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Abstract

Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating
the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic
models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a
sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique
solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in
regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a
localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is
shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and
spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually
arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the
main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

Key words: magnetohydrodynamics (MHD) – Sun: activity – Sun: evolution – Sun: magnetic fields – Sun:
photosphere

1. Introduction

Magnetohydrodynamic (MHD) simulations of the magnetic
field in the Sun’s corona are typically driven by an imposed
evolution on the solar surface. Since the magnetic field B
evolves according to Faraday’s law

( )¶ = - ´B E, 1t

the required boundary condition is the horizontal electric field
( ) ( )q f q f= +q q f fÊ e eE t E t, , , , , written here in spherical

polar coordinates. Unfortunately, this electric field cannot be
observed directly, but must be reconstructed from other
observations. If we assume that the plasma obeys the ideal
Ohm’s law = - ´E v B then Ê can, in principle, be
computed from vector observations of B and of the plasma
velocity v. Fisher et al. (2010, 2012) and Kazachenko et al.
(2014) have developed the most comprehensive method of
estimating electric fields using both vector magnetograms and
Doppler velocity measurements, and have successfully applied
this to observations of active region 11158 (Kazachenko
et al. 2015).

In practice, however, such observations are not routinely
available for the full solar surface. Many authors have therefore
opted to estimate Ê purely by inverting Equation (1), typically
using only a time sequence of ( )q fB t, ,r data (Mikić
et al. 1999; Wu et al. 2006; Mackay et al. 2011; Cheung &
DeRosa 2012; Yang et al. 2012). In this case, only the radial
component of (1) is used,

· ( )¶ = -  ´ ^e EB . 2t r r

The present paper seeks to address one of the potential pitfalls
of this technique.

The fundamental problem of electric field inversion from
Faraday’s law (1) is lack of uniqueness. If we write Ê as a
Helmholtz decomposition

( ) ( )= - ´ F -  Y^ ^E e , 3r

then  ´ Ê depends only on the potential ( )q fF t, , , and is
independent of the choice of the second potential ( )q fY t, , .
Note that our notation interchanges Φ and Ψ compared with
Mikić et al. (1999). In the notation of Kazachenko et al. (2014),
our Φ and Ψ correspond to ̇ and ̇ , respectively. Given that
¶ Bt r is independent of Ψ, the simplest way to obtain a solution
consistent with the given Br data is to set Y º 0. Then (2)
becomes the Poisson equation

( )- F = ¶ B , 4t r
2

which may be solved uniquely for Φ given appropriate
boundary conditions. We call the resulting Ê the inductive
solution for the electric field, and denote it by Ê 0. This
solution has been used to drive coronal models in numerous
studies (e.g., Mikić et al. 1999; Amari et al. 2003; Mackay
et al. 2011; Cheung & DeRosa 2012; Yang et al. 2012; Gibb
et al. 2014; Feng et al. 2015). Unfortunately, there is good
reason to believe that the noninductive potential Ψ is
nonnegligible on the real solar surface. For example, Fisher
et al. (2010) and Kazachenko et al. (2014) have shown that a
noninductive term is required to correctly reconstruct the
electric field from a numerical MHD simulation.
One problem with the inductive solution is its lack of

localization. If the real Ê satisfies Ohm’s law, then it ought to
vanish outside patches of strong Br. As discussed in Section 2,
this is not the case with the inductive solution; the main focus
of this paper will be to choose Ψ to correct this deficiency.
A second problem with the inductive solution is that it

cannot detect electric fields associated with plasma flows along
contours of Br, because ¶ =B 0t r in that case. The corresp-
onding contribution to Ψ may be added if the flows are known.
For example, Kazachenko et al. (2014, 2015) have made this
correction using observations of plasma velocities in active
regions, and the resulting Ê has been used to drive magneto-
frictional simulations (Fisher et al. 2015). On the other hand,
Weinzierl et al. (2016) have included the contribution to Ê
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from a prescribed large-scale differential rotation in their global
magneto-frictional simulations. In this paper, however, we will
put this issue aside and focus only on the localization problem.

In Section 2, we describe the localization problem with the
inductive solution, before characterizing the inductive solution
in a variational framework. This makes the link to our proposed
sparse electric field solution, described in Section 3, which is
designed to restore localization. Numerical tests in both
Cartesian and spherical geometry are presented in Section 4,
while Section 5 considers the limitations of the sparse solution.

2. Inductive Electric Field

2.1. The Localization Problem

Because the inductive potential Φ solves the Poisson
Equation (4), the solution may be expressed in terms of the
Green’s function as

( ) ( )

∣( ) ( ) ∣ ( )

ò òp
F = ¶ ¢ ¢

´ - ¢ + - ¢ ¢ ¢
-¥

¥

-¥

¥
x y t B x y t

x x y y dx dy

, ,
1

2
, ,

log . 5

t z

2 2 1 2

Here we have taken Cartesian coordinates and an infinite plane
for simplicity, but similar solutions hold on a spherical surface.
For a localized source ¶ Bt z, we therefore have that ( )F ~ rlog
for large distance r from the source. The corresponding
inductive electric field Ê 0 therefore decays only as -r 1. In
particular, it may be nonzero well outside the regions of
nonzero Bz.

As an explicit example, consider a bipolar distribution
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In this case, one may solve Equation (4) exactly to obtain the
closed-form solution
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where ( )r=  +r x y2 2 and ( ) ≔ ò
¥ -E x t dte

x
t

1 is the
exponential integral. The logarithmic behavior is clear from
this expression, and the corresponding electric field compo-
nents are plotted in Figure 1.

2.2. Variational Formulation

Another way to characterize the inductive solution Ê 0 is by

the fact that it minimizes the L2-norm ( )≔ ∣ ∣  ò^ ^E E dS
S2

2
1 2

among all possible solutions to (2). This is straightforward to
see by inserting the expression (3) into the norm, which leads
to

∮ · ( )     = +  Y + Y^ ^ ^
¶

^E E E n dS2 . 8
D

2
2

0 2
2

2
2

0

On a periodic or infinite domain, the boundary term vanishes,
and it follows that  Ê 2 is minimized by choosing Y º 0. In
this sense, the inductive electric field Ê 0 is the smoothest
possible Ê satisfying Faraday’s law for a given ¶ Bt z.

2.3. Discrete Formulation

In practice, we work with Ê defined on a discrete numerical
grid, so it is useful to formulate the analogous discrete problem.
In this paper, we discretize Ê on a staggered grid (Yee 1966),
where Ex is defined on the horizontal cell edges, Ey on the
vertical cell edges, and ¶ Bt z at the cell centers (Figure 2). Such
grids are commonly used in MHD simulations. We discretize
Faraday’s law (2) using Stokes’ theorem, so that the equation

( )

D D
¶
¶

=D - D

+ D - D

+ -

- +

x y
B

t
xE xE

yE yE 9

z
i j

x
i j

x
i j

y
i j

y
i j

,
, 1 2 , 1 2

1 2, 1 2,

must hold for each grid cell = ¼i j n, 1, , . (In more general
curvilinear coordinates, the edge lengths and cell areas would

Figure 1. Simple solution in Equation (7), showing ¶ Bt z, the inductive potential Φ, and the resulting Ex0, Ey0. The color scales for ¶ Bt z, Ex0, and Ey0 are clipped at one-
fifth of their maximum.

Figure 2. Staggered grid, where Bz and Φ are defined at cell centers and Ex and
Ey on corresponding cell edges.
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be different for each cell.) This constitutes a system of
linear equations for the unknowns Ex and Ey on each edge.
However, the system is highly under-determined, because there
are ( )+n n2 1 unknowns but only n2 equations. This
nonuniqueness of solution reflects our freedom in choosing
the noninductive component.

In the discrete case, the inductive solution may be computed
by writing

( ) ( )= F - F D+ +E y, 10x
i j i j i j
0
, 1 2 , , 1

( ) ( )= F - F D+ +E x, 11y
i j i j i j
0

1 2, 1, ,

where Fi j, is defined at the cell centers. Then (9) becomes

( )

( ) ( )

¶
¶

=
D

F - F - F

+
D

F - F - F

+ -

- +

B

t y

x

1
2

1
2 , 12

z
i j

i j i j i j

i j i j i j

,

2
, , 1 , 1

2
, 1, 1,

which is simply the standard five-point stencil for the Poisson
equation. In the examples below, we solve this using a standard
fast-Poisson solver (Press et al. 1992).

However, it is instructive to think of the system of
Equation (9) in the more abstract form =x bA , where x is
the vector of unknowns (Ex, Ey), b is the vector of ¶ Bt z values,
and A is the ( )´ +n n n2 12 matrix corresponding to
Equation (9). The inductive solution is then the solution to

=x bA that minimizes the discrete ℓ2-norm ≔  åx xi i2
2 2. In

other words, it is the (unique) least-squares solution to this
under-determined system of equations. As such, the solution
may be written in terms of the Moore–Penrose pseudo-inverse
as ( ) = -x bA AA 1 , although in practice it is much more
efficient to use the fast-Poisson solver. Nevertheless, viewing
the inductive solution as the ℓ2-minimum makes the connection
with the sparse solution that we will describe in Section 3. The
sparse solution is found by minimizing a different discrete
norm of x.

3. Sparse Electric Field

Our idea is to find a sparse solution for x (i.e., Ex, Ey) that
minimizes the number of nonzero values. This should be more
localized than the inductive solution Ê 0. Because it will differ
from Ê 0, this new solution will have a nonzero potential Ψ.
However, we will work directly with the system =x bA
(Equation (9)), rather than solving for Ψ (or Φ) explicitly.

Instead of minimizing the ℓ2-norm of x, as in the inductive
solution, we propose to minimize the ℓ1-norm. In other words,
minimize

≔ ∣ ∣ ( )  å =x x bx Asubject to . 13
i

i1

In the optimization literature, problem (13) is known as basis
pursuit (Chen et al. 2001). It is used in a wide variety of fields,
and has recently been applied to the determination of
differential emission measures in the solar corona (Cheung
et al. 2015). Although minimizing the ℓ1-norm is not strictly
equivalent to minimizing the number of nonzero components
of x, the minimum-ℓ1 solution to an under-determined system
of linear equations is often the sparsest solution to that system
(Candes et al. 2006; Donoho & Tsaig 2008). Numerically, it is
preferable because it is a convex optimization problem that can

be efficiently solved using linear programming (Gill
et al. 2011). For the examples in Section 4, we used the
numerical implementation of basis pursuit in the SparseLab
library.1 This implementation of basis pursuit uses a primal
dual method and has a single parameter controlling the error
tolerance for the optimization (Chen et al. 2001).
For all of the test cases in Sections 4 and 5, with tolerance

10−12, the optimization took only 10–20 s on a desktop
workstation, not including the time to construct the matrix A
(which is only needed once for each grid). This is certainly fast
enough for practical application to a time sequence of ¶ Bt r
maps, as would be needed for driving a coronal MHD
simulation.

4. Numerical Tests

In this section, we compare the inductive and sparse Ê
solutions for two test cases. In the first case (Section 4.1), the
true Ê is known through Ohm’s law, while in the second
(Section 4.2) it is not. Moreover, the first case uses Cartesian
geometry and the second case uses spherical geometry. The
additional problems that arise when applying the technique to
real magnetic data are discussed in Section 5.

4.1. Bipolar Distribution

Our first test case is based on the simplest configuration that
may arise from Ohm’s law. In fact, due to the linearity of both
Ohm’s law and Equation (2), more general test configurations
may readily be obtained by superimposing multiple copies of
this basic configuration. For simplicity, the computation is done
in Cartesian coordinates in a square domain ∣ ∣ <x 3, ∣ ∣ <y 3,
using the discretization described in Section 2.3. Periodic
boundary conditions are applied in both directions.
Our basic solution is the bipolar distribution

( )
d

¶ = -
+⎛

⎝⎜
⎞
⎠⎟B x

x y
exp . 14t z

2 2

2

Physically, this could arise from the uniform advection of a
single magnetic polarity [ ( ) ]d= - +B x yexpz

2 2 2 under an
ideal Ohm’s law ( )= - ´^ ^E v eBz z with velocity

d=v̂ e2 x
2 , in which case

( )d
d

= -
+

^
⎛
⎝⎜

⎞
⎠⎟E

x y

2
exp . 15

2 2 2

2

(In this case we are taking a snapshot at t= 0, because the
polarity is centered on the origin.) Alternatively, the same ¶ Bt z

(with different Bz) might correspond to the emergence of a
bipolar magnetic field from the solar interior. The target Ê
given by (15), along with the ¶ Bt z in (14), are illustrated in the
top row of Figure 3.
The middle row of Figure 3 shows the inductive solution Ê 0

for this ¶ Bt z, which is qualitatively similar to the illustrative
solution in Section 2. Not only is Ê 0 not localized within the
region of nonzero ¶ Bt z, but the topology is wrong: there is a
substantial Ex0 component, despite the fact that Ex=0 for the
target solution. The sparse solution using basis pursuit, shown
in the bottom row of Figure 3, is substantially more accurate.
To demonstrate convergence, Figure 4 shows the absolute

1 SparseLab is freely available for download from http://sparselab.
stanford.edu.
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errors ∣ ∣-E Emax x x
target and ∣ ∣-E Emax y y

target for the sparse
solution, as a function of both grid resolution and the tolerance
parameter in the basis pursuit algorithm. First, the error in ¶ Bt z

is independent of tolerance or grid resolution, indicating that
the constraint =x bA is preserved to high accuracy in all cases.
Second, there is convergence in both Ex and Ey as the tolerance
is reduced. The error in Ex is independent of resolution,
whereas that in Ey saturates at a (higher) level depending on
grid resolution. This simply reflects the truncation error in the
numerical approximation (9) for the curl, which is quadratic in
Dx. The saturation is not seen in Ex because of our particular
target solution Ex=0.

4.2. Spherical Distribution

To demonstrate how the sparse reconstruction performs on a
more realistic example, we have taken a snapshot from a flux-
transport simulation of ( )q fB t, ,r in spherical coordinates,
covering the full solar surface. The reason for using a simulated
map rather than an observed synoptic magnetogram is to ensure
perfect flux balance; the consequences of not having flux
balance will become evident in Section 5.
We used the flux-transport model described by Yeates et al.

(2015), for which the numerical code is freely available

Figure 3. Electric field reconstructions from (14) with d = 0.052 , discretized with grid size n=256 (only part of the domain is shown). The top row shows the target
solution, middle row the inductive solution, and bottom row the sparse solution (with tolerance 10−12). The numbers in brackets are maximum absolute errors.

Figure 4. Convergence of the sparse solution for (14), as a function of the
tolerance parameter (x-axis) and grid resolution (colors). The maximum
absolute errors are shown for Ex (solid lines/squares), Ey (dashed lines/
diamonds), and ¶ Bt r (dotted–dashed lines/asterisks). The colors refer to grids
with n=32 (blue), n=64 (red), n=128 (green), n=256 (magenta), and
n=512 (cyan).
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(https://github.com/antyeates1983/sft_data). As input data,
we used synoptic maps of Br from the Global Oscillation
Network Group (GONG, gong.nso.edu/data/magmap/),
starting in Carrington rotation 2073 and generating the output
snapshot in rotation 2109. As described by Yeates et al. (2015),
the input maps are used (a) to initialize Br at the beginning of
the simulation, and (b) to extract the strong flux regions used to
update Br during the evolution. The computation used a
360×180 grid, equally spaced in longitude (f) and sine
latitude ( qcos ).

For context, Figure 5(a) shows the Br map from the flux-
transport simulation, while Figure 5(b) shows the ¶ Bt r map
from the same time. Because the simulation uses a super-
granular diffusion rather than imposing convective velocities,
the map appears smoother than would a real observed map. To
make the ¶ Bt r map look more realistic, we have added random
noise to produce the map in Figure 5(c). The noise is carefully
constructed to preserve local flux balance, and is generated by
adding a bipolar distribution

( )
( ) ( )

( )b
d

- -
- + -⎛

⎝⎜
⎞
⎠⎟i i

i i j j
exp 16i j

i j
,

0
0

2
0

2

,
0 0

0 0

centered at each pixel ( )i j,0 0 on the ( )fs, grid. The magnitude
b i j,0 0 at each pixel is chosen from a normal distribution with
mean zero and ∣ ∣s = ¶ B0.005 maxi j t r,0 0

, and the size d i j,0 0 is
either 1 or 2 pixels, with equal probability. In addition, we
rotate the pattern by 90° at each particular pixel with equal
probability. This generates a more realistic map as shown in
Figure 5(c).

Figure 6 shows the inductive and sparse reconstructions of
Ê from the map in Figure 5(c). To account for the spherical
coordinates, Equations (10)–(12) have been modified to include
the necessary coordinate factors. The right-hand column of
Figure 6 shows that both methods preserve ¶ Bt r to high

accuracy, as in the Cartesian test. Unlike in the Cartesian test,
however, we no longer compare to a target Ê , since the Ê
corresponding to our added noise is unknown. Nevertheless,
we can still see that the sparse reconstruction is superior to the
inductive reconstruction. This is because, although the ¶ Bt r
distribution is more complex than in the previous test, the
sparse Ê is still much better localized within regions of strong
¶ Bt r than is the inductive Ê . Moreover, it has a weaker Ef than
Eθ, which is consistent with the fact that the dominant Ohm’s
law contribution in the flux-transport simulation was from
differential rotation (vf). This is not the case in the inductive
solution. Thus we are confident that the sparse solution is
superior to the inductive solution not just for simple test cases,
but also for more complex ¶ Bt r distributions that are
qualitatively similar to those on the Sun.

5. Limitations

As with any inverse problem, care is needed in the
application of our sparse reconstruction technique. In this
section, we consider two limitations that can be important in
the practical application to the driving of coronal MHD models.

5.1. Diffuse Distributions of ¶ Bt r

The sparse solution makes the physical assumption that Ê
should be localized because it satisfies Ohm’s law for a
localized B. If the magnetic field distribution is too diffuse,
then we cannot expect the assumption of localization to recover
the correct (diffuse) Ê .
To illustrate what happens if we do try to apply the sparse

reconstruction in such a situation, consider the horizontal
diffusive spreading of an initial Gaussian magnetic polarity
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From the resistive Ohm’s law ( )h=  ´Ê eBz z , we get
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Faraday’s law then gives
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For this exercise, we fix a=0.5 and h =t 0.1. The solution is
shown in the top row of Figure 7.
It is important to note that, in this case, Ohm’s law

is compatible with a purely inductive solution, because Ê from
Ohm’s law has the inductive form with ( )F =x y t, ,

( )hB x y t, ,z . Indeed, the middle row of Figure 7 shows the
inductive solution to reproduce the target Ê in this case.
However, the bottom row shows that the sparse solution using
basis pursuit does not converge to the target. Rather, it favors a
concentration of Ex along vertical lines, and Ey along horizontal
lines. This behavior is typical when the target Ê is too diffuse.
It is not possible for the total spatial extent of Ê to be more

Figure 5. Input data for the spherical test case, showing the distributions of (a)
Br and (b) ¶ Bt r from the flux-transport model. Panel (c) shows the map of ¶ Bt r

with added noise that we use for the test. The maps are saturated at ±20% of
maximum for (a), and ±5% of maximum for (b) and (c).
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Figure 6. Electric field reconstructions for the spherical test case (Figure 5(c)). The top row shows the inductive solution and the bottom row shows the sparse solution
(with tolerance 10−12). For comparison, all electric fields are saturated at ±20% of the maximum inductive ∣ ∣qE , while ¶ Bt r is saturated at ±5% of the maximum input
value. The numbers in brackets give maximum absolute (discretization) errors.

Figure 7. Electric field reconstructions from Equation (20), discretized with grid size n=256. The top row shows the target solution, middle row the inductive
solution, and bottom row the sparse solution (with tolerance 10−12). The numbers in brackets are maximum absolute errors.
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localized than ¶ Bt r, owing to the constraint of satisfying (2).
But it is possible for more of the electric field to be
concentrated in thinner regions, and this is what minimizing
the ℓ1-norm does.

This limitation is an obvious one, and limits the sparse
solution technique to input maps where B is sufficiently
localized. Fortunately, this situation is typical on the Sun, given
high enough resolution. The flux-transport test case in
Section 4.2 showed the method to work for realistic solar
magnetic maps at the resolutions of present-day simulations.
However, there is another more subtle problem with real data,
which we describe in the following section.

5.2. Flux Imbalance in ¶ Bt r Maps

For a localized Ê to exist, it is necessary not only that ¶ Bt r is
localized, but that the net flux ò ¶ B dA

S t r vanishes over the
region S of localization. To see this, apply Stokes’ theorem on
some closed curve that encircles S. If the net flux in S is
nonzero, then there must be nonzero Ê somewhere on the
bounding curve, and indeed on any curve enclosing nonzero
net flux.

This condition of vanishing net flux is satisfied by both of
our simple examples in (14) and (20), and by every local flux
concentration in the flux-transport test case (Section 4.2). But it

Figure 8. Sparse electric field reconstructions from the spherical test case (Figure 5(c)), modified to simulate assimilation of a new bipolar region. Each row simulates
a different time of observation where the assimilation window (black outline in the right-hand column) has shifted leftward by one day of solar rotation. Here no
correction for the flux imbalance in ¶ Bt r has been applied.

Figure 9. Sparse Eθ for different methods of global flux correction.

Figure 10. Input from the ADAPT model, showing Br (for context) and the
computed ¶ Bt r . The plots have been saturated at50 G and ´ - -3 10 G s4 1,
respectively.
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need not be satisfied in an observationally derived map of ¶ Bt r ,
even if a flux correction has been applied. We will demonstrate
this problem first in a controlled test and second in a “real”
data-assimilative model.

For the controlled test, we modify the input map from
Section 4.2 to simulate the typical situation where new
magnetogram observations are assimilated only within a finite
region on the visible face of the Sun. The most severe problems
of flux imbalance occur when a new active region has emerged
on the far-side of the Sun, and is gradually assimilated into the
magnetic map as it rotates into view.

Figure 8 shows our test. Here the original ¶ Bt r map, from
Figure 5(c), has been modified to simulate the gradual
assimilation of a new bipolar active region. In the right-hand
column of Figure 8, the assimilation region is indicated on the
modified ¶ Bt r maps. Each row corresponds to a different time
as the new active region rotates into view, with the times
differing by one day of solar rotation (i.e., 27 .2753 in these
Carrington maps).

When the new region is fully contained within the
assimilation window (bottom row of Figure 8), it makes only
a localized contribution to the sparse Ê , correctly reproducing
Ê as in Section 4.1. But when the region is only partially
observed, there is an unbalanced flux of ¶ Bt r , both in the
assimilation window and in the entire map. Correspondingly, it
is impossible to find a localized electric field and the sparse
solution fails. In the area of the new region, we see similar
linear structures to the diffusive example in Figure 7, where the
flux was also not locally balanced. But notice that the electric
field is modified not only near the new region, but also at
farther distances.

Of course, this is a rather unrealistic test. If Ê was being
used to drive a coronal MHD model, for example, one would
correct the ¶ Bt r map for flux balance, before trying to compute
Ê . In Figure 9 we show the effect on Eθ of first making a flux-
balance correction to the ¶ Bt r map (from the top row of
Figure 8). The middle and right plots show the results with
two different methods of flux correction. In the “additive”
method, an equal amount is subtracted from each pixel
in the 360×180 grid to remove the imbalance. In the

“multiplicative” method, all the pixels where ¶ >B 0t r are
multiplied by a constant factor +f , and all pixels where
¶ <B 0t r are multiplied by another constant factor -f . The
factors +f , -f are chosen so that the net flux vanishes after
scaling, and is equal to the mean of the positive and negative
fluxes before scaling. Comparing the results in Figure 8, it is
evident that neither method of flux correction gives much
improvement in the reconstructed Eθ (or Ef). Only by limiting
the flux correction to the active region itself could the solution
be improved.
Similar behavior is found when we apply the sparse

reconstruction technique to a time sequence of Br maps
generated by the Air Force Data-Assimilative Photospheric
Flux Transport (ADAPT) model (Arge et al. 2010; Henney
et al. 2012). This model assimilates observed magnetograms
from the visible face of the Sun into a surface flux-transport
simulation, so as to approximate the global distribution of Br on
the solar surface, as a function of time. The data assimilation
means that the electric field Ê is not known everywhere in the
map, so must be reconstructed if these maps are used to drive
coronal MHD simulations.
As an illustration, we choose an ADAPT run driven by

GONG magnetograms, and extract ¶ Bt r for 2014 November
16, 00:00 UT. This particular date was chosen because
Weinzierl et al. (2016) found a significant nonlocalized Ê 0
caused by reassimilation of a large active region (see their
Figure 11). Here, we process the ADAPT data by (i) applying a
multiplicative correction for flux balance; (ii) applying a spatial
smoothing to the maps; and (iii) remapping to a 360×180
grid in f and qcos . The time derivative ¶ Bt r is then estimated
using a Savitzky–Golay smoothing filter (of total width 18 hr),
generating the map shown in Figure 10. The position of the
data-assimilation window is evident in the map of ¶ Bt r , with
the largest contribution coming from the main active region
AR12209. (This is not newly emerging, but has significantly
changed its structure since it was last observed on the previous
Carrington rotation.)
In Figure 11, we show the inductive and sparse solutions for

Ê in this case. Because there is such a dominant source of
¶ Bt r, there are significant nonlocal electric fields in the

Figure 11. Inductive (top) and sparse (bottom) electric field solutions, for the ¶ Bt r map derived from ADAPT Br maps. The electric field components are saturated at
±20% and ¶ Bt r at ±10%.
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inductive solution, which is in contravention of Ohm’s law.
The sparse Ef is rather better, but the sparse Eθ is still not
correctly localized. The cause of this is the flux imbalance in
the original ADAPT map for ¶ Bt r , as in the previous test
(Figure 8). Again the global flux correction has not really
helped the problem. We conclude from these tests that lack of
local flux balance is the main obstacle to driving coronal MHD
models with data-assimilative magnetic maps.

6. Conclusion

In this paper, we have shown how a sparse reconstruction
technique based on the idea of searching for a localized
solution allows one to recover accurate Ohm’s law Ê based on
seemingly insufficient data of just ¶ Bt r. The technique is
potentially useful for driving coronal MHD simulations from
time sequences of photospheric Br maps.

However, we have also identified a difficulty that can arise if
one tries to compute the sparse electric field from maps where
observational magnetogram data have been assimilated (e.g.,
Schrijver & De Rosa 2003; Upton & Hathaway 2014;
Hickmann et al. 2015). Namely, the errors in ¶ Bt r that lead
to local flux imbalance can prevent the sparse solution from
being a good approximation to the real Ê (meaning the Ê that
satisfies both Faraday’s law and Ohm’s law). This implies that
the ¶ Bt r map must first be corrected if Ê is to be reconstructed
successfully. We have shown in Figure 9 that straightforward
“global” methods of correcting the flux—whether additive or
multiplicative—are insufficient to remove the problem. But this
does not mean that a more sophisticated preprocessing method
could not be successful; this is a possible direction for future
research.

The problem of flux balance is probably best addressed at
source, when the Br maps are produced. This is easy to achieve
in an idealized flux-transport model, but not in one with direct
assimilation of observed magnetogram data. Yeates et al.
(2015) introduced a flux-transport model where entire, flux
balanced, bipolar regions are assimilated based on synoptic
magnetograms (as used for our test case in Section 4.2). But it
remains an open problem to assimilate higher-resolution
magnetogram data in a manner that enforces, as far as possible,
local flux balance in Br.
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