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Abstract 

 

Humans are more accurate at remembering faces from their own relative to a different 

ethnic group (own-race bias). Moreover, better memory for faces from an observer’s own 

relative to the other gender (own-gender bias) has also been reported, particularly for female 

participants. Theoretical explanations for these effects either emphasize differential perceptual 

expertise or socio-cognitive factors. Importantly, both types of explanations typically assume 

a single common mechanism for the various biases. The present study examined event-related 

potentials (ERP) in a combined own-race/own-gender bias experiment. Whereas both male 

and female participants demonstrated clear own-race biases in memory performance, 

enhanced memory for own-gender faces was only observed in female participants. Moreover, 

the own-race bias was accompanied by larger N170 responses for other-race faces, 

presumably reflecting more effortful perceptual processing of this face category. Neural 

correlates of the own-gender bias manifested at later processing stages, reflecting the 

processing of individual faces (N250) and recollection-based memory retrieval (late ERP 

old/new effect). We conclude that different face memory biases occur at temporally distinct 

stages of face processing and are therefore based on different mechanisms. This suggestion is 

at variance with the assumption of a single common mechanism to underlie the various biases 

in face memory. 

 

Keywords: Face Recognition; Event-Related Potentials; N170; Own-Race Bias; Own-Gender 

Bias 
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1. Introduction 

 

The ability to remember faces is crucial for social interactions. At the same time, this 

ability depends to a large extent on whether the observer and the perceived face belong to the 

same or different social groups. It has been long-known that participants are more accurate at 

remembering faces from their own- relative to a different ethnic group (Malpass & Kravitz, 

1969; Meissner & Brigham, 2001), a phenomenon interchangeably termed the own-race bias 

(ORB), other-race effect or cross-race effect. More recently, a number of other, potentially 

related face memory biases have been discovered, including increased memory for own-age 

(Fulton & Bartlett, 1991; M. G. Rhodes & Anastasi, 2012; Wiese, Komes, & Schweinberger, 

2013), and own-gender faces (particularly in female participants; Herlitz & Loven, 2013; 

Lewin & Herlitz, 2002). Moreover, participants have been reported to more accurately 

remember own-group faces in minimal-group paradigms, in which face stimuli are randomly 

assigned to the participant’s or a different group on the basis of arbitrary information (such as 

the outcome of a fake personality test; e.g., Bernstein, Young, & Hugenberg, 2007). 

Traditionally, the own-race bias has been explained by differential perceptual 

expertise. On the one hand, processing accounts suggest that specific aspects of face 

perception such as configural or holistic processing are more finely-tuned for own-group 

faces, and consequently less efficient for other-group faces (Hayward, Crookes, & Rhodes, 

2013; Rossion & Michel, 2011). Less effective perceptual processing is assumed to result in 

less effective memory encoding and consequently less accurate memory. On the other hand, 

representational accounts suggest that the Multidimensional Face Space, a system to 

represent faces in memory, is shaped by experience and therefore optimized for those face 

categories we see more often (Valentine, 1991; Valentine, Lewis, & Hills, 2016). Of note, 

perceptual expertise accounts may explain not only the own-race but also the own-age bias, as 

it appears plausible that most people have more contact to and consequently more perceptual 
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experience with others from their own ethnic and age groups. At the same time, expertise 

accounts cannot explain biases in minimal group paradigms, and an explanation of the own-

gender bias is not straightforward, as most people in Western societies have similar contact to, 

and experience with, people of their own- and the opposite gender. 

However, Herlitz and Loven (2013) have argued that the own-gender bias results from 

enhanced experience with female faces during early childhood, as the mother is more likely 

the primary caregiver in most societies. This assumed initial bias towards female faces is 

believed to further deepen in females by increased contact to own-gender peers later in life 

(who will accordingly show an own-gender bias) but counteracted by increased own-gender 

contact in males (who will accordingly show no gender bias). It should be noted that this 

explanation does not sit easily with the occasional finding of an own-gender bias in male 

participants (Steffens, Landmann, & Mecklenbrauker, 2013; Wolff, Kemter, Schweinberger, 

& Wiese, 2014; Wright & Sladden, 2003). Moreover, it remains unclear why extensive early 

experience with a single female face (the mother’s) should transfer to a general advantage for 

female faces. 

Alternative to the expertise accounts, socio-cognitive explanations hold that people 

categorize others into social in- versus out-groups (Hugenberg, Young, Bernstein, & Sacco, 

2010; Levin, 1996; Sporer, 2001), and that this categorization can be based on various facial 

characteristics including ethnic background, age, and gender, or even on superficial cues (e.g., 

background colour) signalling a randomly assigned group in a minimal group paradigm. It is 

further suggested that in-group faces are processed at an individual level whereas the 

processing of out-group faces stops at the category level. Put differently, once it is established 

that a particular face belongs to an out-group, this information is deemed sufficient and no 

further processing of individuating information is initiated (but see G. Rhodes, Lie, Ewing, 

Evangelista, & Tanaka, 2010). Furthermore, this difference in processing individuating 

information has been suggested to depend on motivation, and accordingly increasing 
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motivation to individuate out-group faces has been reported to reduce or even eliminate face 

memory biases (Hugenberg, Miller, & Claypool, 2007; Hugenberg et al., 2010). It may be 

noted that these findings have been difficult to replicate, and that the own-race bias has been 

reported to have no social-motivational component in some cultural settings (Wan, Crookes, 

Reynolds, Irons, & McKone, 2015). In a nutshell, whereas expertise accounts assume that 

participants are not able to individuate other-group faces, socio-cognitive accounts emphasize 

that participants are not motivated to do so.  

In contrast to the expertise models, socio-cognitive accounts can be applied to all of 

the above-described biases, and one might therefore argue that these latter approaches offer a 

more parsimonious explanation. Critically, this reasoning is based on the assumption that one 

common single mechanism underlies all biases. This, however, may not necessarily be the 

case. Although all biases reflect differences in memory for faces from the viewers’ relative to 

a different group, they might still be driven by distinct underlying mechanisms. But since 

theoretical explanations in science aim at being parsimonious for good reason, substantial 

empirical evidence should be provided before the hypothesis of one mechanism driving all 

biases is abandoned.  

As will become clear in the following paragraphs, event-related brain potentials 

(ERPs) provide an excellent means to search for such evidence. ERPs reflect voltage changes 

in the electroencephalogram (EEG) that are time-locked to a certain event. ERP components 

are positive and negative deflections with specific functional (e.g., sensitivity to experimental 

manipulations) and neuronal characteristics (e.g., latency, brain generator(s)), which have 

been linked to specific perceptual and cognitive sub-processes during stimulus processing. 

ERPs therefore may be used to examine whether different face memory biases occur at 

similar or different processing stages. This, in turn, can be taken as evidence for or against the 

assumption that the different memory biases are generated by one common mechanism. 
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Previous ERP research on the own-race bias has identified a number of components 

that differentiate between the processing of own- and other-race faces. First, the N170, a 

negative deflection peaking approximately 170 ms after stimulus onset (Bentin, Allison, Puce, 

Perez, & McCarthy, 1996), has been repeatedly found to be larger for other- relative to own-

race faces (e.g., Caharel et al., 2011; Cassidy, Boutsen, Humphreys, & Quinn, 2014; 

Herrmann et al., 2007; Herzmann, 2016; Montalan et al., 2013; Stahl, Wiese, & 

Schweinberger, 2008, 2010; Walker, Silvert, Hewstone, & Nobre, 2008; Wiese, 2012, 2013; 

Wiese, Kaufmann, & Schweinberger, 2014). The N170 is usually assumed to reflect processes 

prior to the identification of individual faces, such as the detection of a face-like stimulus or 

structural encoding (Amihai, Deouell, & Bentin, 2011; Eimer, 2011; Schweinberger & Burton, 

2003). Structural encoding is defined by Bruce and Young (1986) as the production of several 

descriptions of the presented face, including view-centred and more abstract descriptions of 

the available perceptual information. Face recognition, however, is typically considered a 

serial process, with recognition of individual identity being preceded by earlier perceptual 

processing stages (Bruce & Young, 1986, 2012). A deficit at an early stage would be carried 

over to later stages, and less efficient structural encoding of other-race faces may therefore 

also result in a deficit at processing individual identity. In line with this idea, a recent study 

found that the magnitude of the N170 ethnicity effect during the learning phases of a 

recognition memory experiment was correlated with the size of the own-race bias at test 

(Wiese, Kaufmann, et al., 2014).  

It should be noted that a number of studies did not show a difference between own- 

and other-race faces in the N170 (Caldara, Rossion, Bovet, & Hauert, 2004; Caldara et al., 

2003; Herzmann, Willenbockel, Tanaka, & Curran, 2011; Vizioli, Foreman, Rousselet, & 

Caldara, 2010; Wiese, Stahl, & Schweinberger, 2009). This inconsistency may be partly 

explained by different processing demands in the various experiments. More specifically, 
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tasks that do not require participants to process faces at least at a categorical level are unlikely 

to yield an N170 ethnicity effect (Senholzi & Ito, 2013; Wiese, 2013). 

Experiments on the own-age bias do not show larger N170 amplitudes for other-age 

faces. Although the N170 is typically larger for older adult relative to young adult faces, this 

effect is similarly observed in young and older adult participants and thus cannot contribute to 

own-age biases in memory performance (Komes, Schweinberger, & Wiese, 2015; Wiese, 

Schweinberger, & Hansen, 2008). Moreover, previous research did not yield differences in 

N170 amplitude during the processing of facial gender (Mouchetant-Rostaing & Giard, 2003; 

Mouchetant-Rostaing, Giard, Bentin, Aguera, & Pernier, 2000), or purely social in- vs. out-

groups (Cassidy et al., 2014). In sum, it appears that the majority of studies suggest a larger 

N170 for other- as compared to own-race faces, whereas previous evidence suggests no 

similar effect for own- versus other-age or gender faces. These findings may therefore be seen 

as initial evidence for different processes underlying the different memory biases. 

The N170 is typically followed by a positive-going deflection, the P2, which has been 

suggested to reflect the processing of metric distances between facial features (Halit, de Haan, 

& Johnson, 2000; Kaufmann & Schweinberger, 2012; Latinus & Taylor, 2006). Previous 

research has also demonstrated that P2 is larger for own- relative to other-race faces, and that 

this difference is absent in participants with substantial expertise with other-race faces (Stahl 

et al., 2008). Moreover, varying task demands during learning affects the P2 ethnicity effect 

(Stahl et al., 2010). Whereas the effect was clearly observed when participants were asked to 

categorise faces according to ethnic group, it was substantially reduced when participants 

were asked to rate the attractiveness of own- and other-race faces, a task that presumably 

required them to process all faces at an individual level. Moreover, P2 is larger for young 

relative to old faces, but similar to N170, this face age effect is not modulated by participant 

age (Wiese et al., 2008). P2 has also been reported to be more positive for female relative to 

male faces, but again this face gender effect did not interact with participant gender (Wolff et 
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al., 2014). Together these findings suggest a P2 ethnicity effect, which is modulated by 

expertise and/or motivation to individuate, but no corresponding own-age or own-gender 

effects. 

The negative deflection following P2, the N250, is typically regarded as reflecting 

individual face processing and familiar face recognition. Accordingly, N250 is more negative 

for celebrity versus unfamiliar faces (Andrews, Burton, Schweinberger, & Wiese, 2017; 

Gosling & Eimer, 2011). Moreover, immediate repetition of familiar faces results in more 

negative N250 amplitudes, a phenomenon known as the N250r (for a recent review, see 

Schweinberger & Neumann, 2016; Schweinberger, Pfütze, & Sommer, 1995), which is 

interpreted as reflecting facilitated access to perceptual representations of individual faces. 

Whereas two experiments did not detect a difference in N250r for own- versus other-race 

faces (Herrmann et al., 2007; Herzmann, 2016), a larger N250r for young relative to old faces 

has been observed in young but not older adult participants (Wiese, Kachel, & Schweinberger, 

2013). Finally, in recognition memory paradigms, correctly remembered faces typically elicit 

larger N250 amplitudes than correctly rejected new faces. Whereas studies on the own-age 

bias found this N250 memory effect to be more pronounced for young faces in young adults 

only (Wiese, 2012; Wiese et al., 2008; Wiese, Wolff, Steffens, & Schweinberger, 2013), no 

corresponding effects were observed for the own-race (Wiese, Kaufmann, et al., 2014) or 

own-gender biases (Wolff et al., 2014). Again, these findings seem to indicate different 

mechanisms for the various own-group biases. 

Whereas all of the above-described N250 effects, with more negative amplitudes for 

familiar or newly learnt faces, can be interpreted to reflect accessing either previously existing 

or newly-established perceptual face representations, amplitudes in this time window are also 

generally more negative for other- relative to own-race faces (Herzmann, 2016; Stahl et al., 

2010; Wiese, Kaufmann, et al., 2014). This latter N250 ethnicity effect has been found to be 

statistically independent of the recognition memory effect (Wiese, Kaufmann, et al., 2014), 
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and may therefore reflect a different process. While its exact functional role remains 

somewhat unclear at present, it might be related to affective processing (see Wiese, Altmann, 

& Schweinberger, 2014) or enhanced processing effort allocated to those faces which 

participants feel are more difficult (Herzmann, 2016; Wan et al., 2015). 

Finally, in recognition memory experiments, correctly remembered old items elicit 

more positive amplitudes than correctly rejected new items at dorsal scalp sites, a 

phenomenon usually referred to as the old/new effect (e.g., Rugg et al., 1998). Typically, an 

early anterior old/new effect (approximately 300-500 ms) is distinguished from a later and 

more posterior effect (approximately 500-700 ms). Whereas researchers largely agree that the 

later effect is related to conscious recollection of study phase detail, the early effect has been 

interpreted as reflecting either familiarity-based recognition (MacKenzie & Donaldson, 2007; 

Rugg & Curran, 2007) or conceptual priming (Paller, Voss, & Boehm, 2007). Interestingly, 

the later old/new effect has been found to be increased for own-race (Herzmann et al., 2011; 

Stahl et al., 2010), own-age (Wiese, Komes, & Schweinberger, 2012; Wiese et al., 2008), 

own-gender (Wolff et al., 2014), and randomly assigned social in-group faces (Herzmann & 

Curran, 2013). Accordingly, results from the late old/new effect suggest that participants 

seem to remember more study phase detail when learning own-group faces, and this effect 

can accompany any of the various face memory biases. 

In sum, the research reviewed above can be seen as accumulating evidence for 

separate mechanisms underlying the various face memory biases. However, different biases 

have been rarely studied within the same experiment (for notable exceptions, see Shriver, 

Young, Hugenberg, Bernstein, & Lanter, 2008; Wallis, Lipp, & Vanman, 2012; Wiese, 2012). 

In particular, no previous ERP study has examined the own-race and own-gender biases in a 

single combined study. Findings from separate experiments can in principle be related to 

uncontrolled differences in participant groups or stimuli, and various differences in 

experimental procedure complicate the direct comparison of results. Importantly, varying 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 9

expertise with own- and other-group people in different settings may have a substantial effect 

on the outcome (see Wan et al., 2015). The present study therefore tested the own-race and 

own-gender biases in a combined experiment. This combination appeared particularly 

interesting, as, given the extensive daily-life contact to other-gender people, any effect of 

long-term perceptual expertise on the own-gender bias would be substantially smaller relative 

to the own-race bias. Given that in- versus out-group categorization should occur for both 

ethnic and gender groups, any residual own-race bias over and above the size of the own-

gender bias in the same participants would be likely related to expertise. In addition, any 

finding of different neural correlates for the two effects in the same participants would 

substantially strengthen the idea of different processes underlying the different memory biases. 

 

2. Methods 

 

2.1 Participants 

We tested 43 undergraduate and postgraduate students of the Friedrich Schiller 

University with Caucasian ethnic backgrounds. Three participants were excluded after testing, 

as they did not fulfil the criterion of at least 15 artifact-free trials in each condition for EEG 

analysis (see below). The final sample consisted of 20 female and 20 male participants with a 

mean age of 23 years (± 2.7 SD). All participants were right-handed according to a modified 

version of the Edinburgh Handedness Inventory (Oldfield, 1971) and reported normal or 

corrected-to-normal vision. None suffered from a neurological or psychiatric condition or 

took any central-acting medication. Participants either received 5€/h or course credit as a 

compensation. All gave written informed consent prior to the experiment and the study was 

approved by the local ethics committee. 

 

2.2 Stimuli 
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Stimuli consisted of colour pictures depicting 200 Caucasian (i.e., central European or 

North American) and 200 Asian (i.e., Chinese or Korean) faces. Images were taken from the 

CAL/PAL face database (Minear & Park, 2004) and various other internet sources. All faces 

were front-facing with a neutral expression. Using Adobe PhotoshopTM, faces were cut out 

along the chin line and the outer contour of the head such that external features (ears, hair 

covering the forehead) were visible. Images were then pasted in front of a black background 

and framed within an area of 300 x 400 pixels, corresponding to a viewing angle of 6.7° x 

8.9° at a distance of 90 cm. Stimuli were corrected for luminance differences by changing the 

mean pixel intensity of each image to a standard value of 112 (excluding the background; 

scale from 0 to 255). 

 

2.3 Experimental Design and Procedure 

Participants were seated in an electrically shielded, sound-attenuated and dimly lit cabin 

(400 A-CT-Special, Industrial Acoustics, Niederkrüchten, Germany). Their heads were placed 

in a chin-rest at 90 cm distance from a computer screen. Each trial started with a fixation 

cross (presented for 500 ms), which was followed by a face stimulus (various durations, see 

below), and ended with a blank screen (500 ms). Participants had to respond via left and right 

index finger button presses within 2000 ms after stimulus onset. 

The experiment consisted of 10 blocks, each divided into a learning and a test phase. 

During learning, 20 faces were presented (50% Asian, 50% female) for 3000 ms each. To 

increase the salience of potential gender-based in- versus out-group categorization in the 

context of own- and other-race faces, participants were asked to decide as quickly and 

accurately as possible whether the current face was female or male and to additionally 

memorize the faces. Learning and test phases were separated by a fixed break of 30 s. During 

test, all faces from the directly preceding learning phase as well as 20 new faces (again 50% 

Asian, 50% female) were presented. Stimuli were presented for 2000 ms and in random order. 
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Participants were asked to decide whether the current face had been presented in the directly 

preceding learning phase (“old”) or whether it was new. Key assignment and allocation of 

stimuli to learned or new conditions were counterbalanced across participants. 

Both accuracies and mean reaction times for correct responses from the learning phases 

were analyzed. Responses during the test phases were sorted into four categories for Asian 

female, Asian male, Caucasian female, and Caucasian male faces, respectively: hits (correctly 

remembered old faces), misses (old faces wrongly classified as new), correct rejections (CR, 

new faces correctly classified as new), and false alarms (new faces wrongly classified as old). 

Signal detection indices of sensitivity (d’) and response bias (C; see e.g., Wickens, 2002) 

were calculated for each of the four experimental conditions1. 

After the main experiment, all participants completed a questionnaire to estimate 

quantity (measured in h/week and number of contact persons) and quality of contact towards 

own- and other-race, as well as own- and other-gender people. This questionnaire was similar 

to the one used in previous studies from our group (Wiese, 2012; Wiese, Kaufmann, et al., 

2014), but modified for the purposes of the present study by asking for contact to male and 

female own- and other-race people separately. 

 

2.4 EEG recording and analysis 

Thirty-two channel EEG was recorded using a BioSemi Active II system (BioSemi, 

Amsterdam, The Netherlands). Recording sites corresponded to Fz, Cz, Pz, Iz, FP1, FP2, F3, 

F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, F9, F10, FT9, FT10, TP9, TP10, P9, P10, 

PO9, PO10, I1, and I2. EEG was recorded continuously with a 512-Hz sample rate from 

direct current to 155 Hz. BioSemi systems work with a “zero-Ref” setup with ground and 

                                                        
1 In the present context, the signal detection index of sensitivity (d’ = z[hits] – z [False Alarms]) reflects a 
measure of memory performance corrected for the general tendency to respond “old”, with zero indicating 
chance performance and increasingly positive values indicating higher sensitivity. Response bias (C = -
0.5*(z[Hits]+z[False Alarms])) is a signal detection measure of the general tendency to respond “old”, 
independent of memory. Positive values indicate a conservative (with overall more “new” than “old” responses) 
and negative values a liberal response bias (with overall more “old” than “new” responses). 
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reference electrodes replaced by a common mode sense/driven right leg circuit (for further 

information, see www.biosemi.com/faq/cms&drl.htm).  

Contributions of blink artifacts were corrected using BESA 5.3 (BESA GmbH, 

Graefelfing, Germany). EEG was segmented from -200 to 1000 ms relative to face onset, with 

the first 200 ms as baseline. Trials with non-ocular artifacts and saccades were rejected from 

further analysis using the BESA 5.3 tool with an amplitude threshold of 100 µV and a 

gradient criterion of 75 µV. Remaining trials were re-calculated to common average reference, 

digitally low-pass filtered at 40 Hz (12 dB/oct, zero-phase shift), and averaged according to 

the experimental conditions during learning (Asian female, Asian male, Caucasian female, 

Caucasian male) and test (hits and correct rejections for Asian female, Asian male, Caucasian 

female, Caucasian male, respectively). An inclusion criterion of a minimum of 15 artifact-free 

trials per condition was applied. Average number of trials per condition was 40.7 (± 5.7 SD; 

range: 31.2 – 46.9) for female participants and 39.9 (± 5.4 SD; range: 29.4 – 48.1) for male 

participants. 

In the resulting waveforms, mean amplitudes for N170 (150-190 ms at P9 and P10), 

P2 (200-280 ms at P9/P10), and N250 (280-400 ms at P9/P10) were calculated. Moreover, at 

test early (300-500 ms) and late (500-700 ms) old new effects were examined at left, midline 

and right frontal, central and parietal channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4). Selection 

of time windows was based on inspection of the grand average. Statistical analyses were 

performed by calculating mixed-model analyses of variance (ANOVAs), and degrees of 

freedom were corrected using the Greenhouse-Geisser procedure when appropriate.  

Following an estimation approach in data analysis (e.g., Cumming, 2012; Fritz, Morris, 

& Richler, 2012), we report measures of effect size (partial eta squared, Cohen’s d) with 

appropriately sized confidence intervals (CIs) throughout. Cohen’s d for paired samples t-tests 

was bias-corrected and calculated with mean SD rather than SD of the difference as the 

denominator (dunb) using ESCI (Cumming & Calin-Jageman, 2017). CIs on partial eta squared 
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(ηp
2) were calculated using scripts provided by M.J. Smithson 

(https://dl.dropboxusercontent.com/u/1857674/CIstuff/CI.html).  

 

3. Results 

 

3.1 Contact questionnaires 

A mixed-model ANOVA (containing both between- and within-subject factors) on 

hours of contact (see Table 1) with the within-subject factors contact person’s ethnicity 

(Asian, Caucasian) and contact person’s gender (female, male), as well as the between-

subjects factor participant gender (female, male) yielded a significant main effect of contact 

person’s ethnicity, F(1, 38) = 118.163, p < .001, ηp
2 = .757, 90% CI [.627, 819], reflecting 

substantially more contact hours with Caucasian relative to Asian people. Moreover, a 

significant interaction of contact person’s ethnicity x participant gender, F(1, 38) = 4.244, p 

= .046, ηp
2 = .101, 90% CI [.001, .259], was further qualified by a three-way interaction of 

contact person’s ethnicity by contact person’s gender by participant gender, F(1, 38) = 9.614, 

p = .004, ηp
2 = .202, 90% CI [.043, .368]. Post-hoc t-tests showed that female participants 

spent significantly more time with Caucasian females relative to Caucasian males, t(19) = 

4.874, p < .001, dunb = 0.471, 95% CI [0.236, 0.737], whereas no significant difference was 

detected for female versus male Asian people, t(19) = 2.015, p = .058, dunb = 0.450, 95% CI [-

.015, 0.885]. At the same time, male participants did not report a difference in time spent with 

female versus male people, neither for Asian, t(19) = 1.717, p = .102, dunb = 0.429, 95% CI [-

0.088, 0.971], nor for Caucasian people, t(19) = -1.080, p = .294, dunb = -0.285, 95% CI [-

0.840, 0.254]. 

Please note that three male participants reported substantially more contact to Asian 

females (30 or more h/week, with the next highest participant reporting 8 h/week) than the 

group mean, but that all three participants also reported substantially more contact to 
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Caucasian females relative to Asian females (68 vs. 34h/week, 90 vs. 30h/week, and 48 vs. 

30h/week, respectively). Nevertheless, we will report statistical comparisons of the critical 

findings involving the male participant group both with and without these three participants. 

As detailed below, the most critical results (d’, N170, and N250) remain unchanged when 

these participants are excluded. 

Table 1. Contact data. 
    Female Participants   Male Participants 

    Asian Fem. Asian Male Cauc. Fem. Cauc. Male   Asian Fem. Asian Male Cauc. Fem. Cauc. Male 

           

Contact Hours (per week)         

 M 0.65 0.20 43.95 31.50  5.25 1.50 37.20 44.85 

 SD 1.27 0.70 27.92 22.60  11.37 3.36 26.77 24.74 

           

No. of Contact Persons (per week)        

 M 0.65 0.15 22.85 11.45  1.00 0.65 22.90 27.60 

 SD 1.09 0.37 13.39 7.57  2.15 1.31 29.19 30.71 

           

Contact Quality         

 M 0.75 0.35 3.00 2.65  0.85 0.50 2.40 2.60 

 SD 1.16 0.88 0.46 0.59  1.35 0.89 0.60 0.88 

                      

 

Similarly, a corresponding ANOVA on the number of contact persons (see Table 2) 

revealed a main effect of ethnicity, F(1, 38) = 38.776, p < .001, ηp
2 = .505, 90% CI 

[.304, .629], with higher numbers for Caucasian than Asian people. Again, an interaction of 

contact person’s gender by participant gender, F(1, 38) = 15.771, p < .001, ηp
2 = .293, 90% 

CI [.103, .453], was further qualified by a significant three-way interaction of contact 

person’s ethnicity by contact person’s gender by participant gender, F(1, 38) = 15.748, p 

< .001, ηp
2 = .293, 90% CI [.103, .453]. Post-hoc t-tests for female participants demonstrated 

higher numbers for Caucasian female relative to Caucasian male people, t(19) = 6.772, p 

< .001, dunb = 1.006, 95% CI [0.593, 1.491], as well as for Asian female versus Asian male 

people, t(19) = 2.517, p = .021, dunb = 0.591, 95% CI [0.091, 1.125]. Male participants did not 

report higher numbers of female or male contact persons, neither for Caucasian, t(19) = -
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1.279, p = .216, dunb = -0.151, 95% CI [-0.400, 0.091], nor Asian people, t(19) = 1.277, p 

= .217, dunb = 0.189, 95% CI [-0.114, 0.502]. 

Finally, an ANOVA on contact quality (see Table 2) yielded a significant main effect 

of ethnicity, F(1, 38) = 150.745, p < .001, ηp
2 = .799, 90% CI [.688, .850], with contact to 

Caucasian people rated as more in-depth. No additional effects were significant (all p > .05). 

In summary, both contact quantity (in contact hours and number of contact persons per 

week) and quality were substantially more pronounced for own- relative to other-race people. 

At the same time, contact quantity to own-gender people was higher in female but not male 

participants. 

 

3.2 Performance – Learning Phases 

A mixed-model ANOVA on study phase accuracies (see Table 2) with the within-

subject factors face ethnicity (Asian, Caucasian) and face gender (female, male), as well as 

the between-subjects factor participant gender (female, male) yielded a significant main effect 

of face ethnicity, F(1, 38) = 9.427, p = .004, ηp
2 = .199, 90% CI [.041, .365], with more 

accurate responses for Caucasian relative to Asian faces, as well as a significant interaction of 

face ethnicity by face gender, F(1, 38) = 7.851, p = .008, ηp
2 = .171, 90% CI [.027, .337]. 

Post-hoc t-tests revealed a trend towards more accurate responses for Caucasian male relative 

to Caucasian female faces, t(39) = 1.965, p = 0.057, dunb= 0.36, 95% CI [-0.01, 0.75], whereas 

no corresponding effect was observed for Asian faces, t(39) = 0.868, p = 0.391, dunb = 0.182, 

95% CI [-0.606, 0.237]. 

 

Table 2. Behavioural data. RT = Reaction Time. 

    Female Participants   Male Participants 

    Asian Fem. Asian Male Cauc. Fem. Cauc. Male   Asian Fem. Asian Male Cauc. Fem. Cauc. Male 

           

Learning Phase - Accuracies         

 M 0.95 0.95 0.96 0.97  0.97 0.95 0.96 0.98 
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 SD 0.05 0.09 0.03 0.06  0.03 0.03 0.03 0.03 

           

Learning Phase - RT (ms)         

 M 813 776 788 756  971 992 951 901 

 SD 224 194 222 217  200 207 178 175 

           

Test Phase - d'          

 M 1.67 1.14 2.18 1.91  1.34 1.23 1.62 1.69 

 SD 0.72 0.49 0.74 0.65  0.65 0.54 0.71 0.63 

           

Test Phase - C          

 M 0.01 0.21 0.16 0.31  0.03 0.35 0.30 0.37 

 SD 0.03 0.37 0.36 0.34  0.04 0.42 0.36 0.37 

                      

 

 

A corresponding ANOVA on study phase RTs (see Table 2) revealed significant main 

effects of face ethnicity, F(1, 38) = 28.944, p < .001, ηp
2 = .432, 90% CI [.226, .570], with 

faster responses for Caucasian than Asian faces, face gender, F(1, 38) = 7.007, p = .012, ηp
2 

= .156, 90% CI [.020, .321], reflecting faster RTs for male relative to female faces, and 

participant gender, F(1, 38) = 7.427, p = .010, ηp
2 = .163, 90% CI [.024, .329], with faster 

responses for female relative male participants. Moreover, significant interactions of face 

ethnicity by participant gender, F(1, 38) = 5.185, p = .028, ηp
2 = .120, 90% CI [.007, .282], 

and face ethnicity by face gender, F(1, 38) = 4.824, p = .034, ηp
2 = .113, 90% CI [.005, .273], 

were further qualified by a significant three-way interaction, F(1, 38) = 6.941, p = .012, ηp
2 

= .154, 90% CI [.020, .320]. Post-hoc t-tests indicated faster RTs for Caucasian male relative 

to Caucasian female faces in both female, t(19) = 2.696, p = 0.014, dunb = 0.136, 95% CI 

[0.028, 0.253], and male participants, t(19) = 2.733, p = 0.013, dunb = 0.271, 95% CI [0.058, 

0.500]. At the same time, female participants yielded a trend towards faster responses for 

Asian male than Asian female faces, t(19) = 2.082, p = 0.051, dunb = 0.172, 95% CI [-0.001, 

0.354], whereas male participants did not show a corresponding effect, t(19) = -1.188, p = 

0.249, dunb = -0.100, 95% CI [-0.277, 0.072]. 
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3.3 Performance – Test Phases 

A mixed-model ANOVA on test phase d’ (see Table 2 and Figure 1) yielded 

significant main effects of face ethnicity, F(1, 38) = 104.733, p < .001, ηp
2 = .734, 90% CI 

[.594, .802], reflecting more accurate memory for Caucasian relative to Asian faces, and face 

gender, F(1, 38) = 11.803, p = .001, ηp
2 = .237, 90% CI [.064, .402], with more accurate 

memory for female relative to male faces. A significant interaction of face ethnicity by 

participant gender, F(1, 38) = 6.941, p = .012, ηp
2 = .154, 90% CI [.020, .320], was followed-

up by separate analyses for the two participant groups, and was found to reflect more accurate 

memory for Caucasian than Asian faces in both female participants, F(1, 19) = 68.049, p 

< .001, ηp
2 = .782, 90% CI [.586, .850], and male participants, F(1, 38) = 36.798, p < .001, 

ηp
2 = .659, 90% CI [.396, .767], but with a somewhat larger effect size in the female group. 

Moreover, an interaction of face gender by participant gender in the omnibus ANOVA, F(1, 

38) = 9.732, p = .003, ηp
2 = .204, 90% CI [.044, .370], was followed-up separate tests for 

female and male participants, which revealed more accurate memory for female relative to 

male faces in female participants, F(1, 19) = 13.636, p = .002, ηp
2 = .418, 90% CI [.126, .596], 

but no corresponding difference in male participants, F < 1. Finally, a significant interaction 

of face ethnicity by face gender in the omnibus ANOVA, F(1, 38) = 5.632, p = .023, ηp
2 

= .129, 90% CI [.010, .292], was followed-up by separate analyses for female and male faces, 

which yielded significant own-race biases for both female faces, t(39) = 5.212, p < .001, dunb 

= 0.522, 95% CI [0.298, 0.762], and male faces, t(39) = 9.461, p < .001, dunb = 1.032, 95% CI 

[0.730, 1.369], with a larger effect size for male faces. 

When excluding the three male participants with increased contact towards Asian 

females, the above reported results remained unchanged, as we still detected main effects of 

ethnicity, F(1, 35) = 89.727, p < .001, ηp
2 = .719, 90% CI [.566, .793], and face gender, F(1, 
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35) = 12.224, p = .001, ηp
2 = .166, 90% CI [.072, .424], as well as interactions of face 

ethnicity by participant gender, F(1, 35) = 6.169, p = .018, ηp
2 = .150, 90% CI [.015, .321], 

face gender by participant gender, F(1, 35) = 6.960, p = .012, ηp
2 = .166, 90% CI [.021, .338], 

and face ethnicity by face gender, F(1, 35) = 5.271, p = .028, ηp
2 = .131, 90% CI [.008, .300]. 

 

 

Figure 1. Mean sensitivity (d’) during the test phases. Grey circles depict d’ scores of 

individual participants, error bars the 95% CI. 

 

A corresponding ANOVA on the response bias C (see Table 2) revealed significant 

main effects of ethnicity, F(1, 38) = 14.422, p < .001, ηp
2 = .275, 90% CI [.089, .437], with 

more conservative responses for Caucasian faces, and gender, with more conservative 
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responses for male faces, F(1, 38) = 17.394, p < .001, ηp
2 = .314, 90% CI [.119, .471]. No 

other significant effects were detected (all p > .05).  

In summary, we found clear own-race biases in female and male participants and for 

female and male face stimuli, but with larger effects for female participants and for male faces. 

An own-gender bias was only observed in female participants. 

 

3.4 Event-related potentials – Learning phases 

A mixed model ANOVA with the additional within-subjects factor hemisphere (left, 

right) was calculated for N170 mean amplitudes (150-190 ms) at electrodes P9 and P10 (see 

Figure 2). This analysis yielded a significant main effect of face ethnicity, F(1, 38) = 11.369, 

p = .002, ηp
2 = .230, 90% CI [.059, .394], with larger N170 amplitudes for Asian than 

Caucasian faces (see Figure 3), which also held true when excluding the three male 

participants with increased contact to Asian females, F(1, 35) = 7.805, p = .008, ηp
2 = .182, 

90% CI [.028, .355]. No further significant effects were observed (all p > .05). Importantly, 

none of the interactions involving face or participant gender were significant (all F < 1).  
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Figure 2. Learning phase grand mean ERPs at occipito-temporal channels P9/P10. Vertical 

lines depict the N170, P2, and N250 time windows. 

 

 

Figure 3. Scalp-topographical voltage maps (spherical spline interpolation, 90° equidistant 

projections) of ethnicity effects (European – Asian faces) averaged across face and participant 

gender during learning and test. 
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A corresponding analysis of P2 mean amplitudes (200-280 ms) revealed a significant 

main effect of face ethnicity, F(1, 38) = 29.152, p < .001, ηp
2 = .434, 90% CI [.228, .571], 

with larger amplitudes for Caucasian as compared to Asian faces (see Figure 3). No additional 

effects reached significance (all p > .1). 

An ANOVA on N250 mean amplitudes (280-400 ms) yielded a main effect of face 

ethnicity, F(1, 38) = 26.247, p < .001, ηp
2 = .409, 90% CI [.203, .551], with more negative 

amplitudes for Asian relative to Caucasian faces (see Figure 3), as well as an interaction of 

hemisphere by face gender by participant gender, F(1, 38) = 4.170, p = .048, ηp
2 = .099, 90% 

CI [.0004, .257]. Both effects were significant when the three male participants with increased 

contact to Asian females were excluded; main effect of ethnicity: F(1, 35) = 28.430, p < .001, 

ηp
2 = .448, 90% CI [.233, .587]; interaction of hemisphere by face gender by participant 

gender: F(1, 35) = 5.104, p = .030, ηp
2 = .127, 90% CI [.007, .293]. Post-hoc analyses in 

female participants revealed significantly more negative amplitudes for male than female 

faces over the right, F(1, 19) = 4.626, p = .045, ηp
2 = .196, 90% CI [.003, .416], but not over 

the left hemisphere, F(1, 19) = 1.054, p = .318, ηp
2 = .053, 90% CI [.0, .255]. No significant 

difference between male and female faces was detected in male participants; left hemisphere: 

F(1, 19) = 1.394, p = .252, ηp
2 = .068, 90% CI [.0, 277], right hemisphere: F < 1.  

To more directly test whether the own-race and own-gender biases rely on the same or 

different neural mechanisms, we compared the ERP correlates of the two effects (own- minus 

other-group) across the three occipito-temporal components described above (N170, P2, 

N250). As the analyses above revealed an own-gender bias only in female participants’ N250 

at right-hemispheric site P10, we focused on this group and this electrode (see Figure 4). A 

repeated-measures ANOVA on amplitude differences between own- and other-group faces 

with the factors component (N170, P2, N250) and own-group effect (own- minus other-race, 

own- minus other-gender) revealed a significant interaction, F(2,39) = 3.532, p = .039, ηp
2 
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= .157, 90% CI [.004, .302]. Post-hoc t-tests on the ethnicity effect detected no significant 

magnitude differences, neither when comparing N170 and P2, nor between P2 and N250, both 

p > .1. Moreover, female and male faces were not significantly different in N170 and P2, both 

p > .1, and both gender effects were very close to zero. Importantly, the gender effect was 

significantly larger in the N250 relative to the P2 time range, T(19) = -3.409, p = .003, 

Cohen’s dunb = 0.391, 95% CI [0.136, 0.670], which held true also after Bonferroni correction 

(with adjusted alpha = .05/4 = .0125). 

 

 

Figure 4. Female participants’ own-group effects in N170, P2, and N250 at right-hemispheric 

electrode P10. Error bars depict 95% confidence intervals. ORB = Own-Race Bias, OGB = 

Own-Gender Bias. 

 

In summary, ERPs during learning revealed larger N170 amplitudes for other- relative 

to own-race faces, but no difference in N170 for own- relative to other-gender faces. 

Moreover, larger right-hemispheric N250 amplitudes for other-gender faces were observed in 

female but not male participants. 
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3.5 Event-related potentials – Test phases 

 

Figure 5. Test phase grand mean ERPs at occipito-temporal channels P9/P10. Vertical lines 

depict the N170, P2, and N250 time windows. CR = correct rejections. 

 

A mixed-model ANOVA on N170 amplitude (see Figure 5) with the additional factor 

response type (hits, correct rejections) revealed a significant main effect of face ethnicity, F(1, 

38) = 30.014, p < .001, ηp
2 = .441, 90% CI [.235, .577], reflecting larger amplitudes for Asian 

faces (Figure 3). No further effects reached significance (all p > .05). 

A corresponding analysis on test phase P2 yielded a main effect of face ethnicity, F(1, 

38) = 42.646, p < .001, ηp
2 = .529, 90% CI [.331, .646], with more positive-going amplitudes 
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for Caucasian than Asian faces (Figure 3), which was qualified by a significant interaction of 

hemisphere by face ethnicity by face gender by participant gender, F(1, 38) = 4.443, p = .042, 

ηp
2 = .105, 90% CI [.002, .264]. Post-hoc analyses for female participants at electrode P10 

demonstrated significant ethnicity effects for own-gender female, F(1, 19) = 14.046, p = .001, 

ηp
2 = .425, 90% CI [.132, .601], but only a trend for male faces, F(1, 19) = 3.845, p = .065, 

ηp
2 = .168, 90% CI [.0, 390]. At P9, significant ethnicity effects were observed for both 

female, F(1, 19) = 4.443, p = .028, ηp
2 = .229, 90% CI [.001, .410], and male faces, F(1, 19) = 

13.205, p = .002, ηp
2 = .410, 90% CI [.121, .592], although the effect size was larger for 

other-gender male faces. At the same time, male participants showed significant ethnicity 

effects for own-gender male faces at P10, F(1, 19) = 7.628, p = .012, ηp
2 = .286, 90% CI 

[.039, .494], but only a trend for female faces, F(1, 19) = 3.904, p = .063, ηp
2 = .170, 90% CI 

[.0, 392]. At P9, male participants demonstrated a significant ethnicity effect for other-gender 

female faces, F(1, 19) = 7.625, p = .012, ηp
2 = .287, 90% CI [.039, .494], but only a trend for 

own-gender male faces, F(1, 19) = 3.374, p = .082, ηp
2 = .151, 90% CI [.0, .372]. It thus 

appears that P2 ethnicity effects were more pronounced for own-gender faces over the right 

and for other-gender faces over the left hemisphere. Follow-up tests also revealed 

significantly more positive going amplitudes for Asian female relative to male faces at P9, 

both in female participants, F(1, 19) = 4.469, p = .048, ηp
2 = .190, 90% CI [.001, .411], and 

male participants, F(1, 19) = 5.475, p = .030, ηp
2 = .224, 90% CI [.012, 441]. No other effects 

involving face gender were observed in the P2 time window (all p > .1).  

Analysis of the N250 yielded significant main effects of response type, F(1, 38) = 

7.084, p = .011, ηp
2 = .157, 90% CI [.021, .323], with more negative amplitudes for hits than 

correct rejections, and face ethnicity, F(1, 38) = 29.852, p < .001, ηp
2 = .440, 90% CI 

[.234, .576], with more negative amplitudes for other-race relative to own-race faces (Figure 

3). In addition, a significant interaction of hemisphere by face gender was detected, F(1, 38) = 
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4.641, p = .038, ηp
2 = .109, 90% CI [.003, .269]. However, post-hoc tests revealed no 

significant differences between male and female faces, neither at P9, F(1, 38) = 1.589, p 

= .215, ηp
2 = .039, 90% CI [.0, .175], nor at P10, F(1, 38) = 2.222, p = .144, ηp

2 = .054, 90% 

CI [.0, .199]. No other effects were significant (all p > .05). 

In the early old/new effect time window (300-500 ms; see Figure 6 and Figure 7) a 

mixed-model ANOVA was conducted in which the hemisphere factor was replaced by the 

within-subjects factors laterality (left, midline, right) and site (frontal, central, parietal). As 

this time window was analysed to specifically look at memory effects, the following report 

focuses on effects involving response type. A significant main effect of response type was 

detected, F(1, 38) = 8.291, p = .007, ηp
2 = .179, 90% CI [.031, .345], which was qualified by 

a significant interaction of laterality by response type by face gender by participant gender, 

F(2, 76) = 3.311, p = .042, ηp
2 = .080, 90% CI [.002, .175]. This latter interaction was 

observed as a trend when the three male participants with increased contact to Asian females 

were excluded, F(2, 70) = 2.940, p = .059, ηp
2 = .077, 90% CI [.001, .175]. Following-up on 

the interaction in the complete sample, analyses (see Table 3) in female participants revealed 

significantly more positive amplitudes for hits relative to correct rejections over the left 

hemisphere for female faces and over central electrodes for male faces. Of note, the point 

estimate of the effect size was substantially larger for male faces. Moreover, no significant 

response type effects were observed in male participants. Application of Bonferroni 

correction for multiple comparisons (adjusted α = .05/12 = .004) revealed a significant 

old/new effect in female participants for male faces over central electrodes. 
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Figure 6. Test phase grand mean ERPs at frontal, central and parietal channels averaged 

across face ethnicity. Vertical lines depict the early and late old/new effect time windows. CR 

= correct rejections. 
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Figure 7. Scalp-topographical voltage maps (spherical spline interpolation, 90° equidistant 

projections) of the early (300-500 ms) and late (500-700 ms) old/new effects averaged across 

face ethnicity. CR = correct rejections. 

 

Finally, a corresponding ANOVA on mean amplitudes in the later old/new effect time 

window (500-700 ms) again revealed a significant old/new effect, F(1, 38) = 17.209, p < .001, 

ηp
2 = .312, 90% CI [.117, .469], which was again qualified by an interaction of laterality by 

response type by face gender by participant gender, F(2, 76) = 3.248, p = .049, ηp
2 = .079, 

90% CI [.001, .173]. This latter interaction did not reach significance when the three male 

participants with increased contact to Asian females were excluded, F(2, 70) = 2.378, p 

= .106, ηp
2 = .064, 90% CI [.0, .156]. Following-up on the significant interaction in the 

complete sample, analyses (see Table 3) in female participants yielded significant old/new 

effects for both female and male faces, which were substantially larger for own-gender faces. 

Male participants demonstrated somewhat smaller response type effects, which were again 

somewhat more pronounced for female faces. Application of the Bonferroni correction for 
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multiple comparisons (adjusted α = .05/12 = .004) revealed a significant old/new effect in 

female participants for female faces over right-hemispheric electrodes. 

 

Table 3. Follow-up analyses for the early and late old/new effect time windows. Bold p-

values indicate significant effects after Bonferroni-correction. 

      300-500 ms   500-700 ms 

          

      Left Midline Right   Left Midline Right 

Female Part.         

 Female Faces        

  F 5.021 2.792 1.808  7.154 5.214 14.664 

  p .037 .111 .195  .015 .034 .001 

  ηp
2 .209 .128 .087  .274 .215 .436 

  90% CI [.007, .428] [.0, 349] [.0, 312]  [.033, .483] [.009, .434] [.141, .609] 

          

 Male Faces        

  F 3.503 14.056 4.438  <1 7.712 5.177 

  p .077 .001 .049   .012 .035 

  ηp
2 .156 .425 .189   .289 .214 

  90% CI [.0, .377] [.132, .602] [.001, .410]   [.040, .496] [.009, .432] 

          

Male Part.         

 Female Faces        

  F <1 <1 <1  2.831 8.727 8.66 

  p     .109 .008 .008 

  ηp
2     .13 .315 .313 

  90% CI     [.0, .350] [.054, .517] [.053, .516] 

          

 Male Faces        

  F 3.928 <1 1.216  2.798 4.408 1.017 

  p .062  .284  .111 .049 .326 

  ηp
2 .171  .06  .128 .188 .051 

    90% CI [.0, .393]   [.0, .266]   [.0, .349] [.0003, .409] [.0, .252] 

All df = 1, 19 

 

Overall, test phase ERP results indicated that the own-race bias was accompanied by 

larger N170 responses for other-race faces, reflecting differences in perceptual processing. A 

neural correlate of the own-gender bias was detected in the old/new effect time range, with 

larger early effects for other-gender and larger late effects for own-gender faces in female but 

not male participants. 
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4. Discussion 

 

The present study examined ERP correlates of the own-race and own-gender biases in 

a combined experiment. Whereas both male and female participants demonstrated clear own-

race biases in memory performance, an own-gender bias was only found in female 

participants. Moreover, ERPs revealed a larger N170 for own- relative to other-race faces, but 

no difference in N170 for own- versus other-gender faces. During learning, larger N250 

amplitudes were observed for other-race faces in both male and female participants, whereas a 

respective own-gender effect in N250 was only detected in female participants. At test, larger 

late old/new effects for female faces in female participants paralleled the behavioural own-

gender bias. As discussed in more detail below, these findings provide strong support for the 

idea that the own-race and own-gender biases are at least partly based on different neural and 

cognitive processes. 

The present study revealed substantially more accurate memory for own- relative to 

other-race faces, replicating the standard finding of an own-race bias (Malpass & Kravitz, 

1969; Meissner & Brigham, 2001). Moreover, an own-gender bias was observed in female 

participants only, which is in line with a recent meta-analysis (Herlitz & Loven, 2013), 

although some previous reports have also observed own-gender biases in male participants 

(Steffens et al., 2013; Wolff et al., 2014; Wright & Sladden, 2003). Interestingly, the point 

estimate of the own-race bias effect in females was substantially larger than the own-gender 

effect, even though the gender categorization task during learning arguably increased the 

saliency of face gender. Given that effects of perceptual expertise should be stronger in the 

own-race bias, whereas social categorization should occur for both ethnic and gender-related 

in- and out-groups, the effect size beyond the magnitude of the own-gender bias presumably 

reflects perceptual expertise rather than social categorization. Moreover, even the lower limit 

for the 90% CI suggested a large effect for the own-race bias, but not for the own-gender bias. 
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This suggests that the own-race bias is a more robust phenomenon, given the circumstances of 

the present study (see below). 

Of note, the larger own-race relative to the own-gender bias is paralleled by findings 

from contact measures. While female participants somewhat unexpectedly reported more 

contact to own-gender people, this effect was substantially smaller than the difference in 

contact to own- versus other ethnicity people. It may thus be the case that contact affects both 

memory effects (for related findings, see Steffens et al., 2013). If so, it seems plausible that 

relatively recent daily-life contact rather than lifetime experience (as suggested by Herlitz & 

Loven, 2013) is relevant for the own-gender bias, which is reminiscent of similar findings for 

the own-age bias in older participants (Wiese et al., 2012). This suggestion is in line with the 

more general idea of a face representational system that is constantly updated and flexibly 

adapts to its environment. It should be noted, however, that previous studies have reported 

own-gender biases in the absence of contact differences (Wolff et al., 2014), suggesting that 

contact is not the only factor underlying this effect.  

In line with numerous previous studies (Brebner, Krigolson, Handy, Quadflieg, & 

Turk, 2011; Caharel et al., 2011; Cassidy et al., 2014; He, Johnson, Dovidio, & McCarthy, 

2009; Herrmann et al., 2007; Herzmann, 2016; Montalan et al., 2013; Senholzi & Ito, 2013; 

Stahl et al., 2008, 2010; Walker et al., 2008; Wiese, 2012, 2013; Wiese, Kaufmann, et al., 

2014), N170 was larger for other-race faces in the present experiment, both during learning 

and at test. Of note, effect sizes were quite substantial for this effect, with even the lower 

limits of the 90% CIs suggesting moderate or large effects. We have argued before that the 

N170 ethnicity effect presumably reflects the earliest neural correlate of the own-race bias 

(Wiese, Kaufmann, et al., 2014). N170 is typically assumed to reflect structural encoding (e.g., 

Eimer, 2011), and this process seems to be more difficult for other-race faces. Importantly, it 

appears to reflect enhanced long-term expertise with own-race faces, as three years of intense 

inter-ethnic contact do not appear to be sufficient to reduce this effect (Stahl et al., 2008). 
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Although the N170 is typically not associated with the processing of individual identity 

(Eimer, 2011; Schweinberger & Burton, 2003), a deficit at an early processing stage may be 

carried over to later stages relevant for identity processing, given that face processing is a 

serial process (Bruce & Young, 1986, 2012). At the same time, the even stronger ethnicity 

effects in the following P2 and N250 components suggest additional processing difficulties at 

these later stages. 

Larger P2 amplitudes for own- relative to other-race faces have been reported in a 

number of previous studies (Stahl et al., 2008, 2010). Recent research suggests that the face-

sensitive P2 reflects the processing of second-order spatial configural information of a face 

relative to a mental prototype, with larger P2 amplitudes for faces with more prototypical 

spatial configurations (cf. Schweinberger & Neumann, 2016). In the present study, these 

ethnicity effects were modulated by face and participant gender, resulting in larger own-

gender P2 ethnicity effects over the right and larger other-gender ethnicity effects over the left 

hemisphere. Of note, Stahl and colleagues (2008) observed a left-hemispheric P2 ethnicity 

effect in both other-race experts and control participants, whereas the right-hemispheric effect 

was only detected in controls. Accordingly, the modulations observed in the present results 

are likely not driven by expertise, as expertise for own-group faces should result in a smaller 

rather larger right-hemispheric P2 ethnicity effect. Alternatively, as the right occipito-

temporal P2 is affected by selective attention to faces (Neumann, End, Luttmann, 

Schweinberger, & Wiese, 2015), attentional and/or motivational processes may modulate 

these effects. Independent of its exact functional interpretation, the P2 effect in the present 

study did not reflect the pattern observed in memory performance, as only female participants 

yielded an own-gender bias and both male and female participants demonstrated larger own-

race biases for male faces. It is therefore unlikely that this effect contributed to the 

behavioural memory biases. 
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As evident from Figure 3, the scalp distribution of the ethnicity effects in N170, P2 

and the subsequent N250 did not change substantially over time, which at first sight might 

suggest activity of the same generator underlying all three effects. It should be noted, however, 

that an absence of an apparent difference in distribution cannot unequivocally be interpreted 

as reflecting the same neural generator. Underlying generator structures may be located very 

close to each other in the ventral visual stream, and scalp-recorded EEG may not be able to 

capture such subtle differences. Moreover, previous research found that the P2 ethnicity effect 

is modulated by tasks that do not affect the N170 effect (Stahl et al., 2010), which suggests at 

least partly different processes underlying the two effects. At the same time, we cannot 

completely rule out that ERP ethnicity effects in the three time windows reflect one and the 

same underlying process in the present data, and one might speculate that such a process 

could reflect enhanced processing effort for the more difficult face category (Herzmann, 

2016; Wan et al., 2015). One might argue that a sustained posterior negativity (e.g., Czigler & 

Csibra, 1990) is added to all three components and boosts those processes typically associated 

with N170 (face detection, structural encoding), P2 (processing of second-order configural 

information) and N250 (accessing perceptual representations). In conclusion, the question of 

whether ethnicity effects in the three time windows reflect activity of identical or different 

neural generators has to remain somewhat speculative, and further research is necessary to 

resolve it. 

In contrast to the own-race bias, neural correlates of the own-gender bias manifested 

only subsequent to the N170. This is generally in line with previous studies that did not find 

clear evidence for effects of gender processing in the N170 (Mouchetant-Rostaing & Giard, 

2003; Mouchetant-Rostaing et al., 2000; Wolff et al., 2014). At the same time, female but not 

male participants demonstrated a larger N250 for other-gender faces during learning, which is 

reminiscent of the ethnicity effect in this component both in the present and in previous 

experiments (Wiese, Kaufmann, et al., 2014). We propose that the N250 own-gender effect in 
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females reflects differential processing of male and female faces at the level of encoding of 

individual identity, and may thus represent a neural correlate of more pronounced 

individuation of own-gender faces at learning. It should be noted, however, that our previous 

study on the own-gender bias (Wolff et al., 2014) did not detect a corresponding effect, and 

that the effect size CI in the present study indicated substantial uncertainty about the 

magnitude of this effect. As discussed above, our previous study also did not find differences 

in contact towards own- and other-gender people in female participants, and it might thus be 

the case that own-/other-group effects in N250 depend on differential contact. Further studies 

are needed to more firmly establish in which circumstances the own-gender bias is related to 

the N250. 

In addition to effects of face ethnicity and gender, more negative amplitudes for hits 

relative to correct rejections were observed in the N250 time window at test. This response 

type effect has been observed in numerous previous face recognition memory studies, and 

presumably reflects access to image-dependent perceptual representations of the learnt faces. 

Interestingly, this effect has been observed to be larger for young faces in young but not older 

participants, and has therefore been suggested as a neural correlate of the own-age bias 

(Wiese, 2012; Wiese et al., 2008; Wiese, Wolff, et al., 2013), whereas it is similar for own- 

and other-race faces (Wiese, Kaufmann, et al., 2014). In line with this latter finding and with 

our previous experiment on the own-gender bias (Wolff et al., 2014), the present study did not 

detect a differential response type effect in N250 for own- versus other race or gender faces. 

Again, these findings indicate that different neural processes, which in turn reflect different 

cognitive mechanisms, accompany the various face memory biases. 

In the early old/new effect time window (300-500 ms), female participants 

demonstrated a clear response type effect for other-gender male faces only. Such effects have 

been interpreted as reflecting familiarity-based recognition in previous research (Herzmann, 

Minor, & Adkins, 2017; MacKenzie & Donaldson, 2007). To the best of our knowledge, a 
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finding of more pronounced ERP familiarity effects for other-group faces has not been 

reported before. The only previous ERP study on the own-gender bias (Wolff et al., 2014) did 

not examine an early old/new effect time window. However, we observed a larger early 

old/new effect for own-group faces in a combined own-race/own-age bias experiment (Wiese, 

2012). The finding of enhanced familiarity for out-group faces may therefore be unique to the 

own-gender bias in female participants. 

At some variance with previous studies (Herzmann et al., 2017; Herzmann et al., 

2011; Wiese, 2012), we did not observe a larger late old/new effect (500-700 ms) for own-

race faces in the present experiment. This may be related to findings suggesting that such 

effects depend on task requirements during learning (Stahl et al., 2010). In the present study, 

the gender categorization task may have substantially increased the saliency of this facial 

attribute, which in turn may have decreased the saliency of ethnicity information. Accordingly, 

a focus on gender during learning might be accountable for the absent own-race bias in the 

old/new effect, and may at the same time have contributed to the larger old/new effect for 

own-gender faces (see below). However, this interpretation is somewhat qualified by a 

previous experiment, which asked participants to process facial dimensions other than race 

(i.e., age) during learning, and still detected larger old/new effects for own-race faces (Wiese, 

2012). 

As noted above, and similar to our previous study (Wolff et al., 2014), we observed a 

larger late old/new effect for female faces in female participants. In other words, those 

participants who showed an own-gender bias in memory performance also demonstrated more 

pronounced recollection-based processing of own-gender faces. It thus seems that the 

enhanced sensitivity for own-gender faces (as reflected in higher d’ scores) is accompanied by 

the retrieval of more episodic detail from the learning episode. Larger late old/new effects 

have also been observed for the own-age bias (Wiese et al., 2012; Wiese et al., 2008), and the 

magnitude of the old/new effect for young faces has been observed to correlate with the 
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amount of contact with this age group (Wolff, Wiese, & Schweinberger, 2012). Similarly, 

larger old/new effects have been observed for purely social in- versus out-group faces 

(Herzmann & Curran, 2013) and even for objects of particular expertise (e.g., cars and birds; 

Herzmann & Curran, 2011). Together, these findings suggest that enhanced recollection-

based processing can accompany any recognition advantages for own- relative to other-group 

faces or, even more generally, for visual stimuli of particular interest. Consequently, enhanced 

late old/new effects do not seem to be specific for any of the face memory biases discussed 

here. 

Taking all the above discussed findings together, the present study suggests that any 

theoretical account assuming a single common mechanism (e.g., in-group individuation 

versus out-group categorization, or more efficient holistic processing for own- versus other-

group faces) as the basis for all face memory biases is likely to come up short. Neural 

correlates of face memory biases manifest at different processing stages, and the occurrence 

of the earliest ERP effect related to a particular own-group effect appears to depend on 

experience. Thus, in studies from our group, in which participants report quite substantial 

contact differences to own- versus other-ethnicity people, the own-race bias is accompanied 

by an N170 effect (Stahl et al., 2010; Wiese, 2012; Wiese, Kaufmann, et al., 2014). In 

situations in which differences in contact are smaller and less consistent (i.e., in own-age or 

own-gender bias experiments; Wiese et al., 2012; the present study; Wolff et al., 2014), neural 

correlates of own-group biases occur at later processing stages, most notably in the N250 and 

old/new effect time ranges. Whereas the ethnicity effect in N170 appears to reflect long-term 

expertise (Stahl et al., 2008), and therefore the fine-tuning of a perceptual process via lifetime 

visual experience, later time ranges are presumably more susceptible to variations in more 

recent contact and top-down influences. It therefore appears plausible to assume that they are 

also more likely modulated by attentional (Neumann et al., 2015) or motivational factors (as 

e.g. seen in larger old/new effects for purely social in-groups; Herzmann & Curran, 2013). 
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This line of argument also suggests that experiments on the own-race bias carried out in 

different circumstances, e.g., in settings with more diverse populations and participants with 

more long-term contact to different ethnic groups, may well find smaller own-race memory 

effects, a reduced or even absent influence of contact, and ERP ethnicity effects subsequent to 

the N170. We therefore suggest that future studies should routinely report a measure of 

contact to own- and other-ethnicity people. 

In conclusion, the present results provide evidence for the idea that perceptual, 

cognitive and social/motivational processes underlie the different biases in face memory to a 

varying extent. More specifically, whereas the own-race bias emerges at an early structural 

encoding stage (N170), the own-gender bias appears to manifest at a subsequent stage of 

individual face processing (N250). Such findings strongly argue against the general idea that 

the mere existence of a specific bias (such as in- versus out-group biases in minimal-group 

paradigms, which cannot be explained by expertise) can inform researchers about the 

processes underlying memory biases in general (e.g., Bernstein et al., 2007). Specific biases 

in face memory occur at various stages in the cascade of processes initiated when we perceive, 

encode, and remember faces, and the time point of their earliest neural correlate seems to 

depend on how strongly they are driven by perceptual expertise and inter-group contact. We 

believe that future theoretical developments need to take these findings into account. 
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