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Hopf solitons in the Skyrme-Faddeev system on R3 typically have a complicated
structure, in particular when the Hopf number Q is large. By contrast, if we work on
a compact 3-manifold M, and the energy functional consists only of the Skyrme term
(the strong-coupling limit), then the picture simplifies. There is a topological lower
bound E ≥ Q on the energy, and the local minima of E can look simple even for large
Q. The aim here is to describe and investigate some of these solutions, when M is S3,
T3, or S2 × S1. In addition, we review the more elementary baby-Skyrme system, with
M being S2 or T2. Published by AIP Publishing. https://doi.org/10.1063/1.5006891

I. INTRODUCTION

The Skyrme-Faddeev system1,6,12 involves maps ψ :R3→ S2 satisfying a suitable boundary
condition, with ψ being characterized topologically by its Hopf number Q ∈Z. To get a stable static
soliton (hopfion), we need an energy functional E[ψ] which has the effect of fixing the soliton size.
In the Skyrme-Faddeev case, the energy is E = E2 + E4, where

E2 =
1

32π2

∫
|dψ |2 d3x, E4 =

1

128π2

∫
|ψ∗ω |2 d3x. (1)

Here ω is the area element on S2. The effect of the term E4 is to prevent the soliton from shrinking,
and the effect of E2 is to prevent it from expanding. However, a more elementary way to prevent
expansion is simply to take the space M to be compact and to use E = E4. In this compact situation,
the usual E2 = ∫ |dψ|2 term in the energy is not needed, and stable solitons can exist without it; in a
sense the picture is simpler in this “strong-coupling limit.” The aim in this note is to investigate some
of the features of this simpler system.

So we are dealing with maps ψ: M → S2 where M is compact, and the energy functional is
E = E4. If M is 3-dimensional, then with appropriate topological conditions and normalization, one
has13 a topological lower bound E ≥ Q; more details of this will be given below. Our main question
here is how close E can get to its lower bound, for various manifolds M and various values of the
Hopf charge Q. This will be investigated in what follows, for the three cases M = S3, M = T3, and
M = S2 × S1.

There is another aspect to this story. The lowest-energy configurations of topological solitons
with large topological charge Q � 1 typically have a rather regular structure. For example, con-
sider the basic Skyrme model, involving a field ψ :R3→ SU(2), where the map ψ extended to
R3 ∪ {∞} has the degree Q. The static energy, suitably normalized, satisfies the Faddeev bound
E ≥ Q. For large Q, the energy functional has many local minima, but the lowest of these
is believed to resemble a chunk of Skyrme crystal, with E/Q ≈ 1.036.12 The linear behaviour
E ∼ Q is compatible with a triply periodic lattice-like structure, and that is indeed what one
gets.

The case of Hopf solitons in the Skyrme-Faddeev system (1) on R3 is, however, very different.
Here the dependence of E on Q is sublinear, namely, E ∼ Q3/4. More precisely, there is a topological
lower bound E ≥ CQ3/4, where C = 2�3/2 × 33/8,15 and it is conjectured that the stronger bound with
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C = 1 holds.16 There are many local minima of E, and their energies are consistent with E &Q3/4.1,9,14

The sublinear behaviour of E means that these minimum-energy configurations onR3 cannot resemble
chunks of a periodic structure, and indeed their appearance is typically a tangle of knots and links.
For our basic hopfion system E = E4 on a compact space, however, one has E ∼ Q. This raises the
possibility that Hopf solitons in this case might exhibit somewhat more regular large-Q behaviour, at
least in some situations.

If M is 2-dimensional, then the relevant energy bound is E ≥ Q2, where Q is the degree of the
map ψ: M → S2. We shall begin, in Sec. II, by reviewing this more elementary situation for the two
cases M = S2 and M = T2. In both cases, there are explicit fields which saturate the lower bound: The
former has been noted before, but the latter appears to be new.

II. TWO-DIMENSIONAL M

Before dealing with Hopf maps, where M is 3-dimensional, we first consider the case of maps
ψ: M → S2 where M is a two-dimensional compact Riemannian manifold. Let ω denote the area
element on S2 with ∫ ω = 4π and η, the area element on M with ∫ η = V. The normalized energy E
and topological charge (degree) Q of ψ are given by

E =
V

32π2

∫
M
|ψ∗ω |2 η, Q=

1
4π

∫
M
ψ∗ω. (2)

Defining a scalar function B by ψ∗ω = Bη as well as expanding ∫ (B � λ)2η ≥ 0, where λ is a real
constant, immediately gives the lower bound

E ≥Q2, (3)

with equality if and only if B takes the constant value B = ±4πQ/V. In fact,13 every critical point of
the functional E[ψ] has B constant.

The case M = S2 is rather simple and has been noted before.8 Here, the metric on M is taken
to be that of the standard unit 2-sphere. Let z ∈C be a stereographic coordinate on the source space
M, and w ∈C, a stereographic coordinate on the target space. So the field is described by a function
w = w(z, z̄). Then, for any positive integer Q, the bound (3) is saturated by

w(z, z̄)= zQ/|z |Q−1. (4)

Thus, (4) is a critical point of the functional E, in fact a global minimum in the topological sector
labeled by Q. Notice that the corresponding field ψ is continuous, although it is not smooth if Q > 1.
However, it is smooth on the complement of the two points z = 0,∞, with bounded partial derivatives,
and that is enough for the analysis to work. This rotationally symmetric but non-smooth solution has
a counterpart for Hopf solitons, as we shall see below.

Let us turn now to the case of a flat torus M = T2, with the Euclidean coordinates (x, y) each
having period 2π. We use the unit vector φj = (φ1, φ2, φ3) with φjφj = 1 to coordinatize the target
sphere S2. Then there is a particularly simple solution with Q = 2, which has constant energy density
and saturates the bound (3), namely,

φ1 = 1 −
2
π
|x − π |, φ2 = sgn(x − π)f (x) cos(y), φ3 = f (x) sin(y), (5)

where f (x)=
√

1 − φ1(x)2. This is continuous and smooth except on the lines x = 0, π. By contrast,
a Q = 1 solution appears not to exist. In fact, a Q = 1 field, if allowed to “flow down” the energy
gradient in a numerical simulation, spreads out and approaches a discontinuous configuration. This
is analogous to the situation for harmonic maps from T2 to S2, where the energy is E2 = ∫ |dψ|2 d2x:
There also no Q = 1 solution exists.5 In this case, however, the field “spikes” rather than spreading
out.2

III. HOPFIONS ON S2 × S1

This section is concerned with the case M = S2 × S1 and will describe a highly symmetric critical
point of the functional E = E4. To begin with, however, we examine the topological lower bound
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E ≥ Q for general compact M. The proof summarized here is a restatement of the one in
Ref. 13.

The pullback F = ψ∗ω is a closed 2-form on M, and we say that ψ is algebraically inessential if
F is exact. If we represent ψ by the unit vector field φj as before, thenω = ε jklφ

jdφkdφl. Let xµ = (x1,
x2, x3) denote local coordinates on M, and gµν its metric, with determinant g. The energy is defined
to be

E = κ
∫
|ψ∗ω |2

√
g d3x = κ

∫
FµνFµν √g d3x, (6)

where Fµν = ε jklφ
j(∂µφk)(∂νφl) and where κ is some normalization constant. If we take ψ to be

algebraically inessential, then there exists a 1-form Aµ such that Fµν = ∂µAν � ∂νAµ. Defining
Bµ = 1

2 g−1/2εµαβFαβ , we can write the Hopf number Q as

Q=
1

16π2

∫
M

BµAµ d3x.

Note that E = 2κ ∫ BµBµ
√

g d3x. We may take Aµ to be divergence-free, namely, ∇µAµ = 0, where
∇µ is the Levi-Civita connection on M. From Stokes’s theorem we have∫

M
∇µ(AνFµν)

√
g d3x = 0,

and expanding this gives

E = 2κ
∫

M
Aµ(∆Aµ)

√
g d3x,

where ∆ is the Hodge-Laplace operator

∆Aµ =−∇
ν∇νAµ + RµνAν .

Now let λ be the smallest positive eigenvalue of ∆ acting on divergence-free 1-forms on M. Then we
get the bound

E ≥ 2κλ
∫

M
AµAµ

√
g d3x.

Combining this inequality with the Cauchy-Schwarz inequality ||A||·||B|| ≥ 〈A, B〉 gives
E ≥ 32π2κ

√
λ |Q|; therefore, choosing the normalization factor κ = 1/(32π2

√
λ) yields

E ≥ |Q|. (7)

A final point to note is that rescaling the metric of M by a constant simply rescales λ in such a way
that the normalized energy E is unchanged. So in each of the examples which follows, there is no
loss of generality in fixing the overall scale of M.

We turn now to the specific case M = S2 × S1. We may fix the scale by taking the length of
the S1 to be 2π, and then the radius L of the S2 remains a free dimensionless parameter. To get the
appropriate normalization of E, we need the eigenvalue λ as described earlier. In effect, λ is the
smallest positive eigenvalue of the Hodge-Laplace operator ∆ acting on divergence-free 1-forms on
the S2 with radius L, which7 is λ = 2/L2, and so we set κ =L/(32π2

√
2). With this normalization, we

then have the bound E ≥ Q.
Note that this is only valid for algebraically inessential maps ψ. We may view the situation as

follows. The S1 factor in M allows the existence of vortices. Vortices in the Skyrme-Faddeev system
have been studied previously,10,11 in particular the evolution of single vortices and bunches of vortices.
For a field to be algebraically inessential, however, we need the net vortex number to be zero. So in
the case of interest here, what we need is an equal number of vortices and antivortices on S2.

The simplest example of such a configuration is to have a vortex at one point on the sphere
and an antivortex at the antipodal point. Let us use standard spherical coordinates (θ, ϕ) for S2 and
χ ∈ [0, 2π] for S1. This simplest vortex-antivortex field has the form

φj = (sin(f ) cos(ϕ ± χ), sin(f ) sin(ϕ ± χ), cos(f )) , (8)
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where the profile function f = f (θ) satisfies the boundary conditions f (0) = 0, f (π/2) = π, and
f (π) = 2π and where the upper or lower sign is chosen according to whether θ ∈ [0, π/2] or
θ ∈ [π/2, π]. This field is continuous, is algebraically inessential, and has Hopf number Q = 2.
It has two rotational symmetries, generated by ∂ϕ and ∂χ. Substituting (8) into the energy (6) gives a
functional Ê[f ] which is easily minimized numerically, for any given value of L. In particular, we find
that the lowest energy is attained when L ≈ 1.51, and it is E ≈ 1.0670 × 2, about 7% above the topo-
logical lower bound. The energy density |F |2 is peaked at θ = 0, π, in other words at the location of the
vortices.

One may generalize (8) by replacing ϕ ± χ with mϕ ± nχ, where m and n are integers, but in
fact this gives nothing new. For example, if n > 1, we can re-define nχ as χ and rescale the whole
space to restore the period of χ to 2π, thereby effectively rescaling n to unity. So we get a solution
with arbitrary (even) Hopf number Q, having E4-energy 7% above its topological lower bound. It
remains an open question whether this doubly symmetric solution is stable under non-symmetric
perturbations and whether it is the minimal-energy in its topological sector. But because its energy
remains close to the lower bound, both of these conjectures would seem to be plausible.

IV. HOPFIONS ON T 3

This section deals with maps ψ: T3→ S2, where T3 is the cubic 3-torus with coordinates x, y, z,
each having period 2π. So the relevant eigenvalue λ equals 1, and therefore we take κ = 1/(32π2) in
(6) to give the bound E ≥ |Q| for algebraically inessential maps.

This case was investigated using a full 3-dimensional numerical procedure, brief details of
which are as follows. The xyz space is modelled by an N3 lattice, with the unit vector φj being defined
at each lattice site and with periodic boundary conditions. The image of a plaquette (say in xy) is a
spherical quadrilateral on the target space S2, and the spherical area of this image represents Fxy. Then
E = E4 is modelled by summing the squares of these areas over all plaquettes, in all three directions.
A conjugate-gradient code then minimizes E. However, this procedure on its own is rather unstable:
A field can easily become “discontinuous” as it flows down the energy gradient. To avoid this, one
may add an E2 term, as in (1), with this term being multiplied by a parameter β and then gradually
phase out β so as to leave the pure case β = 0.

Applying this procedure to an initial Q = 1 field reveals the same behaviour as in the T2 case
described previously: The hopfion spreads out and approaches a discontinuous configuration. An
initial Q = 2 field, however, relaxes to a continuous solution, which is depicted in the left-hand panel
of Fig. 1. The picture shows the curve where φ3 = 1, which has two components (coloured dark),
and the curve φ1 + φ3 =

√
2, which also has two components (coloured light). The linking number of

Q = 2 is clear. The energy density E= κFµνFµν is almost (but not quite) constant across T3, and
E/Q ≈ 1.040 is 4% above its topological minimum. The diagram indicates that the solution may be

FIG. 1. Q = 2 and Q = 4 solutions on T3.
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viewed as a vortex-antivortex pair in the x-direction. It has zero net vortex number in each of the x-,
y-, and z-directions, as is necessary for it to be algebraically inessential.

It is straightforward to see what happens if one changes the periods by scaling x, y, and/or z.
As was pointed out previously, an overall scaling has no essential effect. So let us consider allowing
the periods to differ from one another, with the largest period remaining 2π. Then the bound E ≥ Q
remains unchanged. Thus suppose the x-period remains 2π, while the y-period becomes 2π(1 � εy)
with εy ≥ 0 and the z-period becomes 2π(1 � εz) with εz ≥ 0. The energy (6) is E = Ex + Ey + Ez,
where

Ex = 2κ
∫

(Fyz)
2 d3x

and similarly for Ey and Ez. Then scaling the field to change the y- and z-periods changes the energy
by

δE = (Ex − Ey + Ez)εy + (Ex − Ez + Ey)εz.

Therefore, as long as Ex > Ey + Ez and cyclic, any such scaling will increase the energy. Now the
numerical solution described earlier has

(Ex, Ey, Ez)= (0.906, 0.587, 0.587),

and so indeed satisfies these inequalities. In other words, we cannot lower the energy by changing
the periods.

To obtain higher-charge solutions, it is not enough to simply assemble multiple copies of the
Q = 2 field described earlier. For example, doubling in each of the x-, y-, and z-directions produces
a configuration with Q = 16, but now the periods equal 4π, which changes the normalization factor
κ, with the result that E/Q doubles. In other words, this “multiple-cell” field has an energy which is
considerably greater than the topological minimum. Instead, one may begin with (say) a Q = 4 initial
configuration and allow it to relax numerically, and the result of such a procedure is depicted in the
right-hand plot of Fig. 1. Here, we see two vortices and two antivortices, all parallel; the numerically
minimized energy satisfies E/Q ≈ 1.122. Once again, it is an open question but a plausible conjec-
ture, that such parallel vortex-antivortex fields are the minimal-energy solutions for each even value
of Q.

V. HOPFIONS ON S3

In this section, we take M to be the standard unit 3-sphere S3. Every map ψ: S3 → S2 is alge-
braically inessential so that it is not a constraint in this case. Here we have λ = 4, and so we set
κ = 1/(64π2). If Q is a perfect square, then the bound E ≥ Q is saturated by an explicit solution which
is invariant under a two-parameter group of symmetries. If Q is not a perfect square, then this highly
symmetric field has E > Q, but for some values of Q, it could still be the lowest-energy solution. The
main aim here is to investigate this.

As just noted, the simplest solutions occur whenever Q is a perfect square;3 they are analogs of
the baby-Skyrme solutions (4) and satisfy E = Q. They can be described explicitly as follows. Use
coordinates xµ = (r, s, t), with r ∈ [0, π/2] and s, t ∈ [0, 2π], and with the metric gµν on S3 being
given by

ds2 = dr2 + cos2(r) ds2 + sin2(r) dt2.

Consider the field given, in terms of the stereographic coordinate w, by

w(r, s, t)= cot(r) exp[in(s − t)], (9)

where n is a positive integer. Then this field has a Hopf number Q = n2 and energy E = n2; in fact,
the energy density has the constant value E= n2/(2π2). For n = 1, this field is simply the standard
Hopf map from S3 to S2. For n > 1, it is continuous and smooth except on the two “antipodal” circles
r = 0, π/2 in S3. It is highly symmetric, being invariant under the subgroup of the isometry group of
S3 generated by ∂s and ∂t .

The fact that the field has constant energy density raises the question of how to visualize it. One
way is simply to plot the inverse image ψ�1(p) of a regular value p ∈ S2 of ψ; this is a curve in S3
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FIG. 2. The A22 and the A32 fields.

possibly having several components. As an example, the left-hand plot in Fig. 2 depicts the Q = 4
solution. We see that the inverse image consists of two linked loops; the inverse of another regular
value would be another linked pair, and the two pairs would link each other 2 × 2 = 4 times, as
expected. The xyz space here is a stereographic projection of the original S3 in which the solution
lives. The general Q = n2 case is analogous to this, with each inverse image ψ�1(p) consisting of n
linked loops.

There is an obvious generalization of the solution (9), which remains symmetric under the two
rotations, namely, w(r, s, t) = f (r) exp(ims � int), where f (r) is a suitable profile function, and m and
n are positive integers. Then the Hopf charge is Q = mn. Doubly symmetric fields of this type have
been studied before.16 In the present context, where the energy functional is just E4, the function f (r)
can be determined explicitly;3 the corresponding energy is

Em,n =
p − p−1

2 log p
Q, (10)

where p = m/n. Following the notation of Ref. 14, these fields are denoted Am,n. Since Am,n and
An,m are essentially the same, we may take m ≥ n. (This is not true for fields on R3, where Am,n and
An,m are different and have different energies, if m , n.) As an example, the energy of the Q = 6
solution A3,2 is E = 1.0276 × 6, around 3% above the topological bound. This field is depicted
in the right-hand plot of Fig. 2; here, the inverse image is a single curve, specifically a trefoil
knot.

It is worth noting that w = 0 and w = ∞, or equivalently φj = (0, 0, ±1), are not regular values
of the map, and the corresponding inverse images are single circles in S3 with multiplicity m and
n, respectively. If m , n, then the energy density is not constant but attains a minimum on one of
these circles and a maximum on the other. In this case, the energy of Am,n is above the topological
minimum, but the excess is small if m is close to n or equivalently if the number p in (10) is close
to unity. So one might expect that if Q = mn with m ≈ n, then the minimum-energy field with Hopf
charge Q is the highly symmetric solution Am,n. At the other extreme, however (for example, if Q
is a large prime), the energy of Am,n is relatively high and the minimum-energy field is likely to be
much less symmetric. What follows gives the results of investigating this, in a few cases, using a full
3-dimensional numerical minimization of the energy functional (the appropriate variant of the one
described in Sec. IV).

Consider first the situation when m = n + 1 so that Q = n(n + 1). One would certainly expect
A2,1 to be the minimum-energy field in the Q = 2 sector, as it is for the Skyrme-Faddeev system on
R3. This is indeed borne out by beginning with a non-symmetric deformation of A2,1 and observing
that it relaxes to A2,1, with normalized energy E = 1.0820 × 2. The next case is n = 2 so Q = 6: Here
the minimum-energy solution in R3 is1,9,14 of the link type L1,1

2,2 and looks nothing like A3,2. But
for the present system, an initial configuration of this link type relaxes to A3,2, in fact the solution
depicted in the right-hand plot of Fig. 2. The same thing happens for several other non-symmetric
initial configurations. Consequently, it seems likely that A3,2 is indeed the minimal-energy solution
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on S3. Finally, this exercise was repeated for the case n = 3 (Q = 12) using various torus-type fields
such as K3,2, K4,3, and K5,3 as initial configurations (see Ref. 14 for details). Once more, these relax
to the symmetric solution A4,3, with energy E = 1.0139 × 12. For larger values of n, the factor in (10)
is even closer to unity, and so it seems likely that An+1,n is indeed the minimum-energy field with
Q = n(n + 1).

Next consider the case Q = n(n + 2), in other words, m = n + 2. For the Skyrme-Faddeev system
on R3, the Q = 3 minimum is not A3,1 but rather a “buckled” version Ã3,1. In our case, however, the
numerical results indicate that the symmetry is maintained and the minimum-energy Q = 3 field is
A3,1, with energy E = 1.2137 × 3. If n = 2 and Q = 8, then the R3 system prefers non-symmetric
fields such as L1,1

3,3,14 but in our case, an initial configuration of this type relaxes to A4,2. (Note that
A4,2 is closely related to A2,1 and has the same value of E/Q.) Therefore, once again, it is plausible
that An+2,n is the minimum-energy field with Q = n(n + 2).

In more “extreme” cases, however, the symmetry is certainly lost. For example, the field A5,1

has a relatively high energy and as in the R3 system it relaxes to a minimum, which is non-symmetric
and quite different from A5,1.

VI. CONCLUSIONS

We have considered local minima of the energy functional E[ψ] = ∫ |ψ∗ω|2 for maps ψ: M →
S2, where M is compact. This is the Skyrme part of the energy in the baby-Skyrme or Skyrme-
Faddeev systems,12 and it is also known as the σ2-energy in the context of differential geometry.4

In this compact situation, the picture is simpler than when M =R2 or M =R3, where an additional
energy term such as E2 = ∫ |dψ|2 is needed to allow stable solutions. In the 3-dimensional case, the
normalized energy is bounded below by the Hopf number Q, and minimal-energy solutions can be
highly-symmetric.

Several examples were described in this note, but many open questions remain. For example, in
the case M = T3, are the critical points of E necessarily of the parallel vortex-antivortex type, requiring
Q to be even? A more general question is as follows. One may introduce an additional length scale
to the system by adding βE2 to the Skyrme energy, where β is a constant. As β is increased from
zero, we would expect a “phase transition” at some critical value. This was previously noted16 in the
simplest case when M = S3 and Q = 1, and it would be interesting to study the phenomenon more
generally.
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