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Abstract 

Our ability to select task-relevant information from cluttered visual environments is widely 

believed to be due to our ability to tune attention to the particular elementary feature values of 

a sought-after target (e.g., red, orange, yellow). By contrast, recent findings showed that 

attention is often tuned to feature relationships, viz., features that the target has relative to 

irrelevant features in the context (e.g., redder, yellower; Becker, 2010).  However, the evidence 

for such a relational account is so far exclusively based on behavioral measures that do not 

allow a safe inference about early perceptual processes. The present study provides a critical 

test of the relational account, by measuring an electrophysiological marker in the EEG of 

participants (N2pc) in response to briefly presented distractors (cues) that could either match 

the physical features of the target or its relative features. In a first experiment, the target color 

and non-target color was kept constant across trials. In line with a relational account, we found 

that only cues with the same relative color as the target were attended, regardless of whether 

the cues had the same physical color as the target. In a second experiment, we demonstrate 

that attention is biased to the exact target feature value when the target is embedded in a 

randomly varying context. Taken together, these results provide the first electrophysiological 

evidence that attention can modulate early perceptual processes differently; in a context-

dependent manner vs. a context-independent manner, resulting in marked differences in the 

range of colors that can attract attention. 
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Introduction 

Early sensory analyses usually provide more information than can be processed at once. 

Selective attention describes the processes applied to limit this input to a smaller subset of 

information. Many theories of visual attention assume that selection is determined by a priority 

map of activation, a topographical representation of the visual field that codes the attentional 

priority of each location. A standard assumption in current models of selective attention is that 

the item at the location with peak priority is selected first for attentional in-depth processing 

(e.g., Awh, Belopolsky, & Theeuwes, 2012; Itti & Koch, 2001; Müller et al., 2010; Navalpakkam & 

Itti, 2007; Wolfe, 2007; Zelinsky & Bisley, 2015; but see Eimer & Grubert, 2014). 

Activation values in the priority map depend on two factors; bottom-up controlled 

factors such as feature contrast or salience (Nothdurft, 1993, 2000) resulting from hard-wired 

properties of early sensory processing, and top-down controlled factors, reflecting observers’ 

selection intentions and search goals. In search for a known target object (forming a task set), it 

is assumed that working memory representation of this object’s properties are activated 

(attentional templates) and that these mental representations guide attention efficiently and 

quickly to task set matching events in the visual field (e.g., Desimone & Duncan, 1995; Folk, 

Remington, & Johnston, 1992; Woodman, Luck, & Schall, 2007). For instance, when observers 

look for red targets, attention can be limited to select red items, presumably reflecting a 

stronger representation of red on the level of the priority map (through tuning of attention to 

red, in other words through response gain modulation of neurons responding to red). Which 

rules, however, govern the top-down tuning of attention to features more specifically? 

The influence of top-down control on attentional priority has frequently been 

investigated with spatial cueing tasks (e.g., Eimer & Kiss, 2008; Folk & Remington, 1998; Jonides, 

1981; Posner & Cohen, 1984). To ensure that observers initiate feature-based top-down control, 
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they are typically asked to search for a target with a pre-specified feature. Folk and Remington 

(1998) for example, asked participants to search for a red target among three white nontargets 

and to identify this target (X or =). To assess how top-down control influences attentional 

selection, they briefly presented a task-irrelevant cue prior to each search array. Across trials, 

this cue was either shown in the target-color (e.g., red) or a distractor-color (e.g., green). 

Importantly, cues were spatially unpredictive with respect to the target location so that 

observers had no incentive to attend to them. Despite the cues’ spatial unpredictability, Folk 

and Remington observed spatial cueing effects; i.e., faster reaction times (RTs) when the target 

was presented at the same relative to a different location than the preceding cue. However, this 

was only the case for cues that possessed the target (red) and not the distractor color (green), 

demonstrating that only cues that matched the top-down task set had attracted (captured) 

attention and therefore facilitated target selection in the subsequent search array. Such spatial 

cueing effects therefore reflect the specific properties (e.g., red) to which top-down control had 

been configured and serve as a measure for successful attentional top-down tuning. Generally, 

such findings were interpreted in the framework of a feature similarity account, claiming that 

attention is top-down tuned to the target’s physical feature (e.g., Anderson & Folk, 2010; Folk & 

Remington, 1998; also see Treue & Martinez Trujillo, 1999). According to feature similarity 

accounts, attentional priority should be highest for items exactly matching the physical target 

feature and should decrease the more an item differs from the set featural target identity. 

More recent findings, however, indicate that attention is not necessarily tuned to the 

physical target features, but can also be biased to relative target attributes in a context-

dependent manner (e.g., Becker, 2010, 2014). In a series of spatial cueing experiments, 

attentional capture was found to depend on whether the cue’s relative features (relative to the 

cue context; e.g., redder, larger, darker) matched the target’s relative features (relative to the 
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target context; e.g., redder, larger, darker). Becker, Folk, and Remington (2013) for example, 

presented observers with orange targets among yellowish orange nontargets (relative target 

color: redder). RT cueing effects were observed for a red cue among orange items as well as for 

a yellowish orange cue among yellow items (both relative cue colors: redder), even though 

neither cue matched the exact physical color of the target. Simultaneously, an orange cue 

surrounded by red context elements did not capture attention (relative cue color: yellower), 

although it matched the specific target color (orange). Such findings support a relational account 

of attention, suggesting that attention can be tuned to the relative, rather than physical target 

color (e.g., Becker, Folk, & Remington, 2010). According to the relational account, attentional 

priority should be highest for items that differ in the same featural direction (e.g., redder or 

yellower) from their context elements as the target from its nontarget elements, independently 

of whether or not these items match the target’s exact feature value (e.g., Becker, 2010). 

Subsequent studies extended on these findings (Becker, Harris, Venini, & Retell, 2014; Harris, 

Remington, & Becker, 2013) and showed that attention will per default be tuned to the relative 

(rather than the physical) target feature when both the target and the target context features 

remain constant.  

In fact, attention was only found to be biased to the physical target feature when an 

orange target was presented randomly among either red or yellow nontargets. This procedure 

of intermixed (redder or yellower) trials rendered the relative target feature unreliable and 

resulted in cueing effects elicited only by physical target color matching (orange) cues, indicating 

that attention was biased to the specific target feature independently of the context (as 

predicted by feature similarity accounts).  

Importantly, the evidence for this relational account is yet solely based on behavioral 

studies that inferred attentional capture from RT spatial cueing effects. RTs, however, are 
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recorded after response execution and constitute a measure of the sum of all processing stages 

from stimulus onset until response execution. They can therefore only be an indirect measure of 

attentional capture, as not only perceptual, but also decisional or response-related processes 

can in theory contribute to the measured spatial cueing effects. Furthermore, in spatial cueing 

tasks, RTs are measured in response to search arrays and not in response to the preceding cue 

arrays where attentional capture is substantiated. Transient, short-lived attentional effects of 

particular cues could therefore dissipate even before the target is actually presented (e.g., due 

to rapid disengagement of attention from the cue; Lamy & Egeth, 2003; Theeuwes, Atchley, & 

Kramer, 2000; see also Kiss, Grubert, & Eimer, 2013, for divergent behavioral and 

electrophysiological findings along these lines). Thus, previous behavioral results on relational 

capture cannot rule out a possible role of feature-based processes in modulating attentional 

capture by the cue (which dissipated before the target was presented), or ascertain that the 

relative features of cue and target in fact modulated early attentional processes (instead of 

later, decisional processes).  

The present study addressed these limitations of behavioral measures by additionally 

using the N2pc component of the event related potential (ERP) as an electrophysiological 

marker of attentional selection. The N2pc is an enhanced negativity over lateral extrastriate 

visual cortex that emerges around 200 ms after stimulus onset contralateral to the side of an 

attended stimulus. Importantly, the N2pc can be locked to the onset of the cue arrays and 

therefore provide a direct measure of attentional capture by particular cues (e.g., Eimer & Kiss, 

2008; Lien, Ruthruff, Goodin, & Remington, 2008; Sawaki & Luck, 2013). 

In two spatial cueing experiments we measured behavioral cueing effects and cue-

locked N2pc components to task set matching and nonmatching cues in a visual search for pre-

specified targets. Critically, fixed-color targets (orange) were either presented in a constant 
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context (red or yellow nontargets for different sets of observers; Experiment 1) or a variable 

context (red or yellow nontargets intermixed across trials; Experiment 2). According to previous 

studies (e.g., Becker et al., 2013; Harris et al., 2013), in Experiment 1 participants should bias 

attention to the relative color of the target (redder, yellower), while in Experiment 2, attention 

should be biased to the target’s physical color (orange). In both experiments, the respective 

(relational or featural) task set matching cues should elicit RT cueing effects (e.g., Harris et al., 

2013). If the faster RTs on trials in which the target is presented at the cued relative to the un-

cued location truly reflect attentional capture on a perceptual level, the same task set matching 

cues should also trigger reliable N2pc components. Moreover, in the absence of rapid 

attentional disengagement from the cue, cues that do not match the respective task set should 

evoke neither behavioral nor electrophysiological evidence of attentional capture (e.g., Kiss et 

al., 2013). 

Experiment 1  

In Experiment 1, we tested whether attention is biased to the physical or relative target 

color when the target and target context colors are fixed. To ensure a generalization of our 

results and to exclude potential confounds by color specific search asymmetries (e.g., color 

specific search asymmetries; Fortier-Gauthier, Dell'Acqua, & Jolicoeur, 2013), one group of 

observers searched for a unique orange target (singleton target) among three yellow context 

items (relative task set: redder; physical task set: orange), whereas a different group of 

observers searched for an orange singleton among three red nontargets (relative task set: 

yellower; physical task set: orange; Figure 1). Search displays were preceded randomly by one 

out of four possible types of cue arrays: (1) In perfectly matching (PERF) cue displays, the colors 

were identical to those of the search displays. The singleton cue possessed the physical target 

color (orange) and was presented among three nontarget-colored context items (i.e., yellow or 
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red, respectively). (2) In relatively matching (RELA) cue displays, the singleton cue matched the 

relative (redder or yellower), rather than the physical (orange) target feature (i.e., a red or 

yellow singleton cue, respectively, among orange context items). (3) In feature matching (FEAT) 

cue displays, the singleton cue matched the physical target feature (orange), but in contrast to 

PERF cue displays, the cue context items had a different color than the nontargets in the search 

array (i.e., red or yellow, respectively, when search array nontargets were yellow or red). (4) In 

non-matching (NONE) cue displays, the singleton cue and cue context color assignment was 

exactly the opposite compared to the target and nontarget color assignment in the search 

arrays (i.e., a yellow or red singleton cue, respectively, presented among orange context items).  

According to a feature-similarity account, the PERF and FEAT cues that matched the 

target’s physical color (orange) should capture attention and elicit behavioral cueing effects and 

solid N2pc components. On the other hand, RELA and NONE cues (red/yellow cues among 

orange context items) should fail to attract attention, as they do not match the physical target 

color of the task set for orange.  

Importantly, according to a relational account, only the PERF and RELA cues should 

attract attention and trigger corresponding behavioral and electrophysiological responses, 

because they both match the relational task set with respect to the cue’s context color (e.g., red 

cues are redder with respect to an orange context). In turn, FEAT and NONE cues should not 

produce such attentional capture effects, as in these displays the cue and cue context color 

assignment is exactly reversed relative to the relational task set (e.g., orange cues are yellower 

with respect to a red context).   

Method 

 Participants. Twenty-four participants from the University of Queensland, Australia, 

completed Experiment 1; twelve completed the redder target condition (9 females, mean age of 
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23 years) and twelve the yellower target condition (11 females, mean age of 22 years). All 

participants were right-handed, reported normal neurological health, color vision, and normal or 

corrected to normal visual acuity. Five participants from the original sample were replaced due 

to exceedingly high alpha or eye movement activity resulting in a loss of more than 25% of trials 

in the artifact rejection. All participants gave informed consent prior to the experiment and 

were compensated with AU$ 20 for their participation. All procedures used in Experiments 1 

and 2 adhered to the ethical principles of human experimental research (Declaration of 

Helsinki), and were approved by the human ethics review committee of the University of 

Queensland.  

Apparatus. Participants were seated in a dimly lit room, and viewed the stimulus display 

(17-inch CRT monitor, 85 Hz, 1,024 x 768 pixels) from a viewing distance of 57 cm. The display’s 

white point was set to D65. Observers pressed one of two designated response keys on a USB 

number pad using their right index and middle finger. Colors were measured with a Mavolux 

colorimeter and are specified in CIE 1976 Lu’v’ triplets with L in cd/m2. 

Stimuli.  Stimuli were generated using the Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997) and were presented on a black background (0.30 cd/m2). Three types of displays were 

presented in each trial: fixation, cue, and target displays (Figure 1). The fixation display consisted 

of a central white fixation cross (0.3˚x0.3˚, line width: 0.03°) and four light gray placeholder 

squares (2°x2°, line width: 0.03°), one in each quadrant of the display, positioned equidistantly 

on the outlines of an imaginary circle with a radius of 6° around fixation. The cue display 

consisted of the fixation display, with the addition of four dot-cues (0.4° x 0.4°, each) positioned 

around each placeholder at the 12, 3, 6, and 9 o’clock locations (on an imaginary circle of 1.3° 

around the center of each placeholder). One of the four dot-cues, the singleton cue, had a 

unique color. The remaining three sets of four-dot cues constituted the cue context and were 
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drawn in the same color. The possible colors in the cue display were yellow (12.0 cd/m2, x = .20, 

y = .55), orange (12.0 cd/m2, x = .29, y = .54), or red (12.0 cd/m2, x = .37, y = .53). These colors 

were combined to four possible cue arrays: (1) an orange cue among yellow context items, (2) a 

red cue among orange context items, (3) an orange cue among red context items, and (4) a 

yellow cue among orange context items. Depending on the target condition (redder, yellower 

target), the cue displays with the orange cue were either PERF or FEAT cues, and the cue 

displays with the red and yellow cue were either RELA or NONE cues (see Fig. 1). 

The target display consisted of the fixation display and four letters (Ls or Ts; 1.0° x 1.4°, 

line width: 0.2°) which were centered inside the four placeholders. Each target display always 

contained two Ls and two Ts. Target letters were orange singletons among three yellow 

nontargets in the redder target condition and among three red nontargets in the yellower target 

condition. 

Design. The color of the target and nontargets was held constant throughout the 

experiment, whereas the cue displays varied across trials. To ensure that the cue was always 

non-predictive of the target location, and that the response (T, L) was independent of the cue 

and target position, the cue type (PERF, RELA, FEAT and NONE), cue position (position 1 to 4), 

target position (position 1 to 4), and target identity (L, T) were fully counterbalanced across 

trials, resulting in 128 trials that were presented in random order. Each participant completed 8 

blocks of 128 trials, for a total of 1,024 experimental trials. 

Procedure. Prior to the experiment, participants were instructed to report the identity 

of the orange target letter in the search display (L or T) by pressing the corresponding left or 

right response key with their middle or index finger, respectively (the key-to-response 

assignment was counterbalanced across participants). Participants were instructed to maintain 
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central fixation throughout each experimental block and to respond as fast and accurately as 

possible.  

Each trial started with the presentation of a fixation display, randomly presented 

between 700 and 1,100 ms. Fixation was followed by the cue, another fixation and then the 

search display, presented sequentially for 47 ms, 153 ms, and 47 ms, respectively (Figure 1). 

After the search array, a fixation display was presented until a response was given and an 

additional 500 ms. After each response, participants received an auditory feedback of a high 

pitched tone for correct (1050 Hz, 100 ms), and a low pitched tone (750 Hz, 100 ms) for 

incorrect, anticipatory and delayed responses (RT <200 or >2,000 ms). Before the start of a new 

trial, the fixation cross was removed for 100 ms to remind participants to fixate for the next 

trial. Participants had breaks after 64 trials during which they received feedback about their 

accuracy rate in the preceding block.  

EEG Recording and Analysis. EEG was recorded using active Ag/AgCl electrodes of a 64-

channel BioSemi ActiveTwo EEG system (Biosemi Instrumentations, Amsterdam, Netherlands), 

digitized at 1,024Hz. The electrooculogam (EOG) was recorded from electrodes placed at the 

outer canthus of each eye, and above and below the left eye. Data were analyzed using the ERP-

LAB Toolbox (Lopez-Calderon & Luck, 2014) and EEGLAB Toolbox (Delorme & Makeig, 2004). 

Offline, the raw EEG was re-referenced to the average of the left and right mastoids, 30 Hz low-

pass filtered (12 dB Butterworth) and down-sampled to 256 Hz. 

 The EEG was segmented from 100 ms prior to 400 ms after cue onset and baseline 

corrected with respect to the pre-stimulus interval (-100 to 0 ms). Trials were excluded from 

analysis if they contained a fast, slow, or incorrect response, if RT exceeded the individual cell 

mean RT by more than 3.5 standard deviations, or if they were contaminated with artifacts 

(HEOG exceeding 80 µV or 16 µV in a step-function with a 200ms window width and a 10ms 
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window step, Luck, 2014; VEOG exceeding 80 µV; all other channels exceeding 100 µV). These 

criteria led to the exclusion of 12.1% of all trials in the redder target condition (ranging from 1.1 

to 24.9%) and 12.1 % in the yellower target condition (ranging from 3.7 to 23.4%). To assess 

residual eye movements, we computed individual HEOG waveforms for left- and right-cue trials. 

For all participants, the averaged HEOG did not exceed 3.2 µV, which suggests that residual eye 

movements were less than 0.2° in size (Lins et al., 1993; see also McDonald & Ward, 1999, for a 

similar HEOG calibration).  

For both target conditions, event-related potentials (ERPs) were averaged separately for 

each combination of cue type (PERF, RELA, FEAT, NONE) and cue side (left, right). N2pc 

components in response to cue arrays were quantified on the basis of mean amplitudes 

obtained in the 210-290 ms time window after cue onset at lateral posterior electrode sites PO7 

and PO8 (similar time windows to substantiate N2pc components at these standard electrode 

sites were for example used by Grubert & Eimer, 2015; Kiss, Grubert, & Eimer, 2013; Kiss, 

Grubert, Petersen, & Eimer, 2012; Lien et al., 2008). 

Results 

An alpha level of .05 (two-tailed) was used to determine statistical significance. The p 

values were adjusted using the Greenhouse-Geisser epsilon correction for non-sphericity when 

necessary. 

Mean RT and Errors. A 422 mixed-measures ANOVAs with the factors cue type (PERF, 

RELA, FEAT, NONE), cue validity (valid [target at cued location], invalid [target not at cued 

location]), and the between-subjects factor target condition (redder, yellower) showed no 

significant interactions involving the factor target condition, neither on mean correct RTs, all Fs 

< 2.53, ps > .10, nor on error rates, all Fs < 1 (or on N2pc amplitudes, all Fs < 1). Therefore, for all 
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further analyses, data were pooled across the two target conditions. Average mean RTs as a 

function of cue type and cue validity are shown in Figure 2.  

The results of a 42 repeated measures ANOVA with the factors cue type (PERF, RELA, 

FEAT, NONE) and cue validity (valid, invalid) computed over the mean correct RTs showed 

significant main effects of cue type, F(3, 69) = 16.98, p < .001, ηp
2 = 0.43, and cue validity, F(1, 

23) = 47.35, p < .001, ηp
2 = 0.67, as well as a significant interaction, F(3, 69) = 17.62, p < .001, ηp

2 

= 0.43, indicating that cueing effects differed between the cues. Pairwise comparisons showed a 

significant cueing effect for PERF cues that were identical to the target (65 ms), t(23) = 8.62, p < 

.001. In line with the prediction of the relational account, RELA cues that matched the relative 

target color elicited significant cueing effects (26 ms), t(23) = 2.68, p = .010, whereas FEAT cues 

that matched the physical target color failed to elicit significant cueing effects (11 ms), t(23) = 

1.04, p = .310. NONE cues that matched neither the relative nor the physical target color 

showed a significantly reversed cueing effect (-30 ms), t(23) = 5.79, p < .001. 

The mean error proportions as a function of cue type and cue validity are displayed in 

Table 1. The same 42 ANOVA computed over the mean error rates showed similar results, with 

significant main effects of cue type, F(3, 69) = 4.02, p = .010, ηp
2 = 0.15, cue validity, F(1, 23) = 

20.91, p < .001, ηp
2 = 0.48, and a significant interaction, F(3, 69) = 7.13, p < .001, ηp

2 = 0.24. 

Pairwise comparisons showed significant cueing effects for PERF cues (3.5%), t(23) = 4.57, p < 

.001, and RELA cues (3.6%), t(23) = 3.79, p < .001. FEAT and NONE cues that did not match the 

relative color of the target did not elicit significant cueing effects, all ts < 1. 

N2pc. Figure 3 (left panel) depicts ERPs at posterior electrode sites PO7/8 contra- and 

ipsilateral to the cue side and the corresponding topographical scalp maps, separately for each 

cue type. The bottom panel shows the respective difference waveforms obtained by subtracting 

ipsi- from contralateral ERPs. As shown in Figure 3, a significant N2pc (increased contra- relative 
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to ipsilateral activity in the 210-290 ms time window post cue) was observed only for PERF and 

RELA cues, but not for FEAT or NONE cues. This observation was confirmed by a 42 repeated-

measures ANOVA on mean N2pc amplitudes with the factors cue type and laterality 

(contralateral, ipsilateral). The ANOVA revealed a main effect of laterality, F(1, 23) = 15.75, p < 

.001, ηp
2 = 0.41, and a significant interaction, F(3, 69) = 16.81, p < .001, ηp

2 = 0.42, indicating that 

N2pc amplitudes differed between cue conditions. In line with the behavioral findings, pairwise 

comparisons revealed a significant N2pc for PERF cues (mean amplitude: -0.96 V), t(23) = 4.69, 

p < .001, and RELA cues (-0.65 V), t(23) = 3.92, p < .001). No reliable N2pc was obtained for 

FEAT cues that matched the physical, but not the relative target feature (-0.04 V), t < 1. NONE 

cues that matched neither the target’s physical nor relative feature triggered a small, but 

significant contralateral positivity (0.29 V), t(23) = 3.24, p < .01. 

Discussion 

The results of Experiment 1 demonstrate that attention was tuned to the relative target 

color (redder or yellower, depending on the nontarget context). In line with the assumptions of 

a relational account (Becker, 2010), only those cues that matched the relative target color (PERF 

and RELA cues) elicited RT cueing effects and reliable N2pc components, indicative of attention 

capture. Cues that did not match the target’s relative color (FEAT and NONE cues) failed to 

produce reliable cueing effects or N2pc components, despite the fact that some of these cues 

shared the target’s physical color (FEAT cues). These results validate that attention to the cues 

depended on a relational task set, which shows that attention was top-down tuned to the 

relative color of the target, not its physical color. Notably, the cues that failed to match either 

the target’s physical or relative color (NONE cues) triggered inverse RT cueing effects and a 

positive deflection contralateral to the cue during the N2pc time window. This positive 

deflection might be interpreted as a PD component (distractor positivity), which has been 
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previously linked to active distractor suppression (e.g., Gaspar, & McDonald, 2014; Hickey, Di 

Lollo, & McDonald, 2009; Jannati, Gaspar, & McDonald, 2013; Sawaki & Luck, 2010, 2013). Cues 

in a different relative color than the target might have received additional suppression when 

they also had a different physical color. An alternative explanation could be that the inverted RT 

cueing effects and the positivity in ERPs reflect attentional ‘misguidance’ towards the cue 

context items, as those shared the target-matching relative (as well as the target’s physical) 

color (Harris et al., 2013). Since only one cue context item of this sort appeared at the side of 

the cue, but appeared twice at the opposite side of the cue, the positivity contralateral to the 

cue might reflect a small, but reliable N2pc to the two opposite side cue context items (Lien, 

Ruthruff, & Cornett, 2010). However, our stimulus setup does not allow deciding whether these 

inverse cueing effects were caused by cue suppression (distractor cue PD) or attentional 

processing of the cue context (target matching context N2pc).1 

A second noteworthy aspect of the results was that the relatively and physically 

matching (PERF) cues elicited larger RT cueing effects than relatively, but not physically 

matching cues (RELA; 65 ms vs. 26 ms), t(23) = 3.91, p < .001. Similar trends were also found in 

the N2pc, though the corresponding difference failed to reach significance (-0.95 μV vs. -0.65 

μV), t(23) = 1.74, p = .10. This feature-specific modulation was not predicted by the relational 

account. However, it is also rather unlikely to reflect a feature-specific bias that co-existed with 

an attentional bias for the relative features, because in this case, the FEAT cue should also have 

attracted attention, contrary to the results. Instead, weaker validity effects for the relatively 

matching cue could be due to faster disengagement of attention from cues and/or faster 

rejection of these cues that commenced after the cue was selected (e.g., Becker et al., 2014). 

According to this view, only the initial transient attention shift would be determined by the 

relative features of target and cue, with subsequent identification processes relying also on 
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feature-specific information. This explanation is in line with the observation that feature-specific 

processes affected the later RT measure more strongly than the earlier N2pc, and with the 

observation that a featural match modulated performance only when the cue already matched 

the relative feature of the target (i.e., had the propensity to attract attention), which would 

otherwise be difficult to explain. 

The finding that all relatively matching cues but not all physically matching cues elicited 

a significant N2pc provides converging behavioral and electrophysiological evidence for 

attentional tuning to the relative target color, rather than the physically exact target color value. 

Critically, in Experiment 1, both the relative and the physical target color remained constant 

throughout the experiment, principally allowing biasing attention to the relative or physical 

target feature. The fact that solid N2pc components were found only in response to cues that 

matched the observers’ relative task set provides further (and for the first time 

electrophysiological) evidence that attention is preferentially biased to the relative target 

properties when the conditions allow successful localization of the target by either its relative or 

physical features (i.e., when the relative and physical feature of the target remains constant; see 

Becker et al., 2014; Harris et al., 2013). 

It could be argued, however, that the attentional bias observed in Experiment 1 was not 

due to a preference, but a necessity. That is, top-down tuning could be rather coarse-grained 

and might not allow top-down selection of all possible individual feature values. For example, a 

possible top-down tuning mechanism described in the Guided Search model (Wolfe, 1994, 2007) 

allows top-down tuning to color via four broad, categorical channels that are centered on 

yellow, blue, green and red. Correspondingly, in search for an orange target among yellow or 

red nontargets, attention could only be tuned to red or yellow, but not orange, because there is 

no orange channel. Furthermore, the target and nontarget colors were quite similar to each 
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other, which could have rendered selection of the target in virtue of its physical color very 

difficult or even impossible (see also Bauer, Jolicoeur, & Cowan, 1998; D'Zmura, 1991; Hodsoll & 

Humphreys, 2001). If it is correct that attention cannot be successfully top-down biased to a 

target feature value such as orange in Experiment 1, it would be wrong to claim that the results 

exemplify a relational top-down tuning mechanism that is inconsistent with the feature 

similarity view.   

Experiment 2 was designed to test whether the stimulus conditions of Experiment 1 

indeed did not allow effective top-down tuning to the target feature value, by encouraging 

observers to bias attention to the physical color of the target in Experiment 2. 

Experiment 2 

In Experiment 2, we tested whether attention can be tuned to a specific target feature 

such as orange. Physical stimulation in both cue and search arrays was identical to Experiment 1, 

but in Experiment 2 we encouraged observers to adopt a task set for the physical target color by 

rendering the use of a relational task set impossible. This was achieved by varying the target’s 

relative features between redder and yellower randomly across trials (we presented the two 

possible target displays from Experiment 1 in an intermixed fashion). In Experiment 2, the target 

color was kept fixed to orange, but the nontargets were randomly red or yellow, rendering the 

target’s relational identity unpredictable (yellower or redder) across trials. With this 

manipulation top-down tuning to a relative target color would not allow efficient target 

detection, thus encouraging observers to bias attention to the physical target feature in a 

context-independent manner (Harris et al., 2013). 

To probe whether attention was tuned to the specific target color, the same four cue 

displays were presented as in Experiment 1 (Figure 1). Given that the nontargets varied 

randomly across trials, none of the cues matched the relative features of the target anymore. 
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Orange cues that were embedded in a red or yellow context were now both feature matching 

cues, and were labeled FEATred and FEATyel, to indicate the different cue contexts. Red and 

yellow cues that were presented in an orange context were now labeled NOred and NOyel, 

respectively, to indicate the cue colors for these non-matching cues.  

If attention can be successfully biased to an intermediate target color value with the 

stimuli used in Experiment 1, only the physically matching, orange cues should capture 

attention. All other cues should fail to attract attention. Conversely, if attention cannot be top-

down biased to the physical target feature (orange), or if such a top-down bias does not result in 

successful selection of the target (e.g., because the nontarget colors are too similar to orange to 

allow discriminating the target from the nontargets), search for the target should be inefficient 

and none of the cues should attract attention. 

Method 

Participants. Twelve new participants completed Experiment 2 (10 females, mean age 

of 24 years). Three participants from the original sample were replaced due to exceedingly high 

overall error rates (> 15%). 

Apparatus, Stimuli, Design, and Procedure. The apparatus, stimuli, design, and 

procedure were identical to Experiment 1 (Figure 1), except that the orange targets were 

randomly embedded in the context of yellow or red nontargets. Trials were excluded based on 

the same criteria as in Experiment 1 (on average 8.3 % of all trials, ranging from 3.9 to 18.8 %). 

Results   

Mean RT and Errors. Mean RTs on correct trials are presented in Figure 4, and mean 

proportions of errors are summarized in Table 2. A 4x2 ANOVA comprising the variables cue type 

(FEATred, FEATyel, NOred, NOyel) and cue validity (valid, invalid) revealed main effects of cue 

type, F(3, 33) = 5.11, p = .005, ηp
2 = 0.32, cue validity, F(1, 11) = 29.91, p < .001, ηp

2 = 0.73, and a 
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significant 2-way interaction, F(3, 33) = 18.97, p < .001, ηp
2 = 0.63. Pairwise comparisons 

revealed significant cueing effects for both physically matching, orange cues [FEATyel: 74 ms, 

t(11) = 6.28, p < .001, FEATred: 63 ms, t(11) = 4.26, p = .001]. The two non-matching cues in turn 

showed reverse cueing effects, with faster RTs on invalid compared to valid trials [NOred: -24 

ms, t(11) = 2.26, p = .045, NOyel: -12 ms, t(11) = 3.30, p = .007]. 

The same ANOVA computed over the mean error rates showed only a significant cue 

type  cue validity interaction, F(3, 33) = 5.51, p = .004, ηp
2 = 0.33. Pairwise comparisons 

revealed significant cueing effects for both target color matching cues [FEATred: 5.0%, t(11) = 

3.13, p = .010, FEATyel: 2.5%, t(11) = 2.84, p = .016]. The physically non-matching red cue 

produced no effect (NOred: -1.4%), t(11) = 0.75, p = .47. The yellow cue showed an inverse 

cueing effect (NOyel: -1.8%), t(11) = 2.86, p = .016. 

N2pc. Figure 3 (right panel) shows the grand average of contra- and ipsilateral 

waveforms, and the respective difference waveforms (contra- minus ipsilateral ERPs) elicited by 

the four different cue types. A 42 ANOVA showed a significant main effect of laterality, F(1, 11) 

= 17.83, p = .001, ηp
2 = 0.62, and a significant interaction between cue type and laterality, F(3, 

33) = 8.49, p < .001, ηp
2 = 0.44. Pairwise comparisons revealed that both target color matching, 

orange, cues elicited significant N2pc components [FEATred: -0.69 V, t(11) = 5.71, p < .001, 

FEATyel: -0.76 V, t(11) = 4.15, p = .002]. However, there was no substantial difference between 

ipsi- and contralateral waveforms for cues that did not match the physical target color [NOred: 

0.03 V, t(11) = 0.29, p = .778, NOyel: -0.12 V, t(11) = 0.69, p = .502]. 

 

Discussion 

The results indicate that attention was tuned to the specific target color in Experiment 

2. Only cues that matched the physical target color triggered behavioral cueing effects and N2pc 
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components, indicative of attentional capture. Cues with target non-matching colors (red, 

yellow) did not produce any behavioral or electrophysiological evidence of attentional 

processing. From these results of Experiment 2 it can be concluded that attention could have 

been biased to the physical target feature in the stimulus conditions of Experiment 1. In other 

words, the results of Experiment 1 were truly due to a strategic task set adaptation rather than 

hard-wired limitations in top-down tuning of attentional selection.    

As in Experiment 1, we obtained inverse RT cueing effects to cues that did not match the 

physical target color. Similar to Experiment 1, these inverted cueing effects might reflect the 

suppression of the target-dissimilar cue color (red, yellow), or the selection of the context cues 

that matched the target color (orange). However, in Experiment 2 the inverse cueing effects 

were not accompanied by a reliable distractor positivity. One might assume that two colors had 

to be suppressed in Experiment 2. However, this requirement evidently did not result in early 

distractor suppression (PD), but can still apparently result in inverse cueing effects (which have 

to be attributed to post-selective processes). 

General Discussion 

Taken together, we measured behavioral and electrophysiological markers of 

attentional capture in two spatial cueing experiments. In search for a fixed target color among a 

constant target context (fixed nontarget colors), observers used a relational task set to guide 

attentional object selection (Experiment 1). Only cues that matched the relative (redder or 

yellower) target color elicited RT cueing effects and N2pc components, indicating that only these 

cues (RELA cues) captured attention. Cues that did not match the relative target color did not 

trigger any behavioral or electrophysiological evidence for attentional processing. Importantly, 

this was even the case for cues that matched the target’s physical color value (FEAT cue) and 

only failed to match the target’s relative color. This pattern of results is in line with the relational 
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account (Becker, 2010) but not with feature similarity accounts (e.g., Anderson & Folk, 2010; 

Folk & Remington, 1998; Folk et al., 1992), which would have predicted attentional capture only 

by cues that matched the target’s physical color.  

Along similar lines, our findings are also not in line with the display-wide orienting 

hypothesis (Gibson & Kelsey, 1998; see Burnham, 2007, for an extensive overview), which 

predicts attentional capture for cueing displays that match the appearance of the target display. 

For instance, Gibson and Kelsey (1998; Experiment 2) demonstrated that display properties such 

as abrupt onsets can mediate attentional capture for abrupt onset cues even when the target is 

not singled out by an onset and the onset is only a display-wide property of the entire target 

display. By contrast, cues containing an irrelevant feature not present in the search display (e.g., 

red, when the search display consisted only of white letters) did not attract attention. Although 

this account also proposes that attentional capture depends on target as well as target context 

features, it cannot explain the observed results pattern. For example, in the redder target 

condition (orange target, yellow nontargets), a set for display-wide features would result in 

capture by any cue display containing the colors orange and yellow, which applies both to the 

relatively and physically matching cue displays (PERF; orange cue among yellow items) and the 

cue displays matching neither the relational nor physical target feature (NONE; yellow cue 

among orange items), which however failed to modulate attention. Furthermore, attentional 

orienting to display-wide features seems inconsistent with the observed capture effects for 

relationally, but not physically matching cues (RELA; red cue among orange items), which 

included features not contained in the target display (e.g., red).  

In sum, the present results favor a relational account over a feature similarity and 

display-wide features account. However, one alternative account that could potentially provide 

an alternative explanation for our results is the optimal tuning account  (e.g., Navalpakkam and 
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Itti,2007). According to this account, attention can be top-down biased to an ‘exaggerated’ 

target feature (exaggerated in the opposite direction of the nontarget feature value 

distribution), to increase the signal-to-noise ratio when the target is difficult to discriminate 

from the non-targets. For example, in search for an orange target among yellow nontargets (the 

redder target in Experiment 1), attention might be top-down biased to red or an intermediate 

color value between red and orange. This might explain attentional capture by relationally 

matching (RELA) cues, as these cues indeed matched the exaggerated target feature (e.g., red). 

Similarly to the relational account, optimal tuning assumes that target and target context 

features jointly determine the mode of attentional control. However, unlike the relational 

account, optimal tuning assumes that attention is tuned to a specific feature value and that 

stimuli only attract attention when they are similar to the exaggerated feature value (in line with 

feature similarity accounts).  

The relational account and optimal tuning account will often make the same predictions 

and are thus difficult to distinguish from one another. Previous studies, however, showed that 

cues possessing the nontarget feature can still attract attention, to the same extent as cues with 

an exaggerated target feature (Becker et al., 2013), which argues against an optimal tuning 

account and supports a relational account.  

In this respect, it is important to note that the relational account can accommodate 

many previous behavioral and electrophysiological findings that were interpreted in favor of 

feature-specific accounts, including feature similarity accounts and the optimal tuning account. 

This holds because most studies varied not only the feature of the cue (target-matching vs. non-

matching feature value) but also the relative feature of the cue (target-matching vs. non-

matching relative feature), and thus cannot distinguish between the different views (e.g., Folk & 

Remington, 1998; Gaspelin et al., 2015; Lien et al., 2008, 2010). For example, in search for a red 
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target among white non-targets, observing attentional capture by a red cue but not a green cue 

(e.g., Folk & Remington, 1998) is consistent both with a relational account and a feature-specific 

account, as the red cue matches both the target feature (red) and the target’s relative feature 

(redder) whereas the green cue matches neither the target feature (red) nor its relative feature 

(redder).  To distinguish the relational account from feature-specific accounts, it is necessary to 

vary the contextual properties of the target and cue independently of their specific feature 

values.  

Previous studies measuring RT validity effects in the spatial cueing paradigm (or eye 

movements in visual search) demonstrated that observers by default mode engage in a 

relational search strategy, and only switch to a feature-specific selection strategy when the 

target cannot be localized in virtue of a stable relative feature (e.g., when the non-targets 

randomly vary; Becker et al., 2013, 2014; Harris et al., 2013). The present results support these 

findings and provide additional electrophysiological evidence for them, by showing that the 

exact same stimuli elicit a relational search strategy when the non-target context is constant 

(Exp. 1) and a feature-specific search strategy when the relative features of the target randomly 

vary (redder/yellower; Exp. 2). 

Critically, when the relationship between target and nontarget colors was made 

unpredictable across trials, the use of a relational task set became impossible, and participants 

swapped their search strategy and based attentional guidance on a task set defining the exact 

physical target color (Experiment 2). As predicted by feature similarity accounts, in Experiment 

2, only cues that matched the exact featural search template attracted attention, as measured 

by RT cueing effects and solid N2pc components; target dissimilar cues, which did not share the 

target color, did not attract attention. This finding is theoretically important as it shows that 

attentional tuning to the relative target color in Experiment 1 was due to a search mode 
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preference and not some hard-wired limitations in attentional control or effects of 

discriminability between target and nontarget features (e.g., Navalpakkam & Itti, 2007; Wolfe, 

1994, 2007).  

Moreover, the EEG results confirmed that these changes in search strategy affect 

processing at an early, perceptual stage (not only later stages concerned with stimulus 

identification or response selection). It can therefore be concluded that previously observed 

relational cueing effects on the behavioral level were not (only) substantiated on post-selective 

processing stages. With this, the present results allow ruling out the possibility that feature-

matching cues would always attract attention (i.e., feature similarity view), but that these 

effects were not detectable in behavioral responses because attention could be rapidly 

disengaged from target-matching cues or distractors (e.g., Theeuwes, 2010; Theeuwes et al., 

2000).  

To sum up, the present results provide the most direct evidence for a context-

dependent mechanism of attentional control, in which the target context determines how 

attention is deployed. Importantly, this is not only behavioral, but also electrophysiological 

support, as RT cueing effects were found to converge with N2pc components that measure 

attentional capture by the cue more directly. Our results therefore show that attentional 

capture strongly depends on the target’s relative stimulus properties and that capture by cues 

that match the relative but not the physical target feature occurs at an early, perceptual stage of 

visual processing.   
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Footnotes 

1 Note that all N2pc components were followed by large positive deflections. In a recent spatial 

cueing experiment such positive deflections following N2pc components were interpreted as PD 

components indexing active suppression of the previously selected cues (i.e., active termination 

of perceptual processing of task-set matching cues to enable subsequent attentional re-

orienting to the target; Sawaki, Geng, & Luck, 2012, Experiment 2). However, in their 

experiment Sawaki et al. used a cue-search array SOA of 1600-1800 ms allowing for all cue-

locked N2pc and PD components to be elicited without being overridden by any perceptual 

components triggered by the onset of the subsequent search array. Due to the short SOA of 200 

ms used in our study any deflections following the N2pc are highly likely confounded by such 

early search array elicited ERPs and were therefore not analyzed. 

2We did not provide a critical test of the optimal tuning account in the present study because 

designs that include a nontarget-colored cue require using four different colors (red, reddish 

orange, yellowish orange and yellow; see, e.g., (Becker et al., 2013). With the present 

equipment, it was not possible to render four different colors easily discriminable while 

maintaining equiluminance for the purpose of EEG measurements (e.g., Woodman, 2010).
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Table 1. Mean error proportions (%) on valid and invalid trials and cue validity effects as a 

function of cue type. 

Experiment 1    Experiment 2   

Cue-type  Cue validity    Cue-type  Cue validity   

  Valid  Invalid  Effect    Valid  Invalid  Effect 

PERF  4.7  8.2  3.5***  FEATyel  5.2  7.7  2.5* 

RELA  3.6  7.2  3.6**  NOred  7.5  6.1  -1.4 

FEAT  7.2  6.7  -0.5  FEATred  4.5  9.5  5.0* 

NONE  7.0  6.5  -0.5  NOyel  7.9  6.1  -1.8* 
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Figure 1. Schematic illustration of the cue and search displays. The same four cue displays were 

presented in both experiments. In Experiment 1, the target and nontarget colors were fixed 

across the entire experiment, and half of the observers searched for an orange target among all-

yellow nontargets (redder target condition), and the other half searched for the same target 

among all-red nontargets (yellower target condition). Depending on the target condition, the 

cue displays with the orange cue were either PERF or FEAT cues, and the cue displays with the 

red and yellow cue were either RELA or NONE cues (see main text for definition of these 

acronyms). In Experiment 2, the two target displays were presented intermixed within a block, 

so that the target was always orange, but randomly redder or yellower than the context. The 

cue displays with the orange cue were now either FEATyel or FEATred cues, whereas the cue 

displays with the red and yellow cue were either NOred or NOyel cues.

L 

L T 

T T 

L L 

T 

Redder target Yellower target 

47 ms 

153 ms 

47 ms 

PERF 

FEAT 

FEATyel 

RELA 

NONE 

NOred 

FEAT 

PERF 

FEATred 

NONE 

RELA 

NOyel 

E1: Redder 

E1: Yellower 

E2: R. or Y. 

Target Cues 



Attentional guidance by relative features 36 

 

Figure 2. Average mean RTs on valid (v) and invalid cue trials (i) from Experiment 1. The gray 

columns highlight the conditions for which relative tuning predicted attentional capture (indicated 

by a positive slope of a linegraph). Error bars show within-subject 95% confidence intervals for the 

respective difference between the valid and invalid cue condition (Franz & Loftus, 2012). * p < .05, 

**p < .01, ***p < .001 
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Figure 3. Contra- and ipsilateral grand average ERPs at electrode sites PO7 and PO8 and 

corresponding topographical scalp maps for each cue type (four top rows), depicted separately for 

Experiment 1 (left panels) and Experiment 2 (right panels). The two bottom panels show the 

difference waves (‘Diff’), which were obtained by subtracting ipsi- from contralateral ERPs. The gray 

shaded areas highlight activity in the N2pc time interval (210-290 ms post cue onset). Scalp maps 

plot negative activity in blue and positive activity in red.
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Figure 4. Average mean RTs on valid and invalid cue trials from Experiment 2, in which the target 

always had a constant feature value (orange), but was randomly presented in a context of all-red or 

all-yellow nontargets. The gray columns highlight the conditions for which attentional capture is 

predicted, provided that attention can be tuned exclusively to the intermediate feature value of 

orange. 
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