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Abstract 28 

Soft alluvial soils present unfavourable conditions for engineering developments, due to their poor bearing 29 

capacities and high potential for experiencing shrinkage and swelling. This paper focusses on deep dry soil mixing 30 

(DDSM), which introduces cementitious binders to soft soils via a rotating auger drill; thereby producing soil-31 

cement columns. Ordinary Portland cement (CEM-I) is globally used across the construction industry and is the 32 

most commonly used binder for DDSM applications, due to its high strength performances. However, CEM-I 33 

production is one of the world’s most energy intensive and expensive industrial processes; contributing 5-7% of the 34 

world’s total CO2. There is now significant pressure on the cement and construction industries to greatly reduce 35 

their CO2 emissions by developing “greener” alternatives to CEM-I, which are both more environmentally and 36 

financially sustainable in the long-term. Alkali activated industrial by-products (IBP's) such as ground granulated 37 

blast furnace slag (GGBS), known as geopolymers have been identified as potential alternatives. These are 38 

advantageous due to negating the need to transfer IBP's to landfill, their abundance, negligible or zero production 39 

costs. Geopolymers are capable of reducing greenhouse gas emissions by up to 64%. Calcium-bearing slags have 40 

also been found to possess potential for carbon capture and storage (CCS). Comparisons with the strength and 41 

durability of untreated and stabilised soils have been made in this study. Results indicate that stabilising an alluvial 42 

soil with sodium hydroxide (NaOH) activated GGBS produced significant strength and durability improvements 43 

surpassing CEM-I. The addition of NaOH allowed pozzolanic reactions to occur, leading to improved mechanical 44 

properties with time; primarily strength. 45 

 46 
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1.0 Introduction 51 

Soft soils including alluvium present problematic ground conditions, given their poor bearing capacity, 52 

shrinkage/swelling, settlement and durability properties. Various ground improvement techniques may be adopted 53 

to enhance the engineering performance of such soils, whereby the most appropriate technique depends on the 54 

physico-chemical properties of the soil in question. Deep dry soil mixing (DDSM) is becoming an increasingly 55 

popular and effective ground improvement technique in the UK for treating such soils by creating cemented soil 56 

columns via auger mixing. Since the development of the DDSM technique, lime and Ordinary Portland Cement 57 

(CEM-I) have traditionally been used as the binders, given their abilities to produce impressive strengths - 58 

particularly for CEM-I. The presence of soil water and calcium silicates/aluminates within the cementitious binders 59 

injected into the soil during mixing react to form hydration products including calcium silica hydroxide (C-S-H) 60 

and calcium aluminate hydroxide (C-A-H) gels. For DDSM, the physico-chemical properties of a soil to be 61 

considered in selecting the most appropriate cementitious binder include particle size distribution, plasticity, pH, 62 

moisture content, cation exchange capacity (CEC), specific surface area, organic and sulphate contents. For lime 63 

and cement stabilisation to work effectively; low organic contents (<1%), low sulphate contents (<0.3%) and clay 64 

contents of 10 – 50% are required (Tutumluer, 2012).  65 

Unfavourable environmental and financial issues are associated with utilising CEM-I as a binder. Cement 66 

production contributes 5 – 7% of global CO2 emissions (McLellan et al., 2011). Increases in such emissions are 67 

anticipated to have long term adverse warming effects on the global climate; the consequences of which include 68 

changing weather patterns, melting polar ice caps, rising sea levels and ocean acidification (EPA, 2015). These 69 

effects will have potentially major impacts on marine and land based life. Therefore, it has become extremely 70 

important for the construction industry to become more sustainable by using materials with lower values of 71 

embodied CO2. The continued use of CEM-I is also financially unsustainable, whereby its manufacture is energy 72 

intensive and expensive. The electrical energy consumed per ton of CEM-I produced is 75 kWh (Madlool et al., 73 

2011). The UK’s price indices of electricity and coal as fuels rose by 75 and 63% respectively between 2005 and 74 

2011. Similar trends were observed during the same period in the United States, whereby electricity and coal prices 75 

increased by 19 and 47%, respectively (Imbabi et al., 2012). Since the Fukushima nuclear disaster in 2011, global 76 

coal prices have reduced by half to approximately $70 per ton (Reuters, 2015), as have oil prices from $120 to 77 

approximately $45 per barrel (LSE, 2015). However, according to DECC (2015) and EIA (2015), electricity prices 78 

in the UK and US have remained relatively constant since 2011. 79 
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Hence, there is a need to identify more environmentally and financially sustainable replacement binders. These 80 

binders should satisfy the following criteria in that they: 1) provide engineering performances comparable to or 81 

surpass those of CEM-I within similar curing times, 2) be commercially available at comparable/lower prices than 82 

CEM-I, 3) produced in such a way that fuel costs are markedly lower than those affiliated with CEM-I production 83 

whilst incurring lower CO2 emissions. A modern popular route for selecting new binders has been to recycle 84 

alumino-silicate based pozzolanic industrial by-products (IBP’s) such as ground granulated blastfurnace slag 85 

(GGBS) and pulverised fly ash (PFA). Such materials are already being used as additives to cement mixtures; 86 

namely CEM-II for PFA and CEM-II/III for GGBS. Per Hanson (2014), GGBS is preferred over PFA in the UK as 87 

a replacement for CEM-I in cement mixtures due to its higher levels of replacement and ability to produce higher 88 

strengths compared with PFA. However, the aim of this research area is to design new low carbon cementitious 89 

binder mixtures which negate the need to use any lime or CEM-I. 90 

Laboratory and field-based research by workers including Hughes and Glendinning (2004) and Sargent et al. 91 

(2013) have demonstrated that GGBS has significant potential as a sustainable replacement for lime and CEM-I; 92 

whereby Hughes and Glendinning (2004) implemented GGBS for stabilising peaty soils through DDSM along the 93 

Channel Tunnel Rail Link. However, there are instances when soil pH is too acidic and moisture contents are too 94 

high for strength gains to develop when just using GGBS. The hydraulicity of the GGBS is latent - i.e. confined 95 

within its glassy structure (Newman and Choo, 2003). Hence, the addition alkali-activators aims to release the 96 

GGBS reactivity by raising soil pH and ultimately increase rates at which the mechanical properties of stabilised 97 

soils are improved (Palomo et al., 1999). Once the stabilised soil's pH reaches 10.5 (Davidson et al., 1965), the 98 

GGBS reactivity has been triggered and will start to react over long periods of time with the soil water via 99 

pozzolanic reactions to produce cementitious gels. Such materials are known as “Geopolymers”. 100 

The continued use of lime as an alkali activator is environmentally unfavourable due to their high carbon costs. 101 

According to Shi et al. (2006), solid NaOH flakes/pellets and Na2SiO3 solution are becoming two of the most 102 

widely available and popular activators for use in concretes and cements. Cristello et al. (2011) used NaOH and 103 

Na2SiO3 to activate IBP’s (class F PFA) for use in DDSM treatment of a low plasticity sandy clay. Field testing 104 

results demonstrated that the activated geopolymer produced higher strengths compared with CEM-I.  105 

Per Habert et al. (2011) lower financial and environmental costs are associated with their production over lime and 106 

CEM-I. However, NaOH flake/pellet production has lower environmental impacts (3.71 x 10
-1

 kg CO2 eq, human 107 

toxicity level of 15.84 kg 1,4-DB eq and a freshwater ecotoxicity of 3.98 kg 1,4-DB eq) compared with Na2SiO3 108 
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solution, which has a high global warming potential of 117.8 kg CO2 eq, high human toxicity level of 82.75 kg 1,4-109 

DB eq and a high freshwater ecotoxicity of 21.84 kg 1,4-DB eq.  110 

Further justification behind using NaOH over Na2SiO3 as an activator is that the latter has a higher accelerated 111 

carbonation depth when used within geopolymer pastes, which has been attributed to the composition and structure 112 

of the C-S-H gels formed; whereby NaOH activated slags have a higher Ca/Si ratio (1.2) compared with Na2SiO3 113 

activated slags (Bernal, 2014). However, with NaOH activated slags possessing such a higher Ca/Si ratio and 114 

reduced silicate chain length, these properties may consequently favour the precipitation of increasing quantities of 115 

carbonates to fill pore spaces. The MgO content of slags has been identified to have a significant role in the 116 

mechanism and extent of carbonation; whereby slags with higher MgO content are more likely to be less effected 117 

by carbonation. Thus, on this basis and the typical MgO contents of various slag types per Sanna et al. (2012), the 118 

extent to which carbonation extends within GGBS-based geopolymers is anticipated to be lower compared with 119 

steel slags, argon-oxygen decarburisation (AOD) process slag and most ash wastes (e.g. PFA). 120 

Under accelerated carbonation testing (i.e. >1%), if alkali-activated slag pastes show similar carbonation depths as 121 

CEM-I pastes, it is considered likely by Bernal (2014) that the alkali-activated slag will be much more durable 122 

under natural (atmospheric) carbonation conditions. C-S-H gels within alkali-activated slag mixtures are known to 123 

be prone to turning into amorphous silicate gels post-carbonation, which consequently reduces the strength of the 124 

material (Song et al., 2014). Whilst using higher dosages of alkali-activated slag binders significantly reduces the 125 

carbonation depth (Bernal, 2014), simply adjusting the slag/alkali activator ratio of the binder in favour of the 126 

activator causes an increased rate of reaction, produces more C-S-H and therefore increases strength and 127 

carbonation resistance (Song et al., 2014). Experiments undertaken by Song et al. (2014) demonstrated that by 128 

changing the GGBS/alkali activator ratio from 94/6 to 86/14, this increased 28 day compressive strengths (no 129 

carbonation) from 14.9 to 42.5MPa, increased 21 day carbonated compressive strengths from 7.6 to 28.9MPa and 130 

reduced carbonation depth from 25 to 10mm – which is typical for pastes using CEM-I. 131 

This paper investigates whether NaOH can successfully activate GGBS to ultimately produce engineering 132 

performances similar to CEM-I and lime when incorporated within a soft alluvial soil whilst minimising 133 

carbonation potential, and whether the binder is suitable for use in DDSM treatment. 134 

 135 

 136 

 137 
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2.0 Soil and Binder Materials 138 

2.1 Lanton Alluvium 139 

For this paper, an alluvial soil was sourced from the flood plain of the River Glen in Lanton, 4km north west of 140 

Wooler in Northumberland, UK. Disturbed and undisturbed U100 samples from depths of 1.5 – 2.4m were 141 

obtained. 142 

 143 

2.2 Cementitious Binder 144 

The IBP binder used for this research was ground granulated blast-furnace slag (GGBS) supplied by Hanson 145 

Cements Ltd. A particle size distribution (PSD) curve for the GGBS is provided within Figure 1. For comparison 146 

purposes, non-activated GGBS, CEM-I (supplied by Lafarge) and lime (supplied by Fisher Scientific UK Ltd) were 147 

also used. To ensure that the binder to be utilised for stabilising Lanton alluvium in this paper had low embodied 148 

carbon in terms of energy and production costs, lower financial cost and reduced potential carbonation depth, the 149 

Na2SiO3 solution activator was not used. Thus, solid NaOH pellets were used as an activator, which was supplied 150 

by Fisher Scientific UK Ltd. 151 

 152 

Table 1: Summary of the GGBS properties. Courtesy of Hanson (2016) 153 

Property Value 

Granulated grain size (mm) 0-5 
Colour Light grey 

Odour N/A 

pH (DEV-S4-eluate according EN 12457-4 10 - 12 
Density at 20oC (Mg/m3) 2.4-3.0 

Water solubility (g/l) <1 

Melting/freezing point (oC) >1000 
Flash point N/A (inorganic) 

  

Composition:  
EG-Nr.  266-002-0 

CAS-Nr. 65996-69-2 

CaO (%) 40 
SiO2 (%) 35 

Al2O3 (%) 12 

MgO (%) 10 
Fe2O3 (%) 0.2 

 154 

3.0 Methodologies 155 

3.1 Soil Index Properties 156 

A series of geotechnical index tests were conducted according to BS 1377 (BSI, 1990). These included PSD 157 

through wet sieving and sedimentation (Figure 1), Atterberg limits (LL = 35.7%, PL = 20.7%, PI = 15.0), particle 158 

density (2.61Mg/m
3
), natural in-situ moisture contents (25%) and compaction testing to determine the soil’s 159 

optimum moisture contents (14.7%), bulk (2.0Mg/m
3
) and dry (1.74Mg/m

3
) densities. According to BS 5930 160 
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(2015), Lanton alluvium may be categorised as a silty SAND in terms of dry density. A summary of these 161 

geotechnical index properties is provided within Table 2. 162 

Modern day loadings imposed on geotechnical structures and foundation soils are generally complex, comprising a 163 

mixture of monotonic, cyclic and dynamic loadings occurring at different magnitudes over various timescales. With 164 

reference to the cyclic and dynamic loads, these may be imposed by human-related activities such as high-speed 165 

trains and highway loads and/or natural phenomena such as earthquakes. Depending on the soil type, moisture 166 

content and loading conditions, both human-related activities and earthquakes can cause soil liquefaction, which if 167 

occurs can severely compromise the integrity of geotechnical structures, along with any other surrounding 168 

infrastructure. Thus, the potential of the Lanton alluvium to undergo liquefaction upon cyclic/dynamic loading was 169 

assessed according to Japanese criteria defined by Tsuchida (1970) for port and airport design. This criteria was 170 

selected on the basis that Japan is a seismically active region with a well established background into understanding 171 

the liquefaction behaviour of soils and the remediation measures available. Additionally, the UK does not currently 172 

have any such comparable British Standards whereas ASTM only has a standard which evaluates a soil's 173 

liquefaction potential through the normalisation of penetration resistance specifically for sands. 174 

According to Tsuchida's (1970) soil grading criteria, the Lanton alluvium's PSD curve (Figure 1) lies within the 175 

zone for soils which may potentially liquefy. This raises concerns about the soil’s strength, thereby emphasising the 176 

need for treatment to ensure that the ground conditions are suitable for future engineering developments, 177 

particularly those involving variable cyclic and dynamic loadings. 178 

The soil was also subjected to physico-chemical tests to understand their capacities to react with binders and 179 

produce cementitious gels. The pH of the soil in its untreated and stabilised states after various curing periods were 180 

measured per BS 1377 part 3 (BSI, 1990). CEC and specific surface area testing were also conducted. The former 181 

provides an estimate of the number of sites on clay minerals where cation exchange may occur. Soils with high 182 

surface area values (i.e. higher clay contents) result in higher CEC values. These properties provide insights into 183 

the soil’s potential for undergoing cementitious reactions. The method used for CEC analysis was BS 7755 (1995). 184 

The CEC-related charge density (σCEC) for the soil was obtained as follows: 185 

𝜎𝐶𝐸𝐶 =  
𝑒 (𝐶𝐸𝐶 𝑥 10−2) 

2 𝑎𝑏
 

where e is the elementary charge (1.6022 x 10
-2 

C), a and b are unit cell parameters for clay minerals in the x-y 186 

plane (Meunier, 2005). The soil had an average CEC of 11.45cmol/kg and σCEC of 0.0019. 187 

 188 
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 189 

Figure 1: PSD curves for Lanton alluvium soil (red) and GGBS (blue) with Tsuchida (1970) liquefaction criteria superimposed 190 

(red area “1” denotes zone for most liquefiable soils, green area “2” denotes zone for potentially liquefiable soils). 191 

 192 

The Brunauer Emmett Teller (BET) nitrogen absorption method (Brunauer et al., 1938) was adopted to determine 193 

the surface area of the Lanton alluvium by using a Micromeritics Tristar 300. An average surface area of 6.45m
2
/g 194 

was recorded for the soil. Total organic carbon (TOC) and total organic matter (TOM) testing revealed low values 195 

of 0.42% and 0.76%, respectively. Per Nair and Little (2009), sulphates within soils can have detrimental effects on 196 

their engineering performances when stabilised with cementitious binders. This arises from the likely formation of 197 

ettringite and/or thaumasite, which swell upon contact with water. The sulphate content of the soil was determined 198 

through the use of a Dionex Ion-Chromatography ICS-1000, which revealed a low sulphate content of 49 mg per 199 

kg. Finally, 100 mm diameter remoulded and undisturbed samples of Lanton alluvium were placed within a triaxial 200 

cell under isotropically consolidated conditions to determine their coefficients of vertical permeability (kv), per BS 201 

1377 (BSI, 1990). At 22
o
C, the kv values obtained for the soil in its undisturbed and remoulded states were 1.41 x 202 

10
-8

 m/s and 5.58 x 10
-9

 m/s, respectively. 203 

 204 

 205 

 206 
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Table 2: Summary of the soil’s index properties. 207 

Property Value 

In-situ moisture content (%) 25.0 

Plasticity Index 14.95 

Liquid Limit (%) 35.66 

Saturated unit weight (kN/m3) 18.44 
Bulk Density (Mg/m3) 1.99 

Dry density (Mg/m3) 1.74 

Cation exchange capacity (cmol/kg) 11.45 
Specific surface area (m2/g) 6.45 

Total organic content (%) 0.76 

Sulphate content (mg/kg soil) 49.0 
BS 5930 classification[15] Silty SAND 

 208 
 209 
3.2 Engineering Performance Testing 210 

3.2.1 Preparation of Testing Samples 211 

Numerous binder combinations were added to the soil at dosages of 2.5 – 10% by dry weight to identify the most 212 

effective binder and corresponding dosage. Once soil samples were obtained from the field, they were oven dried at 213 

110
o
C for 24 hours and crushed into a fine powder (particle size ≤1mm). This provided a starting point for 214 

achieving a specific moisture content of 25%, made experiments repeatable and also increased practicality when 215 

mixing the dry powdered binders within the soil in the laboratory. Stabilised samples were mixed via a rotary mixer 216 

for 10 minutes to maximise homogeneity and therefore the number of reactive sites for cementitious bond 217 

formation. Water was then added to the mixtures to achieve the required pre-treatment (in-situ) soil moisture 218 

content. 219 

Samples were created by tamping and compressing the samples into split-sample moulds, which were then placed 220 

into a hydraulic press to compact the material to the required dimensions and the compacted conditions induced 221 

upon DDSM. For compressive strength tests, samples 38mm in diameter and 76mm long were formed. For 222 

oedometer testing, separate samples with dimensions of 76mm in diameter and 18mm in thickness were prepared. 223 

Finally, samples 105mm in diameter and 115mm in length were produced and cured for durability testing. All 224 

stabilised samples for each type of test were prepared with a bulk density of 1.9Mg/m
3
, based on optimum 225 

compaction criteria and a moisture content of 25%. Table 3 summarises the soil-binder mixtures examined and 226 

their respective concentrations. 227 

 228 

 229 

 230 

 231 

 232 

 233 
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Table 3: Summary of the binder compositions used for the laboratory stabilisation of Lanton alluvium. 234 

Soil – Binder Mixture Composition 

Lanton Lanton (25% grav. water) 

Lanton + 5% Lime Lanton (25% grav. water) + 5% lime 

Lanton + 10% Lime Lanton (25% grav. water) + 10% lime 

Lanton + 5% CEM-1 Lanton (25% grav. water) + 5% CEM-I 

Lanton + 10% CEM-1 Lanton (25% grav. water) + 10% CEM-I 

Lanton + 5% GGBS Lanton (25% grav. water) + 5% GGBS 

Lanton + 10% GGBS Lanton (25% grav. water) + 10% GGBS 

Lanton + 2.5% GGBS-NaOH Lanton (25% grav. water) + 1.67% GGBS + 0.83% NaOH 

Lanton + 5% GGBS-NaOH Lanton (25% grav. water) + 3.33% GGBS+ 1.67% NaOH 

Lanton + 7.5% GGBS-NaOH Lanton (25% grav. water) + 5% GGBS + 2.5% NaOH 

Lanton + 10% GGBS-NaOH Lanton (25% grav. water) + 6.67% GGBS + 3.33% NaOH 

 235 

For all compressive strength, durability, pH and moisture content testing, samples were cured within wax-sealed 236 

PVC sample moulds for periods of 0, 7, 14, 21, 28, 35, 42, 49 and 56 days and stored within a temperature 237 

controlled room (55% relative humidity, 20
o
C ambient air temperature). Whereas for compressibility testing, 238 

samples were prepared and cured within oedometer rings and tightly sealed using three layers of cling film. For 239 

compressibility and durability testing, samples were cured for 28 days before testing based on construction 240 

specifications by Hansson et al. (2001). Once cured, all samples were extruded, trimmed and tested. 241 

 242 
3.2.2 Laboratory Tests 243 

A suite of laboratory tests was conducted according to BS 1377 (BSI, 1990) to assess the performance of the 244 

various binders. Strength and stiffness were assessed via unconfined compressive strength (UCS). Samples were 245 

tested either to failure or a maximum axial strain of 15%. The compressibility of samples was assessed by 246 

oedometer testing, involving a series of load-unload-reload loops up to vertical stresses of 1600kPa. Per Davidson 247 

et al. (1965), pozzolanic reactions require a minimum soil pH of 10.5. Thus, the pH of all the stabilised mixtures 248 

was tested prior to and after each curing period. The durability of the stabilised mixtures was assessed by wetting-249 

drying and freeze-thaw tests according to ASTM D559/559M and D560/560M (ASTM, 2015a,b), especially given 250 

that frequent wetting-drying can be expected in the UK's temperate maritime climate. 251 

 252 
4.0 Results and Discussion 253 

4.1 pH 254 

Strength development of stabilised soils can be greatly influenced by their pH; whereby alkali activation may be 255 

required to raise soil pH to ≥10.5 to promote pozzolanic conditions. pH values recorded for Lanton alluvium and 256 

non-activated GGBS samples were all <10, highlighting the need for activation (Figure 2). For GGBS-NaOH 257 

specimens, all four dosages successfully raised soil pH to at least 11.7. The maximum pH values recorded ranged 258 

between 12.6 for the 7.5% dosage and 12.9 for 10%. These values were comparable with those recorded for 259 
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samples stabilised with 10% lime or 10% CEM-I; confirming that pH conditions were ideal for pozzolanic 260 

reactions. 261 

Whilst stabilisation using lime and CEM-I at 5% raised and maintained a pH >10.5 for 56 days, poor strength and 262 

durability performances were recorded. A similar observation was made for 2.5% GGBS-NaOH samples, which 263 

may be attributed to: 1) insufficient binder dosage; 2) insufficient curing time for cementitious gels to form, 3) the 264 

soil’s high water content and therefore low calcium concentration. Should oxidising reactions and subsequent pH 265 

reductions occur within stabilised samples, hydration and pozzolanic reactions may become inhibited and result in 266 

poor or severely delayed strength developments. Thus, it is essential to assess the quantities of activator required 267 

within samples to ensure that pH values >10.5 are maintained for the long-term. 268 

 269 

Figure 2: pH for all binder mixtures and dosages used to stabilise Lanton alluvium over 56 days. 270 

 271 

4.2 Durability 272 

4.2.1 Wetting-drying 273 

All sample mixtures were subjected to wetting-drying durability testing to determine soil-cement loss and changes 274 

in moisture content and sample volume. Testing results are displayed in Figure 3. For the purposes of this study, 275 

samples are considered to have failed in wetting-drying and freezing-thawing testing upon splitting and/or complete 276 

disaggregation. In addition, samples may be discontinued should volume measurements become inaccurate due to 277 

soil-cement loss (ASTM D559-559M, 2015). For the traditional binders, a minimum dosage of 10% was required 278 
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to maximise the chances of samples surviving all 12 testing cycles. Samples stabilised with CEM-I survived the 12 279 

cycle testing period with a gradual reduction in volume, whereas 10% lime samples only survived 3 cycles 280 

exhibiting larger volumetric losses. According to Sargent et al. (2013), most non-activated geopolymers fail after 281 

the first cycle. However, the 5 and 10% GGBS samples survived 2 and 3 cycles respectively. 282 

GGBS-NaOH dosages of 2.5 and 5% displayed similar disappointing performances to those observed for non-283 

activated GGBS samples. However, impressive performances were recorded for specimens containing a dosage of 284 

7.5 or 10%, as they displayed negligible changes in volume or moisture content over the 12 cycles. Whilst the 285 

Lanton + 7.5% and 10% GGBS-NaOH samples demonstrate higher levels of durability against wetting-drying 286 

compared with Lanton + 10% GGBS samples, the decreasing water content of such non-activated samples after 287 

developing latent hydraulicity inhibits the hydration of cementitious gels and therefore long-term strength 288 

development. 289 

 290 

 291 

Figure 3: Volumetric (a-b) and moisture content (c-d) changes experienced by all stabilised Lanton alluvium mixtures during 292 
wetting-drying testing. 293 
 294 
4.2.2 Freezing-thawing 295 

Freezing-thawing testing was conducted to assess the ability of the binder mixtures to resist repeated freezing-296 

thawing cycles by measuring changes in sample volume, moisture content and soil-cement losses. In the UK, 297 

freeze-thaw occurs up to depths of 2m, subject to variations between locations due to in-situ soil and vegetation 298 

conditions (Clarke and Smethurst, 2010). Given the grading of Lanton alluvium and that water may easily percolate 299 

through the soil; shrinkage, swelling and physical weathering are likely to occur within the shallow sub-surface. 300 
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This raises concerns as the binder within DDSM columns must resist such processes. Albeit the ASTM 301 

D560/560M procedure may be considered extreme for simulating typical freeze-thaw conditions in the UK, the 302 

results are conservative and will prove useful when assessing similar alluvial soils in other countries with harsher 303 

winters. Results from the freezing-thawing testing are presented in Figure 4. 304 

Using a dosage of 5% for lime and CEM-I was too low to produce any marked strength or durability enhancements, 305 

as samples failed after their first cycle of testing. Although the 10% lime specimens only survived 2 cycles with a 306 

significant volumetric reduction, the 10% CEM-I samples survived all 12 cycles. However, the samples did 307 

experience a volumetric reduction of up to 60%. NaOH activation of GGBS was essential to promote pozzolanic 308 

conditions and ultimately ensure that samples survived beyond 3 – 10 cycles. The 10% GGBS-NaOH mixture was 309 

the most effective binder tested, followed by the 7.5 % dosage, as they provided high levels of resistance to harsh 310 

freezing-thawing cycles. This was confirmed by specimens surviving all testing cycles and the negligible changes 311 

in volume or moisture content. 312 

 313 

 314 

 315 

Figure 4: Volumetric (a-b) and moisture content (c-d) changes experienced by all stabilised Lanton alluvium mixtures during 316 
freezing-thawing testing. 317 

 318 

To summarise, GGBS-NaOH at dosages >7.5% (particularly 10%) produced the best durability performances for 319 

both wetting-drying and freezing-thawing, surpassing that of 10% CEM-I. NaOH activation proved very effective 320 

in producing dense high strength samples, which possessed low permeabilities and were thereby deemed less likely 321 
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to experience water absorption and subsequent sample deterioration through shrinkage, swelling and physical 322 

weathering. 323 

 324 
4.3 Compressive strength 325 

A summary of the average maximum compressive strengths achieved by the various stabilised mixtures is 326 

presented in Figure 5. With a few exceptions, sample strengths increased over the 28 day curing period for all 327 

mixtures. However, the degree of strength development observed within samples varies significantly between 328 

binder dosages. Using 2.5 or 5% for any binder type proved unsuccessful in producing 28 day UCS values of 329 

300kPa required by EuroSoilStab (2002).  330 

The strengths recorded for 5 and 10% GGBS were also low, reaching 56 day strengths of 77kPa and 157kPa 331 

respectively; both failing to match the strengths achieved by either lime or CEM-I at equivalent dosages and curing 332 

periods. These samples were characterised by highly ductile behaviour at failure. Hence, alkali activation was 333 

necessary to produce any considerable strength development. Four dosages (2.5, 5, 7.5 and 10%) of NaOH 334 

activated GGBS were assessed to identify the most sustainable and optimum dosage in terms of strength gain. 335 

There was no advantage in using either the 2.5 or 5% dosages due to the strengths achieved for each curing period 336 

(70kPa after 28 days) closely resembling the performance of untreated Lanton alluvium. The 10% GGBS-NaOH 337 

samples exhibited the highest and most rapid strength enhancements with curing, with the effects of NaOH 338 

activation first being seen after 14 days curing. After 28 and 56 days curing, impressive UCS values of 2.08 and 339 

2.73MPa were recorded, respectively. 340 

 341 

Figure 5: UCS performances for all binder mixtures and dosages used to stabilise Lanton alluvium after all curing periods. 342 
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 343 

Although the 7.5% GGBS-NaOH binder dosage produced lower strengths than the 10% dosage after 7 and 14 days; 344 

significant strength enhancements initiated after 21 days curing, producing UCS values of 1.3 – 1.4MPa which 345 

exceed strengths for samples stabilised with 10% lime or CEM-I by factors of 3 and 2, respectively. The strengths 346 

also met EuroSoilStab (2002) 28 day 300kPa requirement. The behaviour of the 7.5 and 10% GGBS-NaOH 347 

samples after 28 days was brittle upon failure. The 10% GGBS-NaOH samples exhibited higher levels of brittle 348 

behaviour due to their higher strength, even after 7 days curing. This contrasts with the more ductile behaviour 349 

observed for the other mixtures tested after 7 days. 350 

Using NaOH with GGBS at dosages ≥7.5% was necessary to produce significant strength gains. For the 5% 351 

dosage, strength development commenced after 42 days – reaching comparable 56 day strengths to 10% CEM-I. 352 

However, such delayed strength gains are unacceptable, as construction specifications require strength 353 

enhancements after 28 days (Hansson et al., 2001). 354 

Given the Lanton alluvium's low permeability, there are two factors which may explain why such impressive 355 

strength gains were achieved within stabilised samples. Firstly, the activated GGBS binder was thoroughly mixed 356 

into the soil to achieve a high level of homogeneity; thereby allowing hydration and pozzolanic reactions to occur 357 

throughout samples and produce a wide distribution of cementitious gels. The second factor may be attributed to 358 

the even distribution of water throughout samples, which is partly owed to the thorough sample mixing and the 359 

soil’s particle size distribution. The soil’s sand and silt fractions provide hydration reactions with better access to 360 

water for cementitious gel formation compared with soils containing higher clay contents. 361 

GGBS-NaOH dosage influences strength development as can clearly be seen on Figure 6. Whilst further testing is 362 

required to more definitively identify the most optimum dosage for use in stabilising Lanton alluvium, Figure 6 363 

uses the strength results achieved with increasing curing time for the four GGBS-NaOH dosages in an attempt to 364 

approximate an optimum dosage. The performance of this new binder also surpassed that for the CEM-I and lime 365 

binders. According to the 28 day strength development trend line presented in Figure 6, there is an indication that 366 

the GGBS-NaOH dosage which satisfies the EuroSoilStab (2002) strength criterion would be approximately 5.5%. 367 

However, this dosage would be insufficient to produce the 28 day strength of 778kPa recorded for 10% CEM-I; 368 

whereby an approximate GGBS-NaOH dosage of 6.5% would be required. Thus, to satisfy both strength criteria, an 369 

optimum GGBS-NaOH dosage of 6.5% would be envisaged for inclusion within the Lanton alluvium. 370 

Moisture content and porosity also influence strength development, whereby mixtures with higher moisture 371 

contents have lower calcium concentrations (pertaining to GGBS) for cement formation; resulting in lower 372 
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strengths. Consoli et al. (2011) suggested porosity also influences strength by modifying the number of contact 373 

points between soil particles; whereby delayed strength gains are anticipated within soils of higher porosities and 374 

those which contain less cement and therefore a less dense network of cementitious gels.  375 

 376 

 377 

Figure 6: Relationship between unconfined compressive strength and GGBS-NaOH dosage, with trend lines shown for 0, 7, 378 

14, 28 and 56 days curing. 379 

 380 

Suctions may have been generated within UCS samples during their preparation, which may have resulted in higher 381 

sample strengths than anticipated. DDSM treatment of sands using CEM-I has been adopted successfully world 382 

wide for many years; whereby high strengths are generally achieved early (within 14 days) with very limited long-383 

term (months-years) strength development. For more clayey soils, these are generally required to have 10 – 50 % 384 

clay content to have sufficiently adequate CEC and surface area characteristics to promote conditions required for 385 

long-term strength improvements through DDSM (Tutumluer, 2012). Conversely, higher clay contents reduce the 386 

soil’s permeability; as does the addition of GGBS. Stabilising soils with clay contents >30% may not be as 387 

successful compared with soils containing <30% clay, as it would reduce the volume of water which hydration and 388 

long-term pozzolanic reactions could utilise to form C-S-H/C-A-H gels (Hughes et al., 2011). 389 

 390 

4.4 Moisture content 391 

To assess whether samples contained adequate supplies of water to allow for continued hydration and cementitious 392 

bond formation, water content was determined according to BS 1377: Part 2 (BSI, 1990). Most samples had water 393 
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contents of 22 – 25%. According to Table 4, each mixture showed slight reductions in moisture content over 28 394 

days. Negligible reductions were recorded within all non-activated samples. For GGBS-NaOH samples, moisture 395 

content reduced by 1 – 1.8%; whereby reductions >1.4% were observed for those containing dosages >7.5%. The 396 

most significant reductions (up to 5.25%) were observed in samples stabilised with a 10% lime and CEM-I. 397 

Sub-samples were retained after UCS testing at 28 days and tested according to BS 1377: Part 3 (BSI, 1990). 398 

Average pH values recorded for Lanton alluvium ranged between 6.7 – 7.2 over 56 days; thereby indicating the 399 

need for an alkali activator or a high alkaline binder. Stabilisation using 5 – 10% CEM-I or lime produced pH 400 

values >11.2 and were sustained for the 56 day testing period. 401 

 402 

Table 4: Average changes in water content observed over 28 days for all untreated and stabilised mixtures. 403 

Soil – Binder Mixture 
Water content (%) with increasing curing time Reduction in water 

content (%) 0 days 28 days 

Lanton 24.6 23.9 0.7 

Lanton + 5% Lime 24.1 23.3 0.8 

Lanton + 10% Lime 25.1 21.6 3.5 

Lanton + 5% CEM-I 24.2 22.7 1.5 

Lanton + 10% CEM-I 24.5 19.3 5.3 

Lanton + 5% GGBS 24.8 24.1 0.7 

Lanton + 10% GGBS 24.9 24.6 0.4 

Lanton + 2.5% GGBS-NaOH  24.6 23.5 1.0 

Lanton + 5% GGBS-NaOH 25.6 24.5 1.1 

Lanton + 7.5% GGBS-NaOH 25.1 23.6 1.5 

Lanton + 10% GGBS-NaOH 24.7 22.9 1.8 

 404 

Moisture content reductions 1 – 1.8% correspond with samples which achieved high UCS values and durability 405 

performances; (e.g. 7.5 – 10 % GGBS-NaOH) suggesting that cementitious bonds formed through hydration and 406 

pozzolanic reactions. This implies that all sample mixtures contained sufficient volumes of water for cementitious 407 

bonding reactions during and beyond 56 days. 408 

In line with Duxson et al. (2007), a relationship may exist between decreasing moisture content and strength 409 

enhancement when Lanton alluvium is stabilised with lime or GGBS-NaOH. As soil water is consumed during the 410 

dissolution of geopolymeric reactions and the breakdown of solid aluminosilicates to give silicate and aluminate 411 

species through alkaline hydrolysis (Duxson et al. (2007); it is unsurprising that GGBS-NaOH samples showed 412 

greater reductions in water content compared with non-activated GGBS. By increasing the GGBS-NaOH dosage 413 

within the alluvium, this inherently increases the calcium concentration within the stabilised material due to the 414 

GGBS. This would result in water within the soil being utilised at an accelerated rate to form cementitious gels and 415 

therefore achieving higher strength gains over 28 days compared with using lower GGBS-NaOH dosages (i.e. 416 
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<5%). This corroborates with the strength results presented in Figure 5 and the degrees of moisture content 417 

reduction within the four GGBS-NaOH dosage sample mixtures. 418 

Considering that Lanton alluvium has a natural water content of 25%, there is potentially scope for further 419 

hydration and pozzolanic reactions beyond 56 days, and therefore further water consumption and cementitious gel 420 

development. In the long term, Lanton alluvium stabilised with binder dosages <7.5% may outperform the 421 

performances of stabilised soils containing water contents of <25%. Locat et al. (1990) attributed such behaviour to 422 

solutes being able to migrate through the soil’s pore spaces more easily. This may be apparent for the 5% GGBS-423 

NaOH sample, which started to display encouraging strengths after 42 days.  424 

Locat et al.’s (1990) research implies that stabilising Lanton alluvium with 10% GGBS-NaOH closely resembles 425 

rapid strength gain behaviour for soils with low water contents. Using 7.5% GGBS-NaOH showed slower rates of 426 

strength development, with 28 day strengths of 1.3MPa. Comparing this behaviour with Locat et al.’s (1990) 427 

model, it corresponds well with slower rates of strength development typically observed for soils with high water 428 

contents. For 5% GGBS-NaOH, negligible strength developments were observed until 42 days. These findings 429 

prove that further study is required over a longer time period to gain a better understanding of the progressive 430 

strength development of GGBS-NaOH stabilised Lanton alluvium at various dosages. 431 

 432 

4.5 Compressibility and stiffness 433 

Based on the relatively high strength and durability performances of the GGBS-NaOH binder, compressibility 434 

testing was focussed on the Lanton alluvium when untreated and stabilised with GGBS-NaOH. In the UK, Network 435 

Rail standard RT/CE/S/065 Issue 4 2014 "Examination of Earthworks" Risk Matrix (Network Rail, 2014) considers 436 

railway embankment height ranges of: a) <3m b) 3 – 6m and c) 6 – 10m. Most failures occur 3 – 6m high 437 

embankments with slope angles >25 degrees. On the UK's railway network, embankment heights are known to 438 

typically vary between 3 and 10m. However, there are locations where embankment heights are known to exceed 439 

the aforementioned height range, whereby embankments reach up to 30m high. Vertical effective stresses 440 

associated with 30m high embankments, assuming embankment fill unit weight of 20kN/m
3
 and worst case shallow 441 

groundwater levels (5mbgl) may be as high as 300 – 400kPa. Hence, mv values recorded for each sample mixture 442 

under vertical stresses up to 400kPa during compressibility testing were considered. It is under the vertical stresses 443 

of less than or equal to 400kPa where specimens also experience the most compressional strain during testing; 444 

hence why mv values obtained for vertical stresses (σv) of 800 – 1600kPa have not been included. 445 
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Compression curves for the soil in its untreated and GGBS-NaOH stabilised states after 0 and 28 days curing are 446 

displayed in Figure 7. The coefficients of compressibility (mv) values obtained for each sample after 0 and 28 days 447 

curing are given in Table 5. 448 

The compression curves in Figure 7a illustrate a reduction of 0.23 in the initial void ratio for the remoulded Lanton 449 

alluvium, compared with its undisturbed counterpart. This reduction can be attributed to the removal of the soil’s 450 

natural structure, which provides a degree of additional strength to the material due to fabric and/or inter-particle 451 

bonding as a result of the soil’s geological history – i.e. depositional and post-depositional processes (Gasparre and 452 

Coop, 2007). A more significant reduction in initial void ratio can be seen in Figure 7a for all 28 day cured 453 

stabilised samples compared with the undisturbed (untreated) Lanton alluvium. This is an inherent result of 454 

densification due to the nature of the DDSM process; whereby the orientation of the auger mixer blades provides a 455 

degree of compaction. Additionally, by introducing a fine grained (silty) cementitious GGBS binder into the 456 

alluvium, this alters the PSD curve for the material and infills void spaces within the soil – thereby having the 457 

effect of reducing its initial void ratio. However, the increase in material stiffness due to void ratio reduction is 458 

small compared with that provided by the formation of cementitious gels. 459 

After 0 days, all stabilised mixtures experienced void ratio reductions of 0.1, which contrasts with untreated 460 

samples whose void ratios decreased by 0.25 and 0.4 for remoulded and undisturbed samples, respectively. Given 461 

that introducing a binder via DDSM disturbs the soil, it is unsurprising that the initial void ratios of stabilised 462 

samples were similar to the remoulded soil. After 28 days curing, samples containing 2.5 and 5% GGBS-NaOH 463 

exhibited slightly improved consolidation behaviour compared with that observed after 0 days curing, as proven by 464 

the compression indices (Cc) and swelling indices (Cs) values in Table 5. Figure 6b shows samples containing 7.5 465 

or 10% GGBS-NaOH displayed a significantly stiffer response after 28 days. Cc values for these mixtures 466 

decreased considerably compared with their 0 day values. Cs values for all four dosages were almost identical. Cc 467 

values for 7.5 and 10% dosage samples are at least one third of the values obtained for samples containing 2.5 or 468 

5% binder, 9 and 20 times smaller than the Cc values obtained for the remoulded and undisturbed soil, respectively. 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 
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Table 5: mv, Cc and Cs values for treated and untreated Lanton alluvium after 0 and 28 days. 478 

Soil – Binder 

Mixture 

Coefficient of Compressibility (mv), m
2/MN 

Compression index 

(Cc) 

Swelling index 

(Cs) 

0 days 28 days 
0 days 28 days 0 days 28 days 

50kPa 100kPa 200kPa 400kPa 50kPa 100kPa 200kPa 400kPa 

Lanton remoulded 0.703 0.359 0.221 0.116 0.703 0.359 0.221 0.116 0.132 0.013 

Lanton undisturbed 0.799 0.542 0.440 0.255 0.799 0.542 0.440 0.255 0.309 0.030 

Lanton + 2.5% 

GGBS-NaOH 
0.238 0.074 0.098 0.055 0.276 0.153 0.073 0.036 0.065 0.039 0.015 0.004 

Lanton + 5% GGBS-

NaOH 
0.231 0.150 0.071 0.058 0.230 0.109 0.070 0.029 0.087 0.034 0.011 0.004 

Lanton + 7.5% 

GGBS-NaOH 
0.222 0.142 0.071 0.046 0.025 0.035 0.016 0.011 0.077 0.016 0.011 0.004 

Lanton + 10% 

GGBS-NaOH 
0.214 0.133 0.071 0.034 0.025 0.019 0.015 0.012 0.055 0.014 0.009 0.003 

 479 

The mv results complement the compression curves, whereby all of the binder dosages reduced the compressibility 480 

of the untreated Lanton alluvium. The initial mv values of the untreated undisturbed and disturbed alluvium ranged 481 

between 0.7 – 0.8m
2
/MN, which is typical of normally consolidated alluvium and therefore highly compressible 482 

(Tomlinson, 2001). The 0 day mv values for each dosage ranged between 0.21 m
2
/MN for vertical stresses (σv) of 483 

50kPa and 0.03m
2
/MN for σv=400kPa. These values indicate that each mixture had a medium to very low 484 

compressibility. For dosages of 2.5 and 5%, negligible changes in mv values were achieved after 0 and 28 days 485 

curing. However, there was a significant reduction in mv values after 28 days for samples containing 7.5 or 10% 486 

GGBS-NaOH, where the effect of cementation is apparent. Considerably lower mv values of 0.01 – 0.03m
2
/MN 487 

and 0.01 – 0.02m
2
/MN were calculated for samples containing 7.5 and 10% binder dosages, respectively; and are 488 

deemed to be of very low compressibility. 489 

These results suggest that the most effective dosage of the GGBS-NaOH binder in reducing the initially high 490 

compressibility of untreated Lanton alluvium was 10%. However, the 7.5% dosage was equally as effective when 491 

samples were subjected to σv >200kPa. Hence, there is little benefit in using a dosage of 10% over 7.5%, given their 492 

similarly small reductions in void ratio after two loading-unloading cycles. 493 

 494 
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 495 

Figure 7: Oedometer compression curves of Lanton alluvium in (a) its untreated remoulded and undisturbed state, and (b) 496 

treated with 2.5-10% GGBS-NaOH after 28 days curing. Note: the curves are based on averages taken from triplicate testing. 497 

 498 

The undisturbed soil possessed a fairly high level of sedimentation structure. Slight disturbance or increase in 499 

loading up to 100kPa resulted in a sudden and considerable reduction in void ratio, and therefore significant 500 

structural collapse. This highlights treatment is required to improve the soil’s high levels of compressibility. 501 

In summary, a significant improvement in compressibility and therefore stiffness was observed after 28 days for 7.5 502 

and 10% GGBS-NaOH specimens; whereby mv values decreased to <0.03m
2
/MN with increasing σv, indicating 503 

very low levels of compressibility. Using >7.5% GGBS-NaOH within Lanton alluvium produced brittle failures. 504 

This behaviour could be unfavourable under dynamic loading conditions due to passing rail traffic and earthquakes. 505 

However, the strengths achieved were lower and more favourable than those recorded by Sargent et al. (2013) for a 506 

GGBS-NaOH-Na2SiO3 stabilised artificial alluvium. 507 

 508 

5.0 Sustainability assessment 509 

New geopolymers must demonstrate commercial and practical viability as alternatives to CEM-I and lime. Per 510 

Global Cement (2011), demonstrating GGBS-NaOH for use in DDSM on an industrial field scale is essential to 511 

proving its practicality and for developing knowledge regarding the cost implications of non-equitable economies 512 

of scale. Assurance of this binder’s potential for commercialisation should be taken from the commercialisation of 513 

similar alkali-activated GGBS-based geopolymer concretes (“E-Crete”) in Australia (Global Cement, 2011). 514 

 515 
5.1 Environmental impact 516 

Although the use and practicality of cement and lime as binders is well proven in DDSM, their continued usage is 517 

environmentally unsustainable. Cement and lime production have high carbon costs. Cement production 518 
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contributes up to 7% of the world’s CO2 emissions (McLellan et al., 2011), whereby for every ton of cement 519 

produced 900 – 1100kg of CO2 is emitted (EPA, 2005). An estimated 4,100 million tonnes of cement was produced 520 

in 2015 (Statista, 2016). The cement and civil engineering industries are under significant pressure to reduce CO2 521 

permissions and contribute towards atmospheric carbon capture storage (CCS). 522 

Using IBP’s as alternatives or partial replacements to CEM-I or lime has real potential for reducing the 523 

environmental impact of using cements and lime. According to Hanson (2014), GGBS has impressive 524 

environmental sustainability credentials. Compared with the production of lime and CEM-I, it reduces embodied 525 

CO2 emissions by 2 million tonnes per annum, reduces primary energy usage during manufacture/processing by 526 

2000 million kWh, saves 3 million tonnes of quarrying and reduces landfill by almost 2 million tonnes. GGBS has 527 

advantages over other IBP’s due to the quantity of CEM-I which it can replace within a given concrete or stabilised 528 

soil, whilst achieving engineering performances comparable with pure CEM-I (Connell, 2014). 50 – 70% of CEM-I 529 

may be replaced by GGBS whereas only 20 – 25% may be replaced by PFA. Whilst approximately 75% of CaO 530 

within the CEM-I component of concretes is able to sequester atmospheric CO2 via carbonation (DTI, 2005), 531 

mixing other high-calcium binders including GGBS and steel slag within urban soils has recently proved to have 532 

excellent atmospheric CO2 sequestration potential in the UK (Sanna et al., 2012). GGBS and steel slag have a 533 

theoretical global CO2 potential uptake of approximately 80 million tonnes per year (Yan, 2015). CCS within urban 534 

soils through the incorporation of such slag materials has recently been demonstrated by Washbourne et al. (2012) 535 

on the Science Central site in Newcastle upon Tyne, UK. Washbourne et al. (2012) demonstrated that the top metre 536 

of soil for the 10 hectare site has the potential to capture and store 64,000 Mg of atmospheric CO2 in the form of 537 

carbonate minerals, half of which was captured within 3 years at an annual rate of 325 Mg C ha
-1

. Similar figures 538 

were also calculated for similarly mixed quarry soils (Barrasford, UK); namely 300 Mg C ha
-1

, which was observed 539 

down to depths of three metres over ten years (Manning et al., 2013). Such differences in sequestration rates were 540 

attributed to differing soil mineralogies; whereby urban soils at Science Central contained cementitious rubble 541 

material (calcium silicates and calcium hydroxide) which produce greater rates of carbonation compared with 542 

Barrasford quarry soil (Manning et al., 2013). Globally, construction and development site soils are considered able 543 

to capture and store 290 million Mg of atmospheric carbon within soil matrices per year (Renforth et al., 2009). 544 

However, strength gains within GGBS-stabilised soft alluvial soils require alkali activation. Most alkali materials 545 

for industrial purposes are synthetically sourced with high costs and negative environmental impacts. Although the 546 

use of NaOH in this paper promoted pozzolanic conditions and high strength gains within stabilised samples, its 547 

production involves the electrolysis of brine, which is energy intensive and produces considerable CO2 emissions. 548 
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During its production, there is also the risk of contaminating local aquatic environments. A more sustainable NaOH 549 

source could be the by-product from existing chlor-alkali plants (Kumar et al., 2012). 550 

Significant CO2 emission reductions of up to 64% are estimated for Australian geopolymers compared with CEM-I 551 

(McLellan et al., 2011). There are carbon footprint implications associated with the brine electrolysis (membrane) 552 

technique used to produce NaOH. However, the quantities of NaOH required in this research were small (0.83 – 553 

3.3% by dry weight or 12.4 – 49.4kg m
-3

) compared with the quantities of CEM-I typically used in more traditional 554 

binder mixtures for DDSM treatment of soft soils. According to Topolnicki (2004), cement dosages of 120 – 300 555 

kg m
-3

 may be used within most soils, with the exception of sludges, peats and organic silts/clays where dosages of 556 

250 – 400kg m
-3

 are recommended.  557 

The GGBS CO2 reductions far outweigh the carbon footprint produced by the NaOH’s manufacture. There is also 558 

potential for GGBS-NaOH to sequester atmospheric carbon within the stabilised soil, which assists in driving the 559 

binder towards commercialisation. Further work is required on the effects of carbonation on the long-term 560 

durability, strength and mineralogical development of stabilised soft alluvial soils and how much atmospheric CO2 561 

such mixtures can capture. 562 

 563 
5.2 Financial costs 564 

Although the engineering performances observed for GGBS-NaOH meet EuroSoilStab (2002) strength criteria and 565 

surpass those exhibited by CEM-I and lime, it is also crucial to demonstrate that its overall cost is financially 566 

competitive. There are considerable stockpiles of GGBS in the UK, given the country’s active pig iron and steel 567 

manufacturing industry. This makes GGBS sustainable in the UK for use in geopolymers as stockpiles are 568 

continuously replenished and thus avoids expensive overseas sourcing. GGBS also requires little post-production 569 

processing (i.e. ground granulation) to make it suitable for mixing. 570 

Solid NaOH is available as flakes, pellets or pearls and is commercially available in raw bulk production and 571 

scientific forms, the difference being that the latter has been purified. Hence, whilst the cost of scientific NaOH is 572 

much higher, its effectiveness as an alkali activator is equal to that of industrial grade. For laboratory studies 573 

involving various chemicals, scientific NaOH is recommended as it is in a much purer form. For large scale 574 

applications, raw bulk production NaOH is more financially feasible. Additionally, the electrical energy consumed 575 

per ton of NaOH produced is 1.285 kWh, which is almost 60 times lower than that required per ton of CEM-I 576 

(Madlool et al., 2011). 577 
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The international market prices of these materials at the time of writing (July 2014 US$:£ currency exchange rates) 578 

were £25 – 60 per ton of GGBS and £175 per ton of NaOH (Alibaba, 2014). By taking the lowest available prices, 579 

this produces a significantly lower price of £75 per ton for the GGBS-NaOH binder when using the 2/3 GGBS : 1/3 580 

NaOH ratio as used in this paper. Whilst this price is more expensive than the international market price of CEM-I 581 

(£50 per ton), it is only marginally more expensive compared with the UK price of £70 per ton. In order to make 582 

the GGBS-NaOH break even with CEM-I in the UK, its price would only need reducing by 7% which would 583 

equate to a binder dosage of 5.5% within Lanton alluvium. This advocates that GGBS-NaOH is potentially a 584 

financially more sustainable alternative to CEM-I. McLellan et al.’s (2011) study demonstrated that for a number of 585 

NaOH-bearing geopolymers developed in Australia, the total financial cost of these mixtures was not much greater 586 

than that for CEM-I. However their transportation costs were considerably higher than those associated with CEM-587 

I, due to the significant transportation distances between binder source and the treatment site. 588 

Turner and Collins (2013) stated that for an Australian geopolymer concrete comprising PFA, NaOH, sodium 589 

silicate and a superplasticiser, a carbon foot print reduction of 9% was measured against a comparable strength 590 

CEM-I concrete. There is a confliction between the reduced carbon footprint estimates provided by McLellan et al. 591 

(2011) and Turner and Collins (2013). However, the geopolymers assessed by Turner and Collins (2013) contained 592 

considerable quantities of sodium silicate, which is expensive and has significant negative environmental impacts 593 

(Habert et al., 2011). Thus, the reductions in the GGBS-NaOH carbon footprint compared with CEM-I is more 594 

comparable with estimates provided by McLellan et al. (2011). Based on the available evidence, GGBS-NaOH has 595 

a smaller carbon footprint and lower financial cost compared with CEM-I; thereby highlighting its potential as a 596 

commercially viable alternative to CEM-I. 597 

 598 

6.0 Engineering Practicality 599 

A key factor to consider in assessing the potential for the GGBS-NaOH binder to be used instead of lime or CEM-I 600 

for future DDSM projects is engineering practicality. The application of chemical treatment in stabilising soft soils 601 

is generally limited to those characterised by low organic and sulphate contents and relatively high clay contents. 602 

These criteria have been defined to ensure that cation exchange and long term cementitious reactions occur within 603 

the stabilised material. Although the Lanton alluvium possessed unfavourably high moisture and silt-sand contents, 604 

using a GGBS-NaOH binder dosage ≥7.5% proved effective in producing high levels of strength and durability 605 

within the soil post 21 days curing. The enhanced mechanical performances of the GGBS-NaOH stabilised Lanton 606 
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soil were at least 2 – 3 times better than those observed for samples mixed with traditional binders, whilst meeting 607 

strength criteria defined by EuroSoilStab (2002). 608 

Another component which needs to be considered in assessing the engineering practicality of the GGBS-NaOH 609 

binder for use in DDSM is whether any modifications to existing plant and equipment would be required. GGBS 610 

comes in the form of a dried fine powder and that NaOH pellets/flakes are solid particulates. Hence, it is 611 

anticipated that the GGBS-NaOH binder could be substituted for CEM-I and lime with relative ease; whereby only 612 

minimal plant and equipment modifications would be required to ensure that the efficiency of binder delivery 613 

during deep mixing is maintained. However, the use of NaOH on site can pose some health and safety risks for 614 

DDSM operatives such as skin irritation (dermatitis) and eye damage. Thus, operatives should wear the appropriate 615 

personal protective equipment including disposable rubber gloves, safety goggles/glasses, disposable overalls and 616 

dust masks. 617 

Based on the aforementioned factors, the GGBS-NaOH binder potentially has an impressive level of engineering 618 

practicality, exceeding that of lime, CEM-I and other waste-based binders. In addition to being used as a binder to 619 

stabilise soils, it may also be used as a partial/total substitute to CEM-I in concrete mixtures. However, the binder’s 620 

engineering practicality in terms of soil stabilisation requires further research; whereby the performance of the 621 

GGBS-NaOH binder needs to be assessed when incorporated within soils characterised by higher organic and 622 

sulphate contents compared with Lanton alluvium. 623 

 624 
7.0 Conclusions 625 

Alkali-activated IBP’s show great potential for use as replacements for CEM-I and lime in stabilising alluvial soils. 626 

The strengths and stiffnesses achieved by GGBS-NaOH significantly improved with curing, particularly when 627 

using dosages >7.5% by dry weight (>107kg m
-3

), which comfortably met or surpassed those exhibited by samples 628 

stabilised with equivalent quantities of lime/CEM-I and met criteria defined by EuroSoilStab (2002). For any of the 629 

binder mixtures tested, a dosage <7.5% is not recommended given the natural chemical and geotechnical properties 630 

of Lanton alluvium, along with the aggressiveness of the ASTM’s durability testing programmes, which may occur 631 

regularly in some countries. 632 

Some engineering specifications require high strengths and stiffnesses and such cases, using GGBS-NaOH would 633 

be the most logical replacement for CEM-I or lime. However, in addition to engineering scenarios characterised by 634 

static loads, there are those such as high-speed rail lines where the high-frequency dynamic loading of the ground 635 

requires slightly lower stiffnesses to prevent brittle failures. In such cases, using GGBS-NaOH at lower dosages 636 
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would be preferred. NaOH is very effective in activating GGBS and producing long term high strength gains, 637 

which proved to be equally as effective as the sodium silicate-sodium hydroxide activator used by Sargent et al. 638 

(2013) in raising soil pH, promoting pozzolanic conditions and long term strength gains. The GGBS based binders 639 

and solid NaOH activator pellets could be substituted for CEM-I and lime in DDSM with minimal modification to 640 

pre-existing plant and equipment, or a reduction in the efficiency of mixing. 641 

The dosage of GGBS-NaOH for use within soils will differ between DDSM projects. For soils more problematic 642 

than Lanton alluvium, higher dosages would be required to achieve high strengths. Additionally, the ratio between 643 

GGBS and NaOH within the binder will also require customisation, whereby higher NaOH concentrations would 644 

be required to stabilise soils with a low pH. Care must be taken in designing the GGBS-NaOH binder mixture, as 645 

high NaOH concentrations would result in the binder becoming less environmentally and financially sustainable. 646 

The use of GGBS-NaOH has the potential of becoming a more sustainable alternative than the continued use of 647 

lime and CEM-I; thereby promoting its commercialisation potential. Although the current UK and international 648 

market prices for the GGBS-NaOH binder mixture are higher than CEM-I, the financial costs in terms of raw 649 

materials, energy consumption, transport and the associated CO2 emissions incurred by CEM-I production far 650 

outweigh those incurred by GGBS-NaOH. Ultimately, this new binder aims to achieve a balance between the desire 651 

for making cost savings and a desire for a binder with low embodied carbon. 652 

The cost of any DDSM project involving alkali-activated mixtures can be quite high. It is common for geopolymers 653 

components to come from various locations. The distances between sourcing plants and stabilisation sites can be 654 

considerable. As modern transportation costs are high, careful planning must be conducted to minimise delivery 655 

distances, helping geopolymers become more sustainable and competitive than lime or CEM-I. 656 

 657 
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