middle panel is as the top panel but for SG discs, normal-
ized to zSG (equation 7). The bottom panel shows the SG scaleheights, but
normalized to the Jeans length, HJ (equation 16). Note that for a SG disc
the half-mass scaleheight, z50, is much smaller than the Jeans length of the
system (typically z50 ≈ 0.1 HJ).

containing various fractions of the disc column mass as a function
of 	.

Finally, we quote the relation between midplane density and
surface density, which is useful to derive zf. Writing ρg(R, z) =
ρg(R, 0) g(z/HNSG, 	), we have that

�(R) = 2Fc ρg(R, 0) HNSG (24)

where Fc is the integral of g(z/HNSG, 	):

Fc =
⎧⎨
⎩

∫ 1

0

(
1 − u2

)1/(	−1)
du 	 
= 1

√
π/2 	 = 1.

(25)

For 	 = 4/3, Fc ∼ 0.4, indicating that the vertical density profile
of a NSG disc is poorly approximated by a top-hat model in which
�(R) = 2ρg(R, 0)HNSG (see also Fig. 1).

The scaleheight zf is simply given by

zf = yf HNSG, (26)

where yf is given by∫ yf

0
g(u, 	) du = f Fc. (27)

We tabulate various values of yf, for different values of 	 in Table 1.3

3 Although equation (26) is strictly valid in the NSG regime, we show in
Section 2.2.2 that it can also be applied for SG discs.
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Table 1. Values of Fc (equation 25) and yf (equation 26), for
different values of the polytropic index, 	. Use these num-
bers to convert the scaleheight parameter, H, into ‘character-
istic’ scaleheight values, such as the half-mass scaleheight,
z50 = y50H.

	 Fc y25 y50 y75

1 0.886 0.225 0.477 0.813
4/3 0.457 0.116 0.242 0.402
2 2/3 0.168 0.347 0.558

The analysis above shows that polytropic NSG discs with 	 > 1
have well-defined maximum heights (given by equation 22), where
the density vanishes. Isothermal discs, on the other hand, extend to
arbitrarily large heights.

2.2.2 SG discs

We can derive the scaleheight of a polytropic SG disc in a simple
(although approximate4) way. The vertical structure of SG discs is
set by the balance between its pressure and its own vertical gravity

1

ρg

∂P

∂z
= −2πG�(R, z), (28)

Equation (28) looks simpler expressed in terms of the disc’s
surface density only

∂P

∂�
= −πG�(R, z) (29)

in which we used the fact that, by definition, ∂�/∂z = 2ρg. Inte-
gration of the previous equation yields

P (R, z)

P (R, 0)
=

[
1 − πG�2(R, z)

2P (R, 0)

]
(30)

with P(R, 0) being the midplane pressure of the disc.
Similarly to equation (21), equation (30) shows that the pressure

of the disc (and therefore its density) vanishes at

�(R,HSG) = �(R) =
(

2P (R, 0)

πG

)1/2

, (31)

which implicitly defines the height parameter, HSG, of a SG
polytropic disc. The value of HSG can be found by combining
equations (31) and (4):

HSG =
(

1

π	Fc

) (
c2

s,0

G�(R)

)
, (32)

where we have assumed that the vertical dependence of the density
profile can be approximated by equation (21), so that the Fc factor
(equation 25) is the same as derived for the NSG regime. Although
the vertical dependence of the density in a SG disc differs from that
of a NSG disc, in practice the differences are quite small.

Analytic forms for the SG density profile may be computed
for some values of 	 (see Goldreich & Lynden-Bell 1965, and
Appendix A) and can be derived numerically for other values. In
particular,

ρg(R, z)

ρg(R, 0)
=

{
sech2 (z/HSG) , if 	 = 1

cos (z/HSG) , if 	 = 2.
(33)

4 More detailed treatments may be found in, for example, Spitzer (1942);
Goldreich & Lynden-Bell (1965) and Appendix A.

For these values of 	, we have that

HSG =
{(

c2
s,0/2πGρg(R, 0)

)1/2
, if 	 = 1.

(π/2)
(
Peos/2πGρ2

eos

)1/2
, if 	 = 2.

(34)

We compare SG and NSG density profiles in Fig. 1. This figure
confirms that, for given 	, the z-dependence of the density (scaled to
the midplane density and the scaleheight, H) is very similar for SG
and NSG discs. SG discs thus differ from their NSG counterparts
mostly in the value of their scaleheights and not in the shape of their
vertical density profile. This implies that equation (26) (or values
quoted in Table 1) can be used to calculate different column mass
scaleheights, zf, even when discs are SG.

Various scaleheights, zf, of SG discs, expressed in units of their
‘characteristic’ value, zSG (equation 7), are shown as a function of
	 in the middle panel of Fig. 2.

We conclude by comparing the characteristic heights of SG discs
with the ‘Jeans scaleheight’, HJ, in the bottom panel of Fig. 2. As
expected, the disc characteristic thickness is much smaller than HJ

and, when expressed in units of HJ, is only a weak function of 	.

2.2.3 A general solution for the disc scaleheight

When the contributions of both disc and halo are important for
the vertical acceleration, the true scaleheight of the disc must be
computed numerically, by solving

1

ρg

∂P

∂z
= − ∂

∂z
(�h + �g). (35)

This requires iterative procedures, since the disc potential and sound
speed depend on its thickness, which is what we are trying to com-
pute in the first place.

For an isothermal disc (	 = 1), it is sufficient to use the circular
velocity, midplane sound speed and surface density to compute the
scaleheight parameters HNSG (equation 22) and HSG (equation 32).
We may use equation (26) to estimate the half-mass scaleheight, z50,
corresponding to each case. Then the actual half-mass scaleheight
may be approximated by the square harmonic mean (equation 8),
which proves reasonably accurate for most practical purposes.5

For a polytropic disc (	 > 1) we can use the same approximation,
but the midplane sound speed of the system, which depends on the
midplane density of the disc, must be found self-consistently. A
practical solution involves the following procedure. For an initial
(arbitrary) guess of H, we use equation (24) to link the disc surface
density to the actual midplane density, which is used to calculate the
midplane sound speed; the resulting sound speed is then used to cal-
culate HSG (equation 32) and HNSG (equation 22) self-consistently,
which are then inserted into equation (8) to obtain a new value of
H; we iterate this procedure until convergence is reached. Finally,
the half-mass scaleheight may be calculated using equation (26) or
the data provided in Table 1.

2.2.4 The solar circle as illustrative example

For illustration, let us compute a few characteristic values
for the Milky Way disc at the solar circle, R0 = 8 kpc, us-
ing the 	 = 4/3 fiducial EAGLE EoS. Assuming that the
Milky Way’s midplane density (the ‘Oort limit’) is ρg(R0, 0) =
ρOL ∼ 0.04 M�/pc3 (Bovy 2017), we find an effective mid-
plane sound speed of ∼15 km s−1, and a fiducial NSG scale-
height parameter HNSG = α(	)(cs, 0/Vc(R0)) R0 ∼ 1.0 kpc, where

5 We refer the reader to Appendix C for a derivation of this formula.
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we assumed Vc(R0) ∼ 220 km s−1. Assuming a surface den-
sity �(R0) ∼ 40 M�/pc2 (Kuijken & Gilmore 1989; Bovy &
Rix 2013), its fiducial SG scaleheight parameter would be HSG =
(π	Fc)−1 c2

s,0/G�(R0) ∼ 726 pc.
The respective half-mass scaleheights would be 320 and 180 pc

for the NSG and SG cases, respectively, for an actual scaleheight
of z50(R0) ∼ 150 pc, computed using equation (8). Thus, gaseous
Milky Way-like discs in EAGLE are expected to be dominated by
their own self-gravity at radii comparable to the solar circle.

2.3 Exponential discs in CDM haloes ‘flare’ outwards:
the Milky Way

We apply the above results to a worked example, where we consider
an exponential gaseous disc embedded in a CDM halo.6 The halo
is modelled by a Navarro–Frenk–White (hereafter NFW; Navarro,
Frenk & White 1996, 1997) rigid potential. We choose model pa-
rameters inspired by the structure of the Milky Way disc, as reported
by Bovy et al. (2016), although of course, the disk of the Milky Way
is primarily stellar rather than gaseous. These authors distinguish
two separate disc components according to the abundance of α

elements; an α-poor (‘thin’) component that includes Sun-like stars
and an α-enhanced (‘thick’) disc.

The thin disc has mass Md ≈ 3 × 1010 M� and exponential
scalelength Rd = 3 kpc. If placed in an NFW halo with virial7 mass
M200 = 1.5 × 1012 M� and concentration c = 8 (equation 37), it
would have a reasonably flat circular velocity curve that peaks at
roughly 220 km s−1 (see top panel of Fig. 3). The same panel shows
the contribution of the disc to the circular velocity as well as that of
the halo.

The bottom panel of Fig. 3 shows, as a function of R, the two half-
mass scaleheight profiles for SG (dot–dashed) and NSG (dashed)
gaseous discs, assuming, for simplicity, an isothermal EoS (	 = 1
and cs = 10 km s−1). The solid thick line is the result for the ‘true’
profile, obtained from equation (8).

As stated in Section 2.1, the actual scaleheights closely track
the minimum of either the SG or NSG case when they are signifi-
cantly different. On the other hand, when SG and NSG heights are
comparable the true height is smaller than either of them.

The Milky Way thin disc thickness profile is indicated by the blue
shaded area; its half-mass scaleheight is ∼100 pc at the solar circle,
and increases steadily with radius, reaching ∼450 pc at R = 14 kpc.
In the outer regions these values match very well the expectation
from our simple model. Towards the centre the disc thins down,
but more gradually than expected from our simple model. Note
that this inward thinning (or outward ‘flaring’) is naturally con-
sistent with theoretical expectations for exponential discs in CDM
haloes as long as the stellar disc inherits the structure of its par-
ent polytropic gaseous disc (e.g. Bird et al. 2013; Ma et al. 2017;
Navarro et al. 2017, and references therein) and not necessarily a
result of secular evolutionary processes in the disc (e.g. Sellwood &
Binney 2002; Roškar, Debattista & Loebman 2013; Bovy
et al. 2016) or satellite interactions (e.g. Minchev et al. 2014).

6 In Section 4.6 we show that similar behaviour is expected for stellar discs,
at least in a simple model.
7 Virial quantities correspond to those of the sphere where the en-
closed mean density is 200 times the critical density for closure, ρcrit =
3H 2

0 /8πG = 2.775 × 1011 h2 M�/Mpc3, and are identified with a 200 sub-
script. Throughout this paper we assume h = 0.7.

Figure 3. Top: circular velocity as a function radius for a gaseous isothermal
exponential disc of mass Md ≈ 3 × 1010 M�, scale radius Rd = 3 kpc and
sound speed cs = 10 km s−1, embedded in a NFW spherical halo of virial
mass M200 = 1.5 × 1012 M�. The parameters of the system have been
chosen to roughly approximate those of the low-α (‘thin’) disc of the Milky
Way (Bovy et al. 2016). Bottom: vertical half-mass scaleheight profile of
the disc (thick solid curve). Dot–dashed and dotted curves correspond to the
results expected for SG and NSG discs, respectively. The thick segments
indicate the observational results for the ‘thin’ and ‘thick’ (high-α) discs
of the Milky Way, according to Bovy et al. (2016). See the text for further
discussion.

2.4 Exponential discs in CDM haloes: mass dependence

We now consider the thickness of (gaseous) exponential discs as a
function of disc and halo mass assuming again that they are embed-
ded in CDM haloes. In our model, the problem is fully specified
once the relations between (i) halo mass and disc mass, and be-
tween (ii) disc mass and size have been specified. Note that the halo
concentration is not a free parameter, since it is a well understood
function of halo mass once the cosmological parameters are fixed
(see e.g. Ludlow et al. 2016).

The first relation is well constrained by the galaxy mass func-
tion. A simple parametrization is provided by ‘abundance matching’
(AM) models, such as that of Behroozi et al. (2013). The second
relation is empirically well established and may be adequately de-
scribed by the simple relation

Rh = 0.2 rs, (36)
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Figure 4. Half-mass scaleheight, z50, as a function of disc mass, for three
different halo masses, as labelled in each panel and for three different poly-
tropic indexes, namely, 	 = 1, 	 = 4/3 and 	 = 2. Discs are assumed
to have the same scale radius in each panel, namely Rd = 3.0, 1.10 and
0.44 kpc from top to bottom. Red shaded regions show the acceptable range
of disc masses, at a given halo mass, according to the ‘abundance-matching’
model of Behroozi, Wechsler & Conroy (2013), with a scatter of a factor of
2 in galaxy mass. Line types switch from thick to thin when discs become
Toomre unstable. Note that ‘realistic’ disc galaxies that form in haloes less
massive than ∼1011 M� are expected to be stable.

where Rh = 1.678 Rd is the galaxy half-mass radius and rs is the
NFW scale radius of its surrounding AM halo (see e.g. fig.1 of
Navarro et al. 2016).

We use these relations to study the thickness of gaseous discs
formed in �CDM haloes. We begin by considering exponential
discs whose radial scalelengths satisfy equation (36), and vary the
disc mass, keeping the halo mass fixed. This is shown in Fig. 4,
where each panel shows the half-mass scaleheight at Rd, as a func-
tion of the assumed disc mass, Md, for three different values of the
halo mass, M200. Since the disc size is fixed in each panel, Md scales
linearly with disc surface density, �(Rd).

The acceptable range of disc masses according to AM models
is indicated by the shaded vertical band. There are three curves
in each panel corresponding to three different values of 	 : 1,
4/3 and 2, normalized as in equation (19) so that the pressure of
the systems at ρg = ρeos is P/kB = ρeosTeos/mp, with ρeos/mp =
0.1 cm−3 and Teos = 8000 K. Curves change linewidth when the
discs turn unstable; i.e. the Toomre parameter Q(Rd) > Qcrit ∼ 1
(equation 10) in the thick linewidth regime and thin otherwise.

As expected, low-mass discs are stable and NSG but they all
become unstable when the mass of the disc exceeds a critical, 	-
dependent value. This critical value exceeds the mass expected from
AM arguments in low-mass haloes; therefore, ‘realistic’ galaxy
discs (i.e. those that satisfy both abundance matching constraints and

the empirical size-mass relation) forming in haloes less massive than
∼1011 M� are expected to be stable. Note that this is a conservative
conclusion, since we are assuming that the whole mass of the galaxy
is in gaseous form. If part of that mass was in stars this would
decrease the gas density and reinforce the stability condition. On the
other hand, galaxy discs in haloes of order or exceeding ∼1012 M�
are expected to be Toomre unstable, if assumed gaseous.

These results have important implications for cosmological sim-
ulations that assume an EAGLE-like EoS, since it implies that stars
will form more or less uniformly throughout the disc in low-mass
systems, but in self-bound clumps in massive discs. We shall return
to this issue in Section 4.4.

Finally, we remark on how the z50 dependence on mass varies as
a function of 	. For isothermal discs (	 = 1), z50 is roughly con-
stant when disc masses are low and decreases monotonically with
increasing mass (or, equivalently, with increasing surface density).

For 	 = 4/3 the sound speed is a function of density (equation 19)
and therefore the scaleheight increases with increasing mass in
the low-mass regime (denser discs are effectively ‘hotter’) until
reaching a maximum when the vertical contribution from the halo
and the disc become comparable. At higher disc masses the disc
thins down steadily because of the increased disc contribution, and
eventually becomes unstable.

For 	 = 2 the behaviour is qualitatively similar at low masses
but the scaleheight asymptotically approaches a maximum as the
disc becomes SG and, eventually, unstable. This is because SG disc
scaleheights are proportional to c2

s /� and, therefore, to �(	 − 2)/	

for a polytropic EoS. For 	 = 2, then, pressure and self-gravity
balance each other out at a constant height, independent of disc
mass.

We summarize these results in Fig. 5, where we plot disc mass
versus halo mass coloured by half-mass scaleheight at Rd, assum-
ing the 	 = 4/3 fiducial EAGLE EoS and disc sizes given by
equation (36). The top area (shaded in dark blue) indicates masses
that exceed the total baryonic budget of the halo, (�bar/�M)M200,
and are excluded in CDM models. The thick dot–dashed line traces
the abundance-matching relation. The thick solid line indicates the
boundary between stable and unstable discs; i.e. where the condition
Q(Rd) = Qcrit is satisfied.

‘Realistic’ discs (i.e. those matching the AM constraint) are gen-
erally stable at low masses and unstable at high masses. Their aspect
ratios are also expected to be a strong function of disc mass vary-
ing from z50/Rd of order 1:40 for Milky Way-like discs to 1:5 for
∼108 M� discs. Note that this is a simple consequence of the scal-
ing properties of gaseous discs and the assumed EoS and not the
consequence of limitations in numerical resolution or other short-
comings of the hydrodynamical treatment.

In the next Section we use these results to interpret the structure of
galaxy discs simulated using some of the numerical techniques used
in the latest cosmological simulations. We focus, in particular, on
how well these simulations reproduce the expected vertical structure
of polytropic discs and the onset of radial instabilities, as well as the
scaleheight differences between gaseous discs and the stellar discs
they evolve into.

3 N U M E R I C A L S I M U L AT I O N S

Our tests follow the evolution of polytropic gaseous discs embedded
in the (rigid) potential of a dark matter halo. We consider two types
of tests. In the first type the gas is forced to remain in the EoS, and
is not allowed to turn into stars, and the simulation is followed for a
prescribed number of orbital times or until much of the mass of the
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Figure 5. Disc mass versus virial mass, coloured by the half-mass scale-
height, z50(Rd), for 	 = 4/3 exponential discs, modelled with a polytropic
EAGLE EoS. The scale radius of discs is fixed for each M200 and chosen so
that the half-mass radius Rh = 1.678 Rd = 0.2 rs, where rs is the NFW scale
radius of the abundance-matching halo given by the model Behroozi et al.
(2013). Top area (shaded in dark blue) indicates masses that exceed the total
baryonic budget of the halo, (�bar/�m)M200, and are excluded in the CDM
models. Dot–dashed white line tracks the halo mass-galaxy mass relation
given by the abundance matching model of Behroozi et al. (2013). Solid
thick line shows the neutral stability region where the Toomre parameter
is Q = Qcrit = 0.6; for our choice of Rh, exponential discs above this line
are Toomre unstable. Filled red circles indicate the systems we discuss in
Section 4. White squares correspond to systems shown in Fig. 6. Orange
stars highlight the parent gas discs of the numerical experiments discussed
in Section 4.6.

disc (if unstable) is in the form of distinct self-gravitating clumps.
In the second type we allow the gas to cool and form stars when
reaching a density threshold ρg/mp = 0.1 cm−3. Stars are formed
at the same Kennicutt–Schmidt rate adopted in the EAGLE suite of
cosmological simulations (Crain et al. 2015; Schaye et al. 2015).
For simplicity, we neglect the effects of enrichment and feedback
from evolving stars into the surrounding gas.

3.1 The code

We use the public version of the GADGET-28 code, modified to include
an NFW rigid spherical potential modelled after a CDM halo. This
implies that the gas and stars in our simulations experience, in
addition to their self-gravity, a central gravitational acceleration
equal to V 2

dm(<r)/r , with

V 2
dm(<r) = V 2

200

1

x

ln(1 + cx) − (cx)/(1 + cx)

ln(1 + c) − c/(1 + c)
, (37)

where x = r/r200 is the radius in units of the virial radius and the
concentration, c = r200/rs, links the virial radius with the NFW
scale radius, rs. The concentration is a function of the virial mass,
M200 = V 2

200 r200/G, which is well understood once the cosmolog-
ical parameters are fixed (Ludlow et al. 2016).

8 wwwmpa.mpa-garching.mpg.de/gadget/

Table 2. Relevant parameters of our fiducial runs.

ρeos/mp Teos 	 εg hmin Npart

0.1 cm−3 8000 K 4/3 10 pc 10 pc 2 × 105

We have also modified GADGET-2 to include an effective equation
of state that enforces a polytropic law relating gas pressure and
density (equation 18). In practice, this is done by replacing the
entropy of the i-th gas particle by

Ai = Peos

(
ρi

ρeos

)	

ρ
−γ
i , (38)

where 	 = 4/3 is the effective polytropic index and γ = 5/3 is the
ratio of specific heats. The parameters of our fiducial runs are sum-
marized in Table 2 and were chosen to match those implemented in
the EAGLE simulation suite (Crain et al. 2015; Schaye et al. 2015).

3.2 Initialization

Our aim is to build numerical realizations of centrifugally supported
exponential discs embedded in dark matter haloes, so we initialize
the gas according to the following density profile:

ρg(R, z) = Md

4πR2
dzd

exp (−R/Rd)sech2(z/zd,0). (39)

where the initial scaleheight, zd, 0, is independent of R and substan-
tially larger than the expected equilibrium disc thickness according
to the results of Section 2.2.3. Gas particles are given only az-
imuthal velocities that equal the circular velocity of the system at
their corresponding cylindrical radii.

As expected, the initial disc collapses vertically and quickly set-
tles into equilibrium. This settling leads to a minor rearrangement
of the radial profile, but the deviations from the desired exponential
are mild and limited to the inner regions. Furthermore, we have
explicitly verified that the results we report below are independent
of the particular value of zd, 0 adopted.

The disc is allowed to evolve for several orbital times before it is
analysed, typically for ∼25 torb(Rh), where Rh is the disc’s half-mass
radius, and torb(Rh) is the disc’s orbital time at Rh (∼4 Gyr for a disc
scaled to the Milky Way).

We carried out simulations covering a grid of values in the halo
mass-disc mass plane. In particular, we considered models with halo
masses in the range 1.0 × 1010 ≤ M200/M� ≤ 2.0 × 1012, and disc
masses in the range 1.25 × 107 ≤ Md/M� ≤ 1.0 × 1011. The disc
size is kept fixed for each halo mass, so that its half-mass radius
is simply Rh = 1.678Rd = 0.2 rs. NFW scale radii are determined
by the M200(c) relation corresponding to the Planck cosmological
parameters (Ludlow et al. 2016). We report here the results for
discs at a given halo mass of M200 = 2.0 × 1012 M�, varying the
gas mass, as shown by the orange dots in Fig. 5, but we have verified
that the following results apply irrespective of halo mass.

3.3 Numerical resolution

Our fiducial runs use 2 × 105 equal-mass gas particles and have
spatial resolution adequate enough to resolve the characteristic disc
scaleheight and the scale of radial instabilities, if present. The Jeans
mass, MJ ≈ 5.5 × 108 M�, is constant for 	 = 4/3 and resolved
with at least a few hundred particles in the worst case. In addition,
we use a Plummer gravitational softening εg = 10 pc, which is much
smaller than the characteristic height of the discs in all cases. Finally,
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we impose a minimum gas smoothing length, hmin = 10 pc, and have
explicitly checked that this has little or no effect on the thickness of
simulated discs or on the scale of the onset of radial instabilities. We
list the main numerical parameters of the fiducial runs in Table 2.

4 N U M E R I C A L R E S U LTS

Fig. 6 illustrates the final state of three of our simulated discs, all
assumed to have the same size (Rd = 4.0 kpc), and evolved in the
same dark matter halo: M200 ∼ 2 × 1012 M� and c = 8.0. These
discs are highlighted with open squares in Fig. 5.

Discs in the left and centre columns (Md = 4 × 109 M� and
1.6 × 1010 M�, respectively) are shown after ∼4 Gyr (which
corresponds to ∼25 orbits at the half-mass radius, indicated by
the dot–dashed circle in the top panels) are ostensibly in equilib-
rium, and have actually evolved very little since their initial relax-
ation stage. The disc shown in the right column, on the other hand
(Md = 3.2 × 1010 M�), has clearly become unstable after settling
vertically and has broken into a number of distinct self-gravitating
clumps. This disc is shown after just ∼150 Myr of evolution.

This behaviour is easily understood in terms of the analysis of
Section 2. The first two discs are stable according to the criterion
laid out by equation (13); the last one is unstable.

Note also that in all three cases the initial settling of the gas
has led to only minor changes in the azimuthally averaged surface
density profile shown in the second row of Fig. 6 (dashed lines
correspond to the initial configuration; the solid red line is the final
profile).

Finally, the bottom row compares the half-mass scaleheight, z50

(solid red line), with that expected from the analytic treatment. The
dot–dashed and dotted lines indicate the results of assuming that
the disc is SG or NSG, respectively. The black dashed line is the
final result computed using equation (8). The model predictions are
computed assuming the initial gas profile, but should apply to the
discs as shown given how little �(R) is affected by the subsequent
evolution.

The agreement between simulations and the analytic solution is
clearly quite good, even in the case where the disc has developed
massive instabilities. This is because the time-scale for the disc to
settle into a vertical hydrostatic equilibrium configuration is gen-
erally shorter than the time that takes for the clumps to develop.
Although Fig. 6 refers to only one halo mass, we have verified that
the same conclusions apply to all our runs giving us confidence
that the numerical treatment of our discs adequately captures the
physical processes responsible for setting the thickness of gaseous
discs.

4.1 Vertical density profiles

One interesting result from the solutions presented in Section 2
is that the shape of the vertical density profiles of polytropic discs
(scaled to the midplane density and to the characteristic scaleheight)
is a well specified function of 	 and, to first order, independent of
whether the disc is SG or not. We show this in Fig. 7, where we plot
the vertical density profiles of the two galaxies in Fig. 6 that do not
develop strong radial instabilities and for which the vertical profiles
can be meaningfully measured.

The profiles are shown at Rd ∼ 4 kpc and normalized to the
midplane density and the half-mass scaleheight. At this radius,
the scaleheight of one galaxy is determined by the NSG solution
but the other is much closer to the SG regime (see bottom panels
of Fig. 6). Regardless, their vertical profile shapes are quite similar,

and may be well approximated by the NSG vertical density law
(equation 21 for 	 = 4/3), shown by the thick dashed line in each
panel of Fig. 7.

The simulated profile shapes are clearly very similar in both
cases, confirming our earlier conclusion that, appropriately scaled,
the vertical dependence of the density is similar for SG and NSG
discs.

An interesting corollary of adopting a 	 = 4/3 polytropic EoS
is that the sound speed decreases with decreasing density. As a re-
sult, and as shown in Fig. 4, the scaleheight of low-mass (NSG)
discs should increase with Md, reach a maximum and then de-
crease as the self-gravity of the disc becomes gradually more
important.

We show this in Fig. 8, where we plot the zf coordinate that
contains different fractions of the disc column mass, measured at
Rd, for runs that vary the disc mass, keeping the same halo and disc
radius as in Fig. 6. The ‘scaleheights’ zf are shown as a function
of the surface density, �(Rd), which is directly proportional to Md,
since the disc radial scalelength is kept fixed. As expected, low-
mass discs get thicker with increasing �, reach a maximum and
then start to decrease at higher masses, before eventually becoming
unstable.

The excellent agreement between the numerical results (coloured
circles) and the analytic predictions (lines) give us confidence that
the vertical structure of polytropic discs can be simulated accurately
by current hydrodynamical techniques, at least when the spatial and
mass resolution is adequate enough to resolve the Jeans mass and
the characteristic thickness of the disc. Systematic deviations may
occur, however, when simulated discs are evolved with inadequate
resolution, such as, for example, when the gravitational softening,
εg, is comparable to the disc thickness, which implies that the disc’s
self-gravity is not properly resolved within the disc. We explore this
next.

4.2 Disc thickness and gravitational softening

The gravitational softening, εg, introduces a physical length-scale
expected to induce deviations from the analytic solutions in discs
whose thickness is comparable to εg. This will only affect SG discs,
since the vertical self-gravity of the disc is, by definition, negligible
in the NSG case. Note that this implies that the role of εg should be
negligible in cosmological simulations of the formation of low-mass
discs that adopt an EAGLE-like EoS, as discussed in Section 2.4:
‘realistic’ discs less massive than ∼2.5 × 1011 M� are expected to
be NSG.

On the other hand, the gravitational softening may impact SG
discs in two ways: (i) it may result in artificially thicker discs by re-
ducing their vertical gravity; and (ii) it may hinder the development
of disc instabilities by limiting the binding energy of the self-bound
clumps that result. As discussed in Section 2.1, the length-scale of
radial instabilities is generally much larger than the scaleheight of
the discs, so the condition εg � HSG should be enough to ensure
good numerical convergence. This implies a minimum gravitational
force resolution of ∼100 pc to resolve the thin disc of the Milky Way
at the solar circle and beyond.

The above considerations may be tested by running a controlled
series of simulations where the gravitational softening of a nomi-
nally SG disc (at Rd) is monotonically decreased until convergence
is achieved. In this case, the actual thickness of a simulated disc
is expected to vary from the NSG solution for large softening (be-
cause in that case the vertical gravity of the disc is negligible) until
converging to the SG case for small enough softening.

MNRAS 473, 1019–1037 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/473/1/1019/4191292
by University of Durham user
on 25 January 2018



1028 A. Benı́tez-Llambay et al.

Figure 6. Three exponential polytropic discs evolved in a dark matter halo of mass M200 ∼ 2.0 × 1012 M�, for different gas masses (increasing from left
to right, as indicated by the legends), but keeping the scale radius of the system fixed, Rd = 4 kpc (inner dashed circle in top panels). For reference, the
virial radius of the system is r200 = 260 kpc. These systems are highlighted with white squares in Fig. 5. The left and middle columns correspond to stable
discs evolved for ∼3 Gyr. The rightmost panel shows, in contrast, a disc that is Toomre unstable and breaks into clumps evolved for ∼150 Myr. The bottom
row of panels shows the circular velocity profile, Vc(R); the surface density profile, �(R); and the half-mass scaleheight, z50, of the discs. Red solid curves
show the measured profiles, whilst dark dashed lines show the analytic model. Note that the surface density profile evolves little from that imposed in initial
conditions. The analytic model for the z50 profile is calculated using the method described in Section 2.2.3 using the initial surface density profile as input.
Blue dot–dashed, and orange dotted lines show the solution for a SG and an NSG disc, respectively.
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Figure 7. Vertical density profile at the scale radius, Rd, normalized to the
density at the midplane of the disc, as a function of z/z50, for two of the
simulated discs shown in the left and middle columns of Fig. 6. The disc
shown in the upper panel is NSG, whilst the disc shown in the bottom panel
is SG at Rd. Individual dots show the density of the gas particles within a
small annulus centred at Rd. Black dashed-line shows the analytic density
profile of a NSG polytropic disc, given by equation (21). The simulations
reproduce the analytic expectation very well. This also shows that the shape
of the vertical density profile can be approximated by equation (21), even
when the system is SG.

We choose for this example the system depicted in the middle
column of Fig 6 and show in Fig. 9 the radial dependence of the
half-mass scaleheight for different values of εg. The two thick lines
at top and bottom illustrate the expected solution for the NSG case
and the ‘true’ (εg � HSG) case, respectively.

The simulation results clearly reproduce the expected trend, and
also suggest a simple empirical formula to describe quantitatively
the spurious thickening induced by the softening:9

H 2 =
(

1

H 2
NSG

+ ξ (εg)

2HNSGHSG
+ ξ (εg)

H 2
SG

)−1

, (40)

where ξ (ε) is a correction function of the form

ξ (εg) = 1

1 + (
εg/HSG

)ν . (41)

The dashed lines in Fig. 9 are simply computed using the cor-
rected (softening-dependent) formula (equation 40) with ν = 1.4.

This result also provides guidance for the choice of gravitational
softening in cosmological simulations that adopt a polytropic EoS,
such as EAGLE. Realistic disc galaxies (i.e. that satisfy AM and size
constraints) have surface densities that increase with mass roughly
as � ∝ M

1/3
d . Since the scaleheight of SG polytropic discs scales,

for 	 = 4/3, as z50 ∝ �(	 − 2)/	 ∝ M−1/6 (Section 2.4), then SG
EAGLE discs are expected to have roughly constant thickness, at
least if in gaseous form. Therefore, in practice, choosing εg so that
the vertical scaleheight of the least massive disc expected to be

9 We refer the reader to Appendix C for a derivation of equation (40).

Figure 8. The z-coordinate that contains a given fraction of the disc’s
column mass, zf, as a function of surface density at Rd for simulated discs
evolved in the same dark matter halo of M200 = 2 × 1012 M�. All discs
have the same scale radius Rd = 4 kpc, but varying masses: these correspond
to all orange circles in Fig. 5 below (and including) the instability line. The
shaded region indicates surface densities above which discs are expected to
be unstable; circles are the results of the simulations; lines are the analytic
predictions from Section 2. The scale on top indicates the value of 1/Q(Rd)
for each disc (from equation 10), which is a measure of the critical surface
density above which discs become unstable.

Figure 9. Half-mass scaleheight, as function of radius, for the gas disc
shown in the middle panel of Fig. 6, simulated with various values of
the gravitational softening, εg, in kiloparsecs, as indicated in the legend.
Thin dashed curves close to the coloured curves show the predictions from
equation (C10). Thick top and bottom curves indicate the analytic NSG and
SG half-mass heights, respectively.

unstable is properly resolved ensures that all discs are adequately
resolved, regardless of mass. For the fiducial EAGLE EoS, this
mass is of order Md ∼ 3 × 109 M� (Fig. 5), which has a half-mass
scaleheight of z50(Rd) ∼ 125 pc. Choosing εg somewhat smaller
than this value seems safe. Much smaller softenings would unduly
increase computing time and the likelihood of incurring integration
errors and are unnecessary, at least for this EoS.

Evidently, if the pressure of the gas is lower than that assumed
by the EAGLE fiducial EoS, the minimum softening required to
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Figure 10. Half-mass scaleheight (top) and surface density (bottom) as a
function of radius for the SG disc shown in the middle panels of Fig. 6. The
same disc is simulated varying the number of particles used to resolve the
system, from 2 × 105 to 200 gas particles, as indicated by the legends in
the bottom panel. Grey thick solid lines show the theoretical expectation for
the input surface density profile.

resolve the discs has to be also smaller since the discs are expected to
become SG at lower gas masses. This may be particularly important
for simulations that attempt to model the evolution of a cold phase
explicitly. Conversely, if the pressure of the gas is much higher, the
minimum required softening may be bigger. In practice, gaseous
discs in cosmological simulations such as EAGLE are expected
to have an extra ‘turbulent’ pressure that adds up to the thermal
pressure imposed by the EoS, sourced by a number of external
energetic sources such as supernova feedback, satellite interactions
or repeated galaxy mergers (see e.g. Navarro et al. 2017), so that
our softening criterion may be regarded as a safe lower bound.

4.3 Disc thickness and mass resolution

We can use the same disc as in the previous subsection to assess the
sensitivity of our results to the mass resolution (i.e. the number of
particles) of the simulation. For reference, we recall that the Jeans
mass for the EAGLE EoS is a constant, MJ = 5.5 × 108 M�. The
reference disc has Md = 1.5 × 1010 M�, which implies that our
simulations resolve the Jeans mass in this system with at least a few
hundred particles. We show in Fig. 10 the half-mass scaleheight
of the disc, as well as its surface density, in runs with varying
particle numbers, from an extremely poorly resolved system with
200 particles to our fiducial runs with 200 000 particles.

Interestingly, except perhaps for the inevitable noise associated
with poor particle sampling, both the vertical height profile and
the surface density profiles are roughly in agreement with each
other and with the analytic expectations. This suggests that, to first
order, the discreteness effects associated with a finite number of gas
particles are not the main systematic effect that limits the reliability
and applicability of numerical simulations of disc galaxy formation
beyond the noise introduced by small number statistics.

4.4 Disc instabilities and gravitational softening

As anticipated in our discussion of Section 2.1, disc instabili-
ties introduce another characteristic length-scale in the problem:

Figure 11. Configuration of the gas in the nominally unstable gas disc
shown in the right-hand column of Fig. 6. Runs differ only in the value of the
gravitational softening, as given in the legends. For reference, the expected
half-mass scaleheight of this disc at Rd is of order 100 pc. The top row shows
that the disc may be artificially stabilized when using large values of the
gravitational softening, εg. The bottom row shows that instabilities develop
when εg < εcrit ∼ 0.39 kpc (equation 42). This illustrates that instabilities
develop when the critical radial wavelength, λcrit, is well resolved, even if
the vertical scaleheight is not well resolved. Runs that become unstable are
shown just after the clumps start to dominate the dynamics of the disc.

λcrit = 4π2G�/κ2, the critical wavelength that arises in linear sta-
bility analysis of differentially rotating discs. Simulations with nu-
merical resolution unable to resolve this scale are likely to miss the
onset of radial instabilities and artificially stabilize the disc (see e.g.
Romeo 1994).

The critical wavelength is typically larger than the disc thickness,
so simulations that properly resolve the scaleheight of unstable discs
will also capture the onset of radial instabilities. On the other hand,
discs artificially thickened by limited resolution might see their
instabilities suppressed once the gravitational softening becomes
larger or comparable to λcrit.

We explore this in Fig. 11, where we show the evolution of a
nominally unstable disc (the same one as in the right-hand column
of Fig. 5) for different values of εg. The top panels show the final
structure of discs that remain stable over many rotation periods,
whereas the bottom panels show discs that can only be followed for
a few rotations because they quickly go unstable after settling in
vertical equilibrium.

The only difference between the top/bottom rows is the value
of the gravitational softening confirming that gaseous discs may
be artificially stabilized when the softening parameter exceeds a
certain ‘critical’ value. In the example of Fig. 11 this ‘critical’
value is of order εcrit ≈ 0.39 kpc.10 This is actually larger than
the expected half-mass scaleheight of the disc, z50(Rd) ≈ 150 pc,
as shown in Fig. 6. In other words, simulations that resolve the

10 εcrit is calculated using quantities measured at Rd ∼ 4 kpc, where the disc
is expected to be unstable. In particular, we use κ(Rd) ≈ 2Vc(Rd)/R(Rd) ∼
90 km s−1 kpc−1 and �(Rd) ∼ 108 M� kpc−2 (see Fig. 6).
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Figure 12. As Fig. 11, but for εg = 10 pc and varying the number of
particles used in the simulation (see legends in each panel). Note that for
εg < εcrit the same instabilities develop in the disc, regardless of the number
of particles used. The gas particle mass is, in each run, mgas = 1.5 × 105,
1.5 × 106, 1.5 × 107 and 1.5 × 108 M�, respectively. For reference, the
Jeans mass is the same in all cases, MJ ∼ 5.5 × 108 M�, and is resolved
with fewer than 5 particles in the most poorly resolved run.

critical instability wavelength go unstable even if they overestimate
the thickness of the disc. We conclude that, as expected, it is easier
to resolve radial instabilities in a nominally unstable gaseous disc
than its scaleheight.

Although we focus on a single example in Fig. 9, we have verified
that the simple relation,

εcrit = 1

6
λcrit = 2π2

3

G�

κ2
(42)

describes well the transition from stable to unstable discs in all
our simulations. The (1/6) constant in the definition of εcrit may
be understood by noting that (i) the ‘most unstable’ wavelength
is actually (1/2)λcrit (section 6.2.3 of Binney & Tremaine 2008);
and (ii) that we are quoting ‘Plummer-equivalent’ values for the
softening. In these units, pairwise Newtonian gravity is recovered at
distances ∼3εg. The two factors readily explain the (1/6) constant
relating εcrit and λcrit. We refer the reader to Appendix B for a
derivation of equation (42).

4.5 Disc instabilities and mass resolution

Fig. 12 shows the result of runs of the same system as in the previ-
ous subsection, but fixing the gravitational softening to εg = 10 pc
and varying the number of particles. This is a similar exercise to
that illustrated in Fig. 10, where we showed that the expected disc
thickness is well reproduced even with as few particles as a few
hundred. As Fig. 12 makes clear, poor mass resolution does not
alter the fundamental unstable structure of the disc provided that
εg < εcrit, which ensures that the radial instability is not artificially
damped out by the softened gravity. We conclude that the number
of particles does not impose critical restrictions on the structure of a
gaseous disc beyond those associated with the noise resulting from
the finite particle number.

4.6 The stellar descendants of polytropic gaseous discs

Stellar discs inherit the properties of the gas at the time of formation,
but they evolve differently since, once formed, they are not subject to
hydrodynamical forces. As such, stellar discs are subject to different
kinds of instabilities and may evolve differently over time than their
gaseous components. This is a complex topic beyond the scope of
this paper, but two questions are of interest and we briefly consider
them here: (i) how does the vertical scaleheight of a stellar disc
reflect that of its parent gas?; and (ii) what are the effects of radial
instabilities in the gas on the structure of the descendent stellar disc?

We address these questions using a simplified approach, which
relies on a parallel series of simulations identical to the ones dis-
cussed so far, but where we allow the gas that exceeds a den-
sity threshold, ρthr/mp = 0.1 cm−3, to turn into stars at the same
Kennicutt–Schmidt rates adopted in the EAGLE suite of cosmo-
logical simulations (Crain et al. 2015; Schaye et al. 2015).11 To
simplify the problem further we neglect any feedback from formed
stars. In other words, the gaseous discs are allowed to transform
gradually into stellar systems until they essentially run out of gas
and we focus our analysis on their vertical equilibrium structure.

We begin by analysing the vertical structure of a ‘realistic’ disc
in a low-mass halo; i.e. with gas mass and size that approximately
match observational constraints. In particular, we choose for this
illustration M200 = 3 × 1010 M�, Md = 108 M� and Rd = 0.9 kpc
(leftmost starred symbol in Fig. 5). We expect such discs to be
NSG and, therefore, stable. In addition, since its scaleheight is
determined by the halo and not by the disc’s own gravity, the role
of the gravitational softening in the vertical structure is negligible,
simplifying the interpretation.

Each column of Fig. 13 corresponds to different runs of the
same system, varying systematically the gravitational softening,
from εg = 0.62 kpc (leftmost) to 0.08 kpc (rightmost). For refer-
ence, the gas half-mass scaleheight of this system is expected to be
z50(Rd) ∼ 170 pc. Each run is shown at two different times; the first
one (top row) is shortly after the disc has settled vertically and when
only about 5 per cent of the gas has been transformed into stars. The
bottom row shows the system after several dozen rotation periods,
long after star formation has effectively ceased.

The choice of gravitational softening is clearly of little importance
for the system shown in Fig. 13, and the stellar discs at late time
are practically indistinguishable amongst them. The disc thickness
remains roughly constant, even after varying εg by a large factor.
We show this quantitatively in the top-right panel of Fig. 15, where
we plot z50(Rd) as a function of εg after 12 Gyr of evolution. The
thickness of the stellar disc is essentially independent of εg, even as
this is varied by three decades. This confirms that the gravitational
softening plays essentially no role in the scaleheight of a NSG disc.

It is also apparent from the same top-right panel of Fig. 15 that
the stellar disc is actually thinner than its gaseous progenitor. There
are two main reasons for this. One is that stars form faster in high-
density regions and, consequently, form preferentially close to the
disc midplane. The second is that stars are born out of gas in hy-
drostatic equilibrium and therefore at rest vertically; the stellar disc
must therefore thin down by roughly a factor of two before virial-
izing.

The situation is quite different when a more massive, nominally
unstable disc is allowed to form and turn into stars. We show this in

11 This is done by using a simplified version of the code used to run the
EAGLE simulations.
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Figure 13. Spatial configuration of the stellar disc formed from a parent gas disc that was nominally stable. The parent system is indicated by the leftmost
starred symbol in Fig. 5: M200 = 1.0 × 1010 M�, Md = 1.0 × 108 M�, Rd ∼ 0.9 kpc. Each column shows the same system at two different times, for
simulations with gravitational softening, εg. Varying the gravitational softening for more than a decade has little effect on the final configuration of the gas
since the disc is nominally stable.

Figure 14. Spatial configuration of the stellar disc formed from a parent gas disc that was nominally unstable. The parent system is indicated by the rightmost
middle starred symbol in Fig. 5: M200 = 1.0 × 1012 M�, Md = 2 × 1010 M�, Rd ∼ 4 kpc. Each column shows the same system at two different times,
simulated varying the gravitational softening, εg. Note that when εg < εcrit = 0.5 kpc (see blue arrow in bottom panel of Fig. 15) instabilities may develop and
the system breaks into self-bound clumps that subsequently disperse by merging, leading to considerable vertical thickening.

Fig. 14, which is analogous to Fig. 13 but for M200 = 1.0 × 1012 M�,
Md = 2.0 × 1010 M�, and Rd = 4 kpc. As discussed in the previous
subsection, large values of the gravitational softening may (artifi-
cially) stabilize the disc leading to results qualitatively similar to
those obtained for the low-mass system discussed above. This is

indeed the case for the first two columns in Fig. 14 where the soft-
ening exceeds the ‘critical’ value given by equation (42), which, at
Rd, is εcrit(Rd) ≈ 500 pc for this system.

For softenings smaller than the critical value, the growth of radial
instabilities is no longer impeded and the disc quickly breaks up
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Figure 15. Top: half-mass scaleheight as a function of gravitational soft-
ening for two stellar discs formed out of a nominally unstable parent disc
(left-hand panel) or a stable one (right-hand panel). Stellar discs formed out
of stable gas discs in vertical equilibrium are considerably thinner than the
gaseous progenitor, by more than a factor of ∼2, and independent of the
value of εg, even when this is varied by three decades. The same is true
of nominally unstable discs artificially stabilized by large softenings. For
εg < εcrit, though, the opposite is true: stellar discs are much thicker than
their gaseous counterparts, an effect traced to the dispersal of self-bound
clumps that assemble in these systems. Bottom: same as top-left, but for
three nominally unstable discs with different values of εcrit shown with ver-
tical arrows. The scale radius is kept equal (Rd = 4 kpc). Stellar discs with
gravitational resolution enough to resolve the size of unstable clumps are
much thicker than their parent gas discs.

into a number of self-bound clumps that then turn into stars. These
massive clumps orbit within the disc, colliding frequently, merging
and scattering their stellar particles in both, along the plane of the
galaxy and perpendicular to it. The end result is a kinematically hot,
much thicker stellar disc.12

This is seen qualitatively in the two columns on the right of Fig. 14
and quantitatively in the top-left panel of Fig. 15. For all runs with
εg < εcrit, the stellar disc is nearly an order of magnitude thicker
than otherwise. The sharp transition between these two regimes is
indicative of the onset of an instability when the softening is small
enough to resolve the formation of tightly bound clumps of stars in
the disc.

If our interpretation is correct then the softening required to re-
solve radial instabilities should scale like �(Rd) (equation 42) when
all other parameters are kept equal. We test this by repeating the
simulation series depicted in Fig. 14, but changing the disc mass
(and therefore �) to Md = 5.1 × 1010 and Md = 1.25 × 1010 M�.
The thickness of the resulting stellar discs is shown, as a function
of εg, in the bottom panel of Fig. 15. The transition between ‘thin’
and ‘thick’ stellar discs clearly occurs when the softening becomes

12 We also note that the clumps are not completely dispersed before sinking
to the centre of the galaxy, thus contributing to the formation of a central
bulge. We show this process quantitatively in Appendix E.

smaller or larger than the critical value of equation (42), which is
indicated by the vertical arrows.

The discussion above provides some guidance to the choice of
numerical parameters in numerical simulations. Resolving the ver-
tical structure of unstable discs will inevitably lead to the formation
of large numbers of dense, tightly bound clumps of gas that will
rapidly turn into stars leading to unacceptably thick stellar discs
as the clumps later merge and disrupt. One way of preventing this
outcome is by choosing feedback algorithms that strongly regu-
late and limit the star formation efficiency in each clump allowing
only a small fraction of its mass to be transformed into stars before
the remaining gas is effectively dispersed by feedback. The newly
formed stars would no longer be self-bound and should be quickly
mixed within the disc by differential rotation, limiting the kinematic
heating of the disc.

5 SU M M A RY A N D C O N C L U S I O N S

We study the vertical structure and stability of centrifugally sup-
ported polytropic gaseous discs embedded in CDM haloes, and
contrast analytical results with those of numerical techniques used
in some of the latest cosmological hydrodynamical simulations. The
aim of this comparison is not only to validate the numerical tech-
niques, but also to assess the effects of limited numerical resolution,
such as gravitational softening or a finite number of particles.

We use the GADGET-2 SPH code, modified to include the gravita-
tional acceleration of a CDM halo (modelled as a rigid, spherical
NFW potential), and adopt the same polytropic equation of state,
P ∝ ρ	 , adopted by the EAGLE suite of cosmological simulations
(	 = 4/3).

The equilibrium vertical disc structure is set by the balance be-
tween the gas pressure and the compressive forces of the halo and of
the disc’s self-gravity. We distinguish between two regimes, when
either the halo dominates (NSG discs) or the disc dominates (SG
discs).

Our main conclusions may be summarized as follows.

(i) At given radius R, the characteristic scaleheight of a disc
is generally smaller than that expected either in the NSG case,
where zH ∝ (cs/Vc)R, or the SG case, where zH ∝ c2

s /G�. The
mean square harmonic of the two provides a simple yet reasonably
accurate estimate (equation 8).

(ii) The shape of the vertical density profile at given R is a strong
function of the polytropic index 	, but depends only weakly on
whether the disc is SG or not.

(iii) SG discs are generally Toomre unstable and quickly break
into clumps; NSG discs are stable. The characteristic length-scale
of instabilities (λcrit; equation 14) is typically much larger than the
disc scaleheight.

(iv) SPH simulations of gaseous exponential discs recover the
expected disc scaleheight and vertical dependence quite accurately,
even with as few as a few hundred particles per disc.

(v) The gravitational softening of disc particles plays no role in
the vertical structure of NSG discs, but may lead to artificial thick-
ening of SG discs when the softening is comparable or larger than
the expected SG scaleheight. Quantitatively, the effect of the soften-
ing depends on the difference between NSG and SG scaleheights:
for softenings large enough, all discs converge to the NSG solution.

(vi) Large gravitational softenings may artificially stabilize oth-
erwise unstable discs when the critical instability length-scale is
not properly resolved (i.e. for εg > λcrit). Since generally λcrit > zH,
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discs that are well resolved vertically also adequately resolve the
onset of radial instabilities.

(vii) Unstable discs where a large fraction of stars form in tightly
self-bound clumps may be substantially thickened by the subse-
quent dispersal of stars that result from the merging of the clumps.
Feedback mechanisms might be able to prevent this if they lead to
the dissolution of the clumps before most of their mass is turned
into stars.

(viii) Realistic galaxy discs in �CDM (i.e. those inhabiting
haloes that follow abundance matching constraints and whose sizes
are comparable to those observed, at a given galaxy mass) are ex-
pected to be NSG at low masses but SG at high masses for the
EAGLE polytropic (	 = 4/3) equation of state.

(ix) Realistic discs in �CDM have approximately flat circular
velocity curves and declining surface density profiles. They are
generally expected to ‘flare’ outwards. This means that the presence
of ‘flaring’ coeval stellar populations in disc galaxies, like the Milky
Way, is naturally consistent with theoretical expectations provided
the stellar disc inherit the properties of the parent polytropic gaseous
disc and not necessarily due to processes such as radial migration or
satellite interactions. This possibility is further explored in Navarro
et al. (2017).

(x) Realistic discs in �CDM have surface densities that scale
as � ∝ M1/3, which implies that the typical scaleheight is a very
weak function of mass (zH ∝ M−1/6) for massive, SG discs mod-
elled with an EAGLE-like EoS. This means that a single choice of
gravitational softening (εg ∼ 100 pc) is enough to resolve the char-
acteristic thickness of essentially all EAGLE discs, independently
of mass. Choosing much smaller values would lead to no further
improvements in gas disc scaleheights.

We conclude that numerical hydrodynamical methods such as
that adopted in GADGET-2 adequately reproduce the basic vertical
structure of gaseous discs formed in �CDM cosmological simula-
tions. If chosen carefully, numerical parameters such as the grav-
itational softening introduce no spurious effect on the expected
thickness of polytropic discs. Our results provide clear guidance as
to how to choose these parameters for a given effective equation
of state; we provide specific recommendations in Section 4.2. For
example, choosing the softening so that the vertical structure of
the least massive disc that is expected to be SG in a cosmological
simulation is properly resolved should be enough to resolve the ver-
tical structure of discs of all masses in �CDM adequately. For the
EAGLE EoS a gravitational softening of order ∼100 pc should be
enough.

We close by noting that our simulation series does not consider
three further effects that should be of importance for the vertical
structure of simulated discs. One of them is numerical and concerns
the ‘noise’ in the gravitational potential introduced when the dark
halo is modelled with a ‘live’ ensemble of particles. The second
relates to the effects of energetic feedback on the gaseous disc,
which may introduce wind-driven bubbles and bulk motions in the
gas that would add to the thermal pressure. The third concerns
the impact of the cosmological environment, which may stir the
gas by satellite interactions and repeated galaxy mergers. All these
mechanisms may increase the disc’s thickness, reduce the impor-
tance of the disc’s self-gravity and make our softening criterion
less stringent. The first two effects are best studied together in a
controlled suite of simulations like the one we present here, but in-
cluding realistic initial conditions and a suitably calibrated feedback
module. We plan to present results of such experiments in future
work.
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Stinson G. S., Brook C., Macciò A. V., Wadsley J., Quinn T. R., Couchman

H. M. P., 2013, MNRAS, 428, 129
Toomre A., 1964, ApJ, 139, 1217
Trayford J. W. et al., 2017, MNRAS, 470, 771
Van Der Walt S., Colbert S. C., Varoquaux G., 2011, Comput. Sci. Eng., 13,

22
Vogelsberger M. et al., 2014, MNRAS, 444, 1518
Wang L., Dutton A. A., Stinson G. S., Macciò A. V., Penzo C., Kang X.,
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APPENDIX A : V ERTICAL DENSITY PRO FI LE
OF SG POLY TROPIC DISC

Here we show that the vertical density profile derived for a NSG
polytropic disc constitutes a good approximation to the density
profile of a SG disc. The vertical density profile can be derived by
solving the hydrostatic equilibrium equation,

1

ρg

∂P

∂z
= −∂�g

∂z
(A1)

in which ρg is the local gas density of the disc, P is the pres-
sure, related to the density through a polytropic equation of state
P = Peos(ρg/ρeos)	 , with Peos and ρeos being constants that deter-
mine the normalization of the relation and 	 is the polytropic index.
The gravitational potential sourced by the disc, �g, is related to the
mass distribution of the system through the Poisson equation,

∂2�g

∂z2
= 4πGρg. (A2)

Differentiating equation (A1) with respect to z, writing the pressure
of the system in terms of the density, and using equation (A2), we
obtain the following differential equation for the density profile,
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(
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)
+ ρ̃g = 0, (A3)

where the normalized variables, ρ̃g and z̃, are defined by⎧⎪⎪⎪⎨
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ρg = ρ̃gρeos
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(A4)

As noted by Goldreich & Lynden-Bell (1965), equation (A3) has
simple solutions for particular values of 	. For 	 = 1 and 	 = 2
the solutions are

ρg(R, z)

ρg(R, 0)
=
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]
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where ρg(R, 0) and P(R, 0) are the density and pressure at the
midplane of the disc, respectively. Similarly to equation (21),
equation (33) enables us to define the scaleheight parameter of
a SG polytropic disc for 	 = 1 and 	 = 2:

HSG(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
c2

s,0

2πGρg(R, 0)

)1/2

, if 	 = 1.

π

2

(
Peos

2πGρ2
eos

)1/2

, if 	 = 2.

(A6)

Previous solutions share a number of similarities when contrasted
with equation (22). Indeed, for 	 = 1, the scaleheight parameter,
HSG, is defined as the z-coordinate above (or below) which the
density drops by a factor sech2(1) ∼ 0.42 (recall that it is 1/e ∼ 0.37
for a NSG isothermal disc). Moreover, for a SG isothermal disc the
density (and pressure) vanish at infinity, similarly to what we found
in Section 2.2.1 for a NSG disc. For 	 = 2, the disc is effectively
polytropic. In this case, the density vanishes at a finite height, thus
defining the ‘true’ height of the disc, similarly to what we found for
NSG polytropic discs. We now compare the value of the scaleheight
parameter given by equation (34), HNSG, to HSG (equation 32):

HNSG

HSG
=

⎧⎪⎨
⎪⎩

Fc =
√

π

2
∼ 0.9, if 	 = 1.

π

2
Fc ∼ 1.1, if 	 = 2,

(A7)

where Fc is given by equation (25). Thus, we conclude that
the approximate scaleheight parameter derived in Section 2.2.1
(equation 32) differ by ∼10 per cent relative to the actual scale-
height parameter, which is acceptable for our purposes.

APPENDI X B: LOCAL STABI LI TY O F SG
D I S C S A N D T H E IM PAC T O F T H E
G R AV I TAT I O NA L SO F T E N I N G

The dispersion relation for axisymmetric disturbances in an (in-
finitesimally thin) rotating gas disc reads13

ω2 = κ2 − 2πG�k + c2
s k

2, (B1)

where ω and k are the frequency and the wavenumber of the per-
turbation, respectively. The gas disc is unstable if ω2 < 0, which
happens when Q = κcs/πG� < 1. The line of neutral stability of
the system is given by

κ2 − 2πG�k + c2
s k

2 = 0, (B2)

which can be written in terms of Q as follows:

1 −
(

k

kcrit

)
+

(
Q

2

)2 (
k

kcrit

)2

= 0 (B3)

with kcrit = κ2/2πG�. Thus, the critical value, Qc, below which a
perturbation with wavenumber k is unstable is

Qc(k) = 2

√
kcrit

k
−

(
kcrit

k

)2

, (B4)

or, equivalently, in terms on the perturbation’s wavelength λ =
2π/k,

Qc(λ) = 2

√
λ

λcrit
−

(
λ

λcrit

)2

. (B5)

13 See e.g. Section 6.2.3 in Binney & Tremaine (2008).
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Perturbations with λ > λcrit and λ � λcrit are stable. The ‘most’
unstable wavelength is λcrit/2, which correspond to a value Qc = 1.

In order to resolve instabilities of wavelength λ ∼ λcrit/2 =
2π2G�/κ2, gravity must be properly resolved on scales smaller
than λcrit, otherwise artificial stabilization may occur. This means
that gravity must not be softened on scales hε ∼ 3εg � λcrit, where
εg is the ‘equivalent’ Plummer softening, which implies:

ε � εcrit = 2

3

π2G�

κ2
∼ (0.58 kpc)

(
�

108M�kpc−3

)

×
(

κ2

70 km s−1kpc−1

)2

. (B6)

We have verified that this equation is a good approximation to the
critical softening below which radial instabilities are resolved. See
Section 4.4.

A P P E N D I X C : C O N S T RU C T I N G A G E N E R A L
S O L U T I O N TO T H E SC A L E H E I G H T
PA R A M E T E R

In Section 2.1 we stated that a disc is NSG if the vertical acceleration
profile is primarily described by equation (2) and SG if it is largely
described by equation (3). Here we calculate more precisely the
transition between these two regimes and justify why the square
harmonic mean (equation 8) constitutes a good approximation to
the scaleheight parameter of polytropic discs.

The condition that determines whether a disc is SG or NSG can
be obtained by comparing the contribution of the disc and the halo
to the vertical gravitational acceleration at (R, z) = (R, H)

(∂�h/∂z)(
∂�g/∂z

) (R,H )= V 2
c (R)/R

2πG�(R)

(
H

R

)
≡ 1

3Fc

[
ρ̄dm(R)

ρg(R, 0)(R)

]
(C1)

in which ρ̄dm(R) = Mdm(<R)/(4/3πR3) is the mean enclosed dark
matter density at a given radius related to the circular velocity of the
system by (Vc/R)2 = (4/3)πGρ̄dm(R), in a dark matter-dominated
system; ρg(R, 0) is the midplane density of the disc, and Fc is given
by equation (25). In terms of the actual densities, the system is either
SG or NSG at R according to the following criterion:{

ρ̄dm(R) � 3Fcρg(R, 0) if the disc is SG,

ρ̄dm(R) � 3Fcρg(R, 0) if the disc is NSG,
(C2)

which suggests that at a given radius, the parameter that determines
whether a disc is SG or not is the ratio between the mean enclosed
dark matter density, ρ̄dm(R) and the local gas density at the mid-
plane, ρg(R, 0).

We now propose a formula that converges to the desired scale-
height parameter in the asymptotic SG and NSG regimes with the
property of transitioning between these two regimes according to
criterion (C2):

H (R) = HNSG(R)

(
1 + ρg(R, 0)

β(	)ρ̄dm

)−1/2

(C3)

where HNSG(R) is given by equation (22) and β(	), defined by

β(	) = 2

3	F 2
c α2(	)

(C4)

ensures that the scaleheight parameter is HSG when the disc is SG.
Recall that the midplane density of the disc is related to the surface
density through equation (24).

It is straightforward to see that equation (C3) converges to
the desired solution in the asymptotic cases. Indeed, in the limit

ρg(R, 0) << βρ̄dm ≤ 3Fc, the disc is effectively NSG, and the so-
lution for HNSG (equation 22) is recovered. On the other hand, if the
disc is SG, ρg(R, 0) � 3Fcρ̄dm ≥ βρ̄dm, and the solution for HSG

(equation 32) is recovered. We have also validated equation (C3) at
intermediate regimes, where either the gravity of the halo and the
disc are both important in determining the disc’s scaleheight, and
found that it constitutes a very accurate description of the detailed
scaleheight of polytropic discs. Note, however, that equation (C3)
is inconvenient, as the solution is directly expressed in terms of the
midplane density of the disc, which, for a given surface density,
depends explicitly on the scaleheight parameter (see equation 24).
Thus, equation (C3) defines the scaleheight parameter of a poly-
tropic disc implicitly. It is possible to derive an equivalent (and
perhaps more convenient) formula by studying the asymptotic be-
haviour of equation (C3). Indeed, it is straightforward to see that
equation (C3) approaches the SG regime as:

H 2 =H 2
NSG

[
1 +

(
η

Q

)2
]−1

=H 2
NSG

[
1 +

(
HNSG

HSG

)2
]−1

, (C5)

where we have used equation (24) to relate the midplane density of
the disc to the surface density and also assumed that the epicyclic
frequency of the disc is κ = 2Vc/R; Q is the Toomre parameter and
η is

η = 2α(	)	Fc. (C6)

Similarly, equation (C3) approaches the NSG regime as

H 2 = H 2
NSG

[
1 + η

Q

]−1

= H 2
NSG

[
1 +

(
HNSG

HSG

)]−1

. (C7)

A convenient function that captures these properties is, in fact, the
square harmonic mean

H 2 = H 2
NSG

1 + HNSG
HSG

(
1 + HNSG

HSG

)

=
(

1

H 2
NSG

+ 1

HNSGHSG
+ 1

H 2
SG

)−1

. (C8)

Inspired by this, we propose the following equation, which proved
to be as accurate as equation (C3) in recovering the scaleheight
parameter of polytropic discs:

H 2 =
(

1

H 2
NSG

+ 1

2HNSGHSG
+ 1

H 2
SG

)−1

. (C9)

Equation (C3) is particularly useful for taking into account the im-
pact of the gravitational softening on the scaleheight parameter.
Indeed, since it takes into account the transition between the NSG
and the SG regimes naturally, the impact of the gravitational soft-
ening may be incorporated by adding a correction function to the
SG term

H (R) = HNSG

[
1 + ξ (εg)

β(	)

ρg(R, 0)

ρ̄dm

]−1/2

, (C10)

where 0 ≤ ξ (ε) ≤ 1 is the correction function of the form

ξ (εg) = 1

1 + (
εg/HSG

)ν (C11)

in which ν must be fitted from numerical experiments. For the
example shown in Fig. 9, we find ν ∼ 1.4 yields good results.
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Equation (C10) enables us to derive the ‘softening-corrected’ ver-
sion of equation (C9)

H 2 =
(

1

H 2
NSG

+ ξ (εg)

2HNSGHSG
+ ξ (εg)

H 2
SG

)−1

. (C12)

Thin dashed lines in Fig. 9 show the characteristic scaleheight of
‘softened’ polytropic discs contrasted with numerical experiments.
Clearly, this simple correction provides an excellent quantitative
description of the artificial thickening caused by the use of a finite
gravitational softening.

APPENDIX D : D ISCS BECOME SG BEFORE
G O I N G U N S TA B L E

The onset of instabilities in the plane of the disc is well predicted
by the dimensionless Toomre parameter, Q, (Toomre 1964), defined
as

Q = csκ

πG�
, (D1)

where κ is the epicyclic frequency, related to the angular velocity,
�, by

κ2 = 2�

R

d

dR

(
R2�

)
. (D2)

A disc will become Toomre unstable if Q drops below Qcrit ≈ 1. A
Toomre unstable disc is in general SG, but not the other way around.
Indeed, when inserting equation (32) into equation (C2) we see that
the condition for a disc to be SG is

(Vc/R)cs,0

πG�
= Q � (8	Fc)1/2 (D3)

in which we assumed that � is a weak function of R, so that
κ = 2� = 2Vc/R. The factor (8	Fc)1/2 ranges between 2 and
3 for usual values of 	. Our numerical experiments suggest that
galaxies become unstable for values of Q � 0.6 � (8	Fc)1/2 (see
Wang et al. 2010, for a similar result). Thus, we conclude that SG
polytropic discs are not necessarily Toomre unstable, at least within
a narrow range of surface densities.

A P P E N D I X E: EVO L U T I O N O F S T E L L A R
CL UMPS

In Fig. 14 we show that if the gravitational softening, εg, is much
smaller than the critical value (equation 42), radial instabilities are
allowed to grow and the disc breaks up into self-bound clumps that
turn into stars. These clumps then interact with each other, merge
and scatter stars along the plane of the galaxy and perpendicular

Figure E1. Left-hand panel shows the (normalized) cumulative radial mass
profile for the stars that belong to self-bound clumps at t = 0.5 Gyr (solid
line) and for the same stars at a much later time, t = 12 Gyr (dashed line),
whereas the right-hand panel shows the cumulative vertical mass profile for
the same stellar particles.

to it. Fig. E1 shows this quantitatively for the same galaxy shown
in Fig. 14, and for a gravitational softening εg = 0.16 kpc. The left-
hand panel shows the cumulative radial mass distribution of stars
that belong to self-bound clumps at t = 0.5 Gyr (solid line) and
the final distribution of the same stars at t = 12 Gyr (dashed line).
The right-hand panel shows the same but for the absolute value
of the z-coordinate. Clearly, the mass that is initially in clumps is
redistributed throughout the galaxy. Some of the mass is scattered
to larger radii, but almost half of mass sinks to the centre and
contributes to the formation of a concentrated bulge. The mass is
also redistributed in the vertical direction, but it is systematically
scattered to larger heights explaining why the stellar disc ends up
in a much thicker configuration.
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