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Abstract 1 

The Pınarbaşı Mo–Cu prospect is hosted within the Pınarbaşı intrusion, which is 2 

exposed together with the NW–SE-trending Koyunoba, Eğrigöz, and Baklan plutons 3 

along the northeastern border of the Menderes massif. The Pınarbaşı intrusion 4 

predominantly comprises monzonite, porphyritic granite, and monzodiorite. All units 5 

of the Pınarbaşı intrusion have sharp intrusive contacts with each other. The principal 6 

mineralization style at the Pınarbaşı prospect is a porphyry-type Mo–Cu 7 

mineralization hosted predominantly by monzonite and porphyritic granite. The 8 

porphyry type Mo–Cu mineralization consists mostly of stockwork and NE- and EW-9 

striking sub-vertical quartz veins. Stockwork-type quartz veins hosted by the upper 10 

parts of the porphyritic granite within the monzonite, are typically enriched in 11 

chalcopyrite, molybdenite, pyrite, and limonite. The late NE- and EW-striking normal 12 

faults cut the stockwork vein system and control the quartz–molybdenite–13 

chalcopyrite–sphalerite–fahlore–galena veins, as well as molybdenite–hematite-14 

bearing silicified zones.  15 

 16 

Lithogeochemical and whole-rock radiogenic isotope data (Sr, Nd and Pb) of the host 17 

rocks, together with Re-Os molybdenite ages (18.3 ± 0.1 Ma – 18.2 ± 0.1 Ma) reveal 18 

that the monzonitic and granitic rocks of the Pınarbaşı intrusion were derived from an 19 

enriched lithospheric mantle-lower crust during Oligo–Miocene post-collisional 20 

magmatism. The lithospheric mantle was metasomatised by fluids and subducted 21 

sediments, and the mantle-derived melts interacted with lower crust at 35-40km 22 

depth. This mechanism explains the Mo and Cu enrichments of the Pınarbaşı 23 

intrusion during back-arc magmatism. We conclude that the melt of the Pınarbaşı 24 

intrusion could have rapidly ascended to mid-crustal levels, with only limited crustal 25 
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assimilation along major trans-lithospheric faults as a result of thinning of the middle 26 

to upper crust during regional extension, and resulted in the development of 27 

porphyry-style mineralization during the early Miocene (~18 Ma). The subsequent 28 

exhumation history of the Mo–Cu-bearing Pınarbaşı intrusion is attributed to regional-29 

scale uplift, and further exhumation along detachment faults of the associated core 30 

complexes during the middle to late Miocene. 31 

 32 

 33 

1. Introduction 34 

The Aegean Sea region belongs to the Tethys orogenic belt, and it is one of the 35 

Cenozoic Mediterranean back-arc basins with the fastest rates of ongoing extension 36 

on Earth, resulting in rapid thinning of the continental crust, detachment faulting, 37 

exhumation of metamorphic domes, formation of supradetachment sedimentary 38 

basins, and abundant post-orogenic magmatism (Bozkurt et al. 1993; Hetzel et al. 39 

1995; Bozkurt and Park 1997; Ring et al. 1999, 2010; Koçyiğit et al. 2000; Doglioni et 40 

al. 2002; Whitney and Bozkurt 2002; Bozkurt and Sözbilir 2004; Dilek et al. 2009; 41 

Agostini et al. 2010). Ages of metamorphic dome exhumation and post-orogenic 42 

magmatism exhibit a younging from north to south in the Aegean Sea region towards 43 

the Hellenic trench (Jolivet et al. 2003; Jolivet and Brun 2010). This geodynamic 44 

setting also provided a particularly favorable environment for the concentration of a 45 

large variety of metal resources in the Earth’s crust, as documented by the abundant 46 

Cu, Au, and Pb-Zn deposits and prospects associated with the metamorphic domes 47 

and/or post-orogenic magmatic provinces of the Aegean Sea region (Oygür 1997; 48 

Arikas and Voudouris 1998; Oygür and Erler 2000; Marchev et al. 2005; Yigit, 2009; 49 

Márton et al. 2010; Moritz et al. 2010, 2014; Voudouris et al. 2010; van Hinsbergen 50 

and Schmid 2012; Kaiser-Rohrmeier et al. 2013; Sánchez et al. 2016; Fig. 1).  51 
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 52 

The Middle to Late Cenozoic Cu-Mo±Au-bearing porphyry systems within different 53 

segments of the Tethys metallogenic belt, from the Aegean region through Anatolia 54 

to the Lesser Caucasus, are closely associated with the post-collisional evolution of 55 

the Tethys metallogenic belt (Konos Cu-Mo, Skouries Cu-Au-Mo, Pagoni Rachi Cu-56 

Mo-Ag-Au in Greece: Voudouris et al. 2010; 2013a, b; Kisladag Au-Mo in Turkey: 57 

Sillitoe 2002, Yiğit 2009; Kerman Porphyry Cu-Mo belt in Iran: Aghazadeh et al. 58 

2015; Kadjaran Cu-Mo in Armenia: Moritz et al. 2016, Rezeau et al. 2016). The 59 

Oligocene to Miocene, Greek Mo-Re-bearing porphyry systems in the Cenozoic 60 

Mediterranean back-arc basin are closely linked to shoshonitic to calc-alkaline 61 

magmatism that were produced by sub-continental lithospheric mantle–lower crust 62 

interaction within a post-orogenic setting (Kroll et al. 2002; Voudouris et al. 2010, 63 

2013a, b). In particular, the link with the regional tectono-magmatic evolution of 64 

Eocene to Oligocene (~38 – 29 Ma) ore deposits/prospects of the oldest and 65 

northernmost metamorphic dome province of the Aegean region in the Rhodope 66 

Massif in Bulgaria and Greece has been addressed in detail (Arikas and Voudouris 67 

1998; Marchev et al. 2005; Márton et al. 2010; Moritz et al. 2010, 2014; Kaiser-68 

Rohrmeier et al. 2013). 69 

 70 

The northern zone of the Menderes Massif in Turkey is well endowed with numerous 71 

mineral deposits/prospects and a large variety of commodities (Fig. 1), including 72 

porphyry-type Mo–Cu–Au, skarn-type Fe and Pb–Zn, base metal and precious metal 73 

epithermal deposits/prospects (Gökce and Spiro 1994; Oygür and Erler 2000; Yiğit 74 

2006, 2009; Delibaş et al. 2012a, b Oyman et al. 2013). Some of the deposits and 75 

prospects are spatially associated with post-collisional magmatic activity such as the 76 
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Ovacık Au-Ag deposit, with grabens at the Kurşunlu and Emirli Au-Ag-Sb-Hg-bearing 77 

prospects, and the hanging- and footwalls of post-collisional detachment faults (Fig. 78 

1; Yiğit 2006). Nevertheless, the link between post-collisional metallogenic evolution, 79 

magmatism and extension remains poorly documented and constrained in the 80 

Menderes Massif. 81 

 82 

This study addresses the petrogenesis of ore-bearing felsic intrusions and the timing 83 

of mineralization during post-orogenic evolution of the Menderes Massif in western 84 

Anatolia. In this contribution, we report field observations from the Mo–Cu-Pınarbaşı 85 

prospect, Re-Os molybdenite age data from the main mineralization stage, 86 

lithogeochemical, and whole-rock radiogenic isotope data (Sr, Nd and Pb) from the 87 

associated Oligo-Miocene granitic and monzonitic host rocks. Our aim is to constrain 88 

the timing of mineralization, and its genetic link with the ore-associated magmatic 89 

rocks and the geodynamic evolution of the Gediz-Pınarbaşı region. 90 

 91 

2. Regional Geology 92 

Following final accretion of the Gondwana-derived Sakarya block to the southern 93 

Eurasian margin during the Late Cretaceous–Paleocene (Şengör and Yilmaz 1981; 94 

Okay and Tüysüz 1999), western Anatolia underwent widespread extension from the 95 

Oligo–Miocene to the present. Previous studies have concluded that the complex 96 

extensional tectonic evolution has resulted in exhumation of metamorphic core 97 

complexes, emplacement of felsic intrusions along shear zones, block faulting and 98 

graben formation (Bozkurt et al. 1993; Hetzel et al. 1995; Ring et al. 1999; Koçyiğit et 99 

al. 2000). Western Anatolia is segmented into several thrust-bounded metamorphic 100 

zones, and includes from north to south: the Tavşanlı zone, the Afyon zone, and the 101 
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Menderes Massif (Fig. 1, inset; Şengör et al. 1984; Okay et al. 1998; Sherlock 1999; 102 

Okay 2008; van Hinsbergen 2010). The oldest units in the region are the Menderes 103 

Massif metamorphic rocks, which are tectonically overlain by the Lycian Nappes in 104 

the south and the oceanic remnants of the Neo-Tethys in the north (Collins and 105 

Robertson 1997; Bozkurt 2004). The northern and northeastern borders of the 106 

Menderes Massif are crosscut by Cenozoic diorite, quartz diorite, monzonite, 107 

granodiorite and granite. Three main magmatic episodes are recognized: 1) middle to 108 

late Eocene, 2) Oligo–Miocene, and 3) middle-late Miocene to recent (Innocenti et al. 109 

2005; Ring and Collins 2005; Hasözbek et al. 2010; Karaoğlu et al. 2010; 110 

Altunkaynak et al. 2012a, b). Although their origin has been hotly debated, the 111 

Eocene calc-alkaline felsic intrusions (55 – 38 Ma) are generally attributed to 112 

subduction-related magmatism, partly sourced by metasomatised lithospheric mantle 113 

during convergence and subsequent collision of the Sakarya and Anatolide–Tauride 114 

blocks along the Izmir-Ankara subduction zone (IASZ) (Harris et al. 1994; Aldanmaz 115 

et al. 2000; Koprubasi and Aldanmaz 2004; Altunkaynak et al. 2012b).  116 

 117 

The duration of the second, Oligo–Miocene calc-alkaline to high-K calc-alkaline 118 

magmatic cycle is well constrained between ~24.0 and 19.5 Ma with U-Pb zircon 119 

ages from granite (Ring and Collins 2005; Hasözbek et al. 2010; Altunkaynak et al. 120 

2012a) and 40Ar/39Ar (hornblende, biotite) ages record cooling ages of the Oligo-121 

Miocene granites that range between ~25 and 18 Ma, indicating fast cooling (Isik et 122 

al. 2004; Aydoğan et al., 2008; Altunkaynak et al. 2012a). However, the origin of the 123 

Oligo-Miocene magmatism remains open to question. Several models have been 124 

proposed, including: 1) back-arc magmatism during southward roll-back and retreat, 125 

as the African and Eurasian plates were converging, resulting in partial melting of the 126 
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lower crust during asthenospheric upwelling (Fytikas et al. 1984; Delaloye and Bingöl 127 

2000; Pe-Piper and Piper 2001, 2007; Jolivet and Brun 2010; Ring et al.  2010; 128 

Jolivet et al. 2015); 2) decompressional melting related to orogenic collapse of an 129 

overthickened crust, at the late Oligocene-early Miocene transition (Seyitoglu et al. 130 

1992; Seyitoglu 1997); and 3) post-collisional magmatism sourced by melting of 131 

lithospheric mantle metasomatised during the preceding subduction stage, and 132 

induced by asthenospheric upwelling. The latter is attributed to the Sakarya-133 

Taurides-Anatolides continent collision in the north and the subsequent extensional 134 

stage related to subduction of the Aegean slab along the Hellenic arc (Aldanmaz et 135 

al. 2000; Altunkaynak and Dilek 2006; Dilek et al. 2009). The Oligo–Miocene 136 

magmatism accompanied a two-stage regional extension of western Anatolia, 137 

starting with late Oligocene to early Miocene detachment faulting, such as the Simav 138 

fault zone (Fig. 1), and late Oligocene to middle Miocene core complex exhumation 139 

in the Menderes Massif, followed by graben formation with high-angle normal faulting 140 

from middle to late Miocene (Pourteau et al. 2010; Fig. 1). The general agreement is 141 

that the local granitic intrusions, named Eğrigöz, Alaçam and Koyunoba (Fig. 1), are 142 

syn-tectonic, and that they intruded Paleozoic basement along the footwall of the 143 

Simav detachment fault zone during early extension and metamorphic core 144 

exhumation in the early Miocene (Isik et al. 2004; Dilek et al. 2009; Erkül 2010; Erkül 145 

et al. 2013). 146 

 147 

The last pulse of Cenozoic magmatism in the region consists of intraplate shoshonitic 148 

to mildly alkaline and following OIB-type magmatism, during thinning of the Aegean–149 

Anatolian lithosphere in response to extension since the middle-late Miocene 150 

(Doglioni et al. 2002; Innocenti et al. 2005; Agostini et al. 2007, 2010; Karaoğlu et al. 151 



 8 

2010; Ersoy and Palmer 2013). The middle-late Miocene to early Pliocene pulse of 152 

magmatism is mainly mildly alkaline to shoshonitic in nature and it shows a within-153 

plate character (Innocenti et al. 2005; Helvacı et al. 2009). On the other hand, the 154 

early Pliocene to Quaternary phase of magmatism comprises sodic and potassic 155 

magmatism and it displays clear OIB-type signatures (Alici et al. 2002; Innocenti et 156 

al. 2005; Ersoy and Palmer 2013). 157 

 158 

3. Geological setting of the Pınarbaşı Mo–Cu prospect 159 

In the Gediz-Pınarbaşı region, the stratigraphic column comprises, from bottom to 160 

top, Menderes Massif metamorphic rocks and low-temperature, high-pressure meta-161 

sedimentary units of the Afyon zone, followed by the Triassic–Jurassic Kırıkbudak 162 

Formation composed of alternating sandstone, siltstone and limestone units with an 163 

estimated thickness of 200 to 750 m, and a Late Triassic to Maastrichtian 164 

dolomitized, platform-type limestone unit, known as the Budağan limestone with an 165 

estimated thickness of 150 to 600 m (Akdeniz and Konak 1979; Okay et al. 1996; 166 

Candan et al. 2005). These stratigraphic units are overthrusted by Cretaceous to 167 

Paleocene ophiolitic mélange units, mostly comprising radiolarite, large limestone-168 

marble blocks, tuffite, and peridotite with a thickness of more than 750 m (Akdeniz 169 

and Konak 1979). These rocks were intruded by early Miocene felsic rocks and their 170 

sub-volcanic equivalents, including the Eğrigöz, Koyunoba, and Pınarbaşı intrusions 171 

and the Simav volcanic rocks (Figs. 1 and 2a-b). The NW-trending Mo–Cu-bearing, 172 

multiphase, calc-alkaline Pınarbaşı intrusion is crosscut by NW- and NS-striking 173 

andesitic, dacitic, and aplitic dykes, and NE- and EW-striking Mo–Cu-bearing quartz 174 

veins, whereas the limestone and mélange units are crosscut by NW-trending 175 

porphyry dikes (Delibaş et al. 2012a, b). The eastern zone of the mapped area is 176 
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dominated by Neogene and Quaternary volcano-sedimentary cover sequences (Fig. 177 

2a). 178 

 179 

The NW-trending active Simav and Kutahya fault zone next to the Pınarbaşı prospect 180 

resulted in complex EW-, NW-, and NE-oriented block faulting (Tokay and Doyuran 181 

1979; Fig. 1, and inset in Fig. 2). The Pınarbaşı intrusion is exposed on the 182 

northwestern shoulder of the Yenidoğmuş–YeniGediz graben, and is controlled by 183 

the NE-striking Eskigediz normal fault and the EW- to NW-oriented Şaphane normal 184 

fault zone, which are associated with graben formation (Gürboğa et al. 2013; inset in 185 

Fig. 2). The latter fault zone hosts the Şaphane deposit, which is the largest 186 

epithermal alunite deposit of Turkey (Mutlu et al. 2005). Three generations of fault 187 

systems have been recognized, including EW- and NW-striking normal faults, NE-188 

trending normal faults, dipping 70–80° to the NW (Figs. 3a-b), and late-stage NS-, 189 

NW-, and NE-striking strike-slip local fault systems, which are largely developed 190 

along the vertical contacts between the intrusion and limestone, and which crosscut 191 

the hydrothermal alteration zones as well as earlier faults. The Pınarbaşı intrusion is 192 

strongly mylonitized along its contact with the intensely silicified country rock (Fig. 193 

3c). This masks the contact between the intrusion and its country rocks, and 194 

conceals the late contact metamorphism along the margins of the intrusion (Delibaş 195 

et al. 2012a; Fig. 3c). However, 0.5 to 1m-wide skarn zones containing garnet, 196 

epidote, pyroxene, calcite, and magnetite are developed along the contacts of the 197 

NW-trending porphyritic dykes crosscutting the limestone and the mélange units (Fig. 198 

3d).   199 

 200 
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The Pınarbaşı intrusion primarily comprises monzonite, porphyritic granite, and 201 

monzodiorite (Delibaş et al. 2012a, b), which have sharp intrusive contacts with each 202 

other (Fig. 3a). They contain roughly oval, fine-grained dioritic enclaves, with sharp 203 

contacts with their host rocks. The largest intrusive body in the area is a fine- to 204 

medium-grained monzonite with a largely equigranular texture. It predominantly 205 

contains highly sericitized euhedral to subhedral plagioclase, subhedral K-feldspar, 206 

subhedral to euhedral amphibole, biotite, pyroxene, minor quartz, and accessory 207 

apatite. Epidote, calcite, chlorite, and sericite are alteration products of the main 208 

mineral assemblage. A porphyritic granite cutting the monzonite is exposed in the 209 

western part of the area (Fig. 3e). The intrusion of the porphyritic granite into the 210 

monzonite resulted in the formation of an intrusion breccia (Delibaş et al. 2012a; Fig. 211 

3f). The porphyritic granite is characterized by a more pronounced porphyritic 212 

texture, consisting of plagioclase, biotite and K-feldspar phenocrysts within a fine-213 

grained matrix consisting of K-feldspar, plagioclase, biotite, amphibole, and quartz. 214 

The monzonite and porphyritic granite are cut by bodies of dark-gray diorite and 215 

monzodiorite with an equigranular to porphyritic texture. They have the same 216 

mineralogical composition as the dioritic enclaves and generally consist of sericitized 217 

plagioclase, amphibole, biotite, pyroxene, and minor quartz.  218 

 219 

4. The Pınarbaşı porphyry Mo–Cu-type prospect 220 

The Pınarbaşı Mo–Cu prospect is hosted by the Pınarbaşı intrusion, which is 221 

exposed approximately 20 km southeast of the NW-trending active Simav fault zone. 222 

The latter fault also hosts small to mid-scale high- and low-sulfidation epithermal and 223 

Cu–Pb–Zn vein-type mineralization within the southern sector of the Afyon zone 224 

(Oygür and Erler 2000; Fig 1). Based on drill hole data, the Cu and Mo contents of 225 
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the prospect vary between 374 and 34,800 ppm, and between 106 and 2,200 ppm, 226 

respectively (Delibaş et al. 2012b).  227 

 228 

The principal mineralization style at the Pınarbaşı prospect is a porphyry Mo–Cu type 229 

mineralization hosted predominantly by monzonite and porphyritic granite. Field, 230 

mineralogical, and lithogeochemical studies have also revealed the presence of Pb 231 

and Zn enrichments up to 6.7 wt. % and 7700 ppm, respectively, within the Budağan 232 

limestone (Oygür and Erler 2000; Delibaş et al. 2012a,b). In addition, Sb, Ag and Au 233 

grades up to 1210 ppm, 12 ppm, and 1320 ppb, respectively, have been reported 234 

within the silicified zones along the NW-striking, normal and strike-slip faults cutting 235 

the limestone blocks of the ophiolitic mélange units and Sb, Ag, Au and Pb-rich 236 

silicified zones within limestone blocks mainly show lattice textures (e.g., primary 237 

bladed calcite, ghost bladed quartz, lattice bladed quartz), indicating a low-sulfidation 238 

epithermal mineralization at relatively shallow depths (Delibaş et al. 2012b). 239 

 240 

The porphyry-type Mo–Cu mineralization consists mostly of stockwork and NE- and 241 

EW-striking sub-vertical quartz veins (Figs. 4a-b). Stockwork-type quartz veins within 242 

the upper parts of the porphyritic granite typically contain chalcopyrite, molybdenite, 243 

pyrite, and limonite. Late NE- and EW-striking normal faults, crosscutting the 244 

stockwork mineralization, host quartz–molybdenite–chalcopyrite–sphalerite–245 

sulfosalts–galena veins and molybdenite–hematite-bearing silicified zones (Figs. 4c-246 

e). Potassic, sericitic, and argillic alterations are associated with the Mo–Cu 247 

mineralization (Oygür and Erler 2000; Delibaş et al. 2012a, b). The local potassic 248 

alteration zone within porphyritic granite of the Pınarbaşı intrusion is characterized by 249 

small magnetite, biotite, and 1–5 cm thick K-feldspar veins (Figs. 5a-b). Sericitic 250 
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alteration is developed along the NE- and EW-striking ore-controlling faults, where 251 

advanced argillic alteration is less intense, and it is dominated by sericite–muscovite, 252 

pyrite, hematite, and small quartz veinlets (Figs. 4b-c and 5c-d). Sericitic alteration 253 

grades locally into intense silicification, which contains small molybdenite-bearing 254 

stockwork quartz veinlets. The intensity of silicification decreases away from the main 255 

fault zones. Creamy to white advanced argillic alteration predominates at Pınarbaşı 256 

and overprints the sericitic and potassic alterations. It primarily comprises 257 

pyrophyllite, tabular alunite, fluorite, kaolinite, and illite (Figs. 5e-f). Jarosite, 258 

smectite, and Fe-oxides along the late-stage normal and strike-slip faults are 259 

interpreted as  supergene alteration. Based on field observations, mineralization 260 

styles, and alteration types, the Pınarbaşı prospect is interpreted as a porphyry-style 261 

Mo–Cu mineralization, telescoped by low-sulfidation epithermal Sb ± Ag ± Au ± Pb 262 

mineralization and an intense advanced argillic alteration zone. Late supergene 263 

alteration along younger fault zones overprints the earlier associations (Oygür and 264 

Erler 2000; Delibaş et al. 2012a).  265 

 266 

5. Results 267 

Seventeen fresh rock samples from the Pınarbaşı granitoid were selected for whole-268 

rock lithogeochemistry analysis. Samples showing hydrothermal alteration effects 269 

were removed and we used plutonic and subvolcanic rock samples revealing loss of 270 

ignition (LOI) below 2.0 wt. % for petrologic interpretations to avoid potential 271 

hydrothermal alteration effects. Twelve whole-rock powder samples were analyzed 272 

for radiogenic isotopic compositions (Sr, Nd, Pb).  Radiogenic isotope analyses were 273 

conducted at the University of Geneva, Switzerland. We also report two new Re-Os 274 

molybdenite ages from the main mineralization stage. The 187Re and 187Os 275 
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concentrations in molybdenite were determined in the Source Rock and Sulfide 276 

Geochronology and Geochemistry Laboratory at the University of Durham, United 277 

Kingdom. The details of the analytical techniques are summarized in Online 278 

Resource 1 and the major and trace element data of the Pınarbaşı intrusion are 279 

listed in Online Resources 2 and 3.  280 

 281 

5.1.Whole-rock geochemistry of the Pınarbaşı intrusion 282 

The Pınarbaşı intrusive rocks range in composition from diorite–granodiorite to 283 

monzonite with SiO2 contents varying from 61 to 69 wt.% (Fig. 6a). All samples of the 284 

Pınarbaşı intrusion straddle the boundary between alkaline and subalkaline series 285 

and show a calc-alkaline trend on the AFM diagram (Figs. 6a-b). In addition, they 286 

belong to the high-K calc-alkaline series on the K2O vs SiO2 classification diagram of 287 

Peccerillo and Taylor (1976; Fig. 6c). The Pınarbaşı samples are also transitional 288 

metaluminous to peraluminous based on A/CNK (Al2O3/(CaO+Na2O+K2O)) values 289 

varying from 0.9 to 1.2. The porphyritic granite members, i.e. the most evolved 290 

samples, of the Pınarbaşı intrusion are mildly peraluminous, whereas the monzonite, 291 

and enclave samples are predominantly metaluminous and display similarities with 292 

western Aegean Oligo–Miocene felsic intrusions (Fig. 6d). On binary plots, the 293 

samples show decreasing Al2O3, Fe2O3, MgO, CaO, TiO2, and P2O5 contents with 294 

increasing SiO2  concentrations. Despite scattered variations, Sr, V, and Zr decrease 295 

with increasing SiO2, whereas Th and Ni display no marked correlation with 296 

increasing SiO2 (see Online Resource 4). All samples from the Pınarbaşı intrusion 297 

display similar trace element patterns (Fig. 7a). They are enriched in large-ion 298 

lithophile elements (LILEs; e.g., Th, K, Ba) and are depleted in high-field strength 299 

elements (e.g., Nb, Ta, P, and Ti). Furthermore, they have trace element patterns 300 



 14 

similar to those of the upper crust. The Pınarbaşı samples display a pronounced light 301 

rare earth element (LREEs) enrichment with respect to middle (MREEs) and heavy 302 

rare earth elements (HREEs) (LaN/YbN = 10–36, LaN/GdN = 7.2–13), with weak to 303 

strong negative Eu anomalies (Eu/Eu* = 0.66–0.85), and minor depletion in MREEs 304 

(GdN/YbN = 1.13–1.59) (Fig. 7b). 305 

 306 

5.2.Whole-rock Sr, Nd, and Pb isotopic compositions 307 

The analytical techniques used in the study are summarized in Online Resource 1. 308 

Sr, Nd, and Pb isotope ratios for whole-rock samples from Pınarbaşı (granitic and 309 

monzonitic) are presented in Tables 1 and 2. The age-corrected initial Sr, Nd, and 310 

Pb isotopic ratios were calculated for an age of 20 Ma, which is generally accepted 311 

for Oligo–Miocene felsic intrusions in the region. The 87Sr/86Sr(i) of the porphyritic 312 

granite samples range from 0.70774 to 0.70923, whereas the initial Sr isotope ratios 313 

of the monzonite and monzodiorite samples range from 0.70718 to 0.70820 (Table 314 

1). The 143Nd/144Nd(i) ratios of the porphyritic granite samples vary from 0.51234 to 315 

0.51242 (εNd values of −3.85 to −5.38), and the 143Nd/144Nd(i) ratios of monzonite and 316 

monzodiorite samples vary from 0.51228 to 0.51245 (εNd values of −3.22 to −6.45). 317 

A dioritic enclave sample has a 87Sr/86Sr(i) ratio of 0.70718 and a 143Nd/144Nd(i) ratio of 318 

0.51244 (εNd value of −3.4). The evolved samples from the Pınarbaşı intrusion (Gtk-319 

15 with 68.5 wt.% SiO2, and Gtk-06 with 68.7 wt.% SiO2) have higher 87Sr/86Sr(i) 320 

ratios (0.70923 and 0.70855, respectively) even though there are no significant 321 

differences in the 143Nd/144Nd(i) ratios (Gtk-06: 68.7 wt.% SiO2 with 0.51236 322 

143Nd/144Nd(i) ratio and Gtk-09: 61.2 wt.% SiO2 with 0.51245 143Nd/144Nd(i) ratio) 323 

between the most and least evolved samples of the Pınarbaşı. Figure 8a shows the 324 

initial Sr and Nd isotopic compositions of the samples, the potential source 325 
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reservoirs, Oligo−Miocene (OMG) and Eocene felsic intrusions (EOG), Simav 326 

volcanic rocks (SMV), Baklan felsic intrusions (BG), and Kula volcanic rocks (KV). In 327 

the Nd vs Sr isotope space (Fig. 8a), the Pınarbaşı intrusion samples fall along an 328 

array indicating crustal contamination of mantle-derived melts.  The correlation 329 

between 143Nd/144Nd(i) and 87Sr/86Sr(i) ratios is slightly negative and all samples 330 

overlap with the compositions of the Eastern Mediterranean Sea Sediments (EMMS), 331 

OMG, and SMV (Fig. 8a). In contrast, they have higher 87Sr/86Sr(i) and 143Nd/144Nd(i) 332 

ratios than those of the BG samples. 333 

 334 

The Pınarbaşı samples yield a relatively restricted range of 206Pb/204Pb(i), 335 

207Pb/204Pb(i), and 208Pb/204Pb(i) ratios (Figs. 8b-c). The monzonite and monzodiorite 336 

sample ranges are, respectively, 18.935–19.021, 15.716–15.724 and 39.070–39.091, 337 

and the porphyritic granite sample ranges are 18.936–18.951, 15.717–15.721 and 338 

39.068–39.082, respectively (Table 2). A dioritic enclave sample has the least 339 

radiogenic 206Pb/204Pb(i), 207Pb/204Pb(i), and 208Pb/204Pb(i) ratios of 18.939, 15.717, and 340 

39.065, respectively. All samples plot above the Upper Crust curve (Zartman and 341 

Doe 1981) and partly overlap with the compositions of the basement metamorphic 342 

rocks, the Eğrigöz granitoid (EG), and the SMV (Fig. 8b). In contrast, they have more 343 

radiogenic 206Pb/204Pb(i), and 207Pb/204Pb(i) ratios than the Kula volcanic rocks (KV). 344 

On the 206Pb/204Pb(i) vs 208Pb/204Pb(i) diagram (Fig. 8c), they also intersect the EMSS 345 

field comprising Sahara desert dust, Nile sediments, and minor Tethyan ophiolitic 346 

and arc volcanic rocks from the Hellenic trench, which were traced in Stromboli 347 

volcanic rocks along the Aeolian arc (Klaver et al. 2015), and have a less radiogenic 348 

208Pb/204Pb(i) ratio compared to basement metamorphic rocks (Fig. 8c). In Figure 8d, 349 

all samples from Pınarbaşı display 87Sr/86Sr(i) trending towards the subducted 350 
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sediment-rich Enriched Mantle II end member (EM2; Zindler and Hart 1986), the 351 

Global Subducted Sediments end member (GLOSS; Plank and Langmuir 1998), and 352 

basement metamorphic rocks (MMM, higher radiogenic Sr reservoirs) with nearly 353 

constant 206Pb/204Pb(i) ratios. 354 

 355 

5.3. Molybdenite Re-Os geochronology 356 

The Re-Os age results for two molybdenite samples are presented in Table 3 and 357 

the analytical techniques are summarized in Online Resource 1. Two molybdenite 358 

samples were selected from an outcrop (OKY-3-4) and a drill core (GOP-19m) from 359 

the Pınarbaşı prospect. Sample OKY-3-4 was collected from a molybdenite–hematite 360 

bearing silicified zone (Fig. 4d), and sample GOP-19m was taken from a 0.5-1cm 361 

thick quartz–molybdenite–pyrite–chalcopyrite vein crosscutting a highly sericitized 362 

porphyritic granite (Fig. 4e). The total Re concentrations of the molybdenite samples 363 

are 950 and 1036 ppm and 187Os concentrations are 181 and 199 ppb. Samples 364 

OKY-3-4 and GOP-19m yield Re-Os ages of 18.3 ± 0.1 Ma and 18.2 ± 0.1 Ma, 365 

respectively (Table 3). 366 

 367 

6. Discussion 368 

6.1. Shallow-level magmatic processes 369 

Decreasing CaO, Fe2O3, TiO2, P2O5, and V trends with increasing SiO2 are 370 

consistent with pyroxene, apatite, and Fe–Ti oxide fractionation during the evolution 371 

of the magmas of the Pınarbaşı intrusion (see Online Resource 4), and the 372 

fractionated LREE element patterns and slightly negative Eu anomalies indicate 373 

plagioclase fractionation during the evolution of the felsic pluton. In addition, the 374 

negative correlation of Dy/Yb with SiO2 (Fig. 9a), the positively correlated Zr/Sm ratio 375 
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and SiO2 contents, as well as the slightly upward concave trend from MREEs to 376 

HREEs (Figs. 7b and 9b) suggest low-pressure amphibole fractionation in the 377 

presence of plagioclase. These fractionation trends, coupled with the negative 378 

correlation of Al2O3, Na2O, and Sr with SiO2 are consistent with combined amphibole, 379 

plagioclase, and pyroxene fractionation at low pressure, and the absence of high-380 

pressure garnet fractionation and garnet-bearing residue in the source (see Online 381 

Resource 4; Macpherson et al. 2006; Davidson et al. 2007, 2013; Alonso-Perez et 382 

al. 2009; Hora et al. 2009). 383 

 384 

The Pınarbaşı samples are characterized by upper continental crust-like 385 

lithogeochemical compositions (Figs. 7a-b). On the 206Pb/204Pb(i) vs 207Pb/206Pb(i) 386 

diagram (Fig. 8b), all Pınarbaşı samples plot above the Upper Crustal curve 387 

(Zartman and Doe 1981) and overlap with the basement metamorphic rocks. 388 

However, the Sr and Nd isotopic compositions together with A/CNK ratios of 3 to 2 389 

and Mg# values of 30–47 for metamorphic basement (Dilek et al. 2009) are different 390 

from those of the metamorphic basement rocks of the region. The high 87Sr/86Sr(i) 391 

ratios of the evolved samples of porphyritic granite (Fig. 8a; Table 1) are consistent 392 

with upper crustal assimilation concomitant with fractional crystallization (DePaolo 393 

1981). The 1/Sr vs. 87Sr/86Sr(i) and SiO2 vs. 208Pb/204Pb(i) plots also show that the 394 

porphyritic granite, which crosscuts the Pınarbaşı monzonite, reflects shallow-level 395 

crustal assimilation during fractionation (Figs. 9c-d). On the 206Pb/204Pb(i) vs 396 

87Sr/86Sr(i) plot (Fig. 8d), the Pınarbaşı samples display a trend with variable 87Sr/86Sri 397 

ratios for nearly constant 206Pb/204Pb(i) ratios.  398 

 399 

 400 
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However, several compositional characteristics are attributed to source-inheritance 401 

rather than to shallow-level crustal assimilation and fractionation only. They include 402 

(1) the least radiogenic Sr compositions (Fig. 8d), (2) a low 208Pb/204Pb(i) ratio distinct 403 

with respect to the metamorphic basement (MMM in Fig. 8c), (3) samples with the 404 

most radiogenic Nd isotopic compositions (Fig. 8a), and (4) enriched U and Pb 405 

contents of the Pınarbaşı samples with respect to those of the metamorphic 406 

basement (MMM in Fig. 7a). In summary, trace element patterns and Pb isotope 407 

ratios indicate that the magmas at the origin of the Pınarbaşı intrusion have 408 

assimilated middle to upper crustal materials.  409 

 410 

6.2 Source of magma 411 

In addition to fractional crystallization and assimilation (AFC) during evolution of the 412 

Pınarbaşı magmas, there is geochemical and isotopic evidence for open-system 413 

evolution, including partial melting, crust–mantle interaction, and enriched mantle 414 

contributions. Partial melting of hydrous calc-alkaline to high-K calc-alkaline, and 415 

basaltic to intermediate metamorphic rocks can produce moderate to mildly 416 

peraluminous high-K, I-type granitoids (Rapp et al. 1991; Roberts and Clemens 417 

1993; Rudnick and Gao 2003). This can explain the mildly peraluminous composition 418 

of the Oligo–Miocene granitic rocks in western Anatolia (Fig. 6d), and they are 419 

distinct with respect to the composition of metagraywacke and metapelite partial 420 

melts (Fig. 10a).  421 

 422 

The high-K and LILE-enriched (e.g., Ba, Sr) magmas can also be produced from the 423 

influx of a LILE- and LREE-enriched- mantle melt at the base of the lower crust, and 424 

this source could be produced by small to moderate degrees (≤20%) of partial 425 
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melting of phlogopite–clinopyroxene–amphibole-bearing metasomatised lithospheric 426 

mantle due to heating by asthenospheric upwelling (Lloyd et al. 1985; Foley 1992; 427 

Conticelli et al. 2002; Grove et al. 2003; Condamine and Médard 2014). On the 428 

La/Yb vs La diagram (Fig. 10b), the Pınarbaşı samples scatter between the partial 429 

melting and fractional crystallization lines, suggesting partial melting of a lithospheric 430 

mantle source contemporaneously with fractionation, and the highly variable Nb/Ta 431 

ratio of the monzonitic and granitic samples between 7.9 and 34 (~11–12 for crust, 432 

and ~17.5 for mantle; Green 1995) indicate fractional crystallization and low degrees 433 

of partial melting. In addition, the high Rb/Sr (0.2-0.4) and highly variable Ba/Rb (7.5–434 

18.6) ratios of the Pınarbaşı samples are consistent with partial melting of a residual 435 

hydrous phlogopite–amphibole- enriched mantle source (see Online Resource 2; 436 

Furman and Graham 1999; Guo et al. 2013). The low Sm/Yb ratio below 3 of the 437 

Pınarbaşı granitic and monzonitic samples (Fig. 10c) suggests a residue above the 438 

garnet stability field at 35–40 km (Kay and Mpodozis 2001). The position of all 439 

samples in the mantle–crust interaction field in the Nb–Y–Ga*3 ternary diagram of 440 

Eby (1992) (Fig. 10d) is consistent with phlogopite–amphibole–pyroxene-bearing 441 

lithospheric mantle-lower crust interactions. 442 

  443 

Based on our geochemical data, the absence of residual garnet in the magma source 444 

reflects a relatively thin crust in mid-western Anatolia since at least the Oligo–445 

Miocene. Geophysical data document a present-day average crustal thickness of 25 446 

to 33 km in western Anatolia, and an average crustal thickness of 40 km during the 447 

early Miocene (Dhont et al. 2006; Mutlu and Karabulut 2011; Karabulut et al. 2013). 448 

Consequently, our results coupled with the crustal thickness of western Anatolia 449 

allow us to conclude that enriched sub-continental lithospheric mantle interacted with 450 
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the lower crust and generated the parental magmas of the Oligo–Miocene granitic 451 

intrusions at relatively low pressure (35–40 km). 452 

 453 

6.3. Post-subduction tracers 454 

Enrichment of LILEs (e.g., Ba, Rb, Sr), U and Pb, depletion of Nb and Ta, and high 455 

Ba/La, Ba/Th, Rb/Y, Sr/Th and Sr/Nd ratios are attributed to fluid addition to the 456 

mantle wedge from dehydration of a subducted slab (Pearce and Peate 1995; 457 

Keppler 1996). By contrast, enrichment of Th, La, and Nb are attributed to 458 

metasomatism of the mantle by melting of a subducted sedimentary component 459 

(Tatsumi et al. 1986; Plank and Langmuir 1993; Brenan et al. 1995; Pearce and 460 

Peate 1995; Plank 2005).  461 

 462 

All samples of the Pınarbaşı intrusion, together with the Oligo-Miocene granitic rocks 463 

of the western Aegean, exhibit variable Th/Yb ratios for nearly constant Ta/Yb ratios 464 

(Fig. 11a), and reflect a subduction-related environment. The wide range of Ba (666–465 

2100 ppm), Sr (333–621 ppm) contents and high Ba/La (17.7–42.6) ratios of the 466 

Pınarbaşı samples are consistent with addition of aqueous fluids derived from the 467 

mantle wedge to the sub-lithospheric mantle. A narrow range of Nb/Y ratio with highly 468 

variable Ba contents could also be attributed to slab-derived fluid enrichment (Fig. 469 

11b). On the other hand, the relatively high Th/La (0.33–0.73), Th/Nb (1.0–2.3), Zr/Hf 470 

(33.4–41.9, Zr/Hf = ~39.6 for EMSS) and a wide range of Th/Yb ratios (5.2–13.6; 471 

excluding the high Th/Yb ratio of 31 of sample GOTK-18), as well as the low Ce/Pb 472 

ratios (1.35–3.84; Ce/Pb = ~3.98 for EMSS and Ce/Pb = 2–3 for terrigenous 473 

sediments; Lan et al. 1990; Klaver et al. 2015), with small negative Ce anomalies of 474 

Pınarbaşı granitic and monzonitic rocks (Fig. 7a) could be indicative of a sedimentary 475 
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component mixed with an enriched mantle source. In the Nb/Y vs. Rb/Y plot (Fig. 476 

11c), the Pınarbaşı samples exhibit a trend between melt-related enrichment and 477 

slab-derived fluid enrichment array lines. These metasomatic agents are further 478 

documented by the oblique trend between fluid- and melt-related enrichment trend 479 

lines on the Th/Nb vs. Ba/Th plot (Fig. 11d) and also on the Ba/La vs Th/Yb plot (Fig. 480 

11e). They have higher Ba/Nb and Th/Nb ratios than the EMSS and on the Th/Nb vs. 481 

Ba/Nb diagram (Fig. 11f), they lie along both the sediment melting and aqueous fluid 482 

trend lines. It is known that wet sediment melting can only occur at depths greater 483 

than 100 km under relatively high temperatures (~800 °C) and the increased K, Th, 484 

Ta, and Nb concentrations in arc-suites are attributed to the distance from the 485 

subduction trenches, reflecting the heterogeneous mantle sources that change from 486 

subduction-related to within-plate away from the trench and the low degree of partial 487 

melting in the back-arc setting also leads to enrichment in incompatible elements 488 

(Barragan et al. 1998; Aizawa et al. 1999; Duggen et al. 2007; Richards 2011; Müller 489 

and Groves 2016). Therefore, the enrichment processes can be linked with 490 

magmatism related to back-arc opening in the region as a consequence of hot 491 

asthenospheric upwelling attributed either to slab rollback and subsequent slab tear 492 

processes (Spakman et al. 1988; Jolivet and Brun 2010; van Hinsbergen 2010; Erkül 493 

et al. 2013; Ersoy and Palmer 2013; Jolivet et al. 2013, 2015) or lithospheric 494 

delamination and convective thinning of the lithospheric mantle (Dilek et al. 2009; 495 

Altunkaynak et al. 2012a).  496 

 497 

6.4. Age of Mo-Cu Mineralization  498 

The early Miocene crystallization ages of molybdenite from the stockwork veins (18.3 499 

± 0.1 Ma and 18.2 ± 0.1 Ma) coincide with the crystallization and cooling ages of the 500 
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granitic rocks of the Oligo-Miocene magmatic pulse in western Anatolia (Fig. 12; 501 

~24.0 and 18 Ma; Isik et al. 2004; Ring and Collins 2005; Aydoğan et al., 2008; 502 

Hasözbek et al. 2010; Altunkaynak et al. 2012a). This indicates a very close 503 

relationship of the mineralization event with the latest magmatic differentiation, 504 

crystallization and subsequent cooling stages. In addition, the early Miocene age of 505 

the Mo-Cu mineralization at Pınarbaşı shows that metal enrichment was closely 506 

related to early Miocene post-orogenic magmatism (Fig. 12). 507 

 508 

 509 

6.5. Origin of metals in the porphyry-style Mo–Cu Pınarbaşı prospect  510 

The trace element data and the Sr, Nd, and Pb isotopic compositions of the 511 

Pınarbaşı intrusive rocks suggest that the Mo–Cu-bearing monzonitic and granitic 512 

rocks were derived from a melt that was produced by interaction of an enriched, 513 

metasomatised lithospheric mantle and a lower crust at a depth of 35–40 km during 514 

the Oligo–Miocene. The enriched melt influx from the metasomatised lithospheric 515 

mantle into the lower crust resulted in partial melting of the lower crust at the 516 

lithospheric mantle–lower crust interface. Lithospheric mantle interaction with the 517 

lower crust likely increased through time, and lithospheric influx during the mid to late 518 

Miocene probably resulted in thickening of the lower crust in western Anatolia (see 519 

also discussion by Ersoy et al. 2010). This is consistent with the evolution of Oligo–520 

Miocene high-K calc-alkaline to middle Miocene shoshonitic magmatism in the region 521 

interpreted as deep partial melting (Thorpe and Francis 1979). It is also in line with 522 

the formation of an amphibole–garnet-bearing residual source during early to middle 523 

Miocene magmatism (e.g., Ersoy et al. 2010; Çoban et al. 2012; Karaoǧlu and 524 

Helvacı 2014).  525 

Commented [A1]: The second part of this section discusses the 

origin of the metals. Therefore, it’s probably best to keep this title as 
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 526 

Continuous partial melting of chalcophile and siderophile element-enriched lower 527 

crustal amphibolitic cumulates and sub-continental lithospheric mantle can produce 528 

H2O-bearing, volatile-rich and fertile melts, which are the source of metals of 529 

porphyry Au-Cu deposits in post-collisional extensional settings (Richards 2009; Hou 530 

et al. 2011; Richards and Mumin 2013; Hou and Zhang 2014; Müller and Groves 531 

2016). The crustal or mantle origin of the Mo-enrichment in porphyry systems is still 532 

debated (Audétat 2010; Richards 2011). Pettke et al. (2010) advocated melting for 533 

sub-continental metasomatised old mantle as the source of Mo for giant porphyry 534 

Mo-rich systems in the Western U.S.A., and Mao et al (2011) suggested that 535 

repeated melting of the lower crust can explain Mo-enrichment in back-arc 536 

extensional settings during post-collisional magmatism. Molybdenum is enriched in 537 

reduced sediments and is also immobile in low-temperature fluids (Crusius et al. 538 

1996). Chondritic to super-chondritic ratios of Zr/Hf (33–42) and Hf/Sm (0.75–1.04) of 539 

the Pınarbaşı intrusion reveal a terrigenous character of the subducted crustal 540 

material (chondritic value of Hf/Sm: 0.75; Zr/Hf: 35–40, Patchett et al. 2004, 541 

Claiborne et al. 2006). Therefore, our study reveals that melting of terrigenous 542 

sediments can also supply Mo to an enriched lithospheric mantle source in a back-543 

arc setting. In light of these studies, it is concluded that a lithospheric mantle 544 

metasomatised by fluids and subducted sediments, interacting at relatively low-545 

pressure conditions (depths of 35–40 km) with lower crust could explain the Mo–Cu 546 

enrichment of the Pınarbaşı intrusion during back-arc magmatism (Fig. 12). The 547 

over-thickened sub-continental lithospheric mantle during early to late Miocene could 548 

have created the adequate environment for the evolution of larger scale Au ± Cu ± 549 

Mo-rich deposits in western Anatolia (e.g., middle Miocene Uşak-Afyon-Konya 550 
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district, Kuşçu et al. 2011; Rabayrol et al 2014), because of continuous melting of 551 

chalcophile and siderophile element-enriched amphibolite cumulates in the thickened 552 

lower crust and the enriched lithospheric mantle.  553 

 554 

6.6. Tectonic setting, exhumation and epithermal overprint of the porphyry Mo–Cu 555 

Pınarbaşı prospect  556 

Extensional tectonics favors the migration of highly oxidized, Cu–, Au– and Mo-rich 557 

melts derived from the mantle and the lower crust into upper crustal levels 558 

(Vigneresse 2007). The ore-bearing melt at the origin of the Pınarbaşı intrusion could 559 

have rapidly ascended to mid-crustal levels with crustal assimilation along trans-560 

lithospheric faults activated during extension, and resulting in porphyry-style Mo-Cu 561 

mineralization during the early Miocene (at ~18 Ma) that is consistent with the 562 

differentiation-crystallization and cooling history of the Oligo-Miocene granites (24-18 563 

Ma). The first, late Oligocene to early Miocene phase of extension in the region is 564 

mainly characterized by the development of low-angle shear zones and the 565 

subsequent emplacement and exhumation of granitic rocks along the ductile shear 566 

zones (Fig. 12). Hence, the Oligo–Miocene felsic intrusions are regarded as syn-567 

extensional, that cooled rapidly along the footwall of detachment faults (Ring et al. 568 

2003; Isik et al. 2004; Ring and Collins 2005; Dilek et al. 2009; Erkül 2010). The 569 

second, middle to late Miocene extension phase in the region is characterized by the 570 

development of high-angle normal faults forming graben structures in western 571 

Anatolia (Yilmaz 1989; Hetzel et al. 1995; Ring et al. 2003; Fig. 12). The high-angle 572 

normal faulting resulted in uplift of the graben shoulders, deep erosion and further 573 

exhumation along the detachment footwalls, as well as cataclastic deformation of the 574 

Oligo–Miocene granitic rocks (Yilmaz 1989; Dilek et al. 2009). Therefore, exhumation 575 
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of the Mo–Cu-bearing Pınarbaşı intrusion, exposed in the northwestern shoulder of 576 

the Yenidoğmuş–YeniGediz graben, can be explained by uplift of the graben systems 577 

(Fig. 2, inset). Further uplift during the middle to late Miocene may have resulted in 578 

(1) removal of the shallow parts of the Pınarbaşı porphyry system in response to 579 

rapid erosion, (2) telescoping by Sb±Ag±Au low-sulfidation epithermal mineralization, 580 

and intense advanced argillic alteration at the Pınarbaşı prospect (Figs. 5e-f; Oygür 581 

and Erler 2000; Delibas et al. 2012a). This is reminiscent of many porphyry systems 582 

in post-collisional extensional settings (e.g., Perello et al. 2001; Hou et al. 2009). 583 

     584 

7. Conclusions 585 

The high-K calc-alkaline Pınarbaşı intrusion shares many geochemical features with 586 

other calc-alkaline to high-K calc-alkaline Oligo–Miocene granitic rocks of western 587 

Anatolia. The monzonitic and granitic rocks of Pınarbaşı were derived from 588 

interactions of an enriched lithospheric mantle and lower crust at depth of 35–40 km 589 

during Oligo–Miocene post-collisional magmatism. Trace-element ratios and distinct 590 

Sr, Nd, and Pb isotopic compositions of the Pınarbaşı intrusion suggest that two 591 

metasomatic agents could have been incorporated into the enriched mantle source 592 

reflecting post-orogenic magmatism. We conclude that the lithospheric mantle was 593 

metasomatised by fluids and subducted sediments, and its interaction with a lower 594 

crust at low-pressure conditions explains the Mo and Cu enrichment of the Pınarbaşı 595 

intrusion during back-arc magmatism. The ore-bearing melt of the Pınarbaşı intrusion 596 

could have rapidly ascended to mid-crustal levels, with only limited crustal 597 

assimilation along major trans-lithospheric faults as a result of the thinning of middle 598 

to upper crust during regional extension, and resulted in the development of 599 

porphyry-style mineralization during the early Miocene (~18 Ma). The subsequent 600 
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exhumation history of the Mo–Cu-bearing Pınarbaşı intrusion is attributed to regional-601 

scale uplift, and further exhumation along the detachment faults of the associated 602 

core complexes during the middle to late Miocene. This evolution also resulted in an 603 

overprint by epithermal mineralization, and intense advanced argillic alteration.  604 

 605 
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Figure Captions  1268 

Fig. 1 Simplified regional tectonic-geological map of western Anatolia and location of 1269 

the Pınarbaşı Mo-Cu prospect and major ore deposits/prospects related with the 1270 

main tectonic structures in western Anatolia (modified after Dilek et al. 2009; Öner 1271 

and Dilek 2011). Inset shows main plate boundaries, major suture zones, 1272 

metamorphic massifs and tectonic units of the Aegean and eastern Mediterranean 1273 

region (modified after Dilek 2006; Dilek and Sandvol 2009; Okay and Tüysüz 1999) 1274 

BFZ: Bornava flysch zone; CACC: Central Anatolian Crystalline Complex; EAFZ: 1275 

East Anatolian fault zone; EF: Ecemis fault; KA: Kazdağ massif; IASZ: Izmir–Ankara 1276 

suture zone; ITSZ: Inner–Tauride suture zone; MM: Menderes massif; NAFZ: North 1277 

Anatolian fault zone.  1278 

 1279 

Fig. 2 a Simplified geological map of the Pınarbaşı (Gediz) prospect (Delibaş et al. 1280 

2012a, b), inset shows location of the Pınarbaşı Mo-Cu prospect within the 1281 

Erdoğmuş-Yenigediz graben (modified after Gürboğa et al. 2013), b generalized 1282 

stratigraphic column of the study area (modified after Akdeniz and Konak 1979; 1283 

Delibaş et al. 2012a, b) 1284 

 1285 

Fig. 3 Field relationships at the Pınarbaşı prospect. a EW-trending normal fault 1286 

system cutting monzonite and associated silicified zones, b NE-trending late stage 1287 

normal fault cutting supergene argillic alteration zones, c contact relationships 1288 

between monzonite and limestone, d magnetite-epidote-pyroxene skarn zones along 1289 

contacts of a NW-trending porphyritic granite dyke with ultramafic rocks of the 1290 

ophiolitic mélange unit, e drill core sample showing porphyritic granite crosscutting 1291 
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monzonite, f intrusion breccia formed during emplacement of porphyritic granite into 1292 

monzonite  1293 

 1294 

Fig. 4 Different mineralization types at the Pınarbaşı prospect. a Pyrite-molybdenite 1295 

and chalcopyrite-bearing stockwork quartz-limonite veins crosscutting monzonite with 1296 

intense sericitic alteration and stockwork-type mineralization crosscut by late stage 1297 

strike-slip and normal fault systems, b NE and EW-striking quartz-1298 

molybdenite±chalcopyrite veins crosscutting porphyritic granite, c drill core sample 1299 

with quartz-molybdenite vein surrounded by sericitic alteration, d molybdenite-1300 

bearing intensely silicified zone, e drill core sample consisting of a quartz-1301 

molybdenite-pyrite-chalcopyrite vein (Qz: quartz, Py: pyrite, Ccp: chalcopyrite, Mol: 1302 

molybdenite, Lm: limonite)  1303 

 1304 

Fig. 5 Alteration styles and alteration minerals from the Pınarbaşı prospect. a 1305 

Magnetite veins crosscutting porphyritic granite, b K-feldspar vein crosscutting 1306 

porphyritic granite, c biotite replaced by sericite around quartz-molybdenite veins, d 1307 

muscovite within sericitic alteration zones, e fibroradial pyrophyllite crystals within the 1308 

advanced argillic alteration zone, f tabular alunite crystals within the advanced argillic 1309 

alteration zone (Qz: quartz, Bt: biotite, Ser: sericite, Ms: muscovite,  Prl: pyrophyllite, 1310 

Alu: alunite) 1311 

 1312 

Fig. 6 Geochemical classification and discrimination diagrams including magmatic 1313 

rock samples from the Pınarbaşı prospect. a SiO2 (wt.%) versus Na2O+K2O (wt.%) 1314 

classification diagram (Middlemost 1994), b AFM plot of Irvine and Baragar (1971), 1315 

A: Na2O+K2O (wt.%); F: FeOt (wt.%); M: MgO (wt.%), c K2O (wt.%) versus SiO2 1316 
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(wt.%) diagram for the samples of Pınarbaşı granitoid (discrimination lines separating 1317 

the tholeiitic, calc-alkaline, high-K calc-alkaline and shoshonitic series are from 1318 

Peccerillo and Taylor 1976), d Al/(Ca+Na+K) versus Al/(Na+K) molar discrimination 1319 

diagram (OMG: Oligo-Miocene Granitoids; Altunkaynak et al. 2012a) 1320 

 1321 

Fig. 7 a Primitive mantle-normalized (Sun and McDonough 1989) multi-element 1322 

patterns for rock samples from the Pınarbaşı pluton, b chondrite-normalized (Sun 1323 

and McDonough 1989) REE patterns for rock samples from the Pınarbaşı pluton 1324 

(Upper and Lower Crust data from Rudnick and Gao 2003; data for Menderes Massif 1325 

metamorphic rocks from Çoban et al. 2012) 1326 

 1327 

Fig. 8 Pb, Nd and Sr isotopic compositions of rock samples from the Pınarbaşı pluton 1328 

compared with various potential source reservoirs and rocks. The composition of 1329 

present-day CHUR was calculated for 20 Ma. Lead isotope Upper Crust and Orogen 1330 

curves from Zartman and Doe (1981). BG: Baklan Granitoid (Aydoǧan et al. 2008); 1331 

BSE: Bulk silicate earth from Zindler and Hart (1986); DMM: Depleted MORB; EM1: 1332 

Enriched mantle I; EM2: Enriched mantle II; EMSS: Eastern Mediterranean Sea 1333 

Sediments (Klaver et al. 2015); EOG: Eocene Granitoids (Altunkaynak et al. 2012b); 1334 

GLOSS: Global Subducted Sediments (Plank and Langmuir 1998); KV: Kula volcanic 1335 

rocks (Güleç 1991; Alici et al. 2002; Innocenti et al. 2005; Dilek and Altunkaynak 1336 

2010; Chakrabarti et al. 2012); MMM: Menderes Massif metamorphic rocks (Çoban 1337 

et al. 2012); OMG: Oligo-Miocene Granitoids (Altunkaynak et al. 2012a); SMV: Simav 1338 

volcanic-subvolcanic rocks (Çoban et al. 2012) 1339 

 1340 
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Fig. 9 Trace element and isotope variation diagrams for magmatic rocks from the 1341 

Pınarbaşı pluton: a Dy/Yb versus SiO2 (wt.%), b Zr/Sm versus SiO2 (wt.%) ,c initial 1342 

87Sr/86Sr versus 1/Sr (1/ppm), d SiO2 (wt.%) versus initial 208Pb/204Pb isotope ratios 1343 

(AFC: assimilation + fractional crystallization trend from DePaolo 1981) 1344 

 1345 

Fig. 10 a (Na2O+K2O+Fe2O3+MgO+TiO2) versus Na2O+K2O)/(Fe2O3+MgO+TiO2)  1346 

discrimination plot for granite melt sources (Patiño Douce 1999), b La (ppm) versus 1347 

La/Yb diagram, with partial melting and fractional crystallization trends from Thirlwall 1348 

et al. (1994), c La/Sm versus Sm/Yb diagram, with pressure-dependent pyroxene 1349 

and amphibole stabilities from Kay and Mpodozis (2001), d Nb–Y–Ga*3 granite 1350 

classification diagram after Eby (1992). BG: Baklan granitoid (Aydoǧan et al. 2008); 1351 

EG: Eğrigöz granitoid (Altunkaynak et al. 2012a, Çoban et al. 2012); SMV: Simav 1352 

volcanic-subvolcanic rocks (Çoban et al. 2012) 1353 

 1354 

Fig. 11 a Ta/Yb versus Th/Yb discrimination diagram after Pearce (1983), b Nb/Yb 1355 

versus Ba (ppm) diagram, c Nb/Y versus Rb/Y diagram, fluid- and melt-related 1356 

enrichment trends from Zhao and Zhou (2007), d Ba/Th versus Th/Nb diagram, e 1357 

Ba/La versus Th/Yb diagram, f Th/Nb versus Ba/Nb diagram with sediment melt and 1358 

aqueous fluids trends from Ribeiro et al. (2013). MORB data from Hofmann (1997). 1359 

BG: Baklan granitoid (Aydoǧan et al. 2008); EG: Eğrigöz granitoid (Altunkaynak et al. 1360 

2012a, Çoban et al. 2012); EMSS: Eastern Mediterranean Sea Sediments (Klaver et 1361 

al. 2015); GLOSS: Global Subducted Sediments (Plank and Langmuir 1998) 1362 

 1363 

Fig. 12 Summary of major tectonic and magmatic events within western Anatolia 1364 

from Oligocene to Miocene. 1: Jolivet and Brun (2010), van Hinsbergen (2010), 1365 
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Jolivet et al. (2015); 2-3: Spakman et al. (1988), Jolivet and Brun (2010), van 1366 

Hinsbergen (2010), Erkül et al. (2013), Ersoy and Palmer (2013), Jolivet et al. (2013, 1367 

2015); 4: Yilmaz (1989), Bozkurt et al. (1993), Hetzel et al. (1995), Bozkurt and Park 1368 

(1997), Ring et al. (1999, 2010), Koçyiğit et al. (2000), Whitney and Bozkurt (2002), 1369 

Bozkurt and Sözbilir (2004), Dilek et al. (2009), Agostini et al. (2010); 5: Isik et al. 1370 

(2004), Ring and Collins (2005), Aydoğan et al. (2008), Hasözbek et al. (2010), 1371 

Altunkaynak et al. (2012a); 6: Dilek et al. (2009), Altunkaynak et al. (2012a); 7: 1372 

Doglioni et al. (2002), Innocentini et al. (2005), Agostini et al. (2007, 2010), Helvacı et 1373 

al. (2009), Karaoğlu et al. (2010), Ersoy and Palmer (2013) 1374 

 1375 
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                    Table 1  Isotope data (Sr and Nd) of magmatic whole rock samples from the Pınarbaşı intrusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: enD values are calculated relative to CHUR with present day values of (143Nd/144Nd)chur =0.512638 and 147Sm/144Nd=0.1967, λ147Sm=6.54×10-12  enD: 
((143Nd/144Nd)sample/(143Nd/144Nd)CHUR-1))*10.000 (Wasserburg et al. 1981; Jacobsen and Wasserburg 1984). Initial values are calculated for an assumed age of 
20 Ma.  

Sample 
No 87Sr/86Sr 

Rb 
(ppm) 

Sr 
(ppm) 87Sr/86Sr(i) 143Nd/144Nd 

Sm 
(ppm) 

Nd 
(ppm) 143Nd/144Nd(i) enD 

GOTK1 0.70790 130 621 0.70773 0.51244 7.5 28.9 0.51241 -3.9 

GOTK2 0.70789 117 602 0.70787 0.51245 5.8 35.6 0.51243 -3.5 

GOTK9 0.70734 94 467 0.70718 0.51246 5.0 29.3 0.51245 -3.2 

GOTK11 0.70799 118 384 0.70774 0.51243 4.9 30.3 0.51242 -3.8 

GOTK6 0.70887 120 308 0.70855 0.51237 4.6 26.4 0.51236 -5.0 

GOTK12 0.70775 113 724 0.70762 0.51230 8.5 47.6 0.51228 -6.5 

GOTK13 0.70801 104 415 0.70781 0.51242 4.7 28.4 0.51241 -4.0 

GOTK14 0.70841 86 333 0.70820 0.51245 4.9 26.0 0.51244 -3.4 

GOTK15 0.70957 119 294 0.70923 0.51235 4.5 26.4 0.51234 -5.4 

GOTK7 0.70805 105 369 0.70782 0.51243 4.5 27.5 0.51241 -3.9 

GOTK16 0.70794 108 418 0.70773 0.51242 5.7 34.8 0.51241 -4.0 

GOTK3 0.70735 118 591 0.70718 0.51245 3.9 27.0 0.51244 -3.4 
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Table 2 Isotope data (Pb) of magmatic whole rock samples from the Pınarbaşı intrusion. 

 
Sample 

No 206/204Pb 207/204Pb 208/204Pb 
Pb 

ppm 
U 

ppm 
Th 

ppm 206Pb/Pb204(i) 207Pb/204Pb(i) 208Pb/204Pb(i) 

GOTK01 18.992 15.719 39.126 40.5 9.2 26.4 18.946 15.717 39.083 

GOTK02 19.001 15.723 39.139 41.5 7.0 30.0 18.967 15.721 39.091 

GOTK09 18.961 15.719 39.122 19.6 2.5 12.5 18.935 15.718 39.080 

GOTK12 19.044 15.725 39.124 49.6 5.7 27.3 19.021 15.724 39.088 

GOTK14 18.961 15.717 39.121 17.3 2.2 13.2 18.935 15.716 39.070 

GOTK06 18.975 15.721 39.124 34.0 4.4 22.5 18.949 15.720 39.080 

GOTK07 18.977 15.721 39.138 34.1 5.0 28.7 18.948 15.720 39.082 

GOTK11 18.969 15.718 39.129 27.8 3.7 25.5 18.942 15.717 39.068 

GOTK13 18.984 15.721 39.139 28.1 4.9 28.2 18.949 15.719 39.073 

GOTK15 18.976 15.719 39.111 37.2 4.6 17.4 18.951 15.718 39.080 

GOTK16 18.959 15.722 39.116 39.8 4.6 28.1 18.936 15.721 39.069 

GOTK3 18.976 15.719 39.111 43.0 8.0 30.2 18.939 15.717 39.065 
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Table 3 Re-Os data for molybdenite from the Pınarbaşı prospect 

  

Sample No wt (g) Re (ppm) ± 2σ  187Re (ppm) ± 2σ  187Os (ppb) ± 2σ  
 

Age (Ma) ± 2σ (1)   Age (Ma) ± 2σ (2)  

GOP-19m 0.01047 950.3 ± 4.7 597.3 ± 3.0 181.2 ± 0.8 18.21 ± 0.07 18.21 ± 0.09 

OKY3-4 0.01014 1035.5 ± 5.2 650.8 ± 3.3 198.5 ± 0.9 18.30 ± 0.07 18.30 ± 0.09 

Re-Os dates are calculated using Re decay constants from Smoliar et al. (1996)  
(1) age uncertainty includes all sources of analytical 
uncertainty 
(2) age uncertainty includes all sources of analytical 
uncertainty and that of the decay constant. 

     

Table3
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