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a b s t r a c t

Wepresent an object-oriented Python library for the computation of properties of highly-excited Rydberg
states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state
lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well
as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both
long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to
precise measurements of atomic energy levels and features extensive documentation to facilitate rapid
upgrade or expansion by users. This library has direct application in the field of quantum information
and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust
atom-light interfaces and simulating quantummany-body physics, as well as the field of metrology using
Rydberg atoms as precise microwave electrometers.
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which are then used to evaluate dipole matrix elements. Properties are calculated using second order
perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at
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1. Introduction

Highly-excited atoms, in so called Rydberg states, provide
strong atom–atom interactions, and large optical nonlinearities.

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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They are a flourishing field for quantum information process-
ing [1,2] and quantum optics [3–5] in the few to single excita-
tion regime, as well as many-body physics [6–11], in the many-
excitations limit. Their exploration requires detailed knowledge
of both the single-atom properties, such as lifetimes, energies
and transition dipoles elements, as well as atom pair properties,
such as their interactions and strongly perturbed energy levels for
atoms at distances in the micrometre range. Rydberg states are
also highly sensitive to external DC and AC fields, making them
excellent candidates for precision electrometry and imaging in the
microwave [12,13] and terahertz [14] range, as well as performing
state engineering to tune pair-state interaction potentials [15–17].
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0010-4655/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Although many of the relevant calculations share the same
primitives, such as numeric integration of atomic wavefunctions
based on measured energy levels and model core potentials, these
basic efforts have been repeated by many groups independently
so far. To date no single common resource has emerged for build-
ing complex calculations, or for performing quick numerical esti-
mates. To this end, we have developed Alkali Rydberg Calculator
(ARC) [18], a library of routines written in Python, using object-
oriented programming to make a modular, reusable and extend-
able collection of routines and data for performing useful calcula-
tions of single-atom and two-atom properties, like level diagrams,
interactions and transition strengths for alkali-metal atoms.

The hierarchical nature of the package helps organise possible
calculations into abstraction levels, allowing one to pick the infor-
mation at the relevant level for the calculation at hand. The data
for individual atomic species is provided as classes that inherit
calculationmethods defined as abstract classes, allowing one easily
to check and update relevant data, should future measurements
improve some of the experimentally estimated values. Detailed
documentation is provided for all the ARC’s modules [19]. In ad-
dition, the code is commented, cross-referenced in-line and uses
self-descriptive names. Whenever possible, the class and func-
tion names reflect the hierarchical structure of atomic physics
knowledge and the natural decompositions of the calculations,
not the low-level implementation details. In addition to the doc-
umentation, ARC has example snippets provided as an IPython
notebook [20], giving an overview of Rydberg physics and how
to perform calculations using the package library. This is a good
starting point for new users.

To facilitate the initial adoption of the package and to allow
quick calculations useful in the research planning stages, we are
also providing a web-interface to basic functions of the pack-
age [21]. This allows any device with a web browser to access
the web-server, that will use the ARC package to perform the
calculations and obtain results that are transferred back to the
users’ web browser. In the process, the web service self-generates
and outputs the code, so it can be used as an example-on-demand
service, providing a starting point for more complex calculations.

This paper is organised as follows. An overviewof theARC archi-
tecture is presented in Section 2, where we introduce the theoret-
ical framework for performing Rydberg state calculations, e.g. cal-
culating wavefunctions and diagonalising interaction Hamiltoni-
ans. Here we also provide illustrative examples for building up
calculations and visualising results with the provided tools. Initial
setup for the ARC library is presented in Section 3, and specific
details relating to the implementation are discussed in Section 4.
Finally, Section 5 briefly summarises the package and outlines
future possible expansions for the library, with a complete list
of ARC classes, methods and functions detailed in Appendix A.
Detailed documentation of the module is provided in .html for-
mat in the Supplemental Material [19] or available from the ARC
website [21], along with an IPython notebook [20] that contains
numerous additional examples and code snippets that reproduce
many of the results from the literature.

2. ARC architecture and modules

2.1. Overview

The structure of the ARC library is shown in Fig. 1. At the lowest
level, the wigner module implements angular momentum algebra
(Wigner 3-j and 6-j coefficients and the WignerD rotation matrix),
and arc_c_extensions is a Python extension coded in C to provide
fast calculation of the radial part of the atomic wavefunctions. On a
higher level, alkali_atom_functions uses these low-level functions
to build general methods for calculating single-atom properties,

which are contained within the abstract class AlkaliAtom that
implements calculation of dipolematrix elements, transition rates,
energy levels etc. The module alkali_atom_data defines an explicit
class for each alkali element (e.g. Rubidium87(),Caesium()) that
encodes all relevant physical parameters and inherits the calcula-
tionmethods from the parent AlkaliAtom class. These atom classes
can be passed as arguments to either of the core calculation mod-
ules, calculations_atom_single that implements interactive energy
level diagrams (LevelPlot) and calculates Stark maps for atoms
in external fields (StarkMap), or calculations_atom_pairstate for
dealing with two-atom effects such as long-range dipole–dipole
interactions. This pair-state module provides a sophisticated in-
terface to automatically identify Förster resonances for atoms in
weak electric fields (StarkMapResonances) and calculate atomic
interaction potentials at both long and short range including up
to quadrupole–quadrupole couplings (PairStateInteractions). In the
followingwewill outline the basic functionality of theARCmodule,
provide the theoretical framework for the various modules and
give examples of relevant calculations implemented in the library.

2.2. The AlkaliAtom class

Almost all calculated quantities in the ARC library can be de-
rived from knowledge of the Rydberg state energy levels and
matrix elements. The functions to calculate these values alongwith
other primitive single-atomproperties are encapsulatedwithin the
methods of the abstract class AlkaliAtom defined by themodule al-
kali_atom_functions. This class is used in alkali_atom_data where
each alkali-metal atom (Lithium6, Lithium7, Sodium, Potassium39,
Potassium40, Potassium41, Rubidium85, Rubidium87 and Caesium, as
well as Hydrogen) inherits calculation methods from this abstract
class, and specifies all the necessary numerical values for a given
atom. Calculations with the ARC library begin by initiating an atom
class associated with the relevant atom, as shown in the example
below for caesium.

from arc import * # initialise ARC library
atom = Caesium() # create atom Object

Physical properties can then be determined using the methods in
the form atom.functionName(parameters), where a complete list of
available methods is listed in Table B.2 and documentation [19].
The sections below outline the key properties.

2.2.1. Rydberg atom energy levels
Energy of the Rydberg state with principal quantum number n

and orbital and total angular momentum ℓ and j respectively, are
calculated from the Rydberg formula

En,ℓ,j = EIP −
Ry

(n − δn,ℓ,j)2
, (1)

where EIP is the ionisation energy threshold (ionisationEnergy),
Ry is the Rydberg constant corrected for the reduced mass
(scaledRydbergConstant), Ry = me/(m + me)Ry∞ and δn,ℓ,j is the
quantum defect (getQuantumDefect) given by

δn,ℓ,j = δ0 +
δ2

(n − δ0)2
+

δ4

(n − δ0)4
+ · · · , (2)

where δ0, δ2, . . . are modified Rydberg–Ritz coefficients obtained
by fitting precise measurements of the atomic energy levels [22].

Energies E for a given Rydberg state relative to the ionisation
limit can be obtained using getEnergy (in eV), as well as methods
getTransitionWavelength and getTransitionFrequency to return the
wavelength (m) or frequency (Hz) of a transition between two
Rydberg states. Energies and transitions are given relative to the
centres of gravity of the hyperfine split ground and excited states.
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Fig. 1. Overview of the Alkali Rydberg Calculator (ARC) package for Python. Object-oriented structure with hierarchy reflecting the structure of atomic physics calculations is
used. This allows the user to choose the abstraction level at which onewants towork, from low-level implementations of basic functions of alkali_atom_functions.AlkaliAtom
for finding dipole matrix elements and lifetimes, to high-level functions that allow automatic Förster resonance finding and exploration of complex energy-level diagrams
of atomic pair-states at small inter-atomic separations in calculations_atom_pairstate.

2.2.2. Rydberg atom wavefunctions
In order to calculate matrix elements for electric dipole and

quadrupole couplings of the Rydberg states, it is necessary to
calculate the radial wavefunctions R(r) by numerically integrating
the Radial Schrödinger equation for the valence electron. Using the
substitutionρ(r) = rR(r),we can remove the first order differential
to obtain an equation in the form:

−
1
2µ

d2ρ

dr2
+

[
ℓ(ℓ+ 1)
2 µ r2

+ V (r)
]
ρ(r) = E ρ(r), (3)

where V (r) is the spherically symmetric central potential
(potential). For hydrogen, and high orbital angular momentum
states ℓ > 3, this is simply the Coulombpotential ofV (r) = −1/r+
Vso(r), with added (relativistic) spin–orbit interaction Vso(r) =

α L · S/(2r3), where α is the fine structure constant. However for
alkali atoms with closed shells it is necessary to introduce a model
potential that gives a Coulomb potential at long-range and at short
range accounts for effects of the core penetration of the valence
electron. We adopt the core potential (corePotential) of Marinescu
et al. [23] given by the form

V (r) = −
Zℓ(r)
r

−
αc

2r4
(1 − e−(r/rc)6 ) + Vso(r), (4)

where αc is the core polarisability, rc is a cutoff radius introduced
to avoid divergence of the polarisation potential at short range and
the radial charge (effectiveCharge) is given by

Zℓ(r) = 1 + (z − 1) e−a1r − r (a3 + a4r) e−a2r , (5)

with ℓ-dependent parameters a1..4 and rc taken from Table 1 of
Ref. [23] which were obtained by fitting the model potential to
measured energy levels for each element.

Using thismodel potential and the known Rydberg energy from
above, the radial wavefunctions can be calculated by numerically
integrating Eq. (3), as shown on Fig. 2. This is achieved by per-
forming a transformation to integrate the function X(r) = R(r)r3/4
in terms of the scaled co-ordinate x =

√
r [24] that gives an

approximately constant number of points across each period of
oscillation in the wavefunction. The result is a second-order dif-
ferential equation of the form

d2X
dx2

= g(x) X, (6)

which is efficiently solved using the Numerov method [25,26]
[1 − T (x + h)] X(x + h) + [1 − T (x − h)] X(x − h)

= [2 + 10T (x)] X(x) + O(h6), (7)

Fig. 2. Electron wavefunctions are calculated by Numerov integration, here shown
for caesium 18 S1/2mj = 1/2 state. Solving the radial part of the Schrödinger
equation in themodel potential from [23], using state energy fromquantumdefects
or NIST ASD database [28]. These calculations are the starting step in calculating all
atom-light couplings (dipolar and higher order).

where h is the step size, T (x) = h2g(x)/12 and

g(x) = 8 µ x2(V (r) − E) +

(
2ℓ+

1
2

) (
2ℓ+

3
2

)
x2

. (8)

It is necessary to truncate the range of integration as at short
range the model becomes unphysical and diverges, whilst at long-
range the wavefunction decays to zero. Following Ref. [27], the
limits of integration are set to use an inner radius of ri = 3

√
αc ,

and an outer radius of ro = 2n(n + 15) which is much larger
than the classical turning point of the wavefunction. To minimise
errors introduced by the approximate model potential at short
range, the integration is performed inwards, starting at ro. For
high orbital momentum states (ℓ > 3) divergence can occur
even before ri, which is automatically detected and integration
is stopped at the closest wavefunction node before divergence
occurred. Thewavefunctions are then normalised, and returned by
radialWavefunction.

2.2.3. Matrix elements
Relevant properties for alkali atoms such as lifetimes (Sec-

tion 2.2.5), Stark shifts (Section 2.3.2) and atomic interaction po-
tentials (Section 2.4.1) require evaluation of the electric dipole
and electric quadrupole matrix elements from state |n, ℓ,mℓ⟩ to
|n′, ℓ′,m′

ℓ⟩. For electric dipole transitions, the interaction is depen-
dent upon matrix elements of the form H = −er · ε̂ where ε̂
is the electric field polarisation vector. Expanding the operator in
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the spherical basis and using the fact that the calculation can be
separated into radial overlap, and angular overlap of the electron
wavefunctionwith operatorH, the resultingmatrix element can be
evaluated in terms of angular momentum terms and radial matrix
elements using the Wigner–Ekart theorem [29]

⟨n, ℓ,mℓ|rq|n′, ℓ′,m′

ℓ⟩ = (−1)ℓ−mℓ

(
ℓ 1 ℓ′

−mℓ −q m′

ℓ

)
× ⟨ℓ||r||ℓ′

⟩, (9)

where q represents the electric field polarisation (q = ±1, 0
driving σ±, π transitions respectively), and the braces denote a
Wigner-3j symbol (Wigner3j).We use Condon–Shortley phase con-
vention [30] for spherical harmonics. The reduced matrix element
⟨ℓ||r||ℓ′

⟩ (getReducedMatrixElementL) is given by

⟨ℓ||r||ℓ′
⟩ = (−1)ℓ

√
(2ℓ+ 1)(2ℓ′ + 1)

(
ℓ 1 ℓ

0 0 0

)
× Rnℓ→n′ℓ′ , (10)

where the radial matrix element (getRadialMatrixElement) is eval-
uated from

Rnℓ→n′ℓ′ =

∫ ro

ri

Rn,ℓ(r) r Rn′,ℓ′ (r) r2 dr, (11)

using numerical integration of the calculated wavefunctions.
Transforming these to the fine-structure basis Eq. (9) can be

expressed in terms of states j,mj (getDipoleMatrixElement) as

⟨n, ℓ, j,mj|rq|n′, ℓ′, j′,m′

j⟩

= (−1)j−mj+ℓ+s+j′+1
√
(2j + 1)(2j′ + 1)

×

(
j 1 j′

−mj −q m′

j

){
j 1 j′

ℓ′ s ℓ

}
⟨ℓ||r||ℓ′

⟩,

(12)

where curly braces denote a Wigner-6j symbol (Wigner6j).
To account for higher order multipole moments in the interac-

tion between atom pairs (see Section 2.4.1), it is also necessary
to calculate quadrupole matrix elements (getQuadrupoleMatrix
Element) of the form

RQ
nℓ→n′ℓ′

=

∫ ro

ri

Rn,ℓ(r) r2 Rn′,ℓ′ (r) r2dr. (13)

As with the quantum defect model for the energies, these
numerical approaches provide accurate estimates of the dipole
and quadrupole terms for highly-excited states but have a large
error for low-lying states where the electron density is weighted
close to the atomic core where integration is most sensitive to
the divergence of the model potential. To overcome this limita-
tion, values for dipole matrix elements available in the literature
either from direct measurement or more complex coupled-cluster
calculations [31,32] are tabulated (accessible through the function
getLiteratureDME). Before calculating a matrix element, the ARC
library first checks if a literature value exists and if so utilises
the tabulated value with the smallest estimated error. Otherwise
a numerical integration is performed using the method outlined
above. For each element, these tabulated values are contained
within an easily readable .csv file (file name specified in literatureD-
MEfilename) that lists the value alongwith relevant bibliographical
reference information, making it easy for users to add new values
at a later date.

2.2.4. Rabi frequency
An important parameter in experiments with Rydberg atoms

is the Rabi frequency Ω = d · E/h̄ where d is the dipole matrix
element for the transition and E is the electric field of the laser
driving the transition. For a transition from state |n1ℓ1j1mj1⟩ →

|n2ℓ2j2mj2⟩ using a laser with power P and 1/e2 beam radiusw, the
Rabi frequency (in rad s−1) can be obtained as

Fig. 3. Spontaneous decays and black-body induced transitions from Rb 30 S1/2
to n P1/2,3/2 for environment temperature of 300 K. These transitions have to be
included in calculation of excited-state lifetime for Rb 30 S1/2 state.

atom.getRabiFrequency(n1,l1,j1,mj1,n2,l2,j2 ,mj2,P,w)

The related function atom.getRabiFrequency2 returns the Rabi fre-
quency calculated from the electric field amplitude.

2.2.5. Excited state lifetimes
Radiative lifetimes of alkali atoms canbe calculatedusing dipole

matrix elements to determine the Einstein A-coefficient [33] for
transitions (see getTransitionRate),

Anℓ→n′ℓ′ =
4ω3

nn′

3c3
ℓmax

2ℓ+ 1
R2

nℓ→n′ℓ′ , (14)

where ωnn′ is the frequency of the transition from |nℓ⟩ to |n′ℓ⟩.
The total radiative decay Γ0 is then obtained by summing over all
dipole-coupled states |n′ℓ′

⟩ of lower energy,

Γ0 =

∑
nℓ>n′ℓ′

Anℓ→n′ℓ′ . (15)

For an environment at finite temperature, it is necessary to ac-
count for the interaction of the atom with black-body radiation
(BBR) [34]. This causes stimulated emission and absorption which
depend on the effective number of BBR photons per mode, n̄ω , at
temperature T given by the Planck distribution

n̄ω =
1

eh̄ωnn′ /kBT − 1
, (16)

multiplied by the A-coefficient resulting in a BBR transition rate

ΓBBR =

∑
n′ℓ′

Anℓ→n′ℓ′ n̄ωnn′
, (17)

where the summation n′, ℓ′ includes also states higher in energy,
since BBR can drive these transitions. Finally, the effective lifetime
τ (see getStateLifetime) is calculated from 1/τ = Γ0 + ΓBBR.

Fig. 3 shows the relative contribution to the excited-state life-
time of Rb 30 S1/2 due to radiative decay (dominated by low-lying
states due to the ω3 scaling in Eq. (14)) and black-body decay
at 300 K calculated using ARC (for full code see Appendix A).
Comparison of our calculated lifetimes [20] with previous work
on radiative [33] and BBR induced lifetimes for alkali-metals [34]
yields excellent agreement.
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2.2.6. Atomic vapour properties
For experiments using thermal vapours of alkali atoms, a

number of useful functions are provided for returning atomic
vapour pressure (getPressure) or number density (getNumber
Density), as well as the average interatomic distance (getAverage
InteratomicSpacing) and atomic speed (getAverageSpeed) at a given
temperature. For full listing of functions see Table B.2 and full
documentation in Supplemental [19].

2.3. Single-atom calculations

The module calculations_atom_single provides calculations of
single-atom properties. It supports plotting of atom energy lev-
els with interactive finding of associated transition wavelengths
and frequencies (Section 2.3.1), i.e. Grotrian diagrams, and atom-
energy-level shifts in electric fields (Section 2.3.2), i.e. Stark maps.

2.3.1. Level plots
The LevelPlot class facilitates simple plotting of atomic energy

levels. It provides an interactive plot for exploring transitionwave-
lengths and frequencies. For example, generation and plotting of
the caesium energy level diagram, including ℓ states from S to D
for principal quantum numbers from n = 6 to n = 60, can be
realised with:

atom = Caesium()
levels = LevelPlot(atom)
# parameters: nmin, nmax, lmin, lmax
levels .makeLevels(6,60,0,3)
levels .drawLevels()
levels .showPlot()

This simple example also demonstrates that themore complicated
calculations are implemented as a compact classes, whose initial-
isation and methods closely follow naming and stages one would
perform in a manual calculation. Yet, working on high abstraction
level, one can obtain information directly relevant for research in
just a couple of high-level commands [20].

2.3.2. Stark shifts
Calculation of atomic Stark shifts in external static electric fields

provides a tool for both precision electrometry and a mechanism
for tuning interatomic interactions to a Förster resonance to exploit
strong resonant dipole–dipole interactions (Section 2.4.4). To find
the energy of the atom in an electric field E applied along the z-axis
it is necessary to find the eigenvalues of the system described by
the Stark Hamiltonian

H = H0 + E ẑ, (18)

where H0 is the Hamiltonian for the unperturbed atomic energy
levels and E is the applied electric field. The electric field term
causes a mixing of the bare atomic energy levels due to coupling
by the Stark interactionmatrix elements ⟨n, ℓ, j,mj|E ẑ|n′, ℓ′, j′,m′

j⟩

which can be evaluated from Eq. (12) with q = 0. The selection
rules of the Stark Hamiltonian give ∆mj = 0,∆ℓ = ±1 such that
only states with projection mj are coupled together, so each Stark
map can be constructed by taking basis states with the same mj
value. Following the method of Zimmerman et al. [27], Stark shifts
are calculated by exact diagonalisation of the Hamiltonian.

Stark shift calculations are handled using the StarkMap class,
which is initialised by passing the appropriate atom class. For a
target state |n, ℓ, j,mj⟩, a range of n values from nmin to nmax with
values of ℓ up to ℓmax is required to define the basis states for the
Stark Hamiltonian. Convergence is typically achieved using ℓmax of
20 and nmax −nmin ∼ 10, however for large applied fields or higher
values of n it will be necessary to increase the basis size to account

Fig. 4. Example of Stark map calculation, showing caesium 28 S1/2 mj = 1/2 state
perturbation by DC electric field. Colour highlights contribution of the |28 S1/2 mj =

1/2⟩ state in the atom eigenstates |µ⟩. (color online)

for the strong mixing of the energy levels. Finally, the Hamiltonian
is diagonalised for each value of the electric field (defined in V/cm).
As an example, to calculate the Stark map shown in Fig. 4 for
the 28 S1/2 mj = 1/2 state in Cs we include states nmin = 23 to
nmax = 32 with lmax = 20 for 600 equidistant electric field values
in the range from 0 to 600 V/cm. The corresponding program call
is:

calc = StarkMap(Caesium())
# parameters: n, l , j , mj, nmin, nmax, lmax
calc . defineBasis (28, 0, 0.5, 0.5, 23, 32, 20)
calc . diagonalise (np.linspace(0.,600*1e2,600))
calc .plotLevelDiagram()
calc .showPlot()

In interactive mode, the plot can be clicked to obtain the dominant
contribution of the basis states within each eigenstate and by
default the figure is highlighted in proportion to the fractional
contribution of the target state (in this case 28 S1/2 mj = 1/2).
An alternative option is to highlight the plot proportional to the
transition probability for laser excitation from state |n′, ℓ′, j′,mj′⟩

with a laser polarisation driving q polarised transition (where q =

±1, 0 corresponds to σ±, π ). This is enabled using the optional
parameter drivingFromState in the call to the diagonalise method
of StarkMap. For example, the corresponding code for driving σ+

transition from 7 S1/2 mj = −1/2 would be

calc . diagonalise (np.linspace (00.,6000,600) ,\
drivingFromState=[7,0,0.5,-0.5,+1])

Finally, to evaluate the static polarisability α0 of the target state in
units of MHz/(V/cm)2, the getPolarizability method is called on the
StarkMap object, i.e.

print("%.5f MHz cm^2 / V^2 " % calc.getPolarizability())

2.4. Pair-state calculations

The module calculations_atom_pairstate contains classes and
methods for the calculation and visualisation of long-range and
short range interactions (PairStateInteractions), as well as an auto-
mated tool for identifying Förster resonances (StarkMapResonances)
for electric field tuning of the interaction potential.
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2.4.1. Interatomic interactions
Pair-wise interactions between two atoms with internuclear

separation R, and electron coordinates r1 and r2 relative to the
respective nuclei, can be expanded in multipole form as [35]

V (R) =

∞∑
L1,L2=1

VL1,L2 (r1, r2)
RL1+L2+1 , (19)

where L1 + L2 = 2, L1 + L2 = 3 and L1 + L2 = 4 correspond re-
spectively to dipole–dipole, dipole–quadrupole and quadrupole–
quadrupole interactions, and

VL1,L2 (r1, r2) =
(−1)L24π

√
(2L1 + 1)(2L2 + 1)

×

∑
m

√(
L1 + L2
L1 + m

)(
L1 + L2
L2 + m

)
rL11 rL22

× YL1,m(r̂1)YL2,−m(r̂2),

(20)

where
(
n
k

)
is the binomial coefficient andYL,m(r̂) spherical harmon-

ics. In Eq. (20) the quantisation axis is oriented along internuclear
axis R. On the other hand, the atomic states’ quantisation axis is
typically defined with respect to the driving laser, being directed
along the laser propagation direction for circularly polarised laser
beams, or in plane of the electric field vector, perpendicular to
the laser propagation direction, for linearly polarised driving, or in
the direction of applied static electric and magnetic fields. When
the atomic quantisation axis is along the internuclear axis, matrix
elements ⟨j1mj1|VL1,L2 |j2,mj2⟩ are easily evaluated.When the quan-
tisation axis is not oriented along R, their relative orientation can
be described with polar angle θ and azimuthal angle φ that the
inter-atomic axismakeswith the quantisation axis [Fig. 5(a)]. Atom
states |j,mj⟩ are then rotated with WignerD matrices wD(θ, φ)
(wignerDmatrix), so that inter-atomic axis defines the quantisation
direction [29]. The coupling can then be easily calculated between
the rotated states |s⟩ = wD(θ, φ)|j,mj⟩. Note that |j,mj⟩ in the
rotated basis |j′,m′

j⟩ is now, in general, a superposition ofm′

j states.
This multipole expansion is valid as long as the wavefunctions

of the atoms do not overlap, which is the case for interatomic
separations R larger than the Le Roy radius [36]

RLR = 2
(
⟨r21 ⟩

1/2
+ ⟨r22 ⟩

1/2) . (21)

Evaluation of the Le Roy radius can be achieved using the function
getLeRoyRadius. For example the Le Roy radius for two Caesium
atoms in the n S state is 0.1 µm for n ∼ 20 and reaches 1 µm for
n ∼ 60, marking the interatomic distance below which the results
of the pair-state diagonalisation become invalid.

To understand the effect of interactions, consider a pair of atoms
in Rydberg pair-state |r, r⟩ coupled via V (R) to Rydberg pair-state
|r ′, r ′′

⟩ which has an energy defect∆r ′,r ′′ = 2Er − Er ′ − Er ′′ . In the
pair-state basis {|rr⟩, |r ′r ′′

⟩} their interaction is described with the
Hamiltonian

Hint =

(
0 V (R)

V (R) ∆r ′r ′′

)
. (22)

We see that at short range where V (R) ≫ ∆r ′,r ′′ the splitting
of the energy eigen-states ±V (R) is dominated by the pair-state
interaction energy. Assuming that V(R) has non-zero dipole–dipole
term of the multipole expansion [L1 + L2 = 2 in Eq. (20)], this
corresponds to the resonant dipole–dipole regime, giving eigen-
states’ energy distance dependence ∝ C3/R3. At large R where
∆r ′,r ′′ ≫ V (R), the interaction is second order leading to an energy
shift of −V (R)2/∆r ′,r ′′ = −C6/R6, known as the van der Waals
regime. The cross-over between these regimes occurs at the van
der Waals radius Rvdw where V (Rvdw) = ∆r ′,r ′′ .

For a real system, whilst the pair-state with the smallest ∆r ′,r ′′

dominates the resulting interaction shift, it is necessary to consider
the effects of all near-resonant pair-states that are coupled by the
V (R) interaction term above. Calculations of these pair-wise inter-
action potentials are handled by the PairStateInteractions class that
is initialised by specifying the element name and target pair-state
n1, l1, j1, n2, l2, j2,mj1 ,mj2 whose behaviour we want to explore.

calc=PairStateInteractions(atom(),n1,l1, j1 ,n2,l2 , j2 ,mj1,mj2)

2.4.2. Long-range limit
At large separation, for off-resonantly (∆r ′,r ′′ ̸= 0) coupled

states, the dipole–dipole interactions dominate to give an inter-
action of the form −C6/R6 van der Waals potential where the
sign depends on the energy defect of the closest dipole-coupled
pair-states |r ′r ′′

⟩, leading to attractive or repulsive interactions
accordingly. In the long-range limit V (R) ≪ ∆ (where ∆ is
the energy defect of the closest dipole-coupled pair-state), the C6
coefficient for pair-state |rr⟩ can be evaluated using second-order
perturbation theory as

C6 =

∑
r ′,r ′′

|⟨r ′r ′′
|V (R)|rr⟩|2

∆r ′,r ′′
, (23)

where the sum runs over all pair-states |r ′r ′′
⟩ whose energy dif-

fers from the pair-states |rr⟩ energy for ∆r ′,r ′′ < ∆E, where
∆E is some maximal energy defect that provides a truncation of
the basis states. This calculation is performed using the method
getC6perturbatively, returning C6 in units of GHz µm6. Users must
specify the relative orientation of the atoms, the range of princi-
pal quantum numbers for the states used in calculation, and the
maximal energy defect. For example for the interaction of two
rubidium atoms in 60 S1/2, mj1 = 1/2, mj2 = −1/2 states, whose
inter-atomic axis is set at an angle of θ = π/6 with respect to
the quantisation axis [Fig. 5(a)], the C6 interaction term can be
calculated from states with principal quantum number differing
maximally δn = 5 from the n = 60, andmaximal energy difference
in pair-state energies of h × 25 GHz as

# parameters: atom, n1, l1, j1 , n2, l2 , j2 , mj1, mj2
calc = PairStateInteractions (Rubidium(), 60, 0, 0.5, 60, 0, 0.5,

0.5, -0.5)\
# parameters: theta, phi, deltan, deltaE
c6 = calc.getC6perturbatively(pi/6, 0, 5, 25.e9);
print("C_6 = %.0f GHz (mu m)^6" % c6)

Using this function, the anisotropy of the V (R) interaction can be
easily identified as shown in Fig. 5(b) which plots the magnitude
of C6 for a pair of atoms in the 60 D5/2 state of Rubidium for θ =

0 . . . 2π .

2.4.3. Exact interaction potential
To evaluate the interaction potential for arbitrary separation

[valid down to the Le Roy radius, Eq. (21)], it is necessary to di-
agonalise the matrix V (R) containing all the interatomic couplings
for each separation R to obtain exact values of the eigenvalues and
eigenstates describing the interaction between atomic pair-states.
Due to the strong admixing of states, this process requires careful
choice of atomic basis states, including higher order orbital angular
momentum states up to ℓmax. For each distance R, the matrix is
diagonalised using an efficient ARPACK package provided through
Numpy, and the neig eigenstates whose eigenvalues are closest to
the target pair-state are returned.

Fig. 6 provides an example of the interaction potential for a pair
of atoms initially in the |60 S1/2 mj = 1/2, 60 S1/2 mj = −1/2⟩
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Fig. 5. Orientation of the two interacting atoms and their anisotropic interactions. (a) Orientation of the two atoms is defined as a polar θ and axial ψ angle that the inter-
atomic axis makes with respect to the quantisation axis ẑ. (b) Anisotropy of long-range interactions is illustrated in the case of two rubidium atoms, both in the 60 D5/2 mj
state, through the dependence of the C6 interaction coefficient on angle θ between the quantisation axis and the inter-molecular axis.

state of Rubidium for 200 interatomic spacings in the range of 0.5–
10µm, finding neig = 150 closest eigenstates, accounting for states
with orbital angular momentum up to lmax = 4 created using the
code

calc = PairStateInteractions (Rubidium(), 60, 0, 0.5, 60, 0, 0.5,
0.5, -0.5)

# parameters: theta, phi, nMax, lMax, maxEnergy
calc . defineBasis (0, 0, 5, 4, 25.e9)
calc . diagonalise (np.linspace (0.5,10.0,200) ,150)
calc .plotLevelDiagram()
calc .showPlot()

As with the StarkMap method, the figure is interactive allowing
users to determine the dominant composition (expressed in the
pair-state basis) of a given eigenstate. The default behaviour is to
highlight the eigenvalues proportional to the fractional contribu-
tion of the original target pair-state. Alternatively, as shown on
Fig. 6], the optional parameter drivingFromState is used in the call
to diagnolise to give highlighting in proportion to the relative laser
coupling strength from a given state, assuming that one atom is
already in one of the two states that make the initially specified
pair-state.

By default, PairStateInteractions includes only dipole coupling
between the states in calculating level diagrams. Interactions up
to quadrupole–quadrupole term [including all terms L1 +L2 ≤ 4 in
Eq. (20)] can be included by setting optional parameter interaction-
sUpTo = 2 during the PairStateIntearctions initialisation, which can
be important for the short-distance structure of level diagram [37].
For evaluation of long-range potential curves this additional term
makes only small perturbations to the asymptotic C6 behaviour.
However, for accurate determination of the molecular levels of the
short-range potential wells it is important to include the higher
order multipole terms. Convergence should also be checked by
increasing the basis size and re-evaluating the relevant parameters
to ensure all the relevant states are included in the calculation
basis.

Following diagonalisation of the pair-state interaction matrix,
the long-range (C6) and short range (C3) dispersion coefficients
can be evaluated using the methods getC3fromLevelDiagram and
getC6fromLevelDiagram respectively, which perform a fit to the
eigen-energies associated with the state containing the largest
admixture of the target state. A method for finding the cross-
over distance between van der Waals and resonant dipole–dipole
interactions, i.e. van der Waals radius Rvdw, is also provided
(getVdwFromLevelDiagram).

Fig. 6. Example of interactions between the atoms, causing level shifts in the atomic
pair-states. Here shown in the vicinity of Rubidium |60 S1/2 mj = 1/2, 60 S1/2 mj =

−1/2 state. Highlighting is proportional to the driving strength from the 5 P3/2 mj =

3/2 state with coupling laser driving σ− transitions. Atom interatomic direction is
oriented along the quantisation axis (θ, φ = 0). Using the provided methods we
can find van der Waals radius RvdW = 2.4 µ m, and short-range C3 = 16.8 GHz µ

m3 and long range C6 = 135 GHz µ m6 dispersion coefficients. (color online)

2.4.4. Stark tuned Förster resonances
As outlined in Section 2.4.1, the finite pair-state energy defects

∆ associated with the closest dipole-coupled pair-states lead to
a transition from first order resonant dipole–dipole interactions
(∝ R−3) to second order van der Waals (∝ R−6) at the van der
Waals radius. Using external electric fields however, it is possi-
ble to Stark shift the pair-states into resonance to obtain long-
range ∝ R−3 interactions for all values of R, known as a Förster
resonance [38–41].

To identify suitable Förster resonances the StarkMapResonances
class is used, taking in a pair of target pair-states and performing
diagonalisation of the Stark Hamiltonian of Eq. (18) in the pair-
state basis. Due to the angular momentum selection rules of the
dipole operator V (R), the target pair-state can be dipole-coupled
to pair-states with ∆mj = ±1, 0, it is necessary to calculate Stark
maps for a range of mj manifolds. Following diagonalisation, only
pair-states with energy close to the target state are considered,
with any states not dipole-coupled to the target pair-state being
discarded. As the electric field coupling leads to significant mixing
of the zero-field pair-states, the algorithm identifies the basis state
containing the largest target state fraction at a given electric field to
test for the closest dipole-coupled pair-states. Finally, an interac-
tive plot routine enables users to identify states that have a Förster
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Fig. 7. Example plot produced by StarkMapResonances for finding Förster reso-
nances for Rubidium pair-state 44 D5/2 mj = 5/2 shown as grey (red) line. Pair-
states whose main admixed state is dipole-coupled to the original pair-state are
shown as black lines. Clicking on one of these states, marked with square (blue) on
the plot, reveals its composition in the plot title. In this case, it is amixture of 42 F5/2
and 42 F7/2 states in one of the atoms, and essentially unperturbed 46 P3/2 state that
is almost resonant with original pair-state at electric field of E ≈ 0.18 V/cm. (color
online)

resonance. Note, unlike the previous class, StarkMapResonances
accepts two atom classes at initialisation making it possible to
determine inter-species resonances.

Fig. 7 shows an example plot to identify Förster resonances for
a pair of atoms in the 44 D5/2mj = 5/2 state of Rubidium that is
generated using the following code

state = [44,2,2.5,2.5]
calculation = StarkMapResonances(Rubidium(), state, Rubidium(),

state)
# nMin, nMax, lMax, rangeEfield, [energyRange]
calculation .findResonances(39, 49, 20, np.linspace(0,100,200) ,

energyRange=[-0.8e9,3.e9])
calculation .showPlot()

In the above example, similarly as when finding a Stark map
(Section 2.3.2), we have to specify a range of acceptable principal
quantum numbers [nmin, nmax] and maximal orbital angular mo-
mentum lmax for the basis states for Stark map calculations, as well
as the electric field range (in this case 0–1 V/cm at 200 equidistant
points). An additional argument energyRange defines the energy
windowwithin which wewill keep the resonant pair-states. In the
above given example, this is in range h × [−0.8, 3.0] GHz. From
the interactive plot, selection of the pair-state eigenvalues shows
a Förster resonance occurring at 0.18 V/cm with the 42 F , 46 P3/2
pair-state where, due to the electric coupling, the F state is an
admixture of the 42 F5/2,7/2 mj = 3/2 states.

3. Installation and usage

It is assumed the pre-requisites (Numpy, SciPy and Matplotlib)
are installed and can be located by the Python interpreter (see
e.g. [42]). Both Python 2.7 and 3.5 are supported. To achieve
good performance, it is recommended to use Numpy packages
that connect to optimised backends, like ATLAS [43]. Prepackaged
Python distributions, like Anaconda [42], provide this out-of-the
box. The ARC library can be downloaded online [18] as a .zip file
release. Installation is performed by extracting the downloaded
.zip archive and copying the arc subfolder into the root of your
project directory. It is important that Python haswrite access to the
folder where the package is located, so that database files (stored
in arc/data/) can be updated and used.

3.1. Optimised Numerov integrator

Integration of the atomic wavefunctions to obtain dipole ma-
trix elements is numerically intensive and by default ARC uses
an optimised Numerov integration routine implemented with C
extensions for Python (arc_c_extensions). In the unlikely case the
precompiled executable arc_c_extensions.so is incompatible with
the installed system, please install a C compiler and compile
arc_c_extensions.c located in the ARC root folder using by calling
from command line

python setupc.py build_ext --inplace

Note that path to arc directory should not contain spaces in order
for setupc.py script to work. Alternatively, the native Python solver
can be used by setting the optional argument cpp_numerov=False
when initialising the atom class, however this is not recommended
for intensive calculations as it results in substantially slower exe-
cution.

3.2. Getting started

To initialise the library, use the following code at the start of a
Python script or interactive IPython notebook with

# locate ARC Directory
import sys, os
rootDir = ’/path/to/root/directory/for/arc’
sys.path.append(rootDir)
os.chdir(rootDir)
# import ARC library
from arc import *

This firsts sets a path to the directory containing ARC package
directory on your computer.1 This is the recommended way of
using the package in a research environment, since users can easily
access, check and change the underlying code and constants ac-
cording to their needs. ARC is now ready for use, and can be tested
using the example code above. Numerous additional examples are
provided in IPython notebook ‘‘An Introduction to Rydberg atoms
with ARC’’ [20].

4. Implementation

4.1. Physical constants

As mentioned above, the atomic properties are encapsulated in
classes which contain the relevant atomic properties determined
from the literature along with model potential coefficients taken
from Marinescu et al. [23] which have been optimised against
measured energy levels. For each atom, asymptotic expansions of
the quantum defects are used to determine the energy levels of
stateswith high principal quantumnumber to high accuracy, using
measured values of the ionisation energy, Rydberg constant and
quantum defects taken from Li [44,22], Na [22], K [22], Rb [45–48],
and Cs [49–51]. For the low-lying states, the quantum defects do
not accurately reproduce the measured energies and instead en-
ergy levels are determined fromdata in theNISTASDdatabase [28].
By default, the cut-off between tabulated and calculated energies is
determined by the point atwhich the error in the calculated energy
exceeds 0.02%.

1 Note that in the directory path, a backslash (\) should be used on Windows
machines, instead of forward slash used on UNIX based machines (Linux, MacOS).
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4.2. Tracking calculation progress

For tracking progress of calculations, most functions (see doc-
umentation [19] for details) provide optional bool arguments, that
turn on printing of additional information about calculations. For
example, progressOutput prints basic status information, and is
recommended for everyday use. If debugOutput is set to True,
more verbose information about basis states and couplings will be
printed in the standard output.

4.3. Memoization

In order to achieve good performance, memoization is used
throughout. That is, when functions receive request for calcula-
tion, memorised previous results are checked, and the value is
retrieved from memory if it already exists. Both an in-application
SQL database (SQLite) and standard arrays are used for this. Mem-
oization is used for dipole and quadrupole matrix element calcu-
lations and angular coupling factors, that are independent of prin-
cipal quantum number of the considered state, including Wigner-
n J coefficients and WignerD matrices. Single-atom and pair-state
calculations will automatically update databases if new values are
encountered, speeding up the future calculations. Updating dipole
and quadrupole matrix element database can be done manually
too, by calling updateDipoleMatrixElementsFile.

4.4. Saving and retrieving calculations

Large self-contained calculations, such as Stark maps or pair-
state interaction potentials, are wrapped as classes to enable easy
access to the calculations parameters,with associated visualisation
and exploration methods to make the results easy to disseminate.
An added benefit is that calculations can be saved for future use, as
illustrated in the example below:

calc = PairStateInteractions(Rubidium(),
60,0,0.5,60,0,0.5, 0.5,0.5)

# do something with initialised calculation
calc . defineBasis (0,0, 5,5, 25.e9)
calc . diagonalise (np.linspace (0.5,10.0,200) ,150)
saveCalculation(calc , "myCalculation.pkl")

This calculation can then be retrieved at a later time, or even on
anothermachine, and continued, or further explored. For example:

calc = loadSavedCalculation("myCalculation.pkl")
# continue calculation
calc .plotLevelDiagram()
calc .showPlot()

4.5. Exporting data to file

If one wants to use the obtained results in another program,
for further analysis and calculation, both PairStateInteractions and
StarkMap provide exportData method that allows saving data in
.csv format, that is human-readable and easy to import in other
software tools. As a commented header of the exported files,
ARC will record details of the calculation parameters, in human-
readable form. Provided that the initial calculation is variable calc,
its data is exported by calling

calc .exportData("rootFileName")

The program will output list of files (typically three files) storing
the calculation data, whose names will be starting with “rootFile-
Name”.

4.6. Advanced interfacing of ARC with other projects

In addition to graphical exploration, and exporting relevant
data as .csv files, advanced users incorporating ARC in their own
projects might want to access directly Stark or pair-state interac-
tionmatrices, and corresponding basis states that are generated by
defineBasis methods of the corresponding calculation classes. Basis
(pair-) states are accessible for both methods in basisStates array.
Stark matrix can be assembled as the sum of the diagonal matrix
mat1 recording state energies, and the off-diagonal matrix that
depends on applied field and can be obtained as product of electric
field and mat2. For pair-state interactions, the interaction matrix
can be obtained as a sum of interatomic-distance independentma-
trix matDiagonal, recording energy defects of pair-states, and dis-
tance dependent matrices stored in matR, where matR[0], matR[1]
and matR[2] store respectively dipole–dipole, dipole–quadrupole
and quadrupole–quadrupole interaction coefficients for interac-
tion terms [Eq. (20)] scaling respectively with distance R as ∝ R−3,
∝ R−4 and∝ R−5. Formore details about this, examples of use, and
other accessible calculated information, we refer the reader to the
detailed documentation [19].

5. Outlook

This paper describes version 1.2 of ARC that can be downloaded
from [21]. Supplementary information provides full documenta-
tion [19] for functions listed in Appendix B, as well as an IPython
notebook [20] that contains more elaborate examples, code snip-
pets and benchmarks against published results. This notebook
provides an introduction to most of the capabilities of the ARC,
as well as a good starting point for users, providing useful code
snippets. Numerous examples also provide quantitative interactive
introduction for anyone starting in the field of Rydberg atomic
physics. In addition, for quick estimates, when one is in the lab,
conference or other meeting, we provide a web-interface to the
package [21]. For the latest versions of the package and documen-
tation, please download material from the ARC GitHub page [18].

In the future, the package can be extended to include cal-
culations of dressing potentials [52], magic wavelengths [53],
atom-wall interactions [54,55], photoionisation, collisional cross-
sections [56], tensor polarisability, molecular bound states [57], ef-
fects of magnetic fields, microwave tuning of interactions [17] and
other atomic properties. These can be added as calculation tools,
in separate classes, built on top of the existing library. Alkaline
earth elements can be included too. While these were beyond the
scope of the current project, we hope that this project can provide
an initial seed for a much bigger community project. The code
is hosted on GitHub [18], allowing easy community involvement
and improvements. A proposal of some basic philosophy for the
development is provided in the documentation [19].

We hope the library will increase accessibility to the existing
knowledge. Up to now a lot of relevant information, although in
principle derivable from existing literature, required quite lengthy
and error-prone calculations. The developed hierarchical object-
oriented structure allows one to retrieve relevant information at
the appropriate level of abstraction, without the need to deal
with lower-level details. In addition, we hope to establish growing
code base for common calculations, in the spirit of other open-
source community projects like, Numpy and SciPy [58], adding
to the growing stack of atomic physics tools like ElecSus [59],
The Software Atom [60] and QuTIP [61]. We especially highlight
recent related development of C++ program Pairinteraction for
pair-state calculations [62]. We hope that these efforts will allow
more research groups to explore the rich physics achievable when
one uses all the available transitions in the atoms. In addition
to exploring Rydberg physics, library can be useful for practical
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Table B.1
Class and function listing of alkali_atom_functions module.

Name (parameters) Short description

AlkaliAtom([preferQuantumDefects, cpp_numerov]) Implements general calculations for alkali atoms (see Table B.2)
NumerovBack(innerLimit, outerLimit, kfun, . . . ) Full Python implementation of Numerov integration
saveCalculation(calculation, fileName) Saves calculation for future use
loadSavedCalculation(fileName) Loads previously saved calculation
printStateString(n, l, j) Returns state spectroscopic label for |n, l, j⟩

Table B.2
Methods and function listing of alkali_atom_functions.AlkaliAtom class. Typical relative uncertanties are obtained from comparison to measured values.

Name (parameters) Short description (units) Typical rel. accuracy

getDipoleMatrixElement(n1, l1, . . . ) Reduced dipole matrix element (a0e) ∼10−2

getTransitionWavelength(n1, l1, . . . ) Calculated transition wavelength in vacuum (m) ∼10−6

getTransitionFrequency(n1, l1, . . . ) Calculated transition frequency (Hz) ∼10−6

getRabiFrequency(n1, l1, j1, mj1, . . . ) Returns a Rabi frequency (angular, i.e.Ω = 2π × ν) for resonant
excitation
with a specified laser beam in the centre of TEM00 mode (rad s−1) ∼10−2

getRabiFrequency2(n1, l1, j1, mj1, . . . ) Returns a Rabi frequency (angular, i.e.Ω = 2π × ν) for resonant
excitation
with a specified electric field driving amplitude (rad s−1) ∼10−2

getStateLifetime(n, l, j[, . . . ]) Returns the lifetime of the state (s) ∼10−2

getTransitionRate(n1, l1, j1, n2, . . . ) Transition rate due to coupling to vacuummodes (black body
included) (s−1)

∼10−2

getReducedMatrixElementJ_asymmetric(n1, . . . ) Reduced matrix element in J basis, defined in asymmetric notation
(a0e)

∼10−2

getReducedMatrixElementJ(n1, l1, . . . ) Reduced matrix element in J basis, symmetric notation (a0e) ∼10−2

getReducedMatrixElementL(n1, l1, . . . ) Reduced matrix element in L basis, symmetric notation (a0e) ∼10−2

getRadialMatrixElement(n1, l1, . . . ) Radial part of the dipole matrix element (a0e) ∼10−2

getQuadrupoleMatrixElement(n1, . . . ) Radial part of the quadrupole matrix element (a20e) ∼10−2

getPressure(temperature) Vapour pressure at given temperature (Pa) ∼(1 − 5) · 10−2

getNumberDensity(temperature) Atom number density at given temperature (m−3) ∼(1 − 5) · 10−2

getAverageInteratomicSpacing(...) Returns average interatomic spacing in atomic vapour (m) ∼(1 − 5) · 10−2

corePotential(l, r) core potential felt by valence electron (a.u)
effectiveCharge(l, r) effective charge of the core felt by valence electron (a.u)
potential(l, s, j, r) core potential, including spin–orbit interaction (a.u)
radialWavefunction(l, s, j, . . . ) Radial part of electron wavefunction
getEnergy(n, l, j) Energy of the level relative to the ionisation level (eV) ∼10−6

getQuantumDefect(n, l, j) Quantum defect of the level.
getC6term(n, l, j, n1, l1, j1, . . . ) C6 interaction term for the given two pair-states (h × Hz m6)
getC3term(n, l, j, n1, l1, j1, . . . ) C3 interaction term for the given two pair-states (h × Hz m3)
getEnergyDefect(n, l, j, n1, l1, . . . ) Energy defect for the given two pair-states, E(|rr⟩) − E(|r ′r ′′

⟩) (eV)
getEnergyDefect2(n, l, j, nn, ll, . . . ) Energy defect for the given two pair-states, E(|r1r2⟩) − E(|r ′r ′′

⟩) (eV)
updateDipoleMatrixElementsFile() Updates the file with pre-calculated dipole matrix elements.
getRadialCoupling(n, l, j, n1, l1, j1) Returns radial part of the coupling between two states (dipole,

quadrupole) (a0e or a20e) ∼10−2

getAverageSpeed(temperature) Average (mean) speed at a given temperature (m/s)
getLiteratureDME(n1, l1, j1, n2, . . . ) Returns literature information on requested transition

exploration of multi-photon schemes for alkali-atoms excitation
[63–65], ionisation [66,67] and upconversion [68–70], as well as
state control, e.g. through dressing of the intermediate levels [71]
and adiabatic transfers [72].
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Appendix A. Example program

Code below generates Fig. 3. For many more examples see
Supplemental material [20].

from arc import *

# ==== GENERATE DATA (ARC) ====

atom = Rubidium()

pqn = [] # principal quantum number
y = [] # rate at T =0 K
ybb = [] # additional black-body induced transitions

# calculating decay from from 30 S_{1/2}
# to n P_{1/2} and n P_{3/2}
# where n is in range form 5 to 40

for n in xrange(5,40):
pqn.append(n)

# transition rate at T = 0K
noBBR = atom.getTransitionRate(30, 0, 0.5,\

n, 1, 0.5, temperature = 0)\
+ atom.getTransitionRate(30, 0, 0.5,\

n, 1, 1.5, temperature=0 )
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Table B.3
Class listing of alkali_atom_data module. All these classes inherit properties of alkali_atom_functions.AlkaliAtom
from Table B.2.

Name (parameters) Short description

Hydrogen([preferQuantumDefects, cpp_numerov]) Properties of hydrogen atoms
Lithium6([preferQuantumDefects, cpp_numerov]) Properties of lithium 6 atoms
Lithium7([preferQuantumDefects, cpp_numerov]) Properties of lithium 7 atoms
Sodium([preferQuantumDefects, cpp_numerov]) Properties of sodium 23 atoms
Potassium39([preferQuantumDefects, cpp_numerov]) Properties of potassium 39 atoms; alias Potassium(...)
Potassium40([preferQuantumDefects, cpp_numerov]) Properties of potassium 40 atoms
Potassium41([preferQuantumDefects, cpp_numerov]) Properties of potassium 41 atoms
Rubidium85([preferQuantumDefects, cpp_numerov]) Properties of rubidium 85 atoms; alias Rubidium(...)
Rubidium87([preferQuantumDefects, cpp_numerov]) Properties of rubidium 87 atoms
Caesium([preferQuantumDefects, cpp_numerov]) Properties of caesium 133 atoms

Table B.4
Method listing of calculations_atom_single.LevelPlot(atomType) class.

Name (parameters) Shortdescription

makeLevels(nFrom, nTo, lFrom, lTo) Constructs energy level diagram in a given range
drawLevels() Draws a level diagram plot
showPlot() Shows a level diagram plot

Table B.5
Method listing of calculations_atom_single.StarkMap(atom) class.

Name (parameters) Short description

defineBasis(n, l, j, mj, nMin, . . . ) Initialises basis of states around state of interest
diagonalise(eFieldList[, . . . ]) Finds atom eigenstates in a given electric field
plotLevelDiagram([units, . . . ]) Makes a plot of a stark map of energy levels
showPlot([interactive]) Shows plot made by plotLevelDiagram
savePlot([filename]) Saves plot made by plotLevelDiagram
exportData(fileBase[, exportFormat]) Exports StarkMap calculation data
getPolarizability([maxField, . . . ]) Returns the polarisability of the state (MHz cm2/V2)

Table B.6
Method listing of calculations_atom_pairstate.PairStateInteractions(atom, n, l, j, nn, ll, jj, m1, m2, inter-
actionsUpTo=1) class that calculates Rydberg level diagram (spaghetti) for the given pair-state.

Name (parameters) Short description

defineBasis(theta, . . . ) Finds relevant states in the vicinity of the given pair-state
getC6perturbatively(...) Calculates C6 from second order perturbation theory (GHz µm6)
getLeRoyRadius() Returns Le Roy radius for initial pair-state (µm)
diagonalise(rangeR, . . . ) Finds eigenstates in atom pair basis
plotLevelDiagram([...]) Plots pair-state level diagram
showPlot([interactive]) Shows level diagram printed by plotLevelDiagram
exportData(fileBase[, . . . ]) Exports PairStateInteractions calculation data
getC6fromLevelDiagram(...) Finds C6 coefficient for original pair-state (GHz µm6).
getC3fromLevelDiagram(...) Finds C3 coefficient for original pair-state (GHz µm3).
getVdwFromLevelDiagram(...) Finds rvdW coefficient for original pair-state (µm).

Table B.7
Method listing of calculations_atom_pairstate.StarkMapResonances(atom1, state1, atom2,
state2) class that calculates pair-state Stark maps for finding resonances.

Name (parameters) Short description

findResonances(nMin, . . . ) Finds near-resonant dipole-coupled pair-states
showPlot([interactive]) Plots initialstate Stark map and its dipole-coupled resonances

# same, now at T= 300 K
withBBR = atom.getTransitionRate(30, 0, 0.5,\

n, 1, 0.5, temperature=300.0)\
+ atom.getTransitionRate(30, 0, 0.5,\

n, 1, 1.5, temperature=300.0)
y.append(noBBR)
ybb.append(withBBR-noBBR)

# ==== PLOT(matplotlib) ====

pqn=np.array(pqn)
y = np.array(y)
ybb = np.array(ybb)

width = 0.4
f , ax = plt.subplots()
ax.bar(pqn-width/2.,y,width=width,color="r")
ax.bar(pqn+width/2.,ybb,width=width,color="g")
ax.set_xlabel("Principal quantum number, n")
ax.set_ylabel(r"Transition rate (s−1)")
plt .legend(("Spontaneous decays","Black-body induced transitions")

,fontsize=10)
plt .xlim(4,40)

f .set_size_inches(5.50,4)
# save figure in decays.pdf
plt . savefig ("decays.pdf", bbox_inches=’tight’)
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Table B.8
Function and class listing of wigner module providing support for angular element
calculations.

Name (parameters) Short description

Wigner3j(j1,j2, . . . ) returns Winger 3j-coefficient
Wigner6j(j1,j2, . . . ) returns Wigner 6j-coefficient
wignerDmatrix(theta,phi) Class for obtaining Wigner D-matrix

Appendix B. ARC function list

This appendix provides listings of functions, classes and meth-
ods containedwithin the ARCmodule. For detailed documentation,
andmore elaborate examples we refer the reader to the documen-
tation in supplemental [19], also accessible via ARC website [21].
(See Tables B.1–B.8.)

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2017.06.015.
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