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Abstract

Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic
record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative
understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modi-
fications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records
which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental
information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater
solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is con-
firmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as
a partition coefficient DSO4

= (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or sat-
uration state) encouraged higher values of DSO4

because of an increasing concentration of defect sites on crystal surfaces. At
low growth rates, DSO4

was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface.
These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimen-
tally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in
sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4

were compared with DSO4

values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave,
Austria, DSO4

(�105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are
15.4 (winter) and 14.9 (summer). These values approximate predicted DSO4

values based on our chamber experiments contain-
ing both low (2 ppm) and high (20 ppm) sulphate concentrations. Our experimental values of DSO4

obtained at crystal growth
rates typical of stalagmites, closely match those observed in other cave sites from around the world. This validates the uni-
versality of the controls behind DSO4

and will enhance the use of speleothem CAS as a palaeoenvironmental proxy.
� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION

Carbonate-associated sulphate (CAS) has long been rec-
ognized as a tool for understanding past environmental
processes (Burdett et al., 1989). Most literature focuses on
its isotope composition in marine archives as being indica-
tive of global processes affecting sulphur cycling (e.g.
Bottrell and Newton, 2006; Rennie and Turchyn, 2014).
Sulphur and oxygen isotope systematics of CAS have also
been used in marine and freshwater environments to inform
on regimes of high atmospheric PCO2 in ancient time (Bao
et al., 2008, 2009; Benn et al., 2015) and for more recent
environments, sulphur isotope systematics of CAS in spe-
leothems has been used to reconstruct loading of SO2 emis-
sions to the atmosphere (Wynn et al., 2008, 2010).
However, in contrast to isotopic studies, interpretations
based purely on CAS concentrations are more limited due
to uncertainty surrounding the nature of sulphate incorpo-
ration into the carbonate lattice. Even though lattice-
substitution of analogue ion SeO4

2� has been demonstrated
by Reeder et al. (1994) and substitution of carbonate by sul-
phate was directly demonstrated by the X-ray absorption
studies of Pingitore et al. (1995), the lack of a quantitative
understanding of sulphate incorporation into carbonates
currently limits interpretation.

The only experimental study on CAS incorporation was
carried out by Busenberg and Plummer (1985) for marine-
analogue systems. They interpreted results using a thermo-
dynamic model in which a Berthelot-Nernst distribution
coefficient (McIntyre, 1963) was defined as:

DSO4
¼ ðSO4=CO3Þcalcite=ðSO4=CO3Þsolution ð1Þ

This implied that sulphate incorporation was facilitated
at lower pH where the ratio of aqueous CO3

2�/HCO3
� is

lower. However, at the high ionic strength, fast growth
rates and high absolute SO4 concentrations of these exper-
iments (100–10,000 ppm SO4 in growth media), kinetic fac-
tors also influenced the system, and there was a strong
correlation between the value of DSO4

and precipitation
rate. When applied to a typical speleothem-forming site
(Frisia et al., 2005), these experimental results under-
predicted S abundance in speleothem calcite by an order
of magnitude. This mismatch was the impetus for the cur-
rent study to derive experimental data representative of
freshwater environments.

The sulphate content of speleothem carbonate has
recently become appreciated as a valuable record of the
changing sulphur biogeochemical cycle at a local to regio-
nal scale. Where atmospheric sulphur is deposited through
precipitation, and cycling of sulphur through the biomass
above the cave can be accounted for, secular trends in spe-
leothem sulphur content can record regional pollution char-
acteristics (Frisia et al., 2005; Wynn et al., 2008, 2010;
Uchida et al., 2013), as well as infer volcanic events
(Frisia et al., 2008; Badertscher et al., 2014) and periods
of biomass burning (Nagra et al., 2016; Treble et al.,
2016). However, beyond the long-term trends in speleothem
sulphur content, there is much information still to be
revealed by addressing sulphur dynamics at the
sub-annual scale. When analysing speleothem sulphate con-
tent at high resolution, a clear high-resolution cyclicity is
revealed despite minimal short-term variation in the sul-
phate content of the associated drip waters (Frisia et al.,
2005; Fairchild et al., 2010; Wynn et al., 2014). The driver
behind such high-resolution speleothem sulphate dynamics
must therefore be associated with processes of sulphate
incorporation during carbonate precipitation and spe-
leothem growth.

It is well established that seasonal variation in PCO2 of
cave air has a direct effect on the rate of speleothem carbon-
ate deposition. In most temperate caves, strong density-
driven winter air circulation lowers cave air PCO2

(Fairchild and Baker, 2012; James et al., 2015). These con-
ditions will promote drip water degassing, consequently
increasing drip water pH and calcite saturation state. Cave
air PCO2 therefore drives variability in drip water carbon-
ate content and (in the absence of strong changes in drip
rate) speleothem growth rate within an annual cycle. Fol-
lowing the arguments of Busenberg and Plummer (1985),
a pH-driven variation in CAS incorporation should occur
such that sulphate incorporation is dependent upon the
ratio to carbonate ions in solution. If cave air PCO2 varies
seasonally, this should give rise to cyclicity in speleothem
sulphate content with low winter and high summer concen-
trations which are independent of cave drip water sulphate
content. Independent markers of seasonality in some caves
are provided by annual flushes of fluorescent organic mat-
ter with associated colloids (Baker et al., 2008; Fairchild
and Baker, 2012). Using such markers, seasonal SO4 cycles
(a winter trough and a summer peak) in speleothems from
two Alpine caves have been found to be in qualitative
agreement with changes in cave air PCO2 (Fairchild et al.,
2010; Wynn et al., 2014) (Fig. 1).

To test this theory of sulphate incorporation into spe-
leothem calcite, we use our experimental set-up to simulate
the partitioning of sulphate between aqueous media and
carbonate deposits under conditions appropriate to dilute
cave waters, such as has been carried out on other species
(Huang and Fairchild, 2001; Day and Henderson, 2013).
A novel feature of the experimental design is the ability
to control calcite supersaturation and pH independently,
in order to distinguish these as controlling variables. We
also use two different sulphate concentrations covering
the range typically found in cave drip waters. Experimental
results are compared to two European Alpine caves: Obir
Cave (Spötl et al., 2005; Fairchild et al., 2010), Austria;
and Grotta di Ernesto (Frisia et al., 2005; Borsato et al.,
2007; Wynn et al., 2010, 2013), Italy, where sample analysis
at high temporal resolution demonstrates the seasonality of
sulphate partitioning between cave waters and speleothem
calcite. Summary data from other globally-distributed cave
sites also allow calculation of partition co-efficients between
sulphur contained in drip waters and speleothem calcite,
albeit at a lower temporal resolution. In all cave sites, val-
ues of in-cave DSO4

are close to the experimental data,
which suggests a universal set of controls on the efficiency
of sulphate incorporation into speleothem calcite, governed
primarily by pH, aqueous sulphate concentration and
growth rate.



Fig. 1. Micro X-ray fluorescence mapping of speleothem sulphate and zinc content in sample Obi84. Concentrations are relative and denoted
according to colour temperature scale with deep blue representing the lowest and yellow the highest concentrations in both sulphate and zinc
maps. Autumnal peaks in colloidally transported elements (shown here as a Zn trace) are clearly demarcated, allowing attribution of summer
high and winter low concentrations of sulphur within an annual cycle. In contrast to the clear pulses of colloidal elements recorded within the
speleothem calcite, the sulphate content poorly defines the seasonal switch in ventilation regime which should cause a rapid change in drip
water pH and sulphate incorporation. Figure adapted from Wynn et al. (2014).

Fig. 2. Experimental conditions of pH and calcite saturation for
each growth chamber depicting conditions prior to calcite precip-
itation and throughout the experiment duration. The weighted
mean conditions of each experiment are plotted, and dashed lines
represent the locus of possible original experimental conditions
based on growth media composition. The calcite saturation index
(X) is calculated as X = log ionic activity product over solubility
product.
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2. METHODOLOGY

2.1. Carbonate crystal growth experiments

A simple experimental design was adopted in which
solutions of defined calcite supersaturation were seeded
with calcite crystals. Solutions were left to precipitate, with
the aim of producing a fairly constant rate of growth for
each experiment, within the range of growth equating to
typical rates of linear extension for stalagmites (20–1000
lm/year) (McDermott et al., 1999).

Experiments were designed to cover a range of calcite
saturation states and pH (Fig. 2 and Fig. S1). Multiple
experiments were carried out simultaneously in gas-tight
Pyrex� bottles of either 1 L or 0.5 L volume with a head-
space of 120 ml. The existence of a headspace helps main-
tain supersaturation by permitting degassing of carbon
dioxide. Following Henry’s Law, the maximum moles of
CO2 degassed are calculated to be only 3% of total moles
of CaCO3 precipitated as most of the CO2 generated
remains in solution. Growth media were prepared from a
mixed stock solution to produce different solution concen-
trations containing CaCl2 and NaHCO3 as follows:
C1N1 = CaCl2 (3.5 mM) and NaHCO3 (7 mM); C05N05
= CaCl2 (1.75 mM) and NaHCO3 (3.5 mM); and
C1.5N1.5 = CaCl2 (5.25 mM) and NaHCO3 (10.5 mM).
The pH of each starting solution was then adjusted by addi-
tion of HCl or NaOH to achieve the compositions shown in
Fig. 2 (equivalent PCO2 values are shown in Fig. S1). Seed
crystals of calcite were grown from a solution of 0.8 M
NaHCO3 and 0.4 M CaCl2 resulting in rhombic crystals
ca. 18 mm diameter, with specific surface area of 0.15 m2/
g. Each experiment was doped with sulphate (as sodium
sulphate solution) to produce a final growth media concen-
tration of either 2 mg/L (0.02 mM) (low-sulphate experi-
ments) or 20 mg/L (0.2 mM) (high-sulphate experiments).
See Table 1 for the full range of experimental conditions.

After preparation of growth media, addition of seed
crystals and adjustment of pH to the desired starting value,
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chambers were left to precipitate CaCO3. During the pro-
cess of calcium carbonate precipitation, electrical conduc-
tivity (EC) declined due to the removal of calcium and
carbonate ions from solution, and pH was lowered by the
production of CO2. EC was measured using a Tetracon
325 conductivity probe and WTW 340i combination meter,
ref 25 �C. pH was monitored using a Hamilton Liq-glassTM

electrode and WTW 340i meter automatically compensated
to a reference temperature of 25 �C and calibrated to buffer
solutions of pH 4.0 and 7.01 on use (precision ± 0.01 pH
units within two units from the calibration point). pH val-
ues were measured without stirring, and considered stable
following no change to the measurement after approxi-
mately 30 s (WTW auto-read function) (cf. Leito et al.,
2002). The chemical changes were modelled using geochem-
ical speciation software MIX4 (Plummer et al., 1975;
Fairchild and Baker, 2012) and compared to changes in
electroconductivity calculated using algorithms of Rossum
et al. (1975) and Hughes et al. (1994). The change in Ca2+(aq)
and CO3

2�(aq) composition in each growth chamber was
calculated based on this established relationship between
ionic strength with both pH and EC. Results showed some
scatter around the calculated co-variation in these parame-
ters (Fig. S2) and pH results were preferred because of the
better analytical precision in relation to the magnitude of
change. To compensate for these changes in solution
composition and re-adjust the saturation state back to the
original starting value, addition of 0.1 M NaOH was used
to adjust the pH, and a mixed restoration solution of 0.1M
CaCl2 and 0.2 M NaHCO3 was used to replenish the
Ca2+, HCO3

� and CO3
2� ions in solution. Intervention with

NaOH and restoration solution was undertaken on a daily
or weekly timescale, dependent upon saturation state of the
growth media and the rapidity of calcite precipitation. An
example of an experiment with a weekly intervention is
illustrated in Fig. 3: pH is repeatedly restored to the origi-
nal value, but EC gradually rises because of accumulation
of excess NaCl in solution. The change in pH prior to
restoration was usually <0.1, but infrequently up to a max-
imum of 0.3, and the calcite saturation index (X = log ionic
activity product over solubility product) was, correspond-
ingly, lowered by 0.1–0.3.

Growth chambers were maintained until sufficient cal-
cium carbonate had precipitated from solution for analysis.
The precipitates were recovered from growth chambers by
filtration. Crystals were imaged by Scanning Electron
Microscopy (SEM), and rates of growth calculated by con-
version of CaCO3 precipitated (mg) during each experi-
ment, to rates of linear extension in mm yr�1. Crystal
growth rates were similar to a sub-set of those of Mucci
and Morse (1983) where calcite was grown under similar
saturation states and Mg/Ca ratios (Fig. S3). Each of the
recovered aliquots of calcite crystals were digested in 8 ml
of 2% v/v HNO3 (Aristar grade) and sulphur concentra-
tions were determined by high-resolution inductively cou-
pled plasma mass spectrometric analysis (HR-ICPMS) at
Kingston University, UK, using methods described in
Frisia et al. (2005). Calibration solutions at 1, 5, 10, 20,
50 and 100 ppb were diluted from a stock reference material
of 1000 ppm sodium sulphate solution. Repeat analysis of
the 10 ppb reference standard, tested as an unknown solu-
tion gave a sample precision to within <5% of the known
concentration. Drift was monitored throughout the analyt-
ical sequence. Allowing for the mass of sulphate-free seed,
the corrected sulphate concentration was determined and
DSO4

calculated from this value and the solution
composition.

2.2. Cave site and speleothem sample descriptions

One speleothem was studied from each of two Alpine
locations. Obir cave (SE Austria) lies within the Triassic
limestone of the Obir Massif (46�3003600N, 14�3202400E,
�1100 m a.s.l.). The vegetation above the cave system is
characterised by mixed deciduous/coniferous forest and
well-developed brown earth soil extends to a depth of
approximately 30 cm above the cave. Cave internal temper-
atures are +5.7 ± 0.1 �C and strong cave ventilation reflects
the dominant seasonality of cave external temperatures
(Spötl et al., 2005). Speleothem Obi84 was collected during
2002 and speleothem Obi12 was collected in 1998. Both
samples have subsequently become noted for their seasonal-
ity of texture and geochemistry (Smith et al., 2009; Fairchild
et al., 2010). Sulphur variations in speleothem Obi84 are
apparent on both centennial and sub-annual scales (Wynn
et al., 2010, 2014). The Ernesto cave system lies 220 km to
the WSW (45�5803700N, 11�3902800E, 1167 m a.s.l) within
the partially dolomitised Jurassic limestones of NE Italy.
A similar vegetation composition of mixed deciduous/conif-
erous forest supports a clay-rich calcareous brown soil 0.5–
1.5 m thick above the cave. The internal cave temperature is
+6.7 ± 0.1 �C (Miorandi et al., 2010), and a strong season-
ality in external temperature drives a cave ventilation pat-
tern which holds a dominant influence over the cave
carbon budget and speleothem growth patterns (Frisia
et al., 2011). Speleothem ER78 was collected in 2000 and
has been studied extensively for its sulphur content (Frisia
et al., 2005; Wynn et al., 2010) and associated biogeochem-
ical cycling of sulphur through the cave and overlying
ecosystem (Wynn et al., 2013; Borsato et al., 2015).

Due to the broad similarities in climate regime, vegeta-
tion composition and cave ventilation dynamics at each
cave site, both speleothems display similar trends in sulphur
dynamics over the past 100 years. Analysis of both spe-
leothem samples for sulphur content was undertaken at
the European Synchrotron Radiation Facility (ESRF) at
beamline ID21 in 2011 (Obi84) and 2003 (ER78). Analyti-
cal details are reported in Wynn et al. (2014) and Frisia
et al. (2005) respectively. A rise in sulphur concentration
throughout the 20th century is commensurate with a shift
in isotopic composition signifying enhanced fossil fuel emis-
sions (Wynn et al., 2010). Maximum concentrations of sul-
phur within each speleothem lag peak atmospheric
emissions from industrialisation by approximately 10–15
years, attributed to biogeochemical attenuation within the
overlying vegetation (Frisia et al., 2005; Wynn et al.,
2010, 2013). High-resolution variability in sulphur concen-
tration in the form of annual cycles, is superimposed on the
long-term centennial sulphur trend in each speleothem
(Frisia et al., 2005; Wynn et al., 2014). Cycles in sulphur



Table 1
Results from growth chamber experiments detailing experimental conditions and calculated partition coefficients.

Experiment

number

pHa Xb CO3 (aq)

(lM)c
HCO3

(lM)d
cCO3

e
cHCO3

f SO4 (aq)

(lM)g
SO4/CO3 (aq)

(M)

SO4 (mM)

calciteh
SO4/CO3 calcite

� 104
DSO4 � 105 LOG

DSO4
� 105

Growth

rate

(mm yr�1)

LOG

Growth

rate

(mm yr�1)

High aqueous sulphate (20 mg/l)

C0.5N0.5-9.0 8.92

(8.78–9.0)

0.97

(0.79–1.07)

85.7

(60.5–103)

1665

(1647–1674)

0.755 0.93 208.2 (206.5–209.9) 2.43 (2.04–3.41) 6.8 (6.1–7.5) 6.8 (6.1–7.5) 28.1 (18.0–36.9) 1.45 (1.26–1.57) 0.43 �0.37

C1N1-8.6 8.43

(8.14–8.6)

1.05

(0.76–1.24)

63.1

(29.7–91.9)

3410

(3329–3470)

0.685 0.91 208.2 (206.5–209.9) 3.30 (2.28–6.95) 11.7 (10.7–12.6) 11.7 (10.7–12.6) 35.4 (15.4–55.3) 1.55 (1.19–1.74) 0.93 �0.03

C0.5N0.5-8.6 8.42

(8.17–8.6)

0.57

(0.31–0.71)

29.4

(14.3–42.4)

1703

(1675–1727)

0.76 0.93 208.2 (206.5–209.9) 7.08 (4.95–14.44) 7.5 (6.9–8.2) 7.5 (6.9–8.2) 10.65 (4.78–16.5) 1.03 (0.68–1.21) 0.07 �1.16

C1N1-8.3 8.24

(8.15–8.3)

0.87

(0.79–0.95)

37.1

(28.1–46.1)

3450

(3431–3470)

0.685 0.91 208.2 (206.5–209.9) 5.61 (4.55–7.35) 7.8 (7.0–8.5) 7.8 (7.0–8.5) 13.83 (9.55–18.7) 1.14 (0.98–1.27) 0.26 �0.59

C0.5N0.5-8.3 8.24

(8.13–8.3)

0.34

(0.23–0.42)

18.8

(14.4–21.3)

1720

(1710–1730)

0.76 0.93 208.2 (206.5–209.9) 11.07 (9.85–14.34) 6.0 (5.5–6.5) 6.0 (5.5–6.5) 5.4 (3.82–6.60) 0.73 (0.58–0.82) 0.02 �1.76

C1N1-8.0 7.84

(7.64–8.0)

0.5

(0.28–0.66)

17.7

(9.05–22.9)

3376

(3254–3450)

0.685 0.91 208.2 (206.5–209.9) 11.8 (9.16–22.8) 11.2 (10.4–12.1) 11.2 (10.4–12.1) 9.53 (4.53–13.2) 0.98 (0.66–1.12) 0.12 �0.92

C1.5N1.5-8.0 7.93

(7.81–8.0)

0.89

(0.75–0.96)

31.6

(23.8–36.0)

5120

(5020–5170)

0.64 0.89 208.2 (206.5–209.9) 6.6 (5.8–8.7) 12.4 (11.4–13.4) 12.4 (11.4–13.4) 18.8 (13.14–23.0) 1.28 (1.12–1.36) 0.49 �0.31

C1.51.5-7.5 7.46

(7.42–7.5)

0.4

(0.32–0.45)

9.89

(8.89–10.9)

4890

(4830–4950)

0.64 0.89 208.2 (206.5–209.9) 21.1 (19.3–23.2) 13.6 (12.6–14.6) 13.6 (12.6–14.6) 6.46 (5.40–7.60) 0.81 (0.73–0.88) 0.08 �1.10

Low aqueous sulphate (2 mg/l)

C0.5N0.5-9.0 8.92

(8.78–9.0)

0.97

(0.79–1.07)

85.7

(60.5–103)

1665

(1647–1674)

0.755 0.93 20.8 (20.4–21.2) 0.24 (0.21–0.34) 2.6 (2.4–2.9) 2.63 (2.38–2.88) 108 (70.7–140) 2.03 (1.85–2.14) 0.51 �0.30

C1N1-8.6 8.43

(8.14–8.6)

1.05

(0.76–1.24)

63.1

(29.7–91.9)

3410

(3329–3470)

0.685 0.91 20.8 (20.4–21.2) 0.33 (0.23–0.69) 3.4 (3.1–3.6) 3.35 (3.07–3.64) 102 (44.6–157) 2.01 (1.65–2.20) 0.98 �0.01

C0.5N0.5-8.6 8.42

(8.16–8.6)

0.57

(0.31–0.71)

29.4

(13.7–42.4)

1703

(1674–1727)

0.755 0.93 20.8 (20.4–21.2) 0.71 (0.50–1.49) 3.3 (3.0–3.6) 3.29 (3.01–3.58) 46.5 (20.2–71.4) 1.67 (1.31–1.85) 0.06 �1.24

C1N1-8.3 8.24

(8.18–8.3)

0.87

(0.79–0.95)

37.1

(32.6–46.1)

3450

(3442–3470)

0.685 0.91 20.8 (20.4–21.2) 0.56 (0.46–0.63) 3.0 (2.7–3.3) 2.99 (2.67–3.31) 53.2 (42.6–71.9) 1.73 (1.63–1.86) 0.24 �0.63

C0.5N0.5-8.3 8.22

(8.08–8.3)

0.34

(0.23–0.42)

18.8

(13.0–21.3)

1720

(1700–1730)

0.755 0.93 20.8 (20.4–21.2) 1.11 (1.00–1.57) 2.4 (2.2–2.6) 2.41 (2.21–2.62) 21.8 (14.1–26.2) 1.34 (1.15–1.42) 0.02 �1.63

C1N1-8.0 7.84

(7.61–8.0)

0.5

(0.28–0.66)

17.7

(7.86–22.9)

3376

(3236–3450)

0.685 0.91 20.8 (20.4–21.2) 1.18 (0.93–2.60) 2.7 (2.5–3.0) 2.74 (2.53–2.95) 23.3 (9.73–31.9) 1.37 (0.99–1.5) 0.12 �0.91

C1.5N1.5-8.0 7.93

(7.81–8.0)

0.89

(0.75–0.96)

31.6

(23.8–36.0)

5120

(5020–5170)

0.64 0.89 20.8 (20.4–21.2) 0.66 (0.59–0.86) 2.8 (2.6–3.1) 2.80 (2.55–3.05) 42.4 (29.7–51.7) 1.63 (1.47–1.71) 0.49 �0.31

C1.5N1.5-7.5 7.46

(7.38–7.5)

0.4

(0.32–0.45)

9.89

(7.91–10.9)

4890

(4770–4950)

0.64 0.89 20.8 (20.4–21.2) 2.11 (1.95–2.58) 3.2 (3.0–3.5) 3.23 (2.98–3.48) 15.3 (11.6–17.9) 1.19 (1.06–1.25) 0.09 �1.07

Tabulated data are mean values, with the range associated with each parameter presented in parentheses.
a-d Mean values are weighted according to the mass of calcium carbonate precipitated in each experiment. The range represents the spread of values in each measured data set.
e-f Activity coefficients for HCO3

� and CO3
2� in solution were determined by PHREEQE and used to calculate both carbonate and bicarbonate ion concentration from the second dissociation

constant for carbonic acid.
g The range of aqueous sulphate concentrations reflects the maximum systematic error associated with pipetting.
h The range of values associated with the sulphate content of product calcite are calculated based on an instrumental precision of 7.5% RSD from replicate analyses. X = log ionic activity

product over solubility product.
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Fig. 3. Experimental progress of C1N1-8.0 depicting the drop in
pH and EC between weekly interventions and solution restoration.
The incremental rise in EC throughout the duration of the study
reflects the use of a mixed restoration solution of 0.1 M CaCl2 and
0.2 M NaHCO3 to replenish the Ca2+, HCO3

� and CO3
2� ions in

solution, leading to accumulation of excess NaCl in solution.

Fig. 4. The pH-dependence of sulphate incorporation into calcite.
(a) Concentrations of sulphate incorporated into calcite demon-
strate a negative relationship whereby the increasing abundance of
carbonate ions at high pH limits the availability of sulphate in the
calcite. The slope of the relationship is statistically significant for
high (20 ppm) concentrations of sulphate in solution (ANOVA f-
test, p = 0.044), but statistically indistinguishable for low (2 ppm)
concentration experiments. (b) A positive relationship between
DSO4

and pH demonstrates a greater efficiency of incorporation
under growth media conditions of high pH and low sulphate
concentration, despite the lower abundance of sulphate ions in
solution relative to carbonate (ANOVA f-test, p < 0.02 for high
(20 ppm) and p < 0.05 for low (2 ppm) experimental series).
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concentration were confirmed as annual, based on the use
of an age model for each speleothem developed using U-
Th dating, visible lamina counting, and automated peak
detection software developed by Smith et al. (2009). Annual
pulses in Zn associated with colloidal movement during
periods of April/September water excess for speleothem
Obi84 (Fairchild et al., 2010; Hartland et al., 2011, 2012),
and broadly synchronous changes in P (for speleothem
ER78) (cf. Frisia et al., 2005; Borsato et al., 2007; Smith
et al., 2009) were also used to further delimit the annual
nature of sulphur cycles. Other cave sites where coeval spe-
leothem extraction and drip water chemical monitoring
allow the calculation of site-specific DSO4

values include:
Rukiesa cave, Ethiopia (Asrat et al., 2007, 2008; Baker
et al., 2007); Crag Cave, Ireland (McDermott et al., 1999;
Tooth and Fairchild, 2003; Baldini et al., 2006, 2008;
Sherwin and Baldini, 2011); Uamh An Tartair, Scotland,
UK (Proctor et al., 2000; Fuller et al., 2008, Baker et al.,
2012); Browns Folly Mine, UK (Baker et al., 1998, 1999;
Baldini et al., 2001, 2005; Fairchild et al., 2006); Shimizu-
do cave, Japan; and Ryuo-do cave, Japan (Uchida et al.,
2013). For each of these sites, drip water chemical monitor-
ing is at a resolution lower than seasonal, and speleothem
sulphur concentrations were determined only at low resolu-
tion incorporating several years of carbonate deposition
from the most recent growth. Details of each of these sites
is provided in the supplementary information.

3. RESULTS

Results from the growth chamber experiments are pre-
sented in Table 1, demonstrating the controls on sulphate
incorporation into calcite. The pH control on absolute con-
centrations of sulphate incorporated during crystal growth
is demonstrated in Fig. 4a. A negative relationship between
sulphur concentration in calcite overgrowths and the pH of
the growth media is apparent at high (20 ppm) concentra-
tions of sulphate contained within the growth solution (p
= 0.044). This is consistent with the assumption that com-
petition between sulphate and carbonate ions would force
low levels of sulphate incorporation at high pH. The pH
dependence of sulphate incorporation into calcite is limited
in growth media of low sulphur concentration.

The substitution of carbonate by sulphate within the
calcium carbonate lattice (Eq. (1)) suggests that elevated
carbonate ion concentrations discourage sulphate incorpo-
ration. Therefore, sulphate incorporation rates should
decrease by an order of magnitude relative to unit increases
in pH (pH being an exponential scale, an increase in pH by
one unit increases the CO3/HCO3 ratio by a factor of 10).
However, sulphate incorporation only changes by a factor
of 3 for every pH unit at 20 ppm aqueous sulphate and less
than a factor of 2 for every pH unit at 2 ppm aqueous sul-
phate. This therefore results in a DSO4

which increases with
pH, suggesting a more efficient incorporation of sulphate
into calcite at high pH and at low sulphur concentration
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(Fig. 4b, p < 0.02 for high (20 ppm) and p < 0.05 for low (2
ppm) experimental series). A comparison of solutions with
similar pH and differing saturation states reveals that the
same positive relationship to D is expressed (Fig. 5, p <
0.05). Conditions of high pH, high supersaturation (driven
independently of pH), and low sulphur concentration
within experimental solutions thereby appear to promote
a greater efficiency of sulphate incorporation into carbonate
crystals.

Where records from cave drip water/pool water and spe-
leothem sulphate analyses overlap, partition coefficients
(expressed as values of DSO4

) have been calculated. These
are presented in Table 2 as average seasonal values for
the Obir and Ernesto cave sites, and can be compared to
the experimental data. Analysis of in-cave partition
Fig. 5. The growth rate dependence of sulphate incorporation into
calcite based on DSO4

. At constant pH, a greater efficiency of
sulphate incorporation is implied at faster rates of growth. Multiple
linear regression demonstrates significance at the 0.05 level for both
(a) high (20 ppm) sulphate experiments (DSO4

= �49.85 + 29.06
growth rate + 6.90 pH; r2 = 0.95), and (b) low (2 ppm) sulphate
experiments (DSO4

= �336.17 + 61.11 growth rate + 44.47 pH (r2

= 0.90). Low sulphur experiments demonstrate greater efficiency of
sulphate incorporation. Data points of constant pH are visually
linked by solid black lines. Speleothems from Ernesto and Obir
caves are plotted in Fig. 5b including dripwater pH values for
comparison to experimental data.
coefficients is also extended to cave sites in other regions
where coeval aqueous and speleothem carbonate sulphate
analysis has been undertaken, albeit at a lower resolution
of analysis (Tables 3 and 4).

4. DISCUSSION

4.1. Mechanisms of sulphate incorporation into experimental

calcite

Sulphate incorporation into calcite has traditionally
been determined to proceed by sulphate acting as a sub-
stituent for carbonate. Partition coefficients, expressed as
DSO4

(Eq. (1)) have thereby depicted the incorporation of
sulphate to be driven at least in part by the aqueous SO4/
CO3 ratio, controlled by pH and saturation state
(Busenberg and Plummer, 1985). This relationship has been
proved correct in a qualitative fashion (Fig. 4a), demon-
strating the sulphate content of experimental calcite to
decline with increasing pH when aqueous sulphate concen-
trations approximate 20 ppm. However, when aqueous sul-
phate concentrations approximate 2 ppm, the pH and
saturation state control on sulphate incorporation into cal-
cite is weak. This limited relationship reflects two con-
founding factors which expose the weakness of DSO4

as a
universal parameter, and reflect the deficiencies of the par-
tition coefficient approach (Fairchild and Baker, 2012, ch.
8). These can be summarised as follows: 1. DSO4

increases
with pH (Fig. 4b), offsetting the expected decline in calcite
sulphate content (Eq. (1)). 2. At constant pH, growth rate is
driven by supersaturation and an associated increase in
DSO4

with growth rate is demonstrated (Fig. 5a, b). These
deviations from the partition co-efficient approach suggest
multiple controls to anion substitution into calcium carbon-
ate (cf. Uchikawa et al., 2017) indicating a dual model to
sulphate incorporation comprising A. Substitution of car-
bonate for sulphate following partition coefficient beha-
viour (cf. Busenberg and Plummer, 1985), albeit modified
to account for the effects of bicarbonate competition on
the calcite surface (Andersson et al., 2016); and B. Possible
incorporation of sulphate into the solid-state lattice at
defect sites (cf. Pingitore and Eastman, 1986; Staudt
et al., 1994).

Bicarbonate competition on the calcite surface: Tradi-
tional models of partition co-efficient behaviour concerning
carbonate ion abundance do not consider the effects of a
bicarbonate competition for space within the calcite lattice.
The partition co-efficent (DSO4

), as defined through Eq. (1),
assumes all carbonate which contributes to the growth of
calcite crystals is deposited directly onto the growth surface
as CO3

2� ions (Eq. (1)). However, both HCO3
� and CO3

2�

are capable of contributing to calcite growth, by diffusing
towards and attaching to the growth surface of CaCO3

crystals (eg. Przybylinski, 1987; Van der Weijden et al.,
1997; van der Weijden and van der Weijden, 2014). The
subsequent deprotonation of bicarbonate adsorbed to
and/or incorporated within the calcite lattice to produce
carbonate ions has a pKa value which is less than free bicar-
bonate in solution (Andersson et al., 2016). This means the
calcite surface preferentially stabilizes carbonate ions



Table 2
Seasonal partition coefficients between cave waters and speleothem calcite at the Obir and Ernesto cave systems.

Cave water sample Dripwater
pHa

Dripwater
CO3

(lM)b

Dripwater
HCO3

(mM)c

Dripwater
SO4 (lM)d

Dripwater
SO4/CO3

SO4 (mM)
in coeval
speleothem
calcitee

SO4/CO3 Speleothem calcite � 104 DSO4
� 105f Speleothem

growth rate
(LOG mm/yr)

Expected
DSO4

�
105g

Obir cave*

Winter average 8.30 (8.17–8.42) 40.8 (30.9–53.3) 3.0 (2.8–3.2) 46.9 (46.9–46.9) 1.2 (0.9–1.5) 1.3 (1.2–1.4) 1.3 (1.2–1.4) 11.1 (7.8–15.6) �0.89 11.7–36.6
Summer average 8.15 (8.07–8.23) 29.7 (24.9–33.4) 3.2 (3.0–3.2) 46.9 (46.9–46.9) 1.6 (1.4–1.9) 1.4 (1.3–1.5) 1.4 (1.3–1.5) 9.0 (6.9–10.8) �1.15 8.7–28.3

Ernesto Cave**

Winter average 8.14 (7.94–8.33) 25.3 (12.5–41.0) 2.5 (2.15–2.88) 69.1 (65.7–71.0) 2.7 (1.7–5.3) 4.2 (3.9–4.5) 4.2 (3.9–4.5) 15.4 (7.4–26.1) �0.89 11.7–36.6
Summer average 8.02 (7.84–8.14) 18.8 (12.7–27.4) 2.7 (2.14–3.03) 70.5 (65.3–72.6) 3.8 (2.7–5.1) 5.6 (5.2–6.0) 5.6 (5.2–6.0) 14.9 (10.0–22.6) �1.15 8.7–28.3

Tabulated data are mean values, with the range associated with each parameter presented in parentheses.
a-d Range represents the spread of values in each measured data set.
e The range of values associated with the sulphate content of speleothem calcite are calculated based on an instrumental precision of 7.5% RSD from replicate analyses.
f The range in DSO4

� 105 is calculated based on measured environmental parameters, including 7.5% RSD from e instrumental precision.
g The range in expected DSO4

is calculated from the experimental data on sulphate partitioning extrapolated to appropriate growth rates (Fig. 8) at low (2 ppm) and high (20 ppm) aqueous
sulphate concentrations. Seasonal differences in DSO4

� 105 are statistically significant (p = 0.045, Mann Whitney U-test) at Obir cave, although at Ernesto cave DSO4
values are statistically

indistinguishable between summer and winter seasons.
* Obir cave waters represent average values for both summer and winter seasons throughout 2002–2004. Coeval speleothem calcite for this site represents the year 2000.

** Ernesto cave waters represent average values for both summer and winter seasons throughout 1996–1997. Coeval speleothem calcite for this site represents the year 1996.

Table 3
Calculated partition coefficients between cave waters and speleothem calcite at a range of cave systems, demonstrating the universal applicability of experimentally determined partition coefficient
DSO4

. All data prefixed a-g are referenced through Table 4.

Speleothem sample Drip water
pHa

Drip water
CO3 (lM)b

Dripwater
HCO3 (mM)c

Drip water
SO4 (lM)d

Drip water
SO4/CO3

SO4 (mM)
in speleothem
calcitee

SO4/CO3

speleothem
calcite � 104

DSO4
� 105f Speleothem

growth rate
(LOG mm/yr)g

Expected
DSO4

� 105h

ASFA 3 7.81 (7.47–8.15) 30.3 (5.9–100.9) 7.0 (3.2–10.7 115.6 (112.1–125.1) 3.8 (19.1–1.2) 5.0 (4.6–5.3) 5.0 (4.6–5.3) 13.0 (2.4–43.1) -0.52 14.4–44.2
MERC-1 7.81 (7.47–8.15) 24.7 (2.7–100.2) 6.2 (1.5–10.7) 37.2 (27.8–50.9) 1.51 (10.2–0.5) 2.5 (2.3–2.7) 2.5 (2.3–2.7) 16.3 (2.2–52.2) -0.52 14.4–44.2
CC-BIL 7.50 (7.30–7.70) 10.6 (4.8–20.9) 5.0 (3.6–6.3) 21.56 (21.7–21.7) 2.03 (4.6–1.0) 6.0 (5.5–6.4) 6.0 (5.5–6.4) 29.3 (12.1–62.1) -0.37 20.8–61.0
SU96-7 8.26 (7.70–8.93) 56.1 (14.9–252.6) 5.0 (5.0–5.0) 54.8 (46.9–66.5) 1.0 (3.1–0.3) 1.0 (0.9–1.1) 1.0 (0.9–0.1) 10.1 (2.9–40.2) -1 8.1–26.4
BFM-Boss 7.94 (7.31–8.40) 30.6 (4.8–121.1) 4.7 (3.5–7.3) 114.3 (64.7–200.1) 3.7 (13.4–1.7) 7.0 (6.5–7.5) 7.0 (6.5–7.5) 18.7 (4.8–45.5) -0.55 17.0–51.0
Obi12 8.19 (8.04–8.34) 30.0 (19.9–45.1) 3.2 (3.0–3.3) 55.1 (50.5–59.7) 1.8 (2.5–1.3) 1.9 (1.7–2.0) 1.9 (1.73–2.01) 10.2 (6.8–15.2) -1 10.3–32.9
Shimizu-do B1 7.76 (7.57–8.18) 14.5 (6.6–49.7) 3.8 (2.9–5.0) 97.9 (93.7–104.2) 6.7 (14.1–2.1) 5.7 (5.4–6.0) 5.7 (5.4–6.0) 8.5 (3.9–28.7) -1.46 6.2–21.0
Ryuo-do-R1 8.08 (7.82–8.29) 18.0 (9.3–36.6) 2.4 (2.2–3.0) 154.1 (145–168) 8.6 (15.6–4.6) 5.5 (5.2–5.7) 5.5 (5.2–5.7) 6.4 (3.3–12.5) -1.14 9.2–29.5

Tabulated data are mean values, with the range associated with each parameter presented in parentheses.
a-d Range represents the spread of values in each measured data set.
e The range of values associated with the sulphate content of speleothem calcite are calculated based on an instrumental precision of 7.5% RSD from replicate analyses.
f The range in DSO4

� 105 is calculated based on pairing min and max values of SO4 and CO3 in each of the measured data sets.
g Growth rates are obtained from sources listed in Table 4.
h The range in expected DSO4

is calculated from the experimental data on sulphate partitioning extrapolated to appropriate growth rates (Fig. 8) at low (2 ppm) and high (20 ppm) aqueous
sulphate concentrations.
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Table 4
Speleothem sample details and data sources associated with cave sites presented in Table 3.

Speleothem code Cave details Data source

ASFA 3 Rukiesa cave, Ethiopia. Asfa chamber a Asrat et al., 2008; b-c Baker et al., 2007; d-e Data source this publication;
f Asrat et al., 2008; g calculated from LOG growth rate based on Fig. 8

MERC-1 Rukiesa cave, Ethiopia. Merc chamber a-c Asrat et al., 2008; d-e Data source this publication; f Asrat et al., 2008; g
calculated from LOG growth rate based on Fig. 8

CC-BIL Crag cave, Ireland a-c Baldini et al., 2006; d Data source this publication; e Wynn et al., 2008; f
Baldini et al., 2008; g calculated from LOG growth rate based on Fig. 8

Assynt Uamh Am Tartair, Assynt, UK a-d Fuller et al., 2006; e Data source this publication; f Proctor et al., 2000;
g calculated from LOG growth rate based on Fig. 8

BFM-Boss Browns Folly Mine, UK a-d Data source this publication; e Wynn et al., 2008; f Data source this
publication g calculated from LOG growth rate based on Fig. 8

Obi 12 Obir cave, Austria. Saulenhalle
chamber

a-d Fairchild et al., 2010; e Data source this publication; f Fairchild et al.,
2010; g calculated from LOG growth rate based on Fig. 8

Shimizu-do B Shimizu-do cave, Japan. Stalagmite B a-f Uchida et al., 2013; g calculated from LOG growth rate based on Fig. 8
Ryuo-do-R1 Ryuo-do cave, Japan a-f Uchida et al., 2013; g calculated from LOG growth rate based on Fig. 8

a = drip water pH, b = drip water carbonate, c = drip water bicarbonate, d = drip water sulphate concentration, e = sulphate concentration
in speleothem calcite from the most recent growth, f = speleothem growth rate, g = expected range in DSO4

calculated from experimental data
on sulphate partitioning extrapolated to appropriate growth rates at low (2 ppm) and high (20 ppm) aqueous sulphate concentrations.
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relative to bicarbonate, leaving only low concentrations of
bicarbonate ions present within the lattice (Feng et al.,
2006) despite much higher concentrations within the aque-
ous phase. The values of pKa for deprotonation of HCO3 to
CO3 on the surface of calcite vary by six orders of magni-
tude depending on pH and calcite surface geometry. How-
ever, at the pH values present within natural cave
environments (encompassing those used within the present
study), values of pKa suggest virtually complete deprotona-
tion regardless of calcite surface conditions (Andersson
et al., 2016). This leads to competition between bicarbonate
and sulphate for space within the calcite lattice, which is
determined by solution pH and relative bicarbonate ion
abundance. At high pH (higher than 10.3), where carbonate
ions in solution are more abundant, the effects of bicarbon-
ate competition are limited and DSO4

should be close to the
true value as calculated through Eq. (1). At the range of pH
conditions conducive to a greater dominance of bicarbon-
ate ions in solution (between pH 6.4 and 10.3), ‘bicarbonate
competition’ with sulphate for spaces within the calcite lat-
tice serves to dilute the incorporation of the sulphate mole-
cule, thereby introducing uncertainty into the partition
coefficient calculation of Eq. (1). This results in a lower
DSO4

than expected from Eq. (1) and reflects the relation-
ship to pH depicted through Fig. 4b.

Defect site abundance: The abundance of defect sites in
calcium carbonate crystals is directly related to supersatura-
tion state and therefore crystal nucleation and growth
(McDermott et al., 1999; Frisia et al., 2000). An enhanced
presence of defect sites (visible as stepped crystal faces) is
known to encourage exchange of ions between aqueous
and solid phases (Pingitore and Eastman, 1986; Staudt
et al., 1994; Borsato et al., 2016; Uchikawa et al., 2017).
Therefore, increased defect site density at higher supersatu-
ration states promotes sulphate incorporation (increasing
DSO4

) (Fig. 6), and is manifested through increasing DSO4

with both pH (Fig. 4b) and higher growth rates when pH
remains constant (Fig. 5a-b).

The net effects of all these processes (partitioning
according to carbonate ion abundance; competition with
bicarbonate; the presence of defect sites; and the absolute
concentrations of sulphate in solution) are depicted through
Fig. 7. The apparent increase in calcite sulphur content with
growth rate (Fig. 7) is counter-intuitive based on a model of
sulphate incorporation controlled solely by carbonate ion
abundance in solution (Eq. (1)). Instead, sulphate incorpo-
ration at defect sites must increase DSO4

and offset the
effects of carbonate ion abundance. The strength of this
overall growth rate effect is modest, exhibiting a �20%
increase in sulphur concentration in calcite over an order
of magnitude growth rate increase along a line of constant
pH (at 20 ppm sulphate solution, significant at the p = 0.05
level). At lower sulphate concentrations in solution (2
ppm), the same effect of enhanced sulphur incorporation
into calcite with growth rate offsets the expected dilution
by carbonate ion abundance but does not display a positive
trend. At similar rates of growth, the effect of pH upon sul-
phur incorporation into calcite follows the relationship
depicted through Fig. 4a, whereby pH control of aqueous
SO4/CO3 ratio determines the abundance of sulphate incor-
porated into calcite despite any effects of variable DSO4

.

4.2. Comparison to published experimental data

The only other study to date investigating partitioning
of sulphate into calcite (Busenberg and Plummer, 1985)
addressed crystal growth rates predominantly faster than
those encountered during speleothem deposition (linear
extension rates equivalent to 0.3–40 mm/year). Addition-
ally, experimental solutions used concentrations of sulphate
and sodium one to two orders of magnitude greater than
those typical of karst environments. The relationship
between crystal growth rate and partition coefficient is
depicted through Fig. 8 as a linear expression relating
LOG(D) to LOG(R) (p = 9.0 � 10�13, where LOG(R) is
LOG growth rate in mm extension per year).

LOGðDÞ ¼ 0:8098 � LOGðRÞ � 0:1446 ð2Þ
Extrapolating the linear relationship in Eq. (2) to a

growth rate of 100 lm yr�1, should yield a DSO4
value



Fig. 6. SEM images of product calcite crystals showing the presence of defect sites (visible as stepped crystal faces) grown across a range of
saturation indices and pH values. Images shown relate to experimental products from (a) incubation C1N1 at pH 8.6 for 20 ppm aqueous
sulphate concentration, (b) incubation C1N1 at pH 8.6 for 2 ppm aqueous sulphate concentration, (c) incubation C1N1 at pH 8.3 for 2 ppm
aqueous sulphate, and (d) incubation C05N05 at pH 8.3 for 2 ppm aqueous sulphate concentration. Further information on experimental
conditions associated with each incubation are available through Table 1.
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(�105) of 0.1. This is much lower than the values of DSO4

obtained as a part of this study for similar rates of growth.
At low (2 ppm) sulphur concentrations, DSO4

� 105 = 32.9,
whereas at higher concentrations of sulphate (20 ppm),
DSO4

� 105 = 10.3. The greater efficiency of trace element
incorporation in this study and at lower concentrations of
sulphate may reflect the lower ionic strength of the growth
media. Difficulties in extrapolating partition coefficients
beyond the studied range of solution composition has also
been demonstrated for other trace elements such as Sr, Cd,
Mn and Co during incorporation into calcite (e.g. Lorens,
1981).

4.3. Mechanisms of sulphate incorporation into speleothem

calcite

The proposed model of pH and defect control on sul-
phate incorporation into experimental calcite is consistent
with observations of sulphate variability contained within
speleothem carbonate. Where cave ventilation serves as
the main driver of drip water pH, the incorporation of sul-
phate into the speleothem is modulated according to levels
of CO2 in the cave atmosphere (Frisia et al., 2005). Where
ventilation occurs on a seasonal basis, this process gives rise
to annual cycles of speleothem sulphate content despite rel-
atively constant sulphate concentrations within cave drip
waters across an annual cycle (Borsato et al., 2015). Mini-
mal amounts of sulphate incorporation into speleothem
carbonate always occur during ingress of external air with
low PCO2 into the cave chamber (therefore drip waters
de-gas to attain a relatively high pH), and maximum levels
of sulphate are incorporated in speleothem carbonate dur-
ing egress of cave air when high ambient levels of cave air
CO2 reduce drip water degassing and thus limit the pH
attained to lower values. At the Obir and Ernesto cave sys-
tems, this gives rise to a winter low and a summer high in
speleothem sulphate concentration. However, if pH-
determined sulphate substitution for carbonate were the
sole controlling variable on sulphate incorporation into cal-
cite, the seasonal cycle of speleothem sulphate would be
expected to demonstrate a rapid switch between max and
min concentrations in accordance with the rapidity of
changes in cave ventilation regime. In reality, when anal-
ysed at high resolution (1 mm spatial resolution), the annual
sulphate cycle appears blurred between max and min con-
centrations, contrasting with very sharp colloidal element
bands (Fig. 1). This is likely due to gradual changes in
the crystal growth surface and defect site availability, tran-
sitioning from high abundance of defects during the winter
season to fewer defects during the summer over a time per-
iod which is slower than the switch in cave air CO2 concen-
tration (sensu Pingitore and Eastman, 1986; Borsato et al.,



Fig. 7. The growth rate dependence of sulphate incorporation into
calcite. At constant pH, a greater quantity of sulphate is incorpo-
rated at faster rates of growth. Multiple linear regression demon-
strates significance at the 0.05 level for (a) high (20 ppm) sulphate
experiments (S in calcite = 1828.89 + 201.45 growth rate � 190.75
pH; r2 = 0.790), and no statistical significance at (b) low (2 ppm)
sulphate experiments.

Fig. 8. The relationship between growth rate and partition
coefficient depicted as a linear expression relating LOG(D) to
LOG(R). Data obtained from Busenberg and Plummer (1985)
where sulphate concentrations range between 100 and 10,000 ppm
in solution (ANOVA f-test, p = 9.0 � 10�13), and this study for
high (20 ppm, ANOVA f-test p = 0.00071) and low (2 ppm,
ANOVA f-test p = 0.03) sulphate experiments.
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2016). This is associated with classic seasonal changes in the
morphology of crystals growing on glass plates beneath
drips in Ernesto cave (Frisia et al., 2000). Seasonally mod-
ulated supersaturation control on defect site availability
and therefore DSO4

, thereby serves to modify the dominant
pH control on sulphate substitution for carbonate.

4.4. In-cave partitioning of sulphate between cave water and

speleothem calcite

Where time series of cave pool water/drip water chemi-
cal analyses are temporally closely matched to speleothem
records of sulphur concentration, the calculated partition
coefficients between cave waters and speleothem calcite
are directly comparable with those calculated through
growth chamber experiments. This is undertaken at the
Obir and Ernesto caves, where the frequency of drip water
collection and the high resolution of speleothem sulphur
analysis allow determination of DSO4

on a seasonal basis.
The seasonality of dripwater SO4/CO3 characteristics

reflect the cave ventilation dynamics (and thereby dripwater
pH) at each site. At Obir cave, drip waters feeding spe-
leothem Obi84 demonstrate a strong seasonality in drip
water pH and SO4/CO3 ratios. During the winter season
(defined as October–March), higher pH and consequently
lower SO4/CO3 (mean pH = 8.3, mean SO4/CO3 = 1.2)
contrasts with those values from the summer season (mean
pH = 8.15, mean SO4/CO3 = 1.6) (Table 2). In Ernesto
cave, calculations were performed on waters collected from
Pool S1, the closest sampling site in the cave to the drip
which fed stalagmite ER78. Seasonality in pH and SO4/
CO3 ratios reflect a similar pattern of cave ventilation-
modulated carbonate precipitation as that found in Obir
cave. During the winter season, pool water chemistry dic-
tates a lower SO4/CO3 ratio as a result of elevated pH
and X (mean pH = 8.14, mean SO4/CO3 = 2.7). During
the summer, lower drip water pH and X result in a higher
SO4/CO3 ratio (mean pH = 8.0, mean SO4/CO3 = 3.8)
(Table 2). This variability in pH and SO4/CO3 ratio drives
the seasonally modulated cycles of speleothem sulphate as
discussed above.

To enable sulphate partition co-efficients to be calcu-
lated between dripwaters and speleothem calcite, values of
sulphate concentration in speleothem calcite were obtained
at high resolution using raw counts generated by syn-
chrotron XRF calibrated to analyses undertaken by sec-
ondary ionisation mass spectrometry (for speleothem
Obi84) (Wynn et al., 2010) and high resolution ICPMS
(for speleothem ER78) (Frisia et al., 2005). Concentrations
of sulphate incorporated into speleothem calcite during the
summer and winter seasons of each respective year were
calculated as mean values based on the understanding that
drip water Ca concentration indicates a 1.8x slower
speleothem growth rate during the summer season. For
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Obi84, drip water chemistry from 2002 to 2004 is compared
to speleothem sulphate concentrations from the nearest full
annual cycle in the synchrotron sulphur profile (year 2000).
For ER78, drip water chemistry monitored between 1996
and 1997 is compared only to the year 1996 due to a poor
cyclical structure in the synchrotron sulphur profile from
1997. Based on the growth chamber experiments reported
above, partitioning of sulphate between cave waters and
speleothem calcite should follow a relationship such that
values of DSO4

are enhanced at higher pH. At Obir cave,
values of DSO4

(�105) range between a winter mean of
11.1 to summer mean of 9.0 (Table 2, p = 0.045). At
Ernesto cave, seasonal mean values of DSO4

(x105) are cal-
culated as 15.4 (winter) and 14.9 (summer), albeit statisti-
cally indistinguishable between summer and winter
seasons. These values are close to the predicted values of
DSO4

based on chamber experiments containing both low
(2 ppm) and high (20 ppm) sulphate concentrations and
with crystal growth rates extrapolated to equivalent rates
of linear extension (Table 2).

The partition co-efficients calculated between drip water
and speleothem calcite can be interpreted based on experi-
mental observations. Despite the lower concentrations of
sulphate incorporated into speleothem calcite at higher
pH values during the winter season (hence the origin of
the annual speleothem sulphur cycles), values of DSO4

reflect a greater efficiency of sulphate incorporation. This
is hypothesized above to be due to an enhanced proportion
of defects and kink sites at high levels of supersaturation
that accommodate the sulphate ion (cf. Staudt et al.,
1994). The increasingly defect-rich nature of crystal faces
with increasing supersaturation state closely resembles pro-
cesses of in-cave crystal formation, whereby winter growth
at higher supersaturation promotes the formation of crys-
tals with macro-kinks and steps (Frisia et al., 2000). How-
ever, given the modest increase in the sulphate content of
experimental calcites over an order of magnitude increase
in growth rate at constant pH (Fig. 7), the enhanced incor-
poration of sulphate at defect sites will not significantly
diminish the over-riding pH control on SO4/CO3

� in pro-
duct calcite. The growth chamber experiments of this study
and Busenberg and Plummer (1985), thereby support a sea-
sonality to sulphate incorporation in the speleothem record
by identifying drip water pH (and by implication a pH-
driven speleothem growth rate) as the key variable in deter-
mining the seasonality to sulphate incorporation and the
magnitude of the partition coefficient (DSO4

).

4.5. Universal applicability of speleothem DSO4

The universal applicability of DSO4
to speleothems grow-

ing within the experimental range of crystal growth rates
and aqueous sulphate concentrations is demonstrated in
Table 3. For each speleothem, DSO4

is derived from field
data collected at low temporal sampling resolution. Drip
water chemical composition (pH, carbonate and sulphate
content) is reported as annual mean values broadly contem-
poraneous with the date of speleothem collection. Spe-
leothem growth rate is reported as an annual average
value over the past 100 years, and sulphate content is
reported from the most recent speleothem growth. Each
calculated value of mean speleothem DSO4

is seen to lie close
to the range of experimentally determined partition coeffi-
cients when extrapolated to equivalent growth rates
(Fig. 8) at low (2 ppm) and high (20 ppm) aqueous sulphate
concentrations. The partitioning of sulphate between cave
waters and speleothem calcite thereby appears to conform
to experimentally determined controls across a range of
environmental settings and temporal scales.

4.6. Speleothem sulphate concentrations as indicators of past

climatic variability

The pH-dependence of sulphate incorporation into cal-
cite and the universal relationship between growth rate
(expressed as mm yr�1 linear extension) and DSO4

, are
two important findings which should permit the application
of speleothem sulphate concentrations as climate proxies.
These findings can be detailed as: 1. In a cave setting, the
pH to which drip waters degas is controlled by the PCO2

of the cave air and therefore ventilation regime. The shape
of each seasonal sulphate cycle (specifically cycle length)
observed in speleothem calcite should therefore reflect the
nature and timing of ventilation at each site. At sites where
temperature-driven density differences control cave air
PCO2, a temperature decline occurring unusually early in
the autumn or a temperature rise unusually late in the
spring would produce an extended winter circulation pat-
tern associated with low sulphate levels and an associated
change in the morphology of the sulphur peak-trough trace.
2. Based on the relationship between DSO4

and growth rate
(expressed as mm yr�1 linear extension) the partition coef-
ficient between drip water and speleothem calcite can be
predicted for different speleothems beyond the period of
contemporary cave monitoring. Assuming an essentially
constant pre-industrial sulphate flux to the stalagmite,
DSO4

variability should therefore reveal changes in drip
water pH and by implication the relative strength of cave
ventilation and external temperature dynamics over a range
of timescales. However, both of these linkages to climate
rely on minimal upstream changes in drip water sulphate
and carbonate concentration induced by prior calcite pre-
cipitation (PCP), (cf. Borsato et al., 2016). Where PCP is
apparent, the associated removal of carbonate from the
drip water will tend to cause the aqueous sulphate/carbon-
ate to rise. If the calcium carbonate precipitation was stim-
ulated by a winter fall in CO2 (rise in pH), the PCP effect
will oppose the fall in speleothem sulphate that would
otherwise be the hallmark of the seasonal change. PCP
would therefore diminish the magnitude and duration of
seasonal cycles in speleothem sulphate content. When the
relationship between DSO4

and speleothem growth rate is
used to infer past changes in drip water pH, PCP would
serve to disrupt this relationship. For the Ernesto cave sys-
tem where PCP is of minimal significance, seasonal cycles in
sulphate concentration and reconstructed values of DSO4

can be used to infer changing environmental conditions as
detailed above. However, when PCP plays a significant role
in modifying drip water SO4/CO3 content, other proxies of
PCP (Mg/Ca and Sr/Ca in speleothem carbonate, Fairchild
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et al., 2000) need to be used to identify the extent of the pro-
cess and the suitability of the sulphate record for environ-
mental reconstruction. Consequently, when PCP can be
deemed negligible or accounted for, both the pH driver of
sulphate incorporation and the universal relationship
between DSO4

and growth rate therefore raise the possibility
of using speleothem sulphate content as a proxy for chang-
ing seasonality in different environmental settings. When
used as part of a multi-proxy approach, sulphate thereby
promises to enhance the resolving power of speleothem
archives of environmental change.

5. CONCLUSIONS

Calcite grown under controlled laboratory conditions
provides the first quantitative description of the controls
on annual cycles in speleothem sulphate. pH is confirmed
as the dominant variable controlling the overall abundance
of sulphate incorporated into calcite. The efficiency of sul-
phate incorporation into calcite (DSO4

) is enhanced at high
pH, high crystal growth rate and low sulphate concentra-
tions in aqueous media. Increased DSO4

, despite the lower
sulphate ion abundance, probably reflects an increase in
defect sites at calcite crystal surfaces associated with high
levels of supersaturation, as well as bicarbonate competi-
tion at the calcite surface. In most cave environments, drip
water pH is controlled by ventilation dynamics. Where cave
ventilation is seasonal, the associated speleothem calcite
will demonstrate a seasonality to sulphate incorporation.
At the Obir and Ernesto caves, cave ventilation control of
pH leads to characteristic summer peaks and winter lows
in speleothem sulphate content. Increased crystal defects
and limited bicarbonate competition associated with high
levels of supersaturation during the winter season (low cave
air PCO2), likely explain the greater efficiency of sulphate
incorporation at this time of year despite a lower SO4/
CO3 ion abundance in drip waters. These same defect-rich
crystallites are also responsible for the blurred transition
in sulphur concentration between summer and winter sea-
sons in the speleothem record. The experimental values of
DSO4

generated as a part of this study quantitatively reflect
the incorporation of sulphate into contemporary spe-
leothem calcite for stalagmites which have grown in a range
of cave settings. Due to the universal applicability of the
relationship between speleothem growth rate and DSO4

, this
opens the possibility of using speleothem records to recon-
struct environmental drivers of sulphate partitioning,
namely cave ventilation and external temperature dynamics
across well-defined climatic changes where the effects of
PCP are absent or can be accounted for.
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Fuller L., Spötl C. and Azcurra C. (2012) Millennial-length
forward models and pseudoproxies of stalagmite d18O: an
example from NW Scotland. Clim. Past 8, 1153–1167.

Baldini J. et al. (2001) Morphological and dimensional linkage
between recently deposited speleothems and drip water from
Browns Folly Mine, Wiltshire, England. J. Cave Karst Stud. 63,
83–90.

Baldini J. U. L., McDermott F., Baker A., Baldini L. M., Mattey
D. P. and Railsback L. (2005) Biomass effects on stalagmite
growth and isotope ratios: a 20th century analogue from
Wiltshire, England. Earth Planet. Sci. Lett. 240, 486–494.

Baldini J. U. L., McDermott F. and Fairchild I. J. (2006) Spatial
variability in cave drip water hydrochemistry: implications for
stalagmite paleoclimate records. Chem. Geol. 235, 390–404.

https://dx.doi.org/10.17635/lancaster/researchdata/205
https://doi.org/10.1016/j.gca.2018.01.020
https://doi.org/10.1016/j.gca.2018.01.020
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0005
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0005
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0005
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0010
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0010
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0010
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0010
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0010
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0015
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0015
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0015
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0015
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0020
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0020
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0020
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0020
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0020
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0025
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0025
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0025
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0025
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0025
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0030
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0030
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0030
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0030
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0035
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0035
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0035
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0035
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0035
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0035
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0040
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0040
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0040
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0050
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0050
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0050
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0050
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0050
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0060
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0060
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0060
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0060
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0065
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0065
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0065
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0065
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0070
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0070
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0070


82 P.M. Wynn et al. /Geochimica et Cosmochimica Acta 226 (2018) 69–83
Baldini J. U. L., McDermott F., Hoffman D. L., Richards D. A.
and Clipson N. (2008) Very high frequency and seasonal cave
atmosphere PCO2 variability: implications for stalagmite
growth and oxygen isotope-based paleoclimate records. Earth
Planet. Sci. Lett. 272(1–2), 118–129.

Bao H. M., Fairchild I. J., Wynn P. M. and Spötl C. (2009)
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P. and Dennis P. F. (2008) Isotope hydrology of dripwaters in a
Scottish cave and implications for stalagmite paleoclimate
research. Hydrol. Earth Syst. Sci. 12(4), 1065–1074.

Hartland A., Fairchild I. J., Lead J. R., Zhang H. and Baalousha
M. (2011) Size, speciation and lability of NOM-metal com-
plexes in hyperalkaline cave drip water. Geochim. Cosmochim.

Acta 75, 7531–7577.
Hartland A., Fairchild I. J., Lead J. R., Borsato A., Baker A.,

Frisia S. and Baalousha M. (2012) From soil to cave: transport
of trace metals by natural organic matter in karst drip waters.
Chem. Geol. 304, 68–82.

Huang Y. and Fairchild I. J. (2001) Partitioning of Sr2+ and Mg2+

into calcite under karst-analogue experimental conditions.
Geochim. Cosmochim. Acta 65, 47–62.

Hughes S. G., Taylor E. L., Wentzell P. D., McCurdy R. F. and
Boss R. K. (1994) Models of conductance measurement in
quality assurance of water analysis. Anal. Chem. 66, 830–835.

James E. W., Banner J. L. and Hardt B. (2015) A global model for
cave ventilation and seasonal bias in speleothem paleoclimate
records. Geochem. Geophys. Geosyst. 16, 1044–1051.

Leito I., Strauss L., Koort E. and Pihl V. (2002) Estimation of
uncertainty in routine pH measurement. Accred. Qual. Assur. 7,
242–249.

Lorens R. B. (1981) Sr, Cd, Mn and Co distribution coefficients in
calcite as a function of calcite precipitation rate. Geochim.

Cosmochim. Acta 45, 553–561.
McDermott F., Frisia S., Huang Y. M., Longinelli A., Spiro B.,

Heaton T. H. E., Hawkesworth C. J., Borsato A., Keppens E.,
Fairchild I. J., van der Borg K., Verheyden S. and Selmo E.
(1999) Holocene climate variability in Europe: evidence from
delta O-18, textural and extension-rate variations in three
speleothems. Quat. Sci. Rev. 18, 1021–1038.

McIntyre W. L. (1963) Trace element partition coefficients – a
review of theory and applications to geology. Geochim.

Cosmochim. Acta 27, 1029–1264.
Miorandi R., Borsato A., Frisia S., Fairchild I. J. and Richter D.

K. (2010) Epikarst hydrology and implications for stalagmite
capture of climate changes at Grotta di Ernesto (N.E. Italy):
results from long-term monitoring. Hydrol. Proc. 24, 3101–
3114.

Mucci A. and Morse J. W. (1983) The incorporation of Mg2+ and
Sr2+ into calcite overgrowths – influences of growth rate and
solution composition. Geochim. Cosmochim. Acta 47(2), 217–
233.

Nagra G., Treble P. C., Anderson M. S., Fairchild I. J., Coleborn
K. and Baker A. (2016) A post-wildfire response in cave
dripwater chemistry. Hydrol. Earth Syst. Sci. 20, 2745–2758.

http://refhub.elsevier.com/S0016-7037(18)30038-3/h0075
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0075
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0075
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0075
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0075
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0075
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0080
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0080
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0080
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0080
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0085
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0085
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0085
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0085
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0090
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0090
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0090
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0090
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0090
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0100
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0100
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0100
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0100
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0100
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0105
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0105
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0105
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0105
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0105
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0110
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0110
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0110
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0110
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0110
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0115
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0115
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0115
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0120
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0120
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0120
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0125
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0125
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0125
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0125
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0125
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0125
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0125
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0130
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0130
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0130
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0135
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0135
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0135
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0135
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0135
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0140
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0140
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0140
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0140
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0145
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0145
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0145
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0145
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0145
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0145
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0145
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0150
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0150
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0155
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0155
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0155
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0160
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0160
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0160
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0160
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0165
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0165
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0165
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0165
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0170
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0170
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0170
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0175
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0175
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0175
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0175
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0185
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0185
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0185
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0185
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0190
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0190
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0190
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0190
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0195
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0195
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0195
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0195
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0200
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0200
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0200
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0200
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0205
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0205
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0205
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0210
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0210
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0210
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0215
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0215
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0215
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0220
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0220
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0220
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0225
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0225
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0225
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0225
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0225
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0225
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0230
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0230
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0230
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0235
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0235
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0235
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0235
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0235
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0240
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0240
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0240
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0240
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0240
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0240
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0245
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0245
http://refhub.elsevier.com/S0016-7037(18)30038-3/h0245


P.M. Wynn et al. /Geochimica et Cosmochimica Acta 226 (2018) 69–83 83
Pingitore N. E. and Eastman M. P. (1986) The co-precipitation of
Sr2+ with calcite at 25 and 1 atm. Geochim. Cosmochim. Acta

50, 2195–2203.
Pingitore N. E., Meitzner G. and Love K. M. (1995) Identification

of sulfate in natural carbonates by X-ray absorption spec-
troscopy. Geochim. Cosmochim. Acta 59, 2477–2483.

Plummer L. N., Parkhurst D. and Kosiur D. R. (1975) MIX2, a
computer program for modeling chemical reactions in natural
waters. U.S. Geological Survey, Water Resources Investigations

Report 61, 75p.
Proctor C. J., Baker A., Barnes W. L. and Gilmour M. (2000) A

thousand year speleothem proxy record of North Atlantic
climate from Scotland. Clim. Dyn. 16, 815–820.

Przybylinski J. L. (1987) The role of bicarbonate ion in calcite scale
formation. Soc. Petrol. Eng. 2, 63–67.

Reeder R. J., Lamble G. M., Lee J. F. and Staudt W. J. (1994)
Mechanism of SeO4

2� substitution in calcite: an EXAFS study.
Geochim. Cosmochim. Acta 58, 5639–5646.

Rennie V. C. F. and Turchyn A. (2014) The preservation of d34SSO4

and d18OSO4 in carbonate associated sulfate during marine
diagenesis: A 25Myr test case using marine sediments. Earth
Planet. Sci. Lett. 395, 13–23.

Rossum J. R. (1975) Checking the accuracy of water analyses
through the use of conductivity. J. Amer. Water Wells Assoc.

67, 204–205.
Sherwin C. M. and Baldini J. U. L. (2011) Cave air and

hydrological controls on prior calcite precipitation and stalag-
mite growth rates: implications for paleoclimate reconstructions
using speleothems. Geochim. Cosmochim. Acta 75(14), 3915–
3929.

Smith C. L., Fairchild I. J., Spötl C., Frisia S., Borsato A.,
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Spötl C., Fairchild I. and Tooth A. F. (2005) Cave air control on
drip water geochemistry, Obir Caves (Austria): implications for
speleothem deposition in dynamically ventilated caves. Geo-

chim. Cosmochim. Acta 69, 2451–2468.
Staudt W. J., Reeder R. and Schoonen M. A. (1994) Surface

structural controls on compositional zoning of SO4
2� and SeO4

2�

in synthetic calcite single crystals. Geochim. Cosmochim. Acta

58(9), 2087–2098.
Tooth A. F. and Fairchild I. J. (2003) Soil and karst aquifer

hydrological controls on the geochemical evolution of
speleothem forming drip waters, Crag Cave, southwest Ireland.
J. Hydrol. 273, 51–68.

Treble P. C., Fairchild I. J., Baker A., Meredith K. T., Anderson
M. S., Salmon S. U., Bradely C., Wynn P. M., Hankin S.,
Wood A. and McGuire E. (2016) Roles of forest bioproduc-
tivity, transpiration, and fire in a nine-year record of cave
dripwater chemistry from southwest Australia. Geochim. Cos-

mochim. Acta 184, 132–150.
Uchida S., Kurisaki K., Ishihara Y., Haraguchi S., Yamanaka T.,

Noto M. and Yoshimura K. (2013) Anthropogenic impact
records of nature for past hundred years extracted from
stalagmites in caves found in the Nanatsugama Sandstone
Formation, Saikai, Southwestern Japan. Chem. Geol. 347,
59–68.

Uchikawa J., Harper D. T., Penman D. E., Zachos J. C. and Zeebe
R. E. (2017) Influence of solution chemistry on the boron
content in inorganic calcite grown in artificial sweater. Geochim.

Cosmochim. Acta 218, 291–307.
van der Weijden R. D., van der Heijden R. D., Witkamp G. J. and

van Rosmalen G. M. (1997) The influence of total calcium and
total carbonate on the growth rate of calcite. J. Cryst. Growth
171, 190–196.

van der Weijden C. H. and van der Weijden R. D. (2014) Calcite
growth: rate dependence on saturation, on ratios of dissolved
calcium and (bi)carbonate and on their complexes. J. Cryst.
Growth 394, 137–144.

Wynn P. M., Fairchild I. J., Baker A., Baldini J. U. L. and
McDermott F. (2008) Isotopic archives of sulphate in
speleothems. Geochim. Cosmochim. Acta 72, 2465–2477.

Wynn P. M., Fairchild I. J., Frisia S., Spötl C., Baker A., Borsato
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