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ABSTRACT  11 

Reliable methods to undertake near real-time modelling of landslide hazard and associated 12 

impacts following an earthquake are required in order to provide crucial information to guide 13 

emergency response. Following the 2016 Kaikōura earthquake in New Zealand, we undertook 14 

such a near real-time modelling campaign in an attempt to pinpoint the location of landslides and 15 

identify where roads and rivers had been blocked. The model combined an empirical analysis of 16 

landslide hazard based on previously published global relationships with a simple runout model 17 

based on landslide reach angles. It was applied manually with a first iteration completed within 18 

24 hours of the earthquake, and a second iteration, based on updated shaking outputs, within ~ 72 19 

hours. Both models highlighted that landsliding was expected to be widespread and that impacts 20 

to roads were likely to mean Kaikōura township was cut-off. These results were used by 21 
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responders at the time to formulate aerial reconnaissance flight paths and to identify the risk of 22 

landslide dams causing further damage. Subsequent model verification based on available 23 

landslide inventories shows that while these models were able to capture a large percentage of 24 

landslides and landslide impacts, the outputs were over-predicted, limiting their use for 25 

pinpointing the precise locations of triggered landslides. To make future versions of the model 26 

more useful for informing emergency response, continued work to modify and adapt the 27 

approach to reduce this over-prediction is necessary. Nevertheless, the results from this study 28 

show the model is a promising initial attempt at near real-time landslide modelling and efforts to 29 

automate the approach would greatly increase the utility and speed of modelling in future 30 

earthquakes. 31 

INTRODUCTION 32 

Landsliding during earthquakes in mountain regions is a widespread hazard that has previously 33 

caused the majority of earthquake impacts to critical transport and utilities infrastructure (Bird & 34 

Bommer, 2004). Such impacts are important during emergency response as they can impinge 35 

access to affected regions, resulting in delays in search and rescue activities and the delivery of 36 

aid. As well as obstructing infrastructure networks, landslides falling into rivers can emplace 37 

landslide dams that block the river and cause upstream flooding. Catastrophic failure of these 38 

dams can result in an outburst flood that can devastate downstream communities. Landslide 39 

dams that fail typically do so soon after formation, with 41% of those that eventually fail, failing 40 

within one week (Costa & Schuster, 1988). Pinpointing the locations where landslides block 41 

transport routes and rivers post-earthquake in near real-time is therefore an important goal for 42 

informing emergency response. 43 



3 
 

 While a number of near real-time models of earthquake processes such as ground shaking 44 

and resulting fatalities have been successfully developed (e.g. Jaiswal et al., 2009; Trendafiloski 45 

et al., 2011), relatively little research has focussed on near real-time modelling of coseismic 46 

landslides. Several recent methods have been attempted based either on a simplified Newmark 47 

analysis (Jibson et al., 2000; Godt et al., 2008; 2009; Gallen et al., 2016) or using an empirical 48 

approach (Nowicki et al., 2014; Kritikos et al., 2015; Robinson et al., 2017), but none are 49 

currently operational and very few have been applied during a live earthquake response. 50 

Approaches based on a simplified Newmark analysis combine information on ground shaking, 51 

slope angle, and local material strength to assess the resulting slope deformation (Newmark, 52 

1965). However, local material strength properties are rarely known, especially at scales relevant 53 

to landslides, necessitating assumptions on rock strength and its variability, which can lead to 54 

widely varying model outputs (Dreyfus et al., 2013; Gallen et al., 2016). These assumptions can 55 

only be tested following the completion of event-specific landslide inventories, which can take 56 

many months to complete (Williams et al., 2017).  57 

Approaches using empirical analysis rely on observations of previous coseismic 58 

landslides to ascertain the relationships between various predisposing factors and landslide 59 

occurrence. Such models assume that the characteristics of locations where landslides have 60 

previously been observed are representative of those where future landslides will occur. 61 

Typically this approach has only been applied to a specific location; however, recent approaches 62 

have attempted to use observations from multiple different locations to establish global 63 

relationships (Nowicki et al., 2014; Kritikos et al., 2015; Marc et al., 2016; Parker et al., 2017). 64 

However, in order to produce global relationships, such methods cannot consider local factors 65 

like lithology or soil characteristics which are known to limit the accuracy of landslide models in 66 
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specific cases (Bozzano et al., 2008). Further uncertainties arise from studies that have shown 67 

seasonal variations in slope failures during earthquakes (Chousianitis et al., 2016) that are also 68 

not included in global relationships.  69 

In this study, we describe a near real-time coseismic landslide modelling campaign 70 

undertaken following the 2016 Kaikōura earthquake in New Zealand. This landslide hazard 71 

modelling used an empirical approach based on adapted global relationships from Kritikos et al. 72 

(2015). However, unlike previous attempts, our modelling also incorporated an analysis of the 73 

risk landslides posed to major roads and rivers in the affected area using a simplified assessment 74 

of potential reach angles. The results of these models were shared at the time with emergency 75 

managers and science responders on the ground. Here, we describe the methods and results of 76 

this near real-time modelling campaign along with quantitative analyses of model performance 77 

based on available data. We discuss the rapidity with which this modelling was undertaken as 78 

well as the resulting accuracy, and highlight the relative strengths and weaknesses of the 79 

approach taken. Necessary improvements to further reduce the modelling time and increase the 80 

model accuracy and utility are also discussed along with the potential to automate the method as 81 

an add-on to other already available rapid earthquake modelling tools. 82 

SETTING 83 

Earthquake and landslide hazard 84 

The Kaikōura earthquake occurred at 11:02 hrs on 13 November 2016 UTC (Coordinated 85 

Universal Time) at a depth of 15 km and had a magnitude of Mw 7.8 (Fig. 1). The event 86 

propagated northward for > 170 km in a complex rupture involving multiple previously known 87 

and unknown faults (Hamling et al., 2017), making it one of the most complex earthquakes ever 88 
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recorded. Strong ground shaking of up to MMI IX was recorded along the entire rupture length 89 

and consequently at least 10,000 landslides are thought to have occurred (Kaiser et al., 2017; 90 

Dellow et al., 2017; Massey et al., This Issue). Along with fault surface rupture, landslides 91 

caused extensive damage to transport infrastructure in the affected area (Fig. 1), in particular to 92 

State Highway (SH) 1 and the Inland Kaikōura Road (Stirling et al., 2017; Davies et al., 2017). 93 

This resulted in the isolation of Kaikōura township along with a number of other rural 94 

communities in North Canterbury and southern Marlborough, leading to emergency air and sea 95 

evacuations of > 600 stranded tourists (Davies et al., 2017). Road access to Blenheim and Picton 96 

from Christchurch remained possible, but only via a > 200 km detour through steep mountain 97 

passes (Fig. 1), adding over 7 hours to journey times. As well as damage to lifelines, > 190 98 

landslide dams were formed (Fig. 1) throughout the affected area (Dellow et al., 2017). The 99 

majority of these occurred in steep but small river catchments and consequently presented little 100 

risk to local populations; however, at least 11 landslide dams were judged by regional Civil 101 

Defence and Emergency Management (CDEM) groups to present a severe risk to downstream 102 

populations and infrastructure. 103 

Transport infrastructure 104 

The region is steep and mountainous, rising from sea-level to over 2,500 m in ~ 20 km, with the 105 

mountain ranges ending at the coast in steep cliffs. Despite this, the region is an important 106 

transport corridor, particularly for freight and tourism. SH1 is the main arterial road access 107 

between Christchurch and the tourist destinations of Kaikōura and Blenheim, traversing a narrow 108 

corridor between the coast and mountains for > 100 km between Oaro and Ward (Fig. 1). 109 

Alternative access between Christchurch and Kaikōura is possible via the Inland Kaikōura Road 110 

(IKR), which passes through less steep terrain and connects to SH7, however no alternative road 111 
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access exists between Kaikōura and Blenheim. An alternative route between Christchurch and 112 

Blenheim via SH7 adds an additional 200 km to the journey and passes through steep alpine 113 

terrain (Fig. 1), making it unfavourable for heavy goods vehicles. This route is also vulnerable to 114 

alpine hazards (Robinson et al., 2015) highlighting the lack of redundancy in the South Island 115 

road network. The only other routes providing north-south access in this region are the Awatere 116 

Valley Road and the Wairau-Hanmer Road, both of which are suitable for 4x4 vehicles only and 117 

therefore provide emergency access only. 118 

Previous landslide impacts 119 

Given the mountainous nature of the South Island, temporary road closures due to landslides are 120 

not uncommon, especially after earthquakes. A series of moderate earthquakes in 1994 caused 121 

substantial damage to SH73, which is one of only three routes east-west across the Southern 122 

Alps, closing the road for several days and restricting traffic for over one week (Paterson & 123 

Bourne-Webb, 1994). Following the 2003 Mw 7.3 Fiordland earthquake, landslides caused minor 124 

damage to several roads including SH94, which provides the only road access to Milford Sound 125 

(Power et al., 2005). Most of these blockages resulted from small rockfalls and debris flows and 126 

consequently were quickly cleared. The most extensive recent impacts to roads from landslides 127 

were caused by the 2010-11 Canterbury earthquake sequence, which caused widespread damage 128 

throughout the city of Christchurch (Bannister & Gledhill, 2012). Substantial rockfalls in the 129 

Port Hills resulted in several road closures (Giovinazzi et al., 2011).  130 

 Landslide dams are common in New Zealand due to a combination of steep terrain, 131 

narrow valleys, and high seismicity and rainfall. At least 232 landslide dams have been 132 

documented, of which 39% are thought to have resulted from earthquakes, although the trigger 133 

for a further 59% remains unexplained (Korup, 2004). While data on dam failures is thought to 134 
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be under-reported, Korup (2004) assessed the time to failure for those that did fail and suggested 135 

that minimum decision-making times varied with dam volume, ranging from several minutes to 136 

several days as volume increased. Generally, New Zealand was found to have larger volume 137 

dams and impounded lakes than other mountainous regions.  138 

DATA & METHODS 139 

Landslide hazard modelling 140 

The model employed following the Kaikōura earthquake was based on the empirical analysis 141 

established by Kritikos et al. (2015). Their approach used fuzzy logic in GIS to combine the 142 

effect of multiple predisposing factors, with the corresponding functions derived from 143 

observations of the 1994 Northridge, 1999 Chi-Chi, and 2008 Wenchuan earthquakes. Robinson 144 

et al. (2016a) later showed that the same functions also accurately modelled landslide hazard 145 

from the 2003 and 2009 Fiordland earthquakes in southern New Zealand, confirming that the 146 

approach was applicable more widely. Fuzzy logic-based approaches to landslide modelling have 147 

previously been shown to match or out-perform other approaches (Pradhan, 2010; Bui et al., 148 

2012; Pourghasemi et al., 2012). However, most importantly for near real-time modelling, these 149 

approaches are fast to apply, as much of the necessary input data can be derived and stored pre-150 

event (Fig. 2), reducing the amount of data collection required following an earthquake. 151 

Fuzzy logic  152 

Fuzzy logic considers the role of multiple different factors influencing landslide occurrence, and 153 

models how these different factors combine simultaneously to cause landslides from a specific 154 

earthquake. Each predisposing factor is assigned a membership function, µ(x), that describes the 155 
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factor’s relationship with landslide occurrence (e.g. increasing landslide frequency with 156 

increasing slope angle) based on previous observations. These membership functions take values 157 

[0, 1] where 0 represents the value of a given factor with the lowest frequency of landsliding, and 158 

1 represents the highest frequency of landsliding. Each predisposing factor is therefore converted 159 

into a fuzzy factor that effectively describes where landslides are more or less likely to occur as a 160 

result of that individual factor. These fuzzy factors are then combined on a pixel-by-pixel basis 161 

to establish the likelihood of landslides occurring in any given pixel from the specific earthquake 162 

(i.e. landslide hazard). This combination of factors is a critical step in the process and 163 

consequently various different combination approaches exist. However, for physical phenomena 164 

such as landslides, the fuzzy gamma operator has been shown to be the most appropriate method 165 

(Pradhan, 2010; Bui et al., 2012; Kritikos et al., 2015). Fuzzy gamma combines multiple factors 166 

such that: 167 

 168 

𝐿"# = %∏ 𝜇(𝑥)+
,-. /

.01
∙ %1 − ∏ 1 − 𝜇(𝑥)+

,-. /
1
      (1) 169 

 170 

where LHZ represents landslide hazard, µ(x) is the membership function for factor F, j is the 171 

number of factors to be combined, and γ is a constant. The value of γ strongly affects the output 172 

LHZ values, with Kritikos & Davies (2015) showing that the optimum value for landslide hazard 173 

analysis was 0.9; smaller values consistently under-predicted landslide occurrence, while larger 174 

values consistently over-predicted. 175 
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Hazard model parameters and data inputs 176 

The model requires inputs of local slope angle (SA), Modified Mercalli Intensity (MMI), slope 177 

position (SP), fault proximity (FD), and river proximity (RD). Local slope angle, slope position, 178 

and river proximity can all be readily obtained from a GDEM. Fault maps are available either 179 

from local geologic agencies or from the global earthquake model (GEM) active fault database, 180 

and MMI distribution can be calculated from a combination of ground motion prediction 181 

equations, felt reports, and instrumental data within minutes of an earthquake occurring (Wald et 182 

al., 2008; Horspool et al., 2015). We used the open-source Land Information New Zealand 183 

(LINZ) national DEM (~ 25 m horizontal resolution) to calculate local slope angle and slope 184 

position, as well as the LINZ river network to define river proximity. Fault locations were taken 185 

from the GNS Science active fault database, which, at the time, did not include several of the 186 

faults involved in the earthquake (Hamling et al., 2017; Stirling et al., 2017). MMI was taken 187 

from two different sources: USGS ShakeMap®, and GeoNet earthquake records. This allowed 188 

two versions of the model to be produced in near real-time, facilitating comparison between the 189 

outputs to provide a degree of confidence around the results. The fact that several faults involved 190 

in the rupture were not included in the active fault map available at the time is important, as 191 

many landslides were subsequently found to have occurred very near to, or directly on these fault 192 

ruptures (Massey et al., This Issue). Further, the initial USGS ShakeMap output that was used 193 

did not account for such a complex rupture, instead basing shaking estimates on simple ground 194 

motion prediction equations (GMPEs). 195 

The membership functions for each factor used in this study are (Kritikos et al., 2015): 196 

 197 
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𝜇(𝑆𝐴) = 7
0, 𝑆𝐴 ≤ 15°

1 1 + (𝑆𝐴 4.875)⁄ 0C.DE⁄ , 𝑆𝐴 > 15°
      (2) 198 

𝜇(𝑀𝑀𝐼) = 1 1 + (𝑀𝑀𝐼 7.5⁄ )0.I⁄         (3) 199 

𝜇(𝐹𝐷) = 1 1 + (𝐹𝐷 2.375)⁄ E.NOE⁄          (4) 200 

𝜇(𝑅𝐷) = 1 1 + (𝑅𝐷 3.25)⁄ E.E⁄          (5) 201 

𝜇(𝑆𝑃) = 1 1 + (𝑆𝑃 2.325)⁄ 0I.NOE⁄          (6) 202 

 203 

Following the method of Kritikos et al. (2015), each factor was classified into different bins 204 

numbered consecutively from smallest to largest, with the bin number forming the input variable 205 

for the corresponding membership function (Table 1). We adapted the original membership 206 

function for slope angle to force slopes ≤ 15° (bins 1-3) to have µ(x) = 0, assuming no landslides 207 

will occur on these slopes. A simplified work flow showing the various input parameters and 208 

model steps is shown in Figure 2. 209 

Impact modelling 210 

Danger pixels and landslide reach angle 211 

Modelling impacts resulting from landslides is a complex task due to difficulties in predicting 212 

landslide runout paths, amongst other factors. Several attempts have used an approach based on 213 

danger pixels, which identify the locations where impacts are likely based on the intersection 214 

between landslide hazard pixels and infrastructure pixels (Kanungo et al., 2008; Pellicani et al., 215 

2014). These models typically use a semi-quantitative approach whereby landslide hazard is 216 

classified into zones of low, medium, high etc. with only the highest zones classified as danger 217 

pixels. Other attempts have focussed on using a simple horizon scanning approach to identify 218 



11 
 

network viewsheds in order to directly assess the risk to pre-existing and planned networks 219 

(Robinson et al., 2016b), or to plan least-cost landslide-safe routes for new networks (Meinhardt 220 

et al., 2015). However, in these approaches, all pixels within the viewshed are effectively 221 

considered as danger pixels, irrespective of their corresponding landslide hazard or the reach 222 

angle to the network concerned. 223 

The reach angle, θ, of a landslide is an important measure of landslide mobility (Hsü, 224 

1975; Hungr, 2006) and is derived from the angle of a line connecting the top of the landslide 225 

scar to the distal toe of the deposit (Fig. 3). Calculating the reach angle between a specific 226 

segment of a road/river network and the pixels within the corresponding viewshed therefore 227 

identifies the relative mobility required for landslides in those viewshed pixels to intersect the 228 

network segment (Fig. 3). Setting a minimum threshold reach angle that represents the largest 229 

expected landslide mobility therefore identifies those pixels from which any landslide is 230 

expected to have sufficient mobility to reach the network, i.e. the danger pixels, and eliminates 231 

those pixels from which mobility is expected to be insufficient. The modelled landslide hazard 232 

values within the corresponding danger pixels represent the likelihood of a landslide occurring, 233 

and thus we therefore calculate the blockage risk based on the average modelled hazard values of 234 

the danger pixels within a given network segment’s corresponding viewshed. This ensures that 235 

the only pixels contributing to the blockage risk calculation a) have runout directions broadly 236 

towards the network; and b) have reach angles that suggest any landslide(s) will have sufficient 237 

mobility to reach the network. This approach therefore improves upon previous approaches by 238 

considering the potential mobility of landslides that occur as well as facilitating a fully 239 

quantitative approach. 240 
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A key component of this approach is establishing the threshold reach angle. Several 241 

studies have suggested that landslide reach angles are rarely < 30° (Hungr, 2006; Borella et al., 242 

2016); however, landslides with large volumes (> 106 m3) or flow-type mechanisms have been 243 

shown to commonly have reach angles < 30° (Davies et al., 1999; Hungr, 1995; Legros, 2002), 244 

with several examples of reach angles < 5° (e.g.Wadge et al., 1995). For the near real-time 245 

modelling undertaken following the Kaikōura earthquake, a minimum threshold angle of 30° was 246 

used; however, after the event, once data on landslide locations and impacts became available, a 247 

sensitivity analysis of the effect of changing this threshold angle was performed. 248 

Loss model parameters and data inputs 249 

Calculating θ for each pixel in a viewshed with respect to a given segment of a network is a 250 

simple task that can be undertaken rapidly. It requires comparing the elevation difference, H, and 251 

the horizontal distance, L, between the network segment and each pixel in the corresponding 252 

viewshed (Figs. 2 & 3) such that: 253 

 254 

𝜃 = tan0. 𝐻 𝐿W            (7) 255 

 256 

No measure of network vulnerability to landslides was included in the near real-time 257 

analysis, with the results consequently only representing the likelihood of landslides reaching 258 

and presumably obstructing the network. While vulnerability information may be important for 259 

restoration estimates, longer term recovery planning, and estimating economic losses (Robinson 260 

et al., 2015), at the time this analysis was undertaken it was thought the most pressing 261 
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information related to network obstruction. Nevertheless, future analyses may be able to account 262 

for vulnerability. 263 

 Road and river centrelines were downloaded from the LINZ open-source data repository 264 

and the horizontal distance from each network was calculated using the Euclidean Distance tool 265 

in ESRI’s ArcGIS. Only order 3 and above rivers were evaluated as a) the total number of order 266 

1 and 2 rivers is extremely large and thus increases the total time required to complete 267 

modelling; and b) landslide dams occurring on order 1 and 2 rivers were at the time considered 268 

unlikely to present a substantial hazard due to the limited catchment size. The road network was 269 

filtered to only include State Highways and other primary and emergency access roads, including 270 

the Awatere Valley Road and the Wairau-Hanmer Road (Fig. 1). To reduce modelling time, both 271 

networks were split into 1 km segments with danger pixels calculated for the mid-point of each 272 

segment. This was thought to provide the best compromise between modelling speed and useful 273 

output resolution. This resulted in 1,832 road segments and 8,456 river segments. 274 

Model application and distribution 275 

At the time of the Kaikōura earthquake, efforts to test, automate, and operationalise the model 276 

(Fig. 2) were underway but had not yet been completed. However, the relative simplicity of the 277 

approach combined with the availability of data allowed the modelling to be undertaken 278 

manually. Modelling was undertaken remotely in the UTC time zone (13 hours behind New 279 

Zealand Standard Time, NZST, at the time) on a single workstation using ESRI’s ArcGIS. 280 

 The model results were made available to the New Zealand Science Advisory Group 281 

(SAG), which was tasked with aiding both the scientific and emergency responses to the 282 

earthquake and comprised various scientists from New Zealand’s Universities and GNS Science 283 

amongst others (Woods et al., 2017). Results were initially uploaded to a closed access 284 
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geospatial portal (Engineering Response to the M7.8 Kaikōura earthquake clearinghouse, 285 

henceforth referred to as the clearinghouse, see Data and Resources Section) to enable data 286 

sharing between members. This was accessible only to members of the SAG, allowing model 287 

results to be independently reviewed and discussed before being shared openly with relevant 288 

stakeholders and the public. While delaying the public distribution of model results, this allowed 289 

crucial discussions on the model’s potential accuracy and utility, which was felt necessary due to 290 

this being the first event the model had been applied to in near real-time. It also facilitated 291 

discussions as to which stakeholders would benefit most from the model outputs. A more 292 

detailed discussion of the distribution and utility of model results is provided below.  293 

RESULTS 294 

Model 1: 0 days 21 hours 28 minutes post-earthquake 295 

Within a few hours of the earthquake occurring, consideration was given to whether manual 296 

application of the model could produce results quickly enough to be of use in the response. 297 

These discussions were hampered by the earthquake occurring on a Sunday in the UTC time 298 

zone (Monday morning in NZST); however, approximately 18 hours after the earthquake 299 

occurred, it was decided that manual application of the model could still be undertaken within a 300 

useful timeframe. Manual downloading and processing of the necessary data sets began at 301 

approximately 06:00 hrs on 14 November UTC, 0 days 18 hrs 58 mins after the earthquake 302 

occurred. Priority was given to the largest datasets, namely the LINZ DEM and rivers database, 303 

which required the longest downloading and processing times. Shaking data at this time were 304 

sourced from the USGS ShakeMap® (see Data and Resources Section), which released initial 305 

models < 10 mins after the earthquake based on GMPEs, and at the time was the only openly 306 
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available shaking data for the event. Data collection and processing were completed at 07:59 hrs 307 

on 14 November UTC, 0 days 20 hrs 57 mins after the earthquake occurred. Model 1 (Fig. 4) 308 

was subsequently completed and data provided to the SAG at 08:30 hrs on 14 November UTC, 0 309 

days 21 hrs 28 mins after the earthquake occurred. Model 1 was therefore completed 310 

approximately 2 hrs 30 mins after data collection and processing began, and just 31 mins after 311 

this procedure was completed.  312 

According to Model 1, the highest probability of landslides was concentrated in two 313 

coastal areas immediately north and south of Kaikōura, where landslide likelihoods exceeded 314 

80%. By this time several social media posts had reported landslides near to Kaikōura with 315 

reports of blockages on SH1, but the full extent and intensity of landsliding was not yet known. 316 

Landslide likelihoods > 60% (referred to as high risk i.e. those pixels where landslides were 317 

more likely to occur than not) were modelled extending northwards from Waiau to Blenheim (~ 318 

130 km) and stretching inland from the coast for ~ 50 km to the slopes east of the Awatere 319 

Valley Road, affecting a total area of ~ 6,500 km2, suggesting that landsliding was expected to be 320 

widespread.  321 

 Of the 1,832 road segments modelled, 560 (~ 30%) were identified as having at least one 322 

danger pixel (i.e. with θ ≥ 30°); the remaining 1,272 segments have no danger pixels andwere 323 

therefore considered to have no risk of landslide blockage. The most at-risk road segment was 324 

located 20 km north of Kaikōura on SH1 at a location known as Ohau Point, where the risk of 325 

blockage was 75%. In total, 46 segments of road were considered high risk (> 60%), of which 38 326 

were on SH1 and three on the IKR. This immediately highlighted the possibility that Kaikōura 327 

might be isolated with no road access possible. In addition, two segments on SH7 south of 328 



16 
 

Hanmer Springs were identified as high risk, along with three segments on the Awatere Valley 329 

Road. 330 

 Out of the 8,456 river segments modelled, 5,089 were identified as having at least one 331 

danger pixel, emphasising the high potential for landslide dam formation in this part of New 332 

Zealand. In total, 241 river segments between Waiau and Blenheim, and stretching inland as far 333 

as the Awatere Valley Road, achieved high modelled risk values, suggesting that numerous 334 

landslide dams were to be expected throughout this region. The highest likelihood was 79% and 335 

occurred ~ 40km north-east of Kaikōura on the Clarence River. At the time, a landslide dam was 336 

known to have occurred and subsequently failed at approximately 03:00 hrs on 14 November 337 

UTC (Dellow et al., 2017), ~ 16 hrs after the earthquake and ~ 5 hrs 30 mins before Model 1 was 338 

completed. While Model 1 was not completed in time to identify the Clarence River dam, this 339 

provided confidence in the model’s ability to produce useful results for other rivers.  340 

Model 2: 3 days 1 hour 28 minutes post-earthquake 341 

Following the completion of Model 1, we became aware that an alternative shaking model based 342 

on local strong motion data sensors (see Horspool et al., 2015) had been released by GeoNet (see 343 

Data and Resources Section), a collaboration between the New Zealand Earthquake Commission 344 

and GNS Science that records information on New Zealand hazards. This data was downloaded 345 

at 10:12 hrs on 16 November UTC, 2 days 23 hrs 10 mins after the earthquake; however, these 346 

data were available at least as early as 22:06 hrs on 15 November UTC. Consequently, a second 347 

round of landslide modelling based on this data was undertaken. Model 2 (Fig. 5) was completed 348 

and shared with the SAG at 12:30 hrs on 16 November UTC, 3 days 1 hr 28 mins after the 349 

earthquake occurred. Combining these results with Model 1 at the time allowed the authors and 350 
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the SAG to qualitatively evaluate the level of (un)certainty to place on the outputs, allowing 351 

varying degrees of confidence to be placed on the resulting conclusions.  352 

 In total, 60% of pixels, accounting for an area ~ 19,000 km2, were unchanged in terms of 353 

landslide hazard between Model 1 and Model 2. A total of 17% of pixels (~ 5,500 km2) increased 354 

in hazard, although of these, 75% increased by ≤ 10%, a change that was considered negligible. 355 

Significant hazard increases therefore occurred in just 4% of pixels (220 km2), the majority of 356 

which were located on the eastern-most slopes between Kaikōura and Ward, but some of which 357 

were on slopes south of Waiau (Fig. 5). However, there were also significant hazard decreases 358 

(changes > 10%) on slopes east of the Awatere Valley Road. Consequently, high landslide 359 

hazard values (> 60%) in Model 2 extended north-east along the coast for ~ 170 km and inland 360 

for ~ 40 km, affecting a total area of ~ 6,800 km2, which is slightly larger than Model 1. The 361 

maximum modelled landslide hazard increased from 85% to 89% but remained in the same area 362 

as Model 1, on the slopes immediately north of Kaikoura (Fig. 5b).  363 

 Notwithstanding the slight increase in some landslide hazard values in Model 2, there 364 

was little overall change in the total modelled risk of road blockages. In total, risk values 365 

increased for 44 road segments, with an average increase of 6%, and decreased for 37 segments, 366 

with an average decrease of 7%. Notably, the highest risk of blockage on the network remained 367 

on SH1 at Ohau Point, where it increased to 76%. The total number of road segments considered 368 

high risk increased from 44 in Model 1 to 62 in Model 2, with 15 of these located on SH1 south 369 

of Oaro and one each for SH7, the IKR, and the Awatere Valley Road. Despite this, there was a 370 

notable decrease in risk values for several segments of SH1 north and south of Kaikōura, where 371 

risk decreased from ~ 65% to < 20% (Fig. 5c). 372 
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 Very little change in terms of landslide dam risk was observed between Model 1 and 373 

Model 2, with 4,341 river segments (85% of the 5,089 at-risk segments) having scores that 374 

differed by < 10% from Model 1. Of the 748 segments that changed by > 10%, 266 increased in 375 

Model 2, 184 of which were located east of the Awatere Valley Road. The effect was to increase 376 

the total number of river segments considered to be at high risk of blockage from 241 in Model 1 377 

to 314 in Model 2. The majority of these changes occurred on rivers south of Waiau in the region 378 

where landslide hazard also notably increased in Model 2 (Fig. 5b). The risk of landslide dams in 379 

this region changed from 50-60% in Model 1 to 60-70% in Model 2. Consequently, Model 2 380 

suggested that numerous landslide dams were expected to have occurred in this region, 381 

something which Model 1 had not necessarily highlighted. The highest modelled risk was again 382 

on the Clarence River, where risk increased marginally to 80%. 383 

MODEL VERIFICATION AND SENSITIVITY 384 

Quantitative analysis of the model’s predictive ability in terms of landslide hazard, road blockage 385 

risk, and landslide dam risk is undertaken by comparing the corresponding true and false positive 386 

prediction rates. True positive rate, or hit rate, is the number of observed landslides (or 387 

blockages) occurring in pixels predicted as a landslide as a percentage of the total number of 388 

observed landslides. False positive rate, or false alarm rate, is the total number of pixels 389 

predicting a landslide that have landslide non-occurrence as a percentage of the total number of 390 

non-occurrence pixels. Because this requires the landslide hazard and risk results to take the 391 

form of a binary prediction (i.e. landslide or no landslide; blocked or not blocked) rather than 392 

continuous values, we set various threshold hazard and risk values in which pixels/segments 393 

above the threshold predict landslide occurrence/blockage. We compute the number of hits and 394 
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false alarms for multiple hazard and risk thresholds taken at 0.01 intervals in order to test how 395 

the predictions vary with increasing values of hazard and risk. Data on mapped landslides, road 396 

blockages, and landslide dams is taken from a variety of publically available sources or through 397 

the clearinghouse (see Data and Resources Section).  398 

 As well as the hit rate and false alarm rate, we calculate the relative true positive (RTP) 399 

rate. This considers the proportion of hits as a proportion of all pixels predicting landslide 400 

occurrence. A relative true positive rate of 75% therefore means three-quarters of all pixels 401 

predicting landslides are hits, regardless of the absolute number of hits this represents. This 402 

provides a measure of how much over-prediction is occurring in the model. 403 

Landslide hazard models 404 

For landslide hazard (Figs 4b & 5b), we use a dataset of 10,454 landslide centroid points (Fig. 1) 405 

mapped by GNS Science from satellite and aerial reconnaissance in the months following the 406 

earthquake (Massey et al,. This Issue). From this inventory, both models have a maximum hit 407 

rate of 81% (Fig 6a), meaning that 19% of mapped landslides occurred in pixels where landslide 408 

hazard = 0, i.e. slopes < 15°. This suggests this threshold may be too high for this event. The 409 

maximum false alarm rate is similar for both models at a little over 50%. Importantly, the 410 

number of false alarms decreases rapidly once hazard thresholds exceed 20% likelihood, while 411 

the number of hits remains close to the maximum until hazard thresholds reach ~ 50% 412 

likelihood. For thresholds > 50%, Model 2 notably achieves more hits than Model 1 for the same 413 

threshold value (Fig. 6a); for high hazard pixels (likelihoods > 60%), Model 1 predicts 47% of 414 

mapped landslides while Model 2 predicts 62%. This suggests that Model 2 forms the better 415 

overall prediction, but that broadly both results are comparable. 416 
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 Nevertheless, the RTP rates for both models are very low: Model 1 has a maximum RTP 417 

rate of 9% while Model 2 has a maximum RTP rate of 22% (Fig. 6a). This means that both 418 

models severely over-predict landslide hazard with ~ 80-90% of pixels where landslides were 419 

predicted not experiencing a landslide. One reason for such low RTP rates is the large number of 420 

non-occurrence pixels (>107). Thus a false alarm rate of 2-6% equates to a large number of 421 

individual pixels compared to the number of observed landslides. However, it should be 422 

highlighted that the landslide inventory used to calculate RTP rate is point source and therefore 423 

each landslide is only represented by a single pixel. In reality, each landslide likely covers 424 

multiple pixels which in the present analysis are considered non-occurrence pixels; Massey et al. 425 

(This Issue) show that the mean landslide area is ~ 300 m2, which equates to 12 pixels with a 25 426 

m pixel size, while the largest was ~ 1,000,000 m2, or 40,000 pixels. Consequently, the RTP 427 

rates are minimum estimates and in reality, the model likely performs better than these values 428 

suggest. Nevertheless, it is still likely that the results are over-predicted in terms of individual 429 

pixels. This issue is common to most landslide hazard and susceptibility models and reflects the 430 

difficulties associated with predicting landslide occurrence at such fine resolution.  431 

Landslide road blockage risk models 432 

Road blockage risk predictions are tested using the 41 road blockages (Fig. 1) reported by the 433 

New Zealand Transport Agency (NZTA). The approximate locations of many of these blockages 434 

were known within a few days of the earthquake from a combination of aerial reconnaissance 435 

and local reports. However, an official inventory with precise coordinates was not available on 436 

the clearinghouse until > 1 week after the earthquake. Because risk was calculated for 1 km 437 

segments of the road network, we compare observed blockages to the corresponding road 438 

segment, and consequently some road segments may account for multiple observed blockages. 439 
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 Model 1 achieves a maximum hit rate of 93% while Model 2 achieves 98%, with both 440 

models achieving a maximum false alarm rate of 29% (Fig. 6b). However, there is a notable 441 

disparity between the number of hits achieved as the risk values increase (Fig. 6b). Model 1 sees 442 

no reduction in the number of hits until the risk threshold exceeds 53%, while Model 2 sees 443 

decreases once the risk threshold exceeds 20%. For high risk segments, Model 1 successfully 444 

predicts 71% of road blockages compared with Model 2 which predicts just 34%. Despite 445 

differences in the decay in number of hits, both models have a similar decay in false alarms, with 446 

virtually no false alarms registered in high risk segments. 447 

 Unlike with the raw hazard models, Model 1 is able to achieve high RTP rates, 448 

suggesting the model works well as a predictive tool. A blockage risk threshold set at 60% 449 

likelihood successfully predicts 70% (29 out of 41) of road blockages with an RTP rate of 66%, 450 

which increases to 100% when the blockage risk threshold is increased to 68% likelihood (Fig. 451 

6b). Comparatively, at a 60% blockage risk threshold, Model 2 achieves an RTP rate of just 23% 452 

and accounts for just 34% of all observed blockages. Model 1 therefore not only forms the better 453 

predictive model for road blockages, but it is useful for pinpointing the precise road segments 454 

blocked by landslides with comparatively small over-prediction compared to the raw hazard 455 

model. Nevertheless, the failure of Model 2 is surprising given it formed a marginally better 456 

hazard prediction compared to Model 1. 457 

Landslide dam risk models 458 

Landslide dam predictions are tested using a dataset of 58 landslide dams (Fig. 1) mapped by 459 

GNS Science and others from aerial and ground-based reconnaissance, which was first publically 460 

available from Environment Canterbury (see Data and Resources Section) on 1 December 2016 461 

UTC (18 days after the earthquake). In total, Dellow et al. (2017) describe > 200 landslide dams 462 
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while the Environment Canterbury dataset contains 191; however, the majority of these are 463 

located on order 1 and 2 rivers, which were not assessed in the near real-time modelling 464 

campaign. Consequently, only the 58 landslide dams (30% of the total identified) located on 465 

order 3 or larger rivers are used to quantitatively assess model performance. This suggests that 466 

the modelling should have considered order 1 and 2 rivers as this is where the majority of 467 

landslide dams formed and, in hindsight, river order is not directly attributable to consequent 468 

landslide dam risk. As with road blockages, we compare observed landslide dams to the 469 

corresponding river segment, and individual segments may therefore account for multiple 470 

blockages. 471 

 Both models achieve maximum hit rates of 93%, with Model 2 accounting for 90% of 472 

landslide dams in high blockage risk segments (Fig. 6c). However, both models have high 473 

maximum false alarm rates, with Model 1 having 60% and Model 2 having 59%. Nevertheless, a 474 

similar decay pattern is observed, with the number of false alarms decreasing for both models 475 

when blockage risk thresholds exceed 15% while the number of hits remains constant until 476 

blockage risk thresholds exceed 50%. Notably, Model 2 does not see hit rates decrease until 477 

blockage risk thresholds exceed ~ 60% at which point the decay rate is similar to Model 1, 478 

suggesting Model 2 is the better version.  479 

 RTP rates for landslide dam predictions are notably lower than achieved for road 480 

blockage predictions and only marginally better than the low scores observed for the raw hazard 481 

models. Model 1 achieves a maximum RTP rate of just 14%, while Model 2 achieves a 482 

maximum of 29% (Fig. 6c). Again, this highlights that both models over-predict landslide dam 483 

risk and, currently, may not be useful for pinpointing the exact locations of landslide dams. Part 484 

of this issue may lie in the threshold reach angle used (30°) as in reality the total landslide 485 
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volume passing this threshold may be insufficient to dam a river. Nevertheless, the high hit rates 486 

are encouraging, and if future iterations of the model can sustain such hit rates while reducing 487 

the over-prediction, this model may form a useful tool for pinpointing landslide dam locations. 488 

Sensitivity analysis 489 

Using the output landslide hazard from Model 1, we now reassess the road blockage and 490 

landslide dam risk using reach angle thresholds between 10° and 50° taken at 10° intervals, and 491 

compare the number of hits and false alarms achieved with the results achieved during the 492 

modelling campaign. The area between the true and false positive curves is calculated to find the 493 

best performing model. For this analysis we use the outputs from Model 1 as this version 494 

achieved comparable predictions for landslide dams and better predictions for road blockages 495 

compared to Model 2. 496 

 For both road blockages and landslide dams, smaller reach angle thresholds are able to 497 

achieve greater maximum hit rates (Fig. 7). The decay in hit rates with increasing risk values is 498 

broadly equivalent for all thresholds however. Smaller threshold reach angles also achieve 499 

greater false positive predictions (Fig. 7). The best performing threshold for road blockages is 500 

found to be 30°, although the performance using 20° and 40° is comparable (Table 2). For 501 

landslide dam risk, the 40° threshold achieves the greatest performance, although again the 502 

performance of the 20° and 30° thresholds are comparable. We also calculated the RTP rates for 503 

each of these thresholds, finding that for landslide dams the 40° threshold achieved a maximum 504 

RTP rate of 25%, approximately double that of the 30° threshold (14%). Whilst still too low to 505 

be useful for pinpointing landslide dams, this does suggest that if a similar increase were 506 

observed for a 40° threshold in Model 2 (translating to a maximum RTP rate of ~60%), then this 507 

version would begin to be useful for pinpointing landslide dams. This suggests that in future 508 
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applications of the model using a 40° reach angle threshold may be more appropriate for 509 

landslide dam prediction, while retaining a 30° reach angle threshold for road blockages is 510 

suitable. This likely relates to the landslide volume passing the corresponding reach angle; 511 

comparatively little landslide debris is required to block traffic flow on roads compared to that 512 

required to block river flow. 513 

DISCUSSION 514 

Model 2 road blockage risk 515 

It is notable that Model 2 performs poorly at predicting road segments blocked by landslides, 516 

despite performing marginally better than Model 1 at predicting landslide hazard and landslide 517 

dam occurrence. The reason for this poor performance is Model 2’s failure to successfully 518 

predict 19 (46% of the total) road blockages on SH1 near to Kaikōura that were successfully 519 

predicted by Model 1. Analysis of the mechanism causing this highlights that this failure resulted 520 

from an error during the processing of the GeoNet shaking model during the near real-time 521 

modelling campaign.  522 

The GeoNet data does not provide offshore locations with MMI values (Fig. 5a). Shaking 523 

data from GeoNet was downloaded as a gridded XML format, which contains point locations 524 

with MMI values spaced at 1 km intervals; any points offshore are nominally assigned MMI = 1. 525 

To convert a gridded point cloud into a raster file necessary for the landslide hazard modelling, 526 

an inverse distance weighted interpolation was conducted. Consequently, where offshore grid 527 

points were located close to the coastline, low MMI shaking was assigned to a small number of 528 

onshore pixels (Fig. 8). This significantly reduced modelled landslide hazard in the 529 

corresponding pixels and thus road blockage risk values for coastal segments of SH1. The small 530 
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total area affected by these anomalies explains why the landslide model remains comparable to 531 

Model 1 in terms of overall landslide occurrence. Likewise, the lack of order 3+ rivers in these 532 

locations explains why the model also remains comparable to Model 1 in terms of landslide dam 533 

risk. Had offshore points been removed from the interpolation process at the time of the 534 

modelling campaign, the resulting shaking raster would not have included anomalously low MMI 535 

values onshore along the coast, resulting in the successful prediction of road blockages on 536 

coastal SH1. Re-processing Model 2 using the corrected shaking data confirms this (Fig. 8). This 537 

emphasises the importance of the initial input data and its handling, with errors and anomalies in 538 

the data itself or in the data processing carrying through to final outputs, affecting the overall 539 

model success.  540 

Implications for near real-time earthquake impact modelling 541 

We have shown that near real-time prediction of coseismic landsliding impacts can be 542 

successfully and rapidly undertaken following a large earthquake. Currently, several near real-543 

time earthquake loss models exist, including the USGS Prompt Assessment of Global 544 

Earthquakes for Response (PAGER; Jaiswal et al., 2011, 2009; Wald et al., 2008) and QLARM 545 

(Trendafiloski et al., 2011); however, these models currently do not disaggregate losses by cause. 546 

Coseismic landslides can account for large numbers of total earthquake fatalities (Yin et al., 547 

2009; Evans & Bent, 2004; Keefer, 1984) and are the primary cause of damage to linear 548 

infrastructure such as transport and utilities networks during earthquakes (Bird & Bommer, 549 

2004). Specifically identifying the impacts resulting from coseismic landslides is therefore 550 

important for informing emergency response, as this may enable greater understanding of the 551 

causes of impacts at different locations throughout the affected area.  552 



26 
 

This is particularly highlighted in the assessment of landslide dam risk. Because landslide 553 

dams typically form in steep narrow catchments they are often difficult to identify from the 554 

ground or from remotely sensed imagery, and so may go unnoticed in the immediate aftermath of 555 

a large earthquake. The majority of landslide dams that fail do so soon after they form (Costa & 556 

Schuster, 1988). Rapidly identifying the locations where landslide dams have formed is therefore 557 

vital for post-earthquake response. However, current manual mapping techniques relying on 558 

optical aerial and/or satellite reconnaissance are unsuitable for such a task because they can be 559 

slow and weather dependent. Initial, incomplete landslide inventories identified from satellite 560 

imagery only became available > 5 days after the Kaikōura earthquake had occurred (Sotiris et 561 

al., 2016). However, this initial inventory contained < 10% of the total landslides mapped by 562 

Massey et al. (This Issue), while an updated inventory released > 12 days after the earthquake 563 

still only contained ~ 50%. Further,  identification of landslide dams was not completed until 18 564 

days after the earthquake. In contrast, Model 1 was successfully completed < 24 hours after the 565 

earthquake, with Model 2 available ~ 72 hours after the earthquake. Effective near real-time 566 

modelling of landsliding and associated losses can clearly provide a faster assessment of post-567 

earthquake risk from hazards such as landslide dams. Using these outputs to prioritise locations 568 

for aerial and satellite reconnaissance is therefore likely to provide a better approach to rapidly 569 

identifying coseismic landslide impacts. 570 

Model use in response to the Kaikōura earthquake 571 

Upon completion, the near real-time model outputs (Figs. 4 & 5) were shared with the 572 

earthquake response SAG and uploaded to the clearinghouse. The SAG met regularly during the 573 

response via video conference to discuss the evolving situation and consider new information as 574 

it became available. The landslide model outputs were initially uploaded to the clearinghouse for 575 
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discussion within the SAG to formulate a useful and consistent interpretation of the results that 576 

could be shared with relevant stakeholders.  577 

 At the time, the model outputs proved useful in two primary ways. Firstly, Model 1 578 

results were shared with the NZTA on 15 November UTC in order to help inform their strategy 579 

meeting that day. Of particular interest was the landslide dam risk as, > 48 hours after the 580 

earthquake, the road functionality was generally known to NZTA. However, NZTA remained 581 

concerned about the threat of outburst floods to key bridges as well as to engineering teams 582 

tasked with attempting to reinstate the roads. A further concern was identifying how many 583 

people were inaccessible by road and at risk of outburst flood in order to inform decisions of 584 

potential emergency evacuation.  585 

Secondly, several members of the SAG were involved in aerial reconnaissance of the 586 

affected area, with a particular focus on identifying and monitoring landslide dams. The results 587 

of both Model 1 and Model 2 were therefore used to prioritise flight paths over the affected 588 

region. As a result, reconnaissance flights between 15 and 23 November undertook flight paths 589 

that focussed on the small catchments between the epicentral region and the hills immediately 590 

north of Kaikōura, where the majority of landslide dams were predicted and later identified. 591 

While this area was considered high priority prior to the model results becoming available, the 592 

models did enable more detailed prioritisation of individual catchments. 593 

Future automation 594 

Once a decision to manually apply the coseismic landslide impact model had been taken, the 595 

majority of the time required to produce the initial model outputs comprised downloading and 596 

processing the required data. This time could be substantially reduced by creating a standing 597 

repository of the necessary model data. The only input data not available pre-earthquake are the 598 
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resulting shaking data and thus the majority of the data can be acquired and consequent 599 

calculations undertaken before an earthquake occurs (Fig. 2). Manual application of the model 600 

took ~ 31 mins from the completion of data download and preparation. With initial shaking data 601 

available from the USGS < 10 mins after an earthquake, Model 1 predictions could therefore 602 

have been available within 45 mins of the Kaikōura earthquake occurring, under ideal 603 

circumstances. 604 

 Ideally, this time could further be reduced by automating the method so that manual 605 

intervention is not required. This would allow the model to produce results consistently 606 

regardless of time of day, week, or year. The relative simplicity of the approach and underlying 607 

calculations makes automation of this method a simple task, especially since most of the 608 

calculations can be undertaken a priori. Furthermore, presently, the model violates a primary 609 

condition of near real-time modelling systems in that it is reliant on external calculations of 610 

shaking intensity. The model therefore needs to be adapted to be entirely independent by 611 

incorporating its own internal shaking intensity estimates. Alternatively, specifically developing 612 

the method as an add-on to current near real-time shaking predictions, such as the USGS 613 

ShakeMap or PAGER, would allow it to use the resulting shake maps directly, effectively 614 

incorporating it into these existing near real-time models and further reducing the time required. 615 

Under such conditions, landslide impact predictions could be completed within 10-15 mins of the 616 

earthquake occurring, at the same time as the first shaking models become available.  617 

Limitations and uncertainties 618 

Despite the modelling presented having been shown to be useful for a post-earthquake 619 

emergency response, there are important limitations to consider. Most importantly, the landslide 620 

hazard models (Figs. 4b and 5b), and to a lesser degree the landslide dam models (Figs. 4d and 621 
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5d), are significantly over-predicted. This is a major limitation of the model and makes the 622 

output, in its current form, ineffective at pinpointing the precise locations of landslides caused by 623 

the earthquake. However, as highlighted above, these RTP rates are likely minimum values due 624 

to the landslide inventory used in verification comprising point sources rather than polygons. 625 

Reassessing the RTP rates when polygon source become available will allow the true RTP rate to 626 

be calculated allowing a fairer estimation of the true over-prediction. Nevertheless, the model 627 

outputs are still expected to be over-predicted and this must be addressed in future iterations if 628 

this technique is to prove useful in an emergency response.  629 

The models outputs do not presently take the form of a binary prediction of landslide 630 

occurrence, but instead are presented as a continuous scale of landslide hazard or risk (i.e. 631 

relative likelihood of landslide occurrence). While such a continuous output may have some 632 

benefits, the outputs would arguably be enhanced for response purposes by converting to a direct 633 

prediction of where landslides have occurred. The limitation here is determining which threshold 634 

value to set in order to form a binary prediction, which is ultimately subjective, and the utility to 635 

end-users of true probability values. A recent attempt has been made to model landslide hazard 636 

in terms of true probability, using observations from relatively large numbers of global 637 

earthquakes (Parker et al., 2017). While this approach has been shown to yield consistently 638 

accurate predictions of landslide probability from test earthquakes, it has yet to be applied in 639 

(near) real-time following an earthquake. 640 

 The model outputs provide no information on the potential size, mechanism, or 641 

consequent damage of the landslides triggered. At a local scale, the total volume and area 642 

involved in a landslide, as well as the mechanism and style of motion, are vital indicators of the 643 

hazard posed, and the potential damage. Vulnerability of roads to landslide losses is also a 644 
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critical component of risk. Currently the model only assesses the likelihood of landslides 645 

reaching the road network, not the damage that they cause. Similarly, for landslide dams, the 646 

model currently only predicts the likelihood of a landslide reaching the river; it does not consider 647 

the potential for the landslide to subsequently block the river, which may further explain the 648 

over-prediction in this component of the model. Finding ways to incorporate such information 649 

into future models could therefore improve the overall usefulness and further reduce over-650 

prediction. 651 

 Finally, this is the only time that this method has been attempted during a live earthquake 652 

response. Whilst the results are encouraging, particularly for road blockage prediction, and the 653 

use of the outputs highlights the need for and value of such models, it is not guaranteed that 654 

applying the same model to future earthquakes elsewhere will produce similarly successful 655 

results. Consequently, further testing of the method on historic earthquakes is required before it 656 

can be more widely operationalised. Despite this, the underlying hazard model of Kritikos et al. 657 

(2015) has now been shown to be successful for three different earthquakes in New Zealand, and 658 

thus New Zealand seems likely to prove a suitable site for continued testing and initial 659 

implementation of this near real-time modelling approach. 660 

CONCLUSIONS 661 

Following the 13 November 2016 UTC Kaikōura earthquake in New Zealand, we undertook a 662 

near real-time landslide hazard and impact modelling campaign in an attempt to provide critical 663 

information for emergency responders. The landslide hazard model used an empirical approach 664 

using fuzzy logic in GIS based on global observations of the relationships between landslide 665 

occurrence and predisposing factors. The impact models used a simplified analysis of landslide 666 
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mobility based on reach angles to identify pixels from which any landslide posed a risk to nearby 667 

roads and rivers. The model did not account for vulnerability of roads and rivers to landslide 668 

blockage, instead focussing simply on locations where landslides could intersect the feature. The 669 

approach was undertaken manually following the earthquake and therefore its capabilities as an 670 

automatic system have not been properly tested. 671 

The outputs from these models accurately accounted for the majority of landslides, road 672 

blockages and landslide dams that formed during the earthquake. Importantly, the first models, 673 

based on initial shaking outputs from the USGS, were available just 21 hrs 28 mins after the 674 

earthquake, > 4 days before the first, incomplete assessment of landsliding from traditional 675 

mapping efforts. A second iteration of the model based on updated shaking outputs was available 676 

~72 hrs after the earthquake and generally performed better than the initial model. While both 677 

models accurately accounted for the majority of landslides and landslide dams, it is notable that 678 

these models were especially over-predicted, and therefore require continued refinement to the 679 

modelling methods to reduce this over-prediction. Nevertheless, the model was able to perform 680 

well in identifying road blockages, with limited over-prediction observed suggesting this 681 

approach may prove useful at accurately predicting road impacts from landslides in future 682 

earthquakes. 683 

While the present results are promising, continued efforts to streamline and automate the 684 

modelling methods is required. An automated version of the model may be able to produce 685 

future outputs within 10-15 mins of an earthquake occurring, significantly improving the times 686 

achieved in this study through manual application. Incorporating the vulnerability of roads and 687 

rivers into the model is a further aim, as this is a crucial component of any disaster management 688 

system as its assessment can be used as an input for decision making during an emergency 689 
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response. Finally, efforts to improve the model in order to reduce the over-prediction associated 690 

with the landslide hazard and landslide dam risk outputs is essential if future iterations are to be 691 

useful for pinpointing the precise locations of landslides and landslide dams. 692 

DATA & RESOURCES 693 

Landslide and road blockage data used in this study were collected from the private Engineering 694 

Response to the M7.8 Kaikoura earthquake clearinghouse set up for secure data sharing post-695 

earthquake and is not available to the public. The landslide inventory used in this study to assess 696 

model performance was kindly supplied to the authors by Chris Massey of GNS Science and is 697 

described in Massey et al (This Issue). Publically available data on landslide locations is 698 

available from Sotiris et al. (2016) and can be obtained from 699 

https://zenodo.org/record/167130#.WZRwt1WGNhG (last accessed August 2017). Landslide 700 

dam locations were taken from the Environment Canterbury website and can be accessed at 701 

http://ecan.maps.arcgis.com/apps/Cascade/index.html?appid=50f00d42e29c46b1a61b848440c52702 

95a (last accessed August 2017). Shaking data was downloaded at the time from the USGS and 703 

GeoNet, and is available from 704 

https://earthquake.usgs.gov/earthquakes/eventpage/us1000778i#executive (last accessed 705 

November 2016) and http://shakemap.geonet.org.nz/data/2016p858000/output/grid.xml (last 706 

accessed Novemeber 2016). All other data in this paper came from published sources listed in 707 

the references. 708 



33 
 

ACKNOWLEDGEMENTS 709 

The authors would like the thank the members of the New Zealand earthquake response SAG who 710 

used the outputs of this study at the time and subsequently helped to improve both the model 711 

outputs and this manuscript. In particular we thank Liam Wotherspoon for his helpful thoughts 712 

and comments which helped improve the manuscript from its original draft, and Chris Massey for 713 

providing access to the GNS Science landslide inventory. We thank the two anonymous reviewers 714 

whose comments helped improve this manuscript. This study was supported by the DIFeREns2 715 

(2014-2019) COFUND scheme supported by the European Union’s Seventh Framework 716 

Programme (grant number 609412).  717 

REFERENCES 718 

Bannister, S. & Gledhill, K. (2012). Evolution of the 2010-2012 Canterbury earthquake sequence. 719 

New Zealand Journal of Geology and Geophysics. 55 (3). p.pp. 295–304. 720 

Bird, J.F. & Bommer, J.J. (2004). Earthquake losses due to ground failure. Engineering Geology. 721 

75 (2). p.pp. 147–179. 722 

Borella, J.W., Quigley, M. & Vick, L. (2016). Anthropocene rockfalls travel farther than 723 

prehistoric predecessors. Science Advances. 2 (9). 724 

Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I. & Dick, O.B. (2012). Spatial prediction of 725 

landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy 726 

of evidential belief functions and fuzzy logic models. CATENA. 96. p.pp. 28–40. 727 

Costa, J.E. & Schuster, R.L. (1988). The formation and failure of natural dams. Geological Soceity 728 

of America Bulletin. 100. p.pp. 1054–1068. 729 

Davies, A.J., Sadashiva, V., Aghababaei, M., Barnhill, D., Costello, S.B., Fanslow, B., Headifen, 730 



34 
 

D., Hughes, M., Kotze, R., Mackie, J., Ranjitkar, P., Thompson, J., Troitino, D.R., Wilson, 731 

T., Woods, S. & Wotherspoon, L.M. (2017). Transport infrastructure performance and 732 

management in the South Island of New Zealand, during the first 100 days following the 2016 733 

Mw 7.8 Kaikōura earthquake. Bulletin of the New Zealand Society for Earthquake 734 

Engineering. 50 (2). 735 

Davies, T.R., McSaveney, M.J. & Hodgson, K.A. (1999). A fragmentation-spreading model for 736 

long-runout rock avalanches. Canadian Geotechnical Journal. 36 (6). p.pp. 1096–1110. 737 

Dellow, S., Massey, C., Cox, S., Archibald, G., Begg, J., Bruce, Z., Carey, J., Davidson, J., Pasqua, 738 

F. Della, Glassey, P., Hill, M., Jones, K., Lyndsell, B., Lukovic, B., Mccoll, S., Rattenbury, 739 

M., Read, S., Rosser, B., Singeisen, C., Townsend, D., Villamor, P., Villeneuve, M., 740 

Wartman, J., Rathje, E., Sitar, N., Adda, A.-Z., Manousakis, J. & Little, M. (2017). Landslides 741 

caused by the Mw7.8 Kaikōura earthquake and the immediate response. Bulletin of the New 742 

Zealand Society for Earthquake Engineering. 50 (2). 743 

Evans, S.G. & Bent, A.L. (2004). The Las Colinas landslide, Santa Tecla - A highly destructive 744 

flowslide triggered by the January 13, 2001, El Salvador earthquake. In: W. I. Rose, J. J. 745 

Bommer, D. L. Lopez, M. J. Carr, & J. J. Major (eds.). Natural Hazards in El Salvador: 746 

Geological Society of America Special Paper 375. pp. 25–38. 747 

Gallen, S.F., Clark, M.K., Godt, J.W., Roback, K. & Niemi, N.A. (2016). Application and 748 

evaluation of a rapid response earthquake-triggered landslide model to the 25 April 2015 Mw 749 

7.8 Gorkha earthquake, Nepal. Tectonophysics. 750 

Giovinazzi, S., Wilson, T., Davis, C., Bristow, D., Gallagher, M., Schofield, A., Villemure, M., 751 

Eidinger, J. & Tang, A. (2011). Lifelines performance and management following the 22 752 

February 2011 Christchurch earthquake, New Zealand: Highlights of resilience. Bulletin of 753 



35 
 

the New Zealand Soceity for Earthquake Engineering. 44 (4). p.pp. 402–417. 754 

Godt, J.W., Baum, R.L., Savage, W.Z., Salciarini, D., Schulz, W. & Harp, E.L. (2008). Transient 755 

deterministic shallow landslide modelling: requirements for susceptibility and hazard 756 

assessments in a GIS framework. Engineering Geology. 102. p.pp. 214–226. 757 

Hamling, I.J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., 758 

Villamor, P., Wallace, L., Wright, T.J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, 759 

P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., Power, W., Barnes, P., 760 

Barrell, D.J.A., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga, J., Rowland, J. 761 

& Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura 762 

earthquake, New Zealand. Science. eaam7194. 763 

Horspool, N.A., Chadwick, M., Ristau, J., Salichon, J. & Gerstenberger, M.C. (2015). 764 

ShakeMapNZ: Informing post-event decision making. Proceedings of the New Zealand 765 

Society for Earthquake Engineering Conference. 766 

Hsü, K.J. (1975). Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological 767 

Soceity of America Bulletin. 86. p.pp. 129–140. 768 

Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and 769 

avalanches. Canadian Geotechnical Journal. 32 (4). p.pp. 610–623. 770 

Hungr, O. (2006). Rock avalanche occurrence, process and modelling. In: Landslides from 771 

Massive Rock Slope Failure. Dordrecht: Springer Netherlands, pp. 243–266. 772 

Jaiswal, K., Wald, D.J., Earle, P.S., Porter, K.A. & Hearne, M. (2011). Earthquake Casualty 773 

Models Within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) 774 

System. In: R. Spence (ed.). Human Casualties in Earthquakes. Advances in Natural and 775 

Technological Hazards Research. 2011. 776 



36 
 

Jaiswal, K., Wald, D.J. & Hearne, M. (2009). Estimating Casualties for Large Earthquakes 777 

Worldwide Using an Empirical Approach. 778 

Jibson, R.W., Harp, E.L. & Michael, J.A. (2000). A method for producing digital probabilistic 779 

seismic landslide hazard maps. Engineering Geology. 58. p.pp. 271–289. 780 

Kaiser, A., Balfour, N., Fry, B., Holden, C., Litchfield, N., Gerstenberger, M., D’Anastasio, E., 781 

Horspool, N., McVerry, G., Ristau, J., Bannister, S., Christophersen, A., Clark, K., Power, 782 

W., Rhoades, D., Massey, C., Hamling, I., Wallace, L., Mountjoy, J., Kaneko, Y., Benites, 783 

R., Van Houtte, C., Dellow, S., Wotherspoon, L., Elwood, K. & Gledhill, K. (2017). The 784 

2016 Kaikōura, New Zealand, Earthquake: Preliminary Seismological Report. Seismological 785 

Research Letters. 88 (3). 786 

Kanungo, D.P., Arora, M.K., Gupta, R.P. & Sarkar, S. (2008). Landslide risk assessment using 787 

concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides. 5 (4). 788 

p.pp. 407–416. 789 

Keefer, D.K. (1984). Landslides caused by earthquakes. Geological Soceity of America Bulletin. 790 

95. p.pp. 406–421. 791 

Kritikos, T. & Davies, T. (2015). Assessment of rainfall-generated shallow landslide/debris-flow 792 

susceptibility and runout using a GIS-based approach: application to western Southern Alps 793 

of New Zealand. Landslides. 12 (6). p.pp. 1051–1075. 794 

Kritikos, T., Robinson, T.R. & Davies, T.R.H. (2015). Regional coseismic landslide hazard 795 

assessment without historical landslide inventories: A new approach. Journal of Geophysical 796 

Research : Earth Surface. 120. p.pp. 1–19. 797 

Legros, F. (2002). The mobility of long-runout landslides. Engineering Geology. 63 (3–4). p.pp. 798 

301–331. 799 



37 
 

Marc, O., Hovius, N. & Meunier, P. (2016). The mass balance of earthquakes and earthquake 800 

sequences. Geophysical Research Letters. 43 (8). p.pp. 3708–3716. 801 

Meinhardt, M., Fink, M. & Tünschel, H. (2015). Landslide susceptibility analysis in central 802 

Vietnam based on an incomplete landslide inventory: Comparison of a new method to 803 

calculate weighting factors by means of bivariate statistics. Geomorphology. 234. p.pp. 80–804 

97. 805 

Newmark, N.M. (1965). Effects of earthquakes on dams and embankments. Milestones in Soil 806 

Mechanics. 807 

Nowicki, M.A., Wald, D.J., Hamburger, M.W., Hearne, M. & Thompson, E.M. (2014). 808 

Development of a globally applicable model for near real-time prediction of seismically 809 

induced landslides. Engineering Geology. 173. p.pp. 54–65. 810 

Parker, R.N., Rosser, N.J. & Hales, T.C. (2017). Spatial prediction of earthquake-induced landslide 811 

probability. Natural Hazards and Earth System Sciences Discussions. 812 

Paterson, B.R. & Bourne-Webb, P.J. (1994). Reconnaissance report on highway damage from the 813 

18 June 1994, Arthurs Pass earthquake. Bulletin of the New Zealand Society for Earthquake 814 

Engineering. 27 (3). p.pp. 222–226. 815 

Pellicani, R., Van Westen, C.J. & Spilotro, G. (2014). Assessing landslide exposure in areas with 816 

limited landslide information. Landslides. 11 (3). p.pp. 463–480. 817 

Pourghasemi, H.R., Pradhan, B. & Gokceoglu, C. (2012). Application of fuzzy logic and analytical 818 

hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. 819 

Natural Hazards. 63 (2). p.pp. 965–996. 820 

Power, W., Downes, G., McSaveney, M., Beavan, J. & Hancox, G.T. (2005). The Fiordland 821 

earthquake and tsunami, New Zealand, 21 August 2003. In: K. Satake (ed.). Tsunamis: Case 822 



38 
 

Studies and Recent Developments. 2005, pp. 31–42. 823 

Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, 824 

fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of 825 

Remote Sensing. 38 (2). p.pp. 301–320. 826 

Robinson, T.R., Buxton, R., Wilson, T.M., Cousins, J. & Christophersen, A. (2015). Multiple 827 

infrastructure failures and restoration estimates from an Alpine Fault earthquake: Capturing 828 

modelling information for MERIT. 829 

Robinson, T.R., Davies, T.R.H., Wilson, T.M. & Orchiston, C. (2016a). Coseismic landsliding 830 

estimates for an Alpine Fault earthquake and the consequences for erosion of the Southern 831 

Alps, New Zealand. Geomorphology. 263. p.pp. 71–86. 832 

Robinson, T.R., Davies, T.R.H., Wilson, T.M., Orchiston, C. & Barth, N. (2016b). Evaluation of 833 

coseismic landslide hazard on the proposed Haast-Hollyford Highway, South Island, New 834 

Zealand. Georisk: Assessment and Management of Risk for Engineered Systems and 835 

Geohazards. 10 (2). 836 

Robinson, T.R., Rosser, N.J., Densmore, A.L., Williams, J.G., Kincey, M.E., Benjamin, J. & Bell, 837 

H.J.A. (2017). Rapid post-earthquake modelling of coseismic landslide magnitude and 838 

distribution for emergency response decision support. Natural Hazards and Earth Systems 839 

Sciences. 840 

Sotiris, V., George, P. & Spyros, P. (2016). Preliminary Map of Co-Seismic Landslides for the M 841 

7.8 Kaikoura, New Zealand Earthquake [Data Set]. 2016. Zenodo. 842 

Stirling, M.W., Litchfield, N.J., Villamor, P., Van Dissen, R.J., Nicol, A., Pettinga, J., Barnes, P., 843 

Langridge, R.M., Little, T., Barrell, D.J.A., Mountjoy, J., Ries, W.F., Rowland, J., Fenton, 844 

C., Hamling, I., Asher, C., Barrier, A., Benson, A., Bischoff, A., Borella, J., Carne, R., 845 



39 
 

Cochran, U.A., Cockroft, M., Cox, S.C., Duke, G., Fenton, F., Gasston, C., Grimshaw, C., 846 

Hale, D., Hall, B., Hao, K.X., Hatem, A., Hemphill-Haley, M., Heron, D.W., Howarth, J., 847 

Juniper, Z., Kane, T., Kearse, J., Khajavi, N., Lamarche, G., Lawson, S., Lukovic, B., 848 

Madugo, C., Mccoll, S., Noble, D., Pedley, K., Sauer, K., Stahl, T., Strong, D.T., Townsend, 849 

D.B., Toy, V., Villeneuve, M., Wandres, A., Williams, J., Woelz, S. & Zinke, R. (2017). The 850 

Mw 7.8 2016 Kaikōura earthquake: surface fault rupture and seismic hazard context. Bulletin 851 

of the New Zealand Society for Earthquake Engineering. 50 (2). 852 

Trendafiloski, G., Wyss, M. & Rosset, P. (2011). Loss Estimation Module in the Second 853 

Generation Software QLARM. In: R. Spence (ed.). Human Casualties in Earthquakes. 854 

Advances in Natural and Technological Hazards Research. 2011. 855 

Wadge, G., Francis, P.W. & Ramirez, C.F. (1995). The Socompa collapse and avalanche event. 856 

Journal of Volcanology and Geothermal Research. 66. p.pp. 309–336. 857 

Wald, D., Lin, K.-W., Porter, K. & Turner, L. (2008). ShakeCast: Automating and Improving the 858 

Use of ShakeMap for Post-Earthquake Decision-Making and Response. Earthquake Spectra. 859 

24 (2). p.pp. 533–553. 860 

Williams, J.G., Rosser, N.J., Kincey, M.E., Benjamin, J., Oven, K.J., Densmore, A.L., Milledge, 861 

D.G. & Robinson, T.R. (2017). Satellite-based emergency mapping: Landslides triggered by 862 

the 2015 Nepal earthquake. Natural Hazards and Earth System Sciences Discussion. 863 

Woods, R.J., McBride, S.K., Wotherspoon, L.M., Beaven, S., Potter, S.H., Johnston, D.M., 864 

Wilson, T.M., Brunsdon, D., Grace, E.S. & Brackley, H. (2017). Science to Emergency 865 

Management Response: Kaikoura Earthquakes 2016. Bulletin of the New Zealand Soceity for 866 

Earthquake Engineering. 50 (2). p.pp. 329–337. 867 

Yin, Y., Wang, F. & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan 868 



40 
 

earthquake, Sichuan, China. Landslides. 6 (2). p.pp. 139–152. 869 

870 



41 
 

LIST OF FIGURES: 871 

 872 

Figure 1: Ground shaking and observed landslides from the Mw 7.8 Kaikōura earthquake in 873 

relation to critical transport infrastructure and rivers. Shaking data from GeoNet downloaded at 874 

10:12 hrs on 16 November 2016 UTC (+2 days 23 hrs 10 mins). Landslides mapped by Massey 875 

et al. (This Issue). Landslide road blockages reported by the New Zealand Transport Agency and 876 

downloaded from the clearinghouse > 1 week after the event. Landslide dams located by ECan 877 

(2017a) based on aerial reconnaissance and publically released on 1 December 2016 UTC (+18 878 

days). Inset: Tectonic setting of New Zealand showing major faults associated with the 879 

Australia-Pacific plate boundary. MFS – Marlborough Fault System; Alpine F – Alpine Fault; 880 

IKR – Inland Kaikōura Road. 881 
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 882 

Figure 2: Simplified workflow for near real-time landslide hazard and risk modelling. Circles 883 

represent input or derived data; squares represent model processes; diamonds represent key 884 

model outputs. All data except shaking intensity and its consequent derived data is available pre-885 

earthquake. 886 
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 887 

Figure 3: Landslide reach angle and danger pixels for the South Island State Highway and order 888 

3+ river networks. (a) Landslide runout concepts, adapted from Hungr et al. (2005). H – vertical 889 

drop; L – horizontal distance; θ – reach angle. Pixels with reach angles > 30º are considered to be 890 

at risk from landslide blockages, while pixels with reach angles < 30° are not at risk. (b) 891 

Calculated reach angles for all pixels surrounding the road network. Inset: closer view of 892 

calculated reach angles for a section of SH1 north of Oaro. (c) Calculated reach angles for all 893 

pixels surrounding the order 3+ river network. Inset: closer view of calculated reach angles for 894 

series of rivers north of Kaikōura. 895 
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 896 

Figure 4: Model 1 landslide hazard and risk model results based on the USGS ShakeMap® 897 

version 1, completed at 08:30 hrs on 14 November UTC (+0 days 21 hrs 28 mins). (a) input 898 

ground shaking model from USGS; (b) landslide hazard model; (c) landslide road blockage risk 899 

model; (d) landslide dam risk model. 900 
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 901 

Figure 5: Model 2a landslide hazard and risk model results based on the GeoNet Shakemap 902 

version 1, completed at 12:30 hrs on 16 November UTC (+3 days 1 hrs 28 mins). (A) input 903 

ground shaking model from GeoNet. The blue halo of low intensity shaking along the entire 904 

coastline resulted from an anomaly in the data processing at the time; (B) landslide hazard 905 

model; (C) landslide road blockage risk model; (D) landslide dam risk model.  906 
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 907 

Figure 6: Quantitative verification curves showing true positive, false positives, and relative true 908 

positive rates for each of the Model 1 and Model 2 outputs based on initial observed landslides. 909 

(A) landslide hazard outputs; (B), road blockage risk outputs; (C), and landslide dam risk 910 

outputs. True positive curves for road blockages and landslide dams appear step-wise due to the 911 

small number of observed blockages used to verify the models. 912 

 913 

Figure 7: Effect of using different reach angle thresholds on the percentage of true positives and 914 

false positives predicted by Model 1 for road blockages and landslide dams. (A) True and false 915 

positive curves for different reach angle thresholds for road blockage risk; and (B) true and false 916 

positive curves for different reach angle thresholds for landslide dam risk. Decreasing the reach 917 

angle threshold increases the maximum number of hits successfully predicted, but has an 918 
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associated increase in false alarms. The area between the true and false positive curves for the 919 

same threshold angle gives a measure of the best performing threshold value. 920 

 921 

Figure 8: Comparison between MMI raster files computed using all grid points in the GeoNet 922 

data download and only those grid points located onshore, and the effect on predicted road risk. 923 

(A) Interpolated raster file using all grid points; (B) Interpolated raster file using only onshore 924 

grid points; (C) Predicted road blockage risk near Kaikōura for Model 2 using MMI in (A); and 925 

(D) Predicted road blockage risk near Kaikōura for Model 2-corrected using MMI in (B).926 
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TABLES 927 

Table 1: Bin ranges and corresponding bin numbers for each of the predisposing factors used in 928 

this study.  929 

Factor Bin value 

range 

Bin 

number 

Local slope angle 

(SA) 

0-5º 1 

5-10º 2 

10-15º 3 

15-20º 4 

20-25º 5 

25-30º 6 

30-35º 7 

35-40º 8 

40-45º 9 

45-50º 10 

50º+ 11 

Modified Mercalli 

Intensity (MMI) 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 
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8 8 

9 9 

10+ 10 

Fault proximity 

(FD) 

0-5 km 1 

5-10 km 2 

10-20 km 3 

20-30 km 4 

30-40 km 5 

40-50 km 6 

50+ km 7 

River Proximity 

(RD) 

0-0.5 km 1 

0.5-1.0 km 2 

1.0-1.5 km 3 

1.5-2.0 km 4 

2.0-2.5 km 5 

2.5+ km 6 

Slope Position 

(SP)* 

Flat 1 

Valley 

bottoms 
2 

Mid-slopes 3 

Ridgelines 4 

*Slope position is a qualitative measure based on a combination of slope angle, slope curvature, and elevation of 930 

neighbouring pixels. The classification in this study follows the example given in Jenness et al. (2013). 931 
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 932 

Table 2: Sensitivity analysis for Model 1 road blockage and landslide dam outputs. 933 

 
Area between true and false 

positive curves (/1) 

Reach Angle 

Threshold 

Roads 

Blockages 

Landslide 

Dams 

10° 0.36 0.27 

20° 0.42 0.30 

30° 0.48 0.32 

40° 0.46 0.33 

50° 0.03 0.00 

 934 


