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Abstract: The S-matrix of a theory often exhibits symmetries which are not manifest

from the viewpoint of its Lagrangian. For instance, powerful constraints on scattering

amplitudes are imposed by the dual conformal symmetry of planar 4d N = 4 super Yang-

Mills theory and the ABJM theory. Motivated by this, we investigate the consequences

of dual conformal symmetry in six dimensions, which may provide useful insight into the

worldvolume theory of M5-branes (if it enjoys such a symmetry). We find that 6d dual

conformal symmetry uniquely fixes the integrand of the one-loop 4-point amplitude, and

its structure suggests a Lagrangian with more than two derivatives. On integrating out

the loop momentum in 6 − 2ε dimensions, the result is very similar to the corresponding

amplitude of N = 4 super Yang-Mills theory. We confirm this result holographically by

generalizing the Alday-Maldacena solution for a minimal area string in Anti-de Sitter space

to a minimal volume M2-brane ending on a pillow-shaped surface in the boundary whose

seams correspond to a null-polygon. This involves careful treatment of a prefactor which

diverges as 1/ε, and we comment on its possible interpretation. We also study 2-loop 4-

point integrands with 6d dual conformal symmetry and speculate on the existence of an

all-loop formula for the 4-point amplitude.
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1 Introduction

The AdS/CFT conjecture [1] establishes a correspondence between string or M-theory

in the near horizon geometry of a stack of D-branes or M-branes to the effective low-

energy world-volume theory of the branes. Although this idea has now grown into a wide

framework of gauge-gravity duality with diverse applications, the most prominent and early

examples of this conjecture involve maximally supersymmetric field theories on D3, M2 and

M5-branes, which are conjectured to be dual to IIB string theory on AdS5×S5 [2], M-theory

on AdS4×S7 [3], and AdS7×S4 [4], respectively.

In the first example, the worldvolume theory on D3-branes is 4d N = 4 super Yang-

Mills theory (SYM) [5], which admits an expansion in terms of the ’t Hooft parameter,

which in turn can also be classified by the topologies of Riemann surfaces [6]. In such an

expansion, the topologies with higher genus are suppressed by the rank of the gauge group

N , and in the limit when N is large, the theory is entirely dominated by planar diagrams.

In the planar limit, the theory is believed to be solvable (for a review, see for example [7]).

The second and third examples of the AdS/CFT conjecture are more challenging be-

cause M-theory arises as the strong coupling limit of string theory, making it difficult to

formulate the worldvolume theories of M-branes. This was however, recently accomplished
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for M2-branes [8]. The key insight was to perform a Zk orbifold of the space transverse to

the branes which breaks 1/4 of the susy when k > 2, but allows one to define a tunable

coupling for the theory. The Lagrangian is a 3d superconformal Chern-Simons theory with

N = 6 susy known as the ABJM theory.1 When the orbifold parameter is large, it is dual

to IIA string theory on AdS4×CP3.

The third example is the least understood because the worldvolume theory describing

multiple M5-branes remains elusive. The M5-brane theory is not only crucial for under-

standing AdS/CFT and M-theory, it also provides the geometric origin of electric-magnetic

duality of many supersymmetric theories that arise from dimensional reduction [12–14]. It

is believed to be a 6d CFT whose field content is a (2, 0) tensor multiplet, which consists

of a self-dual two-form gauge field, five scalars, and eight fermions. Although the worldvol-

ume theory for a single M5-brane is well-understood [15, 16], it is unclear how to generalize

it to more than one. In the absence of a tunable coupling, it is not clear whether such a

theory would even admit a Lagrangian description (see [17–24] for some attempts in this

direction).

Using modern methods for computing on-shell scattering amplitudes, it is possible

to learn a great deal about the S-matrix of many theories without reference to their La-

grangians. Moreover, the S-matrix often exhibits symmetries that are totally obscure

from the point of view of the Lagrangian. For example, the planar amplitudes of N = 4

SYM [25–27] and the ABJM theory [28–30] exhibit a remarkable property known as dual

conformal symmetry in the planar limit. In the context of N = 4 SYM, the dual confor-

mal symmetry can be understood as the ordinary conformal symmetry of a dual Wilson

loop whose contour is obtained by arranging the external momenta of the amplitude head

to tail [31–36]. Moreover, the amplitude/Wilson loop duality of 4d N = 4 SYM can be

derived from the self-duality of IIB string theory under a certain combination of bosonic

and fermionic T-duality transformations [37, 38]. In the case of ABJM theory, the am-

plitude/Wilson loop duality does not generalize beyond 4-points and the status of the

fermionic T-duality in the gravity dual is also unclear [39–41]. Hence, the origin of dual

conformal symmetry in the ABJM theory appears to be rather mysterious.

Note that dual conformal symmetry is not equivalent to ordinary superconformal sym-

metry and when the two are combined, they give rise to infinite dimensional Yangian

symmetry for scattering amplitudes [42, 43]. Hence, dual conformal symmetry imposes

very powerful constraints on the planar S-matrix. For example, in N = 4 SYM and ABJM

one can use dual conformal symmetry to uniquely fix the 1-loop 4-point integrand, from

which the 4-point tree-level amplitudes can be deduced using unitarity methods [44, 45].

The rest of the tree-level S-matrix can then be deduced using BCFW recursion [46], which

in principle can be used to deduce the Lagrangian. Hence, apriori if we had no idea how to

formulate ABJM or N = 4 SYM, we could have deduced these theories simply by looking

for dual conformal invariant S-matrices in 3d and 4d, respectively.

At loop-level, dual conformal symmetry is broken by IR divergences but the four and

five points amplitudes of N = 4 SYM are nevertheless fixed to all orders by an anomalous

1Prior to the ABJM theory, there were other proposals which have maximal superconformal symmetry,

although the interpretation of these theories is not fully understood [9–11].
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dual conformal Ward identity [47]. These all-loop formulae, first conjectured by Bern,

Dixon, and Smirnov [48], boil down to exponentiating the one-loop amplitude and encoding

the coupling dependence through the cusp and collinear anomalous dimensions. This has

been confirmed up to four loops in perturbation theory [49–51], as well as at strong coupling

using string theory [31, 52, 53]. There is also evidence that a similar all-loop formula exists

for the 4-point amplitude of the ABJM theory [54–60]. In particular, the 2-loop 4-pt

amplitude of the ABJM theory has an almost identical structure to the 1-loop 4-point

amplitude of N = 4 SYM, and the strong coupling calculation in the dual string theory is

identical to that of N = 4 SYM at leading order.

Given the important role played by dual conformal symmetry in the first two examples

of the AdS/CFT duality described above, in this note we proceed to explore its implications

for the theory of M5-branes, assuming it enjoys such a symmetry. There are of course,

several subtleties with this point of view. For instance, it has previously been shown

that is not possible to construct a tree-level S-matrix for (2, 0) tensor multiplets assuming

locality and unitarity [61]. On the other hand, since the (2, 0) theory is strongly coupled,

it is unclear what the asymptotic states should be. In this note, we will not make any

assumptions about the asymptotic states, locality, or even the superconformal symmetry

of the theory. Our only assumptions will be that the theory admits something analogous

to a planar limit where a semi-classical supergravity description is admissible in the bulk,

and that it has rational loop integrands2 which exhibit dual conformal symmetry in six

dimensions.3

In this note, we find that 6d dual conformal symmetry fixes the 1-loop 4-point in-

tegrand. Like N = 4 SYM, the integrand can be associated with a scalar box diagram

with massless external legs, but unlike N = 4 SYM, some of the propagators are squared

which suggests an underlying Lagrangian with more than two derivative. We also con-

sider triangle and bubble diagrams with dual conformal integrands but show that they are

not important at 4 points. Remarkably, although the 4-point 1-loop integrand that we

obtain has a very different spacetime structure than that of N = 4 SYM, its integral is

essentially the same (up to scheme-dependent terms). Recalling that a very similar struc-

ture was found for the 2-loop 4-point amplitude of the ABJM theory, it therefore appears

that 4-point amplitudes with dual conformal symmetry have a universal structure. We

also carry out a preliminary analysis of 2-loop 4-point integrands consistent with 6d dual

conformal symmetry and unitarity. Remarkably, although these integrands have a very

different spacetime structure than that of N = 4 SYM, their Mellin-Barnes representation

is very similar, suggesting that the similarity to N = 4 SYM might extend beyond 1-loop.

The all-loop formula for the four-point amplitude of N = 4 SYM was first confirmed

at strong coupling by Alday and Maldacena who computed the minimal area of a string

in AdS whose boundary corresponds to the null polygon obtained by arranging the ex-

2Since the M5-brane theory is self-dual, it is unclear how to define a topological expansion in terms of an

’t Hooft parameter. A similar difficulty occurs for the M2-brane theory, but can be overcome by orbifolding

the space transverse to the branes, which introduces a tunable coupling.
3Note that 6d (1, 1) SYM amplitudes have dual conformal symmetry in the four-dimensional sense [62],

as do maximal SYM amplitudes in 10d [63] and 3d [64].
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ternal momenta of the amplitude head to tail [31]. In fact, this was the first hint of the

amplitude/Wilson loop duality. For the M5-brane theory, we would expect the analogous

calculation to involve the minimal volume of an M2-brane whose boundary is a 2d surface

which somehow encodes a null polygon. Remarkably, by relaxing a constraint of the Alday-

Maldacena solution, we obtain a solution which minimizes the volume of a 2-brane in AdS

and the boundary of this solution is a pillow-shaped surface whose seams correspond to a

null polygon.4 We evaluate the on-shell action for the 2-brane solution and find a structure

very similar to the 6d 1-loop amplitude, which suggests an amplitude/Wilson surface dual-

ity and the existence of an all-loop BDS-like formula for the 4-point amplitude. Unlike the

on-shell action of the Alday-Maldacena string solution, the on-shell action of the 2-brane

has a prefactor that depends on the dimensional regularization parameter ε = (6 − d)/2

and diverges like 1/ε as ε→ 0. This additional divergence is consistent with previous holo-

graphic calculations of Wilson surfaces [65, 66], and can be associated with the conformal

anomaly of Wilson surfaces [67–70].5

This note is organized as follows. In 2 we explore the consequences of dual conformal

symmetry in six dimensions. In particular, we find that dual conformal symmetry fixes the

integrand of the 1-loop 4-point amplitude, which we integrate in d = 6−2ε dimensions using

the Mellin-Barnes technique. We also initiate the study of 2-loop 4-point amplitudes. In

section 3, we find a solution describing a minimal volume 2-brane in AdS whose boundary is

a 2d surface encoding a null polygon. We then compute the on-shell action for this solution

and find that it has a very similar structure to the 1-loop 4-point amplitude we computed in

section 2, suggesting the existence of an amplitude/Wilson surface duality and an all-loop

formula for the 4-point amplitude analogous to the BDS formula of N = 4 SYM. Finally,

in section 4 we present our conclusions and describe future directions. Appendix A gives

more details about 2-loop 4-point integrands and appendix B provides more details about

the calculation of the on-shell action of the 2-brane in AdS.

2 6d dual conformal amplitudes

Let us consider a hypothetical 6d theory for which a planar limit can be defined and

whose loop integrands are rational. We shall study the consequences of dual conformal

symmetry for such a theory, primarily focusing on the 4-point case. We shall also assume

that in the planar limit it is possible to define color-ordered amplitudes which are cyclically

symmetric (the definition of color-ordering in gauge theories can be found in many reviews,

see for example [73]). In N = 4 SYM and the ABJM theory, it is possible to encode the

four-point amplitudes with all possible asymptotic states into a single quantity known as a

superamplitude. When this quantity is divided by the tree-level four-point superamplitude,

the resulting function does not depend on asymptotic states and is determined to all orders

by dual conformal symmetry in the planar limit. Moreover, it can be computed at strong

4Note that since the original null polygon of [31] is embedded within this more general surface, it is

parameterized by the same two parameters corresponding to the Mandelstam variables s and t in the

amplitude picture.
5Also see [71, 72] for related discussion of Wilson surface operators in the M5-brane theory.
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Figure 1. Arranging the external momenta of a scattering head-to-tail gives a null polygon whose

vertices are coordinates of the dual space.

coupling using holographic methods. Our goal in the present paper is to deduce such a

function in six dimensions, which only relies on the assumption of dual conformal symmetry

and does not require knowing the asymptotic states. The four-point superamplitude can

then in principle be obtained by multiplying this quantity by the tree-level four-point

superamplitude, whose structure is an important open question. We shall therefore define

the quantity Mn = An/Atree
n . This quantity can then be expanded in powers of the ’t

Hooft coupling λ:

Mn = 1 +

∞∑
l=1

λlM(l)
n . (2.1)

In the next subsections we will review the concept of dual conformal symmetry, use it to

deduce the 1-loop 4-point contribution M(1)
4 , and analyze the possible structure of M(2)

4 .

2.1 Review of dual conformal symmetry

Dual conformal symmetry can be seen by arranging the external momenta of an amplitude

into a polygon and writing the amplitude as a function of the vertices of this polygon

as shown in figure 1. Note that this relies on the ability to cyclically order the external

particles and is therefore only well-defined in the planar limit. In equations, the coordinates

of the dual space are defined by

xµi − x
µ
i+1 = pµi

where pµi is the momentum of the ith leg. These coordinates automatically incorporate

momentum conservation. Dual superconformal symmetry then corresponds to conformal

symmetry in the dual space. Note that the amplitudes are manifestly invariant under dual

translations since they depend on external momenta which correspond to differences of

points in the dual space. Dual conformal symmetry implies the nontrivial property that

they transform covariantly under inversions in the dual space:

xµi →
xµi
x2i
. (2.2)

Note that dual conformal symmetry is not equivalent to ordinary conformal symmetry

and imposes very powerful constraints on scattering amplitudes. For example, in N = 4

SYM, although this symmetry is broken by IR divergences, it nevertheless determines the
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Figure 2. One loop box.

finite part of the four and five-point amplitudes to all orders in the t-Hooft coupling via

an anomalous dual conformal Ward identy. Beyond five points it is possible to introduce

a function of dual conformal cross ratios and still satisfy the anomalous dual conformal

Ward identity, so the amplitudes are given by the BDS formula times a nontrivial remainder

function.

2.2 One-loop four-point

In 6d, dual conformal symmetry and cyclic invariance fix the one-loop four point integrand

to have the following form:

M(1)
4 =

1

8

∫
dDx0x

2
13x

2
24

x210x
2
20x

2
30x

2
40

(
x213

x201x
2
03

+
x224

x202x
2
04

)
. (2.3)

where xij = xi−xj and the factor of 1
8 is a convention tied to our definition of the coupling

λ in (2.1). This can be represented using a 1-loop box diagram depicted in figure 2, where

each edge of the box corresponds to a propagator in the integrand. It is also possible

to define dual conformal triangle and bubble integrals, but as we describe in the next

subsection, the former do not contribute at 4-points and the latter evaluate to a constant

and woudl therefore only modify scheme-dependent terms in the 4-point 1-loop amplitude.

Note that the integrand in (2.3) is manifestly invariant under translations in the dual space.

It is also easy to see that when D = 6, it is invariant under dual inversions, under which

the measure and propagators transform as follows:

dxD0 →
dxD0(
x20
)D , x2ij → x2ij

x2ix
2
j

.

Since dual translations and inversions are sufficient to generate the dual conformal group,

this establishes dual conformal symmetry of the integrand when D = 6. An unusual feature

of the integrand is that two of the propagators in each term are squared, which suggests that

if there is an underlying Lagrangian, it may correspond to a higher derivative theory. It is

worth noting that four-derivative terms appear in certain non-unitary 6d superconformal

theories [74, 75], so it would interesting to study the scattering amplitudes of these theories.

Another possibility is that the underlying theory is unitary but non-local. We will return

to these points in section 4.
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Figure 3. The contour for the integral in (2.4).

The integral in (2.3) is IR divergent, so we will regulate it by taking D = 6 − 2ε,

where ε < 0. Although this breaks dual conformal symmetry, it does so in a controlled and

well-understood way as we will see shortly.

This integral can then be evaluated using Mellin-Barnes techniques, as described in [76].

In general, an integral of this form has the following Mellin-Barnes representation:∫
dDx0

Π4
i=1

(
x20i
)ai =

(−1)a iπD/2

Γ (D − a) Π4
i=1Γ (ai) ta−D/2

∫ c+i∞

c−i∞

dz

2πi

(s
t

)z
Γ (−z) Γ (a−D/2 + z)

× Γ (a1+z) Γ (a3+z) Γ (D/2−a1−a3−a4−z) Γ (D/2−a1−a2−a3−z) ,

where s = x213, t = x224, a =
∑4

i=1 ai, and c is a complex number chosen such that the

arguments of the gamma functions have positive real part. For the integral in (2.3) with

D = 6− 2ε, we obtain

M(1)
4 =

st−1−ε

8Γ(−2ε)

∫ c+i∞

c−i∞

dz

2πi

(s
t

)z
Γ(−z)Γ(3 + ε+ z)Γ(1 + z)2Γ (−1− ε− z)2 + s↔ t.

(2.4)

Since ε < 0, one must choose −1 < <(c) < −1 − ε so that the arguments of the gamma

functions have positive real part. The integral generates poles in ε which arise from the

terms Γ(1 + z)2Γ (−1− ε− z)2. If we shift the contour to the right while picking up the

residue at z = −1 − ε as depicted in figure 3, the integral over the new contour does not

have poles in ε and is actually O(ε) due to the prefactor of 1/Γ(−2ε). Hence, to O(ε) the

amplitude is given by the residue at z = −1− ε:

eε(γE−2)M(1)
4 = − 1

2ε2

((
µ2

s

)ε
+

(
µ2

t

)ε)
+

1

4
ln2 s

t
+
π2

3
+

1

8
(2.5)

where γE is the Euler-Mascheroni constant and µ2 is the renormalization scale.

Note that our result for the 1-loop 4-point amplitude six dimensions is the same as

the 1-loop amplitude of N = 4 SYM, except for the constant term. Had we multiplied

by eεγ than eε(γE−2), this would give rise to O
(
1
ε

)
terms and would modify the constant

term, which reflects that these terms are scheme-dependent. In section 3, we will obtain
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Figure 4. Triangle diagrams. Figure 5. Bubble diagrams.

the same structure at strong coupling by computing the minimal volume of a 2-brane in

AdS, which suggests that an anomalous dual conformal Ward identity fixes the finite part

of the 4-point amplitude to all orders as it does in N = 4 SYM.

2.3 Bubbles and triangles

In the previous section, we focused on 1-loop box diagrams. In principle, one can also

consider triangle or bubble diagrams, as depicted in figures 4 and 5. Dual conformal

symmetry restricts triangle integrals to have the form

Mtriangle =

∫
d6x0

(
x212
)α (

x223
)β (

x231
)γ(

x201
)ν1 (x202)ν2 (x203)ν3

where ν1 + ν2 + ν3 = 6 and (α, β, γ) = 1
2 (ν1 + ν2 − ν3,−ν1 + ν2 + ν3, ν1 − ν2 + ν3). From

this equation, we see that such contributions only exist for n > 4 legs (for n = 4, they

collapse to bubble integrals which we will describe shortly). Furthermore, using the results

of [77], one finds that they evaluate to rational functions of the kinematic invariants:

Mtriangle = πn/2i1−n
(
x212
)α+ν3−3 (x223)β+ν1−3 (x231)γ+ν2−3 Π3

i=1

Γ (3− νi)
Γ (νi)

.

For any number of legs, one can define the following dual conformal 1-loop bubble

integrals:

Mbubble =

∫
d6x0

(
x2ij

x20ix
2
0j

)3

.

Note that this integral must be a function of the kinematic invariant x2ij but has mass

dimension zero. Dimensional analysis therefore implies that it must evaluate to a constant,

which can be explicitly verified using the formulae in appendix A of [76]. Hence, a bubble

contribution would modify the constant term of the 1-loop 4-point amplitude in (2.5), but

as we explained in the previous section, the constant term is scheme-dependent in any case.

2.4 Higher loops

In this section we will consider 2-loop 4-point amplitudes with dual conformal symmetry

in six dimensions. In N = 4 SYM, the 4-point 2-loop integrand has a double box topology,

as depicted in figure 6. To simplify the analysis we will focus on double box diagrams,

– 8 –
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Figure 6. Two loop box.

Figure 7. Cutting a propagator of the 2-loop box gives a 1-loop box.

although contributions with triangle or bubble subdiagrams deserve further study. In this

case, there are ten possible structures consistent with dual conformal symmetry in D = 6,

two of which reduce to the 1-loop integrand in (2.3) after cutting the propagators with

momentum x01 or x53, as depicted in figure 7. These two integrands are given by∫
dDx0d

Dx5

(
x213
)2 (

x224
)2(

x201
)2
x202x

2
04x

2
52

(
x253
)2
x254
(
x205
)2 + s↔ t

∫
dDx0d

Dx5
x213
(
x224
)4

x201
(
x202
)2 (

x204
)2 (

x252
)2
x253
(
x254
)2
x205

+ s↔ t.

(2.6)

For example, if we cut the propagator with momentum x01 (which amounts to taking this

momentum on-shell), then the momenta x02 and x04 become on-shell and we can re-label

x05 as x15 since x0 is no longer integrated over. Discarding on-shell momenta, the two

integrands above reduce to terms appearing in the 1-loop integrand (2.3).

In appendix A, we list all ten integrands consistent with dual conformal symmetry

as well as their Mellin-Barnes representations. The Mellin-Barnes representation of the

two distinguished integrals in (2.6) are remarkably similar to that of N = 4 SYM, even

though their spacetime representation looks completely different. This suggests that the

2-loop 4-point amplitude of a 6d dual conformal theory should be very closely related to

that of N = 4 SYM, as we found at 1-loop. It would be very interesting to integrate these

expressions in D = 6− 2ε dimensions and see if they arise from exponentiating the 1-loop

amplitude, which would suggest a BDS-like formula.

3 Minimal volumes in AdS

At strong coupling, the duality between N = 4 super-Yang-Mills and string theory on

AdS5 × S5 was exploited in [31] to verify the validity of the BDS form of the four point

– 9 –
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amplitude. This was performed by finding an extremal surface Σ in AdS5, which ends

on a four-sided null-polygon at the boundary. This boundary polygon can be thought of

as the contour of a Wilson-loop dual to the four point amplitude. The extremal surface

Σ then constitutes the world-sheet of the probe-string ending on the boundary Wilson-

loop. The extremality of Σ implies that the string world-sheet satisfies the equations of

motion following from Nambu-Goto action. The four point amplitude is then obtained by

evaluating the on-shell action for the string world-sheet and exponentiating.

In this section we will find a simple generalization of the Alday-Maldacena solution

that minimizes the action for a 2-brane in AdSd, with d ≥ 5. Note that 11d supergravity

admits a solution of AdS7 × S4 with the 3-form potential having non-zero legs only along

the sphere, which describes a stack of M5-branes in the supergravity limit. Hence, our

solution can then be interpreted as a single M2-brane in the near horizon geometry of

a stack of M5-branes (since the solution is localized on the sphere, the 3-form can be

neglected) [78, 79].

3.1 General setup

The action for an M2 brane is given by the induced volume on the brane

S =

∫
d3ξL = TM2

∫
d3ξ

√
Det

(
Gµν

∂Xµ

∂ξa
∂Xν

∂ξb

)
, (3.1)

where TM2 is the M2-brane tension, (ξ1, ξ2, ξ3) are the worldvolume coordinates of the

brane, and Xµ are the coordinates of the target space with metric Gµν . We will take the

target space to be AdSd (with d ≥ 5). In the Poincare patch the metric is

GµνdX
µdXν =

−dy20 + r2 + Σy2i
r2

. (3.2)

For the rest of the discussion we will set

yi = 0, ∀ i = 4, 5, . . . (3.3)

and focus on a AdS5 slice of (3.2). This AdS5 can be embedded in R2,4 by the relation

− Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = −1. (3.4)

These coordinates are related to the Poincare coordinates by

Y µ =
yµ

r
, where µ = 0, 1, 2, 3, Y−1 + Y4 =

1

r
, Y−1 − Y4 =

r2 + yµyµ
r

. (3.5)

3.2 Single cusp solution

In terms of embedding coordinates, the single cusp solution for a 2-brane satisfies the

following constraints:

Y3 = 0, Y 2
0 − Y 2

−1 = Y 2
1 − Y 2

4 . (3.6)

This is essentially the same as the single-cusp Alday-Maldacena solution with one constraint

(Y2 = 0) removed, which can be motivated by noting that a 2-brane is one dimension higher
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than a string and therefore requires one less condition to specify it. Nevertheless, it is

rather nontrivial that the constraints in (3.6) actually describe a 2-brane solution. Indeed,

when the constraints are transformed to Poincare coordinates using (3.5), they have a very

different structure than the Alday-Maldacena solution:

r =
√

2
(
y20 − y21

)
− y22, y3 = 0. (3.7)

If we use the worldvolume diffeomorphsim symmetry to set (ξ1, ξ2, ξ3) = (y0, y1, y2), we

find that (3.7) is indeed a solution to the Nambu-Goto equations of motion for a 2-brane

in AdS. After realizing how to lift the single cusp solution for a string to that of a 2-brane,

it is straightforward to generate a four-cusp solution for a 2-brane following the procedure

in [31], which we shall describe in the next section.

3.3 Four cusp solution

On performing a set of SO(2, 4) transformations following [31], the constraints in (3.6)

become

Y4 = 0, Y0Y−1 = Y1Y2. (3.8)

In terms of Poincare coordinates (3.8) translates to

y0 = y1y2, r =
√(

1− y21
) (

1− y22
)
− y23, (3.9)

where we have made use of (3.5). Choosing (ξ1, ξ2, ξ3) = (y0, y1, y2) gives a 4-cusp solution

to the equations of motion following from (3.1). Note that this solution describes a minimal-

volume 2-brane in AdS and can be obtained from the minimal-area string solution in [31]

by writing it in embedding coordinates and relaxing a constraint (Y3 = 0). In fact, it can

be generalized to an infinite family of p-brane solutions in AdS:

y0 = y1y2, r =

√√√√(1− y21) (1− y22)− p+1∑
i=3

y2i .

These solutions have the remarkable property that their on-shell actions factorize into the

on-shell action of the minimal string solution times a contribution from the remaining p−2

directions of the world-volume, although this factorization does not occur at the level of

the classical solutions themselves.

Note that the r → 0 limit of this solution is a two dimensional surface on the boundary

of AdS which may be taken as the contour of a Wilson surface in the 6d dual field theory.

In figure 8, we have plotted this surface by projecting it on the spaces orthogonal to y0
and y3, respectively. From this figure, we see that the Wilson surface can be visualized

as a pillow with four seams corresponding to the edges of a null polygon. Moreover, if we

identify the edges with the momenta of a scattering amplitude, the resulting Mandelstam

variables satisfy s = t.
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Figure 8. Plots of the boundary surface (3.12), obtained by projecting it on the space orthogonal

to y0, and y3 respectively, for b = 0 (s = t). When projected orthogonal to y3, the surface reduces

to a null polygon with its interior filled.

To generalize this solution to s 6= t we can simply apply a boost to (3.8) followed by a

rescaling following [31] to obtain

y0 =
a
√

1 + b2 sinh ξ1 sinh ξ2
cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2

, y1 =
a sinh ξ1 cosh ξ2

cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2
,

y2 =
a cosh ξ1 sinh ξ2

cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2
, y3 =

a ξ3
cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2

,

r =
a
√

1− ξ23
cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2

, (3.10)

where the world sheet coordinates {ξ1, ξ2, ξ3}, must take values in [−1, 1] and we make

the following identification of the Mandelstam variables with the parameters a, b of the

solution:

− s =
8a2

(2π)2(1− b)2
, − t =

8a2

(2π)2(1 + b)2
. (3.11)

It is not difficult to check that (3.10) solves the equations of motion arising from (3.1) and

reduces to (3.9) when b = 0, which corresponds to s = t. Also note that if we replace

ξ3 by an arbitrary function of f(ξ3) ∈ [−1, 1] in (3.10), it remains a valid solution of the

equations of motion. This is simply related to world-sheet diffeomorphism invariance.

Taking r → 0 gives the following equations for the surface in boundary:

y0 =
a
√

1 + b2 sinh ξ1 sinh ξ2
cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2

, y1 =
a sinh ξ1 cosh ξ2

cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2
,

y2 =
a cosh ξ1 sinh ξ2

cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2
, y3 =

a

cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2
.

(3.12)

Although these equations are identical to the 4-cusp string solution of Alday-Maldacena

solution [31], they are now in Minkowski space rather than AdS, which makes the two

surfaces distinct.
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On plugging the solution (3.10) back into Lagrangian (3.1) and restoring the AdS

radius R, we get

L =
R3TM2

(1− ξ23)2
, (3.13)

which is independent of the coordinates ξ1 and ξ2. This is not surprising, since ξ1, ξ2
are the corresponding coordinates of the string world-sheet in [31], where the Lagrangian

simply evaluated to unity on substituting the full solution. In the next section, we will

describe how to evaluate the on-shell action, which is divergent and therefore needs to be

regulated.

3.4 Regulated on-shell action

To implement the analogue of dimensional regularization in the bulk, we follow the method

outlined in [31] and define the regularized action as

Sreg =

∫
Lε=0

rε
, (3.14)

where ε < 0. In [31], this regularization was motivated by analytically continuing the

near-horizon metric of black D-banes. Since we are computing the minimal volume of an

M2-brane in the bulk, it would be interesting to first dimensionally reduce AdS7 on a circle

and then apply the above procedure to compute the on-shell action of the dimensionally

reduced solution. In this paper, we will stick with regularization in (3.14) for simplicity.

Although it is difficult to obtain a 4-cusp solution for the regularized action in (3.14),

it suffices to know the single-cusp solution for the regularized action. In particular, the

single-cusp solution in (3.7) generalizes to

r(y0, y1, y2) =
√

(2 + ε)
(
y20 − y21

)
− y22, y3(y0, y1, y2) = 0, (3.15)

as a solution of the regularized action (3.14). Now we wish to modify the solution in (3.10),

so that it reduces to the regulated solution (3.15) near the cusps. This can be accomplished

by the following redefinitions:

r →
√

1 +
ε

2
rε=0, y3 →

√
1 +

ε

2
(y3)ε=0, yi → (yi)ε=0, for i = 0, 1, 2. (3.16)

where the ε = 0 solution refers to that in (3.10).

Upon substituting the solution in (3.16) into the regulated action (3.14), we find that

the integral over ξ3 decouples from the ξ1, ξ2 integrals and we obtain

iSreg = TεS̃ (3.17)

where

Tε = R3TM2

∫
dξ3(

1− ξ23
)2+ ε

2

= −R
3TM2

ε
+O

(
ε0
)
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and6

S̃ = −
πΓ
(
− ε

2

)2
Γ
(
1−ε
2

)2 [2F1

(
1

2
,− ε

2
,

1− ε
2

; b2
)

+
3

2

]
+O (ε) .

Recalling that TM2 = 1
(2π)2l3p

and that in the near-horizon limit of a stack of N M5-branes(
R
lp

)3
= πN , we finally obtain

iSreg = − N

4πε

[
2Sdiv,s + 2Sdiv,t +

1

4
ln2
(s
t

)
+ C

]
, (3.18)

where µ is the renormalization scale,

Sdiv,s = − 1

ε2

(
µ2

s

)ε/2
+

2 ln 2

ε

(
µ2

s

)ε/2
(with a similar formula for Sdiv,t), and

C =
π2

3
− 8 ln2 2− 3

2
.

Note that the O
(
1
ε

)
terms in Sdiv and the constant term C are scheme-dependent since

they can be altered by rescaling µ.

In terms of the on-shell action for the minimal 2-brane in (3.18), the expectation value

of the Wilson surface with contour in (3.12) is given by

M4 = eiSreg .

Note that the on-shell action has a very similar structure to the 1-loop 4-point amplitude

in (2.5). This suggests that the 6d 4-point amplitude is dual to a Wilson surface and

can be described to all-loop orders in terms of a BDS-like formula. A novel feature of

the on-shell action for the 2-brane compared to the on-shell action of the string obtained

in [31] is an overall prefactor which diverges as ε → 0. A similar divergence was found in

previous holographic calculations of Wilson surfaces of the 6d (2, 0) theory [65] and circular

Wilson loops of 5d SYM [66], and can be associated with the conformal anomaly of Wilson

surfaces [67–70]. Furthermore, it may be possible to interpret the prefactor in (3.18) which

goes as N/ε as an t’Hooft coupling in the 6 − 2ε dimensions. We shall discuss this point

further in section 4.

4 Discussion

In this note, we have explored dual conformal symmetry for loop amplitudes in six di-

mensions. This study is motivated by the fact that the scattering amplitudes of D3 and

M2-brane worldvolume theories have dual conformal symmetry even though it is hidden

6Note that S̃ is identical to the regulated on-shell action for the string solution obtained in [31] apart

from an additive constant. In [31], this constant was reported to be 1/2 instead of 3/2. For more details,

see appendix B.
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from the point of view of their Lagrangian formulations. This suggests that it may also

play a role in the scattering amplitudes of M5-brane worldvolume theories.

If we consider a hypothetical 6d theory which has a planar limit and scattering ampli-

tudes with rational (field theoretic) loop integrands, we find that imposing dual conformal

symmetry fixes the integrand for the 4-point 1-loop amplitude. After performing the inte-

gral over loop momentum in d = 6− 2ε dimensions, we obtain a result that is remarkably

similar to the 4-point amplitude of N = 4 SYM and the ABJM theory. We also analyze

two-loop 4-point amplitudes in six dimensions and identify two integrands compatible with

dual conformal symmetry and unitarity.

Given that the planar scattering amplitudes in N = 4 SYM can be computed at

strong from the area of a string worldsheet in AdS whose boundary corresponds to a

null-polygonal Wilson loop, one may expect that the amplitudes of the 6d theory can

also be computed holographically by minimizing the volume of a 2-brane whose boundary

corresponds to a Wilson surface which somehow encodes a null polygon. In fact, we find a

simple generalization of the 4-cusp Alday-Maldacena solution which minimizes the action

of a 2-brane in AdS and verify that its on-shell action has essentially the same structure as

the 1-loop 4-point amplitude we deduced using dual conformal symmetry. This suggests

that the 6d 4-point amplitude is dual to a Wilson surface and can be described to all-loop

orders using a formula analogous to the BDS formula of N = 4 SYM. A new feature of the

on-shell action for the 2-brane compared to that of the string in AdS is an overall prefactor

which diverges as ε→ 0. This additional divergence was observed in previous holographic

calculations of Wilson surfaces.

Although our calculations are highly suggestive, the existence of a 6d theory with these

properties and its relation to M5 branes is still rather speculative. In particular, there are

a number of questions that deserve further study:

• Perhaps the most immediate task would be to extend our perturbative 4-point cal-

culations to higher loops and check if they are consistent with an all-loop formula

for the 4-point amplitude. This would require extending our 1-loop calculation to

O
(
ε2
)
, computing the 2-loop Mellin-Barnes integrals we obtained in appendix A, and

determining if any linear combination of these integrals can arise from exponentiat-

ing the 1-loop amplitude. In the end, it may only be necessary to consider the two

integrands we describe in section 2.4, whose Mellin-Barnes representations are very

similar to that of the 2-loop 4-point amplitude of N = 4 SYM.

• Note that two of the propagators in the 1-loop integrand in (2.3) are squared, which

suggests that if there is an underlying Lagrangian, it contains terms of the form φ∂4φ.

Such theories are not generally unitary unless they arise from expansions of non-local

theories like string theory [80]. This is certainly a possibility for the M5-brane world-

volume theory given that it has been argued to be a non-gravitational self-dual string

theory [81, 82]. Another possibility is that the 6d theory in question is not unitary.

Indeed, four-derivative terms appear in certain non-unitary 6d superconformal theo-

ries [74, 75], so studying the scattering amplitudes of these theories is an important

direction for future research. In [61], it was proven that it is not possible to construct
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tree-level amplitudes of self-dual tensor multiplets assuming unitarity and locality.

It would be interesting to revisit this question in light of our loop-level calculations,

which suggest that some of these assumptions may need to be relaxed.

• A crucial assumption in our analysis is the existence of a planar limit. In order to

define such a limit, there must be a coupling which can be sent to zero as the rank

of the gauge group N is sent to infinity. For the M2-brane worldvolume theory, this

can be accomplished by performing a Zk orbifold of the space transverse to the M2-

branes, which ultimately gives rise to the ’t Hooft coupling N/k. For the M5-brane

worldvolume theory, our results suggest that the coupling is tied to the dimension of

the worldvolume itself. In particular, note that the prefactor of the on-shell action

in (3.18) is proportional to N/ε. If we interpret this as the ’t Hooft coupling, we see

that the coupling diverges as d → 6. This is reminiscent of the conjecture that 5d

SYM is equivalent to the 6d (2, 0) compactified on a circle [22, 23], where the radius

of compactification is proportional to the 5d coupling [83]. It would therefore be

interesting to explore how our results relate to the planar scattering amplitudes and

Wilson loops of 5d SYM. Although perturbative amplitudes of 5d SYM have UV

divergences [84], it has been argued that they may be removed by non-perturbative

effects [85].

• In N = 4 SYM, dual superconformal symmetry was shown to arise from self-duality

of the dual string theory under a combination of bosonic and fermionic T-duality

transformations. It would therefore be interesting to look for an analogue of T-

duality in M-theory, perhaps by compactifying the theory on a circle to obtain IIA

string theory, performing various combinations of bosonic and fermionic T-duality

transformations, and then decompactifying back to M-theory. Some of these ideas

were considered in [86].

Ultimately, we hope this line of investigation will yield new insight into the longstanding

question of how to formulate the worldvolume theory of M5-branes.
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A Details of 2-loop 4-point amplitude

In general, the 2-loop integrand with a double box topology has the following form:

A(2)
4 =

∫
d6−2εx0d

6−2εx5

(
x213
)α1
(
x224
)α2(

x201
)ν2 (x202)ν1 (x204)ν3 (x252)ν6 (x253)ν5 (x254)ν4 (x205)ν7 + s↔ t.

(A.1)
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No. ν1 ν2 ν3 ν4 ν5 ν6 ν7 α1 α2

(1) 1 2 1 1 2 1 2 2 2

(2) 2 1 2 2 1 2 1 1 4

(3) 1 1 1 1 1 1 3 1 2

(4) 2 1 1 2 1 1 2 1 3

(5) 1 1 2 1 1 2 2 1 3

(6) 3 1 1 3 1 1 1 1 4

(7) 1 1 3 1 1 3 1 1 4

(8) 1 2 2 1 2 2 1 2 3

(9) 2 2 1 2 2 1 1 2 3

(10) 1 3 1 1 3 1 1 3 2

Table 1. Table listing sets of exponents in (A.1) consistent with dual conformal symmetry.

There are ten possibilities consistent with dual conformal symmetry, which we summarize

in table 1. The integral in (A.1) has a Mellin-Barnes representation

I(ν1, ν2, ν3, ν4, ν5, ν6, ν7, α1, α2)

= sα1+D−νtα2
(−1)D+1πD

Γ(D − ν4567)
∏
l=2,4,5,6,7 Γ(νl)

∫ 4∏
j=1

dzj
2πi

(
t

s

)z1
Γ(ν2 + z1)Γ(−z1)

× Γ(z2 + z4)Γ(z3 + z4)Γ(ν123 −D/2 + z4)Γ(ν7 + z1 − z4)
Γ(ν1z3 + z4)Γ(ν3 + z2 + z4)Γ(D − ν123 + z1 − z4)

Γ(−z2 − z3 − z4)

× Γ(ν5 + z1 + z2 + z3 + z4)Γ(ν4567 −D/2 + z1 − z4)Γ(D/2− ν12 + z2)

× Γ(D/2− ν23 + z3)Γ(D/2− ν567 − z1 − z2)Γ(D/2− ν457− z1 − z3),

(A.2)

where D = 6 − 2ε, ν =
∑7

i=1 νi , νij = νi + νj , and νijk = νi + νj + νk. Note that first

and the second sets of exponents listed in table 1 correspond to the integrals (2.6), and we

shall denote their Mellin Barnes integrands as I6d(1) and I6d(2), respectively. For comparison,

the Mellin-Barnes representation of the planar 4-point 2-loop amplitude in N = 4 SYM

is given by I(1, 1, 1, 1, 1, 1, 1, 1, 0) and we will denote the Mellin-Barnes integrand as I4d.

Remarkably, the Mellin-Barnes integrands corresponding to (2.6) are very similar to that

of N = 4 SYM:

I4d(z1, z2, z3, z4)

I6d(1)(z1 − 1, z2, z3, z4)
= − tΓ(−z1)

π2Γ(1− z1)
, (A.3)

I4d(z1, z2, z3, z4)

I6d(2)(z1, z2, z3, z4)
=
s2Γ(z2 + z4 + 2)Γ(z3 + z4 + 2)Γ(z4 + ε+ 1)Γ(z1 − z4 + ε+ 2)

π2Γ(z2 + z4 + 1)Γ(z3 + z4 + 1)Γ(z4 + ε+ 2)Γ(z1 − z4 + ε+ 3)
.
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B Details of regularized action

The regulated on-shell action in (3.17) takes the form7

iS = −Tε
∫ +∞

−∞
dξ1dξ2

1 + εI1 + ε2
(
I2 − 2I22 + 1

4

)
(cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2)

ε (B.1)

where

I1 =

(
b2 − 1

)
cosh(2ξ1) +

(
b2 − 1

)
cosh(2ξ2)− 2

(
b2 + 1

)
8(b sinh(ξ1) sinh(ξ2) + cosh(ξ1) cosh(ξ2))2

I2 =
−
(
b2 + 1

)
cosh(2ξ1) cosh(2ξ2)− 2b sinh(2ξ1) sinh(2ξ2) + 1 + b2

16(b sinh(ξ1) sinh(ξ2) + cosh(ξ1) cosh(ξ2))2
(B.2)

Tε = R3TM2

∫
dξ3(

1− ξ23
)2+ ε

2

= R3TM2

√
πΓ
(
−1− ε

2

)
Γ
(
−1

2 −
ε
2

) .

The integrals evaluate to

∫ +∞

−∞
dξ1dξ2

1

(cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2)
ε =

πΓ
(
− ε

2

)2
Γ
(
1−ε
2

)2 2F1

(
1

2
,− ε

2
;

1

2
− ε

2
; b2
)
,∫ +∞

−∞
dξ1dξ2

I1
(cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2)

ε =
2

ε
+O

(
ε0
)
, (B.3)∫ +∞

−∞
dξ1dξ2

I2 − 2I22 + 1
4

(cosh ξ1 cosh ξ2 + b sinh ξ1 sinh ξ2)
ε = − 1

2ε2
+O

(
1

ε

)
.

Using the following expansions

πΓ
(
− ε

2

)2
Γ
(
1−ε
2

)2 =
4

ε2
− 4 log(4)

ε
+

(
2 log2(4)− π2

3

)
+O (ε)

2F1

(
1

2
,− ε

2
;

1

2
− ε

2
; b2
)

=

(
1

2
(1− b)ε +

1

2
(1− b)ε

)
− ε2

4
ln

(
1 + b

1− b

)
+O

(
ε3
)

(B.4)

Tε = −R
3TM2

ε
+O

(
ε0
)

and putting all the terms together gives (3.18).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

7Note that on evaluating the onshell Nambu-Goto action, in the O(ε)2 term, we find an extra additive
1
4
, compared to [31]. This eventually contributes to the constant O(ε)0 term, in the amplitude. We think

this should be present for the case of the string worldsheet in [31] as well.
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