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We develop the conformal bootstrap program for six-dimensional conformal field theories with (2, 0)
supersymmetry, focusing on the universal four-point function of stress tensor multiplets. We review the
solution of the superconformal Ward identities and describe the superconformal block decomposition of
this correlator. We apply numerical bootstrap techniques to derive bounds on operator product expansion
(OPE) coefficients and scaling dimensions from the constraints of crossing symmetry and unitarity. We also
derive analytic results for the large spin spectrum using the light cone expansion of the crossing equation.
Our principal result is strong evidence that the A; theory realizes the minimal allowed central charge
(c = 25) for any interacting (2, 0) theory. This implies that the full stress tensor four-point function of the
A, theory is the unique unitary solution to the crossing symmetry equation at ¢ = 25. For this theory, we
estimate the scaling dimensions of the lightest unprotected operators appearing in the stress tensor operator
product expansion. We also find rigorous upper bounds for dimensions and OPE coefficients for a general
interacting (2, 0) theory of central charge c¢. For large ¢, our bounds appear to be saturated by the

holographic predictions obtained from eleven-dimensional supergravity.
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I. INTRODUCTION AND SUMMARY

In this work we introduce and develop the modern
conformal bootstrap program for (2, 0) superconformal
theories in six dimensions. These theories provide a
powerful organizing principle for lower-dimensional super-
symmetric dynamics. From their existence one can infer a
vast landscape of supersymmetric field theories in various
dimensions and rationalize many deep, nonperturbative
dualities that act within this landscape (see, e.g., [1-5]).
Despite their increasingly central role, the (2, 0) theories
have proved stubbornly resistant to study by traditional
quantum field theory techniques. This situation, coupled
with the high degree of symmetry and conjectured unique-
ness of these theories, suggests that the (2, 0) theories may
be a prime target for the conformal bootstrap approach.

A. (2, 0) theories

It has been known since the work of Nahm [6] that
superconformal algebras can only be defined for spacetime
dimension less than or equal to six. In six dimensions, the
possible superconformal algebras are the (N, 0) algebras
03p(8*|2V). The maximum six-dimensional superconformal
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algebra for which there can exist a stress tensor multiplet is
the (2, 0) algebra 03p(8*|4) [7]. Thus the six-dimensional
(2, 0) theories are singled out as the maximally supersym-
metric local conformal field theories (CFTs) in the maximum
number of dimensions.

While it is easy to identify a free-field theory that realizes
(2, 0) superconformal symmetry—namely the Abelian
tensor model—the existence of interacting (2, 0) theories
was only inferred in the mid 1990s on the basis of string-
theory constructions [8,9]. A decoupling limit of type IIB
string theory on asymptotically locally Euclidean spaces
predicts the existence of a list of interacting (2, 0) theories
labeled by the simple and simply laced Lie algebras (4,51,
D, >4, Eg, E;, Eg) [8]. The Ay_; model can also be realized
as the low-energy limit of the world volume theory of N
coincident M5 branes in M theory [9]. Two important
properties of these theories can be deduced almost immedi-
ately from their string/M-theory constructions:

(i) On RS, the (2, 0) theory of type g has a moduli space

of vacua given by the orbifold

M, = (R%)/W,, (1.1)

where r, is the rank of the simply laced Lie algebra g
and W, its Weyl group. At a generic point in the
moduli space, the long distance physics is described
by a collection of r, decoupled free tensor multiplets.
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maximally supersymmetric five-dimensional Yang-
Mills theory with gauge algebra g, whose dimensionful
gauge coupling is controlled by the S! radius, g%, ~ R.
The string/M-theory constructions give physically compel-
ling evidence for the existence of the interacting (2, 0)
theories, but the evidence is indirect and requires an
extensive conceptual superstructure. Moreover, at present
these constructions do not provide tools for computing
anything in the conformal phase of the theory beyond a
very limited set of robust observables, such as anomalies.'
At large n, the A, theories can be described holograph-
ically in terms of eleven-dimensional supergravity on AdS;x
sS4 [18].2 The AdS/CFT correspondence then renders these
large n theories extremely tractable. However, the extension
to finite n is presently only possible at leading order. Higher-
order corrections require a method for computing quantum
corrections in M theory. An intrinsic field-theoretic con-
struction of the (2, 0) theories would therefore be indispen-
sable. Turning this logic around, such an independent
definition would offer a window into quantum M theory.
However, most standard field theory methods are inad-
equate for describing the (2, 0) theories. The mere existence
of unitary, interacting quantum field theories in d > 4
appears surprising from effective field theory reasoning—
conventional local Lagrangians are ruled out by power
counting. The (2, 0) theories are isolated, intrinsically
quantum mechanical conformal field theories, which can-
not be reached as infrared fixed points of local renormal-
ization group flows starting from a Gaussian fixed point.
This is in sharp contrast to more familiar examples of
isolated CFTs in lower dimensions, such as the critical
Ising model in three dimensions. It is unclear whether an
unconventional (nonlocal?) Lagrangian for the interacting
(2, 0) theories could be written down (see, e.g., [21-26] for
a partial list of attempts), but in any event it would be
unlikely to lend itself to a semiclassical approximation.
There have been several attempts at field-theoretic def-
initions of the (2, 0) theories. The most concrete proposal
[27,28] relates the discrete light cone quantization (DLCQ)
of the A, theory (with k units of light cone momentum) to
supersymmetric quantum mechanics on the moduli space of
k SU(n + 1) instantons—to recover the (2, 0) theory on R®

"The ’t Hooft anomalies for the R symmetry, as well as the
gravitational and mixed anomalies, are encoded in an eight-form
anomaly polynomial. First obtained for the A, and D, theories by
anomaly inflow arguments in M theory [10-14], the anomaly
polynomial can also be reproduced by purely field-theoretic
reasoning [15,16], relying only on properties (i) and (ii). A
similar field-theoretic derivation has recently been performed for
the a-type Weyl anomaly [17], i.e., the coefficient in front of the
Euler density in the trace anomaly. Finally, the c-type anomalies,
ie., the coefficients in front of the three independent Weyl
invariants in the trace anomaly, are proportional to each other and
related by supersymmetry to the two-point function of the
canonically normalized stress tensor; see (1.2) below.

*There is an analogous conjecture for the D,, theories, relating
them to supergravity on AdS,; x RP, [19,20].
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one is instructed to send k — co. This moduli space is
singular due to small instanton singularities. A specific
regularization procedure has been advocated in [28], but its
conceptual status seems somewhat unclear, and one may be
concerned that important features of the theory might be
hidden in the details of the UV regulator. The DLCQ
proposal remains largely unexplored due to the inherent
difficulty of performing calculations in a strongly coupled
quantum mechanical model and the need to take the large k
limit. To the best of our knowledge, the only explicit result
obtained in this framework is the calculation of the half BPS
spectrum of the A,, theory, carried out in [28]. According to
another little-explored proposal, the A, (2, 0) theory on R* x
T? (with a finite-size T?) can be “deconstructed” in terms of
four-dimensional NV = 2 quiver gauge theories [29]. Finally
there is the suggestion [30,31] that five-dimensional max-
imally supersymmetric Yang-Mills theory is a consistent
quantum field theory at the nonperturbative level, without
additional UV degrees of freedom, and that it gives a
complete definition of the (2, 0) theory on S'. The con-
ceptual similarities shared by these three proposals have
been emphasized in [32]. It would be of great interest to
develop them further, ideally to the point where quantitative
information for the nonprotected operator spectrum could be
derived and compared to the bootstrap results obtained here.

B. Bootstrap approach

In the present work, we will eschew the problem of
identifying “the fundamental degrees of freedom” of the
(2, 0) theories. Indeed, we are not certain that this question
makes sense. Instead, we will do our best to rely exclusively
on symmetry. We regard the (2, 0) theories as abstract
conformal field theories (CFTs), to be constrained—ideally,
completely determined—by bootstrap methods. The con-
formal bootstrap program was formulated in the pioneering
papers [33-35] and has undergone a modern renaissance
starting with [36]. The algebra of local operators, which is
defined by the spectrum of local operators and their operator
product expansion (OPE) coefficients, is taken as the
primary object. The conformal bootstrap aims to fix these
data by relying exclusively on symmetries and general
consistency requirements, such as associativity and unitar-
ity.3 Intuitively, we expect this approach to be especially

*In principle, the bootstrap for local operators could be enlarged
by also including nonlocal operators (such as defects of various
codimensions), or by considering nonlocal observables (such as
partition functions in nontrivial geometries), or both. Apart from
the calculation of new interesting observables, such an enlarged
framework may yield additional constraints on the local operator
algebra itself. This is familiar in two-dimensional CFT, where
modular invariance imposes additional strong restrictions on the
operator spectrum. Constraints arising from nontrivial geometries
are however much less transparent in higher-dimensional CFTs,
and their incorporation in the bootstrap program remains an open
problem. References [37-39] contain some work on the bootstrap
in the presence of defects.
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powerful for theories that are uniquely determined by their
symmetries and perhaps a small amount of additional data,
such as central charges. The (2, 0) theories, with their
conjectured ADE classification and absence of exactly
marginal deformations, are an attractive target.

We are making the fundamental assumption that the
(2, 0) theories admit a local operator algebra satisfying the
usual properties. This may warrant some discussion, in
light of the fact that the (2, 0) theories require a slight
generalization of the usual axioms of quantum field theory
[11,40-46]. In contrast to a standard quantum field theory,
each (2, 0) theory does not have a well-defined partition
function on a manifold of nontrivial topology (with non-
trivial three-cycles), but it yields instead a vector worth of
partition functions. This subtlety does not affect the
correlation functions of local operators on R® where there
are no interesting three-cycles to be found. That the (2, 0)
theories of type A, and D, have a conventional local
operator algebra is manifest from AdS/CFT, at least for
large n. The extrapolation of this property to finite n is a
very plausible conjecture. Ultimately, in the absence of an
alternative calculable definition of the (2, 0) theories, we
are going to take the existence of a local operator algebra as
axiomatic. Our work will give new compelling evidence
that this is a consistent hypothesis.

In this paper, we focus on the crossing symmetry
constraints that arise from the four-point function of stress
tensor multiplets. This is a natural starting point for the
bootstrap program, since the stress tensor is the one
nontrivial operator that we know for certain must exist
in a (2, 0) theory. By superconformal representation theory,
the stress tensor belongs to a half BPS multiplet, whose
superconformal primary (highest weight state) is a dimen-
sion-four scalar operator ® in the two-index symmetric
traceless representation of 30(5),. It is equivalent but
technically simpler to focus on the four-point function of
@, which contains the same information as the stress tensor
four-point function. (Indeed, the two-, three- and four-point
functions of all half BPS multiplets are known to admit a
unique structure in superspace [47-49].)

The two- and three-point functions of the stress tensor
supermultiplet are uniquely determined in terms of a single
parameter, the central charge c. Normalizing ¢ to be one for
the free tensor multiplet, the central charge of the (2, 0)
theory of type g is given by [50]*

c(g) = 4dshy + rq, (1.2)
where dg, h; and ry are the dimension, dual Coxeter
number, and rank of g, respectively. For example, this gives

“This is the unique expression compatible with the structure of
the eight-form anomaly polynomial and with the explicit knowl-
edge of ¢ for the A, theories at large n, which is available from a
holographic calculation [51,52].
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c(Ay_;) = 4N? —3N — 1, which exhibits the famous
O(N?) growth of degrees of freedom. Equation (1.2) gives
the value of the central charge for all the known (2, 0)
theories, but we do not wish to make any such a priori
assumptions about the theories we are studying. We will
therefore treat the central charge as an arbitrary parameter,
imposing only the unitarity requirement that it is real and
positive.

Building on previous work [47-49,53,54], we impose
the constraints of superconformal invariance on the four-
point function of & and decompose it in a double OPE
expansion into an infinite sum of superconformal blocks.
Schematically we have

@PDD) =3 f300G5. (1.3)
9]

The sum is over all the superconformal multiplets allowed
by selection rules to appear in the ® x & OPE. Each
multiplet is labeled by the corresponding superconformal
primary O, with associated superconformal block G%, a
known function of the two independent conformal cross
ratios. Finally fop0 € R denotes the OPE coefficient. We
further assume that no conserved currents of spin £ > 2
appear in this expansion. Very generally, the presence of
higher-spin conserved currents in a CFT implies that the
theory contains a free decoupled subsector [55], while we
wish to focus on interacting (2, 0) theories. There are three
classes of supermultiplets that contribute in the double OPE
expansion (1.3):

() An infinite set {O,} of BPS multiplets, whose
quantum numbers are known from shortening con-
ditions and whose OPE coefficients fq,(pol can be
determined in closed form using crossing symmetry,
as functions of the central charge c. For this
particular four-point function, this follows from
elementary algebraic manipulations, but there is a
deeper structure underlying this analytic result. The
operator algebra of any (2, 0) theory admits a closed
subalgebra, isomorphic to a two-dimensional chiral
algebra [50,56]. Certain protected contributions to
four-point functions of BPS operators of the (2, 0)
theory are entirely captured by this chiral algebra. In
the case at hand, the operator ¢ corresponds to the
holomorphic stress tensor 7" of the chiral algebra,
with central charge c¢,; = ¢, while the operators
{O,} map to products of derivatives of 7.

(i) Another infinite tower of BPS multiplets
{D,B,,Bs,Bs,...}. The B, operators have spin
¢, while the single D operator is a scalar.” All their

Here we use an abbreviated notation for the supermultiplets,
dropping their R-charge quantum numbers. The translation to the
precise notation introduced in Sec. 11 is as follows: D := DJ0, 4],
By = B[0.2],, L= L[0,0], -
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quantum numbers (including the conformal dimen-
sion) are known from shortening conditions, but
their contribution to the four-point function is not
captured by the chiral algebra.

(iii) An infinite set of non-BPS operators {L, .}, labeled
by the conformal dimension A and spin £. Only even
¢ contribute because of Bose symmetry. Both the set
of {(A,£)} entering the sum and the OPE coef-
ficients are a priori unknown. Unitarity gives the
bound A > # + 6. It turns out that

lim G =G% . £=24,..,
A—t+6 Bl -1

: o _ P
il_rgGﬂA_o = Gp,

(1.4)
so we can view the BPS contributions of type (ii) as a
limiting case of the non-BPS contributions.

We then analyze the constraints of crossing symmetry and
unitarity on the unknown CFT data {(A.?), foar, . fooD:
foap,}. Some partial analytic results can be derived by
taking the Lorentzian light cone limit of the four-point
function. As shown in [57,58], crossing symmetry relates
the leading singularity in one channel with the large spin
asymptotics in the crossed channel. By this route we
demonstrate that the BPS operators B, are necessarily
present—at least for large £—and compute the asymptotic
behavior of the OPE coefficients fggp, as £ — co. To
proceed further we must resort to numerics. There is by now
a standard suite of numerical techniques to derive rigorous
inequalities in the space of CFT data, following the blueprint
of [36]. The numerical algorithm requires us to choose a
finite-dimensional space of linear functionals that act on
functions of the conformal cross ratios. We parametrize the
space of functionals by an integer A. Greater A corresponds
to a bigger space of functionals, and hence more stringent
bounds.

C. Summary of results

The most fundamental bound is for the central charge ¢
itself. We derive a rigorous lower bound ¢ > 21.45. This is
the bound for the maximal value of A allowed by our
numerical resources. However, it turns out that the lower
bound on c¢ has a very regular dependence on the cutoff A;
see Fig. 1. This leads to the compelling conjecture that it
converges exactly to ¢, = 25 as A — oo. This is precisely
the central charge for the A; theory, the smallest central
charge of all the known interacting (2, 0) theories.’

This result rules out the existence of exotic (2, 0) theories
with a central charge smaller than that of the A, theory. A
much stronger conclusion follows if one accepts the

®Recall that ¢ = 1 for the free tensor theory, but we are
excluding free theories in our ansatz by not allowing for higher
spin conserved currents in the operator algebra.
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FIG. 1. Bound on the central charge ¢ as a function of 1/A,
which is a good proxy for the numerical cost of the result. Central
charges below the data points are excluded. The dotted line
shows a linear extrapolation, which indicates that with infinite
numerical power the lower bound converges to ¢ = 25. This is
precisely the value for the A; theory as indicated by the
horizontal line.

standard bootstrap wisdom [59,60] that the crossing equa-
tion has a unique unitarity solution whenever a bound is
saturated. We are then making the precise mathematical
conjecture that for ¢ = 25 the CFT data contained in (1.3)
are completely determined by the bootstrap equation. We
test this conjecture by extrapolating various observables to
A — oo using different schemes, always finding a consis-
tent picture. As an example, we determine numerically the
dimension A of the leading-twist scalar non-BPS operator,
6.387 < Ay < 6.443; see Fig. 10. (The range of values
reflects our estimate of the uncertainty in the A — oo
extrapolation.) One is tempted to further speculate that all
other crossing equations will also have unique solutions,
i.e., that the A, theory can be completely bootstrapped.

An important check of our claim that for ¢ = ¢, — 25
we are bootstrapping the A; theory follows from examining
the ¢ dependence of the OPE coefficient f¢4p. We find that
itis zero for ¢ = cpy,. In fact, it is precisely the vanishing of
this OPE coefficient that is responsible for the existence of a
lower bound on c. For ¢ < ¢, the squared OPE coefficient
becomes negative, violating unitarity. Now the D operator is
a chiral ring operator, and the chiral spectrum of the (2, 0)
theory of type g has been computed [61] assuming (1.1) and
a standard folk theorem relating chiral operators to hol-
omorphic functions on the moduli space. This analysis
reveals that D is absent in the A; theory, in nice agreement
with the vanishing of fsep for ¢ = ¢y

We also derive bounds on operator dimensions and OPE
coefficients in the entire range ¢ € [¢yyin, ). For ¢ — oo,
our bounds must be compatible with the existence of a
known unitary solution of the crossing equation, given by
the holographic four-point correlator of ¢ evaluated from
AdS; x §* supergravity. For strictly infinite central charge,
this is simply the “generalized free-field theory” answer, for
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FIG. 2. Upper bound on the OPE coefficient squared of the D[0,4] multiplet as a function of the inverse central charge ¢ for
A =18, ...,22, with the strongest bound shown in black. The shaded region is excluded by the numerics and unitarity (}“273[0, 4 2 0). The

red vertical line corresponds to ¢ = 25, the central charge of the A theory. The vertical dashed lines denote the minimum allowed central
charge ¢, (A) from Fig. 1 for the same values of A. The right plot is a magnification of the large central charge region. The dashed green
line is the prediction from supergravity including the first 1/¢ correction (2.10).

which the four-point function factorizes into products of
two-point functions. The supergravity answer gives a
nontrivial 1/¢ correction to the disconnected result. We
find compelling evidence that the holographic answer—
including the 1/c correction—saturates the best possible
numerical bounds of this type. The same phenomenon has
been observed for N' =4 superconformal field theories
(SCFTs) in four dimensions [62].

In summary, we find strong evidence that both for small
and for large central charge the bootstrap bounds are
saturated by actual SCFTs—the A; theory for ¢ = ¢ —
25 and the A,_, theory for ¢ — oo. It is natural to
conjecture that all A, theories saturate the bounds at the
appropriate value (1.2) of the central charge. The bounds
depend smoothly on ¢, and when they are saturated one
expects to find a unique unitary solution of this particular
crossing equation. Presumably, only the discrete values
(1.2) of the central charge will turn out to be compatible
with the remaining, infinite set of bootstrap equations.

D. Outlook

The bootstrap results derived from the ¢ four-point
function are completely universal. The only input is the
existence of ® itself, which is tantamount to the existence
of a stress tensor. An obvious direction for future work is to
make additional spectral assumptions, leveraging what is
conjecturally known about the (2, 0) theories. A relevant
additional piece of data is the half BPS spectrum, which is
easily deduced from (1.1). In the (2, 0) theory of type g, the
half BPS ring is generated by r, operators. These gen-
erators are in one-to-one correspondence with the Casimir
invariants of g and have conformal dimension A = 2k,
where k is the order of the Casimir invariant. The operator
® corresponds to the quadratic Casimir; it is always the
lowest-dimensional generator and is in fact the unique
generator for the A, theory.

The natural next step in the (2, 0) bootstrap program is
then to consider four-point correlators of higher-dimensional

half BPS operators—both individual correlators and systems
of multiple correlators.” The protected chiral algebra asso-
ciated to the (2, 0) theory of type g has been identified with
the 1, algebra [50] and will be an essential tool in the
analysis of these more general correlators. The chiral
algebra controls an infinite amount of CFT data, which
would be very difficult to obtain otherwise. For the ® four-
point function only the universal subalgebra generated by
the holomorphic stress tensor is needed, but more
complicated correlators make use of the very nontrivial
structure constants of the 1V, algebra. We have seen that
there is a sense in which the A; theory is uniquely
cornered by the vanishing of the OPE coefficient f¢op,
which reflects the chiral ring relation that sets to zero the
quarter BPS operator D. The higher-rank theories admit
analogous chiral ring relations, which imply certain
relations amongst the OPE coefficients appearing in a
suitable system of multiple correlators. At least in
principle, this gives a strategy to bootstrap the general
(2, 0) theory of type g.

The remainder of this paper is organized as follows. In
Sec. II we provide some useful background on the six-
dimensional (2, 0) theories and discuss how to formulate
the corresponding bootstrap program in full generality.
Sections III, IV, and V contain the nuts and bolts of the
bootstrap setup considered in this paper: they contain,
respectively, the detailed structure of the ($ ® ® ®) corre-
lator, its superconformal block decomposition, and a review
of the numerical approach to the bootstrap. The results of
our numerical analysis are then presented in Sec. VI, and
supplementary material can be found in the Appendixes.
Casual readers may limit themselves to Sec. II and the
discussion surrounding Figs. 1, 2, and 10 in Sec. VI.

"The study of multiple correlators has proved extremely fruitful
in the bootstrap of 3d CFTs. For example, they have led the world’s
most precise determination of critical exponents for the 3d critical
Ising model, with rigorous error bars [63,64].
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II. THE BOOTSTRAP PROGRAM
FOR (2, 0) THEORIES

A great virtue of the bootstrap approach to conformal field
theory is its generality. Indeed, this will be the reason that we
can make progress in studying the conformal phase of (2, 0)
SCFTs despite the absence of a conventional definition. Thus
in broad terms this work will mirror many recent bootstrap
studies [37-39,59,60,62-90]. We will not review the basic
philosophy in any detail here. Instead, the purpose of this
section is to describe in fairly general terms how (2, 0)
supersymmetry affects the bootstrap problem and also to
review some aspects of the known (2, 0) theories that are
relevant for this chapter of the bootstrap program. In sub-
sequent sections we will provide a more detailed account of the
specific crossing symmetry problem we are studying, culmi-
nating in a bootstrap equation that can be fruitfully analyzed.

A. Local operators

The basic objects in the bootstrap approach to CFT are the
local operators, which are organized into representations of
the conformal algebra. The local operators in a unitary (2, 0)
SCFT must further organize into unitary representations of
the 08p(8*|4) superconformal algebra. A unitary represen-
tation of 03p(8*|4) is a highest weight representation and is
completely determined by the transformations of its highest
weight state (the superconformal primary state) under a
maximal Abelian subalgebra. For generators of the maximal
Abelian subalgebra we take the generators H ; ; of rotations
in three orthogonal planes in RS, generators R; and R, of a
Cartan subalgebra of 80(5), and the dilatation generator D.
We define the quantum numbers of a state with respect to
these generators as follows®:

Hily) = hily),
Rily) = dily),
Dly) = Aly). (2.1)

There are five families of unitary representations, each
admitting various special cases. These families are charac-
terized by linear relations obeyed by the quantum numbers
of the superconformal primary state [91,92]:

L:A>hi+hy—hy+2(d +dy)+6, hy>hy>h;,
At A=hy+hy—h3 +2(d) +dy) + 6, hy > hy > hs,
B: A=hy +2(d; +dy)+4, hy>hy=h;,
C:A=h +2(d +d)+2, hy=hy=hs,
D: A=2(d|+d,), hy=hy=h3=0. (2.2)

¥See Appendix A for our naming conventions and more details
about these representations.
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Representations of type £ are called long or generic
representations, and their scaling dimension can be any
real number consistent with the inequality in (2.2). The other
families of representations are short representations.” These
representations have additional null states appearing in
the Verma module built on the superconformal primary
by the action of raising operators in 03p(8*|4). These
representations are also sometimes called protected
representations or—in an abuse of terminology—BPS
representations.

Now let us review what is understood about the spectrum
of local operators in the known (2, 0) theories.

1. BPS operators and chiral rings

Perhaps the most familiar short representations are those
of type D. The highest weight states for these representa-
tions are scalars that are half BPS (annihilated by two full
spinorial supercharges) if d, = 0, and they are one-quarter
BPS (annihilated by one full spinorial supercharge) other-
wise. As an example, the D[1,0] multiplet is just the
Abelian tensor multiplet, whose primary is a free scalar
field (with scaling dimension A = 2) transforming in the 5
of 80(5),. A more important example in the present paper
is the D[2, 0] multiplet. The superconformal primary in this
multiplet is a scalar operator ®*2 of dimension four that
transforms in the 14 of 80(5),. This multiplet also contains
the R-symmetry currents, supercurrents, and the stress
tensor for the theory, so such a multiplet should always
be present in the spectrum of a local (2, 0) theory.

The BPS operators form two commutative rings—the
half and quarter BPS chiral rings. The OPE of BPS
operators is nonsingular, and multiplication in the chiral
rings can be defined by taking the short distance limit of the
OPE of these BPS operators.lo In the known (2, 0) theories
of type g, these rings can be identified as the coordinate
rings of certain complex subspaces of the moduli space of
vacua—they take relatively simple forms [61]:

R = C[Zl, ...,ng}/Wg,

%
R IC[Zl,...,ng;Wl,...,Wrg]/W (23)

1
i LN

where r is the rank of g and W, is the Weyl group acting in
the natural way.

Knowing these rings for a given (2, 0) theory determines
the full spectrum of D-type multiplets in said theory.l ''Note,

however, that the ring structure for these operators does not
determine numerically the value of any OPE coefficients

°In the literature a distinction is sometimes drawn between short
and semishort representations. We make no such distinction here.
Alternatively, one may define these rings cohomologically by
passing to the cohomology of the relevant supercharges.
It is not quite the case that the ring elements are in one-to-one
correspondence with the D multiplets. This is because half BPS
operators have 80(5), descendants that are quarter BPS.
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since the normalizations of the BPS operators corresponding
to particular holomorphic functions on the moduli space are
unknown. To put it another way, if we demand that all BPS
operators be canonically normalized, then the structure
constants of the chiral ring are no longer known.

2. Chiral algebra operators

There is a larger class of protected representations that
participate in a more elaborate algebraic structure than the
chiral rings—namely the protected chiral algebra introduced
in [50] (extending the analogous story for N = 2 SCFTs in
four dimensions [56]). Each of the following representations
contains operators that act as two-dimensional meromorphic

. . 12
operators in the protected chiral algebra *:

D[0,0,0;d,O],
C[c,0,0;4d,0],

D[0,0,0:d. 1],
Clc1,0,0;d,1],

D[0,0,0;d,2],

Blcy,¢,,0;d,0].  (2.4)
We observe that all half BPS operators and certain quarter
BPS operators make an appearance in both the chiral rings
and the chiral algebra, but the chiral algebra also knows
about an infinite number of B-type multiplets that are
probably less familiar.

In [50] the chiral algebras of the known (2, 0) theories
were identified as the affine VV-algebras of type g, where g
is the same simply laced Lie algebra that labels the (2, 0)
theory, so the spectrum of the above multiplets is known."
We will have more to say about the information encoded in
the chiral algebra below.

3. General short representations and the
superconformal index

The full spectrum of short representations is encoded in
the superconformal index up to cancellations between
representations that can recombine (group theoretically)
to form a long representation [95]. The allowed recombi-
nations are reviewed in Appendix A. This means that the
full index unambiguously encodes the number of repre-
sentations of the following types:

D[0,0,0;4d,0], D[0,0,0;d, 1], D[0,0,0;d,2],

D[0,0,0;d,3],  Cle1,0,0;d,0,  Cley.0,0:d, 1],

Clc1,0,0;d,2], Blcy, ¢,,0;d,0], Blcy, ¢,,05d,1].
(2.5)

"’Here we are reverting to the conventions for 80(6) quantum
numbers used in Appendix A. The c; are linearly related to the /;
above in (A3).

“This is the same chiral algebra that appears in the AGT
(Alday-Gaiotto-Tachikawa) correspondence in connection with
the (2, 0) theory of type g [93,94]. The precise connection
between these two appearances of the same chiral algebra
remains somewhat perplexing.
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It also provides lower bounds for the number of operators
transforming in any short representation that appears in a
recombination rule.

A proposal has been made for the full superconformal
index of the (2, 0) theories in [96-98]. To our knowledge,
this proposal has not yet been systematically developed to
the point where it will produce the unambiguous spectral
data mentioned above. For our purposes, we will not need
the full superconformal index, but for future generalizations
of our bootstrap approach it would be very helpful to
develop the technology to such a point.14

4. Generic representations

The situation for generic representations is much worse
than that for short representations. Namely, in the known
(2, 0) theories, the spectrum of long multiplets is almost
completely mysterious. Outside of the holographic regime,
we are not aware of a single result concerning the spectrum
of such operators. This is precisely the kind of information
that one hopes will be attainable using bootstrap methods.

In the large n limit of the A,, theories, the full spectrum of
local operators is known from AdS/CFT. Local operators
are in one-to-one correspondence with single- and multi-
graviton states of the bulk supergravity theory. Single-
graviton states are the Kaluza-Klein modes of eleven-
dimensional supergravity on AdS; x $* [101] and corre-
spond to “‘single-trace” operators of the boundary theory.
They can be organized into an infinite tower of half BPS
representations of the (2, 0) superconformal algebra.
Similarly, multigraviton states in the bulk are dual to
“multitrace” operators of the boundary (2, 0) theory.
They can be organized into a list of (generically long)
multiplets of the superconformal algebra. At strictly infinite
n, the bulk supergravity is free so the energy of a multi-
graviton state is the sum of the energies of its single-
graviton constituents. This translates into an analogous
statement for the conformal dimension of the dual multi-
trace operator. The first finite n correction to the conformal
dimensions of these operators can be computed from tree-
level gravitational interactions in the bulk.

Of particular interest to us will be the double-trace
operators that are constructed from the superconformal
primaries of the stress tensor multiplet:

Opr = [®(0*)"0,,...0,,9] (2.6)

(0,0

At large n these are the leading twist long multiplets. The
scaling dimensions of the first few operators of this type at
large n are given by [48,54]

"“References [99,100] contain proposals for the index in an
unrefined limit, where the enhanced supersymmetry leads to a
simpler expression.
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24
A[OO,K:O}:S_F+"H

30
A 1 =10— "1 & ...
[Op,r—2] 11n3+ ,

72
AOy syl =12 — ——+---. 2.7
[Oo,¢—4) 91n3+ (2.7)

Similar results can be obtained for more general double
trace operators at large n—see [54]. However, it should be
noted that because the holographic dual is realized in M
theory, there is at present no method—even in principle—
to generate the higher-order corrections. This stands in
contrast to the case of theories with string theory duals,
where there is at least a framework for describing higher-
order corrections at large central charge.

B. OPE coefficients

The OPE coefficients of the known (2, 0) theories
generally appear even more difficult to access than the
spectrum of operators. Indeed, until recently the only three-
point functions that were known for the finite rank (2, 0)
theories were those that were fixed directly by conformal
symmetry, i.e., those encoding the OPE of a conserved
current with a charged operator.

1. Selection rules

Some information is available in the form of selection
rules that dictate which superconformal multiplets can
appear in the OPE of members of two other multiplets.
These selection rules are nontrivial to derive and provide
useful simplifications when studying, e.g., the conformal
block decomposition of four-point functions.

We are not aware of a complete catalogue of selection
rules for the (2, 0) superconformal multiplets. However, an
algebraic algorithm has been developed in [54] based on
writing three-point functions in analytic superspace, and
this should be sufficient to determine the selection rules in
all cases. For some special cases the selection rules have
been determined explicitly; cf. [47,48,53,54]. We will use a
particular case of this below in our discussion of half BPS
operators.

2. OPE cocefficients from the chiral algebra

Going beyond selection rules, the numerical determi-
nation of some OPE coefficients (aside from those men-
tioned above) has recently become possible as a
consequence of the identification of the protected chiral
algebras of the (2, 0) theories [50]. In particular, up to
choice of normalization, the three-point couplings between
three chiral-algebra-type operators in a (2, 0) theory will be
equal to the three-point coupling of the corresponding
meromorphic operators in the associated chiral algebra.
The structure constants of the VW, algebras are completely
fixed in terms of the Virasoro central charge, which is

PHYSICAL REVIEW D 93, 025016 (2016)

related by general arguments to the c-type Weyl anomaly
coefficient of the corresponding (2, 0) theory; cf. (1.2).

Aside from these, the three-point functions of other
protected operators are generally unknown—it would be
very interesting if it were possible to determine, e.g., the
three-point functions of quarter BPS operators not described
by the chiral algebra, perhaps using some argument related
to supersymmetric localization.

3. Undetermined short operators and generic
representations

The situation for generic representations is again much
worse, and aside from the OPEs encoding the charges of
operators under global symmetries, we are not aware of any
results for any OPE coefficients involving long multiplets
outside of the holographic limit. At large n many OPE
coefficients can be computed at leading order in the 1/n
expansion—see [54] for example. We will be particularly
interested later in this paper in the three-point functions
coupling two stress tensor multiplets and certain general-
ized double traces that turn out to realize the DJ0, 4] and
B0, 2] , multiplets mentioned above. In particular, we have

Opjoq) = [P 4

Ospp2), = [P0y, -0, D],

B ¢=13,...

(2.8)

Let us introduce the slightly awkward convention that
Op = Opjoz), and Oy—_; = Opjg4)- Then the values of the
three-point couplings (squared) for these double traces take
the following form:

2 2+ 2)(0 4 5)(¢ +6)!
®20, (2¢ +9)!
X<M+3xf+8xf+%
36
10 (2 +112+27)
B (42 +4)(C+T)

+) (2.9)

In particular, for the first few low values of ¢ these are
given by

) 16 340
=+ ..
20004 9 630 ’
5 120 39
— — - ...
P00z 11 110’ ’
256 8832
2 — —
200505, ~ 13 50057 (2.10)

C. Four-point functions of half BPS operators

In this paper we will be focusing on the four-point
function of stress tensor multiplets. However, many nice
features of the bootstrap problem for stress tensor multiplets
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occur more generally in studying the four-point function of
arbitrary half BPS operators, and ultimately the approach
developed in this paper should be extendable to this more
general class of correlators without great conceptual diffi-
culty. Therefore let us first give a schematic description of
the crossing symmetry problem in this more general context,
before specializing to the specific case of interest.

1. Three-point functions

It is a convenient fact that the full superspace structure of
a three-point function involving two half BPS multiplets
and any third multiplet is completely determined by the
three-point function of superconformal primary operators
[47]. Since the superconformal primaries of half BPS
representations are spacetime scalars, it follows that each
such superspace three-point function is determined by a
single numerical coefficient.

This simplicity of three-point functions (or equivalently
of the OPE between half BPS operators) in superspace has
pleasant consequences for the conformal block expansion
of four-point functions and the associated crossing sym-
metry equation. In particular, it means that the super-
conformal block associated to the exchange of all operators
in a superconformal multiplet is fixed up to a single overall
coefficient, even though the exchanged operators could live
in several conformal multiplets and transform in different
representations of 30(5)p.

Thus, the conformal block decomposition will take the
form of a sum over superconformal multiplets of a single real
coefficient times a superconformal block. Schematically this
takes the following form:

(O 0305 0F) ~ 2/1122(/1342( <ZP§BCDG£(2;¢4(L Z))
¥

ReX
(2.11)

Here X runs over the irreducible representations appearing
in both the O; x O, and O3 x O, selection rules, R runs
over the different 80(5), representations appearing in the
supermultiplet X', and we have introduced projection tensors
PABED The precise form of these projectors is not particu-
larly important—in the technical analysis of Sec. IV we will
introduce some additional structure in the form of complex
R-symmetry polarization vectors to simplify manipulations
of these superconformal blocks.

The superconformal blocks G (z.Z) for each R € X
are functions of conformal cross ratios, and their form is
fixed in terms of the representations of the four external
operators and X. These functions also have fixed relative
normalizations. This is a manifestation of the simplification
mentioned above, and it means that there is only a single
free numerical parameter that determines the contribution
of a full supermultiplet to the four-point function.
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2. Selection rules

The representations X’ that can appear in the sum on the
right-hand side of (2.11) are constrained by the super-
conformal selection rules mentioned previously. For the
particular case of the OPE of two half BPS operators, these
selection rules have been studied starting with the work of
[47,48,53], with the complete answer being given in [54].
The results are as follows:

> Lald+d-2k-2i.2i,.

5=0,1.2,...
A>6+C

(2.12)

An interesting point that will become relevant in a moment
is that every short representation appearing on the right-
hand side of (2.12) is of one of two types:

(A) Representations that appear in the decomposition a
long multiplet in (2.12) at the appropriate unitar-
ity bound.

(B) Representations from the list (2.4) that include chiral
algebra operators.

Notice in particular that for long multiplets that decompose
at the unitarity bound (cf. Appendix A), only one of their
irreducible components is allowed by the selection rules.
This implies that the superconformal blocks for those short
multiplets of type (A) above will simply be obtained as the
limit of a long superconformal block when its scaling
dimension is set to the unitarity bound."

3. Fixed and unfixed BPS contributions

The two types of short operators mentioned above will
participate in the crossing symmetry problem very differ-
ently. Operators of type (B) will have their three-point
functions with the external half BPS operators determined
by the chiral algebra, so subject to identification of the
chiral algebra their contribution to the four-point function
will be completely fixed. For the known (2, 0) theories
the chiral algebra has been identified, so for a general

A consequence of this general structure is that the number of
independent, unknown functions of conformal cross ratios
appearing in the superconformal block expansion of a four-point
function of half BPS operators is just equal to the number of
different R-symmetry representations in which the long multip-
lets in (2.12) transform.

025016-9



CHRISTOPHER BEEM et al.

four-point function of half BPS operators we can put in
some fairly intricate data about the theory we wish to study
by fixing the chiral algebra part of the correlator.

Operators of type (A) on the other hand are not described
by their chiral algebra and we cannot a priori fix their
contribution to the four-point function. Indeed, we can see
that as the dimension of the 80(5)z-symmetry representa-
tion of the external half BPS operators is increased, an ever
larger number of short operators that are not connected to
the chiral algebra will appear in the OPE. This situation
stands in contrast to analogous bootstrap problems in four
dimensions [62,102], where the entirety of the short
operator spectrum contributing to the desired four-point
functions is constrained by the chiral algebra.

From the point of view of the conformal block decom-
position, since these unfixed short multiplets occur in the
decomposition of long multiplets at threshold, their con-
formal blocks will be limits of long conformal blocks and
so they do not introduce any truly new ingredients into the
crossing symmetry problem. However, since these are
protected operators there is a chance that we may know
something about their spectrum. We will explain below that
precisely such a situation can occur for the four-point
function of stress tensors multiplets.

D. Specialization to stress tensor multiplets

Let us now restrict our attention to the special case of
interest, which is the four-point function of stress tensor
multiplets, i.e., D[2,0] multiplets. This leads to some
simplifications in the structure outlined above. We will
see these simplifications in much greater detail in the coming
sections. ~

The sums in (2.12) truncate fairly early when d = d = 2.
Additionally some representations are ruled out by the
requirement that the OPE be symmetric under the exchange
of the two identical operators. This leaves the following
selection rules:

D[2,0] x D[2.0] = 14 D[4,0] + D[2.0] + D[0.4]
+ Y (B[2.0],+B[0.2],,, +Bl6-6})

£=02....

+ ) > L0.0],,
£=0,2,... A>6+¢

(2.13)

The representations that are struck out contain higher spin
conserved currents and so will be absent in interacting
theories.

Referring back to (2.4), we see that almost all of the short
representations allowed by these selection rules are included
in the chiral algebra. Their OPE coefficients will conse-
quently be determined by the corresponding chiral algebra
correlator. An important feature of this special case is that the
chiral algebra correlator that is related to this particular four-
point function is the four-point function of holomorphic
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stress tensors. This is important because the four-point
function of holomorphic stress tensors is determined
uniquely up to a single constant—the Virasoro central
charge. Thus the chiral algebra contribution to this four-
point function can be completely characterized in terms of
the central charge, with no additional dependence on the
theory being studied. This is in contrast to the case of general
four-point functions, where the chiral algebra correlator is
some four-point function in the W, algebra that may in
principle look rather different for different choices of g.

Thus the contributions of chiral algebra operators to the
four-point function will be fixed in terms of ¢. What about
the unfixed BPS operators? For this example there are not
that many options—namely, there is the quarter BPS
multiplet D[0,4] and the B-series multiplets 5[0,2],_;.
The superconformal blocks for these multiplets are the
limits of the blocks for the long multiplets £]0,0], , at
the unitarity bound. Thus the only unknown superconformal
blocks appearing in the expansion of this four-point function
are those contributed by long multiplets £[0, 0], ,, possibly
with A = £ + 6. Later this will allow us to write the crossing
symmetry equation for this four-point function in terms of a
single unknown function of conformal cross ratios.

Finally, let us make an auspicious observation about the
quarter BPS multiplet D[0,4] that is allowed in this
correlation function. Since the chiral rings of the ADE
(2, 0) theories are thought to be known, we may test for the
presence of this multiplet in these theories. In general,
there is a single such operator in the known (2, 0) theories.
For example, in the Ay_; theories the quarter BPS ring is
given by

Ri {AN—I} :C[Zl,---,ZN;Wl’

Z oSSm0l

(2.14)

Note that this is the same as the ring of SU(N)-invariant
functions of two commuting, traceless N x N matrices Z
and W (which is the same as the part of the chiral ring
of N'=4 super Yang-Mills in four dimensions that is
generated by two of the three chiral superfields, say Z
and W). In these terms, a single quarter BPS operator is
then generally present and can be written as

Tr(Z*)Tr(W?) — Tr(ZW)2. (2.15)
However, for the special case of N = 2, this operator is
identically zero. What this tells us is that in precisely the A,
theory, there will be no conformal block coming from a
DI0, 4] multiplet in the four-point function of stress tensor
multiplets. This observation will have major consequences
in our interpretation of the bootstrap results later in
this paper.
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III. THE FOUR-POINT FUNCTION OF STRESS
TENSOR MULTIPLETS

We are now in a position to describe the detailed
structure of the four-point function of stress tensor multip-
lets. Maximal superconformal symmetry guarantees that
(i) the stress tensor belongs to a multiplet whose super-
conformal primary is a Lorentz scalar operator; (ii) the four-
point function of this supermultiplet admits a unique
structure in superspace. Consequently we lose no informa-
tion by restricting our attention to the four-point function of
the scalar superconformal primary, which is a dramatically
simpler 0bject.16 This is a huge simplification in bootstrap
studies and has already been exploited for maximally
superconformal field theories in four [62] and three
[83,84] dimensions. The results described in this section
rely heavily on the previous works [48,49].

The superconformal primary operator in the DI[2,0]
multiplet is a half BPS scalar operators of dimension
four that transforms in the 14 of the 30(5);. We denote
these scalar operators as ®//(x) = &/} (x), where 1, J =
1,...,5 are fundamental 80(5), indices and the brackets
denote symmetrization and tracelessness. A convenient
way to deal with the 80(5), indices is to contract them
with complex polarization vectors Y/ and define

P(x,Y) ==V (x)Y,Y,. (3.1)

The polarization vectors can be taken to be commutative
due to symmetrization of the two 8o(5), indices, and
tracelessness is encoded by the null condition:

With these conventions, the two-point function of ®(x, Y)
is given by

4(Y, - Y,)?

((x1, Y1) P(x2,Y2)) = <

(3.3)
Homogeneity of correlators with respect to simultaneous

rescalings of the ¥ allows us to solve the null constraint as
follows [49]:

i

Y= <y"é(1 —y"yi),i(l +y"yi)), (3.4)

with y’ an arbitrary three-vector. The two-point function is
now given by

4

y
<<I)(.X1,y] )Q(-x% y2)> = %
X12

(3.5)

"In fact, the technology to bootstrap four-point functions
involving external tensorial operators, while conceptually
straightforward, has not yet been fully developed. Rapid progress
is being made in the area—see [103-117].
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The normalization in (3.3) has led to unit normalization in
these variables.

A. Structure of the four-point function

Conformal Ward identities and R-symmetry conserva-
tion dictate that the ®(x,y) four-point function can be
written as [49]

(@(x1,31)P(x2, ¥2)P(x3,y3)P(x4,74))

Y3
= 02% Gy 70,a), (3.6)
X12%34
where z and Z are related to the canonical conformally
invariant cross-ratios,

x%2x§4 =
u:= ) =:7Z,
X13X24

x3,x3 _
v=5t = (1-9(1-2),
137424

(3.7)

and a and @ obey a similar relation with respect to “cross-
ratios” of the polarization vectors,

i,_ y%2y§4 (a_l)(a_l): Y%4Y%3
Z Y%3Y%4

—_ 2 2
ax Y3y ax

(3.8)

Although not manifest in this notation, the dependence of
the full correlator on the y’ is polynomial by construction.

The constraints of superconformal invariance were
investigated thoroughly in [49]. Ultimately, the conse-
quence of said constraints is that the four-point function
must take the form

Glzz0.8) = uAy[(za—1)(za - 1)(Za—1)(za—1)a(z.2)

+222HP (2. 7:0.@) (3.9)
with
HY (2.7 0.a)
o (za—=1)(za—1)h(z) = (Za=1)(Za—1)h(Z)
- -7z
(3.10)

Here D, and A, are second-order differential operators
defined according to

Ay f(z.2)=Douf(z.%)
22 (0 0
:z(%_;<a—z—a—z))zzf(z,z). (3.11)

The entire four-point function is determined in terms of a
two-variable function a(z, z) and a single-variable function
h(-). The superconformal Ward identities impose no further
constraints on these functions.
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As described in [50], there exists a specific R-symmetry
twist such that the correlation functions of ®//}(x) devolve
into those of a two-dimensional chiral algebra. For the two-
point function (3.5) this twist is implemented by taking
Y12 = Z12, leading to

(B(z)(z2)) = Zi

(3.12)

where ®(z) denotes the twisted operator in the chiral
algebra. We see that ®(z) behaves as a meromorphic
operator of dimension two—it is in fact the Virasoro stress
tensor of the chiral algebra [50]. For the four-point function
we set a = @ = 1/Z and obtain

—221(2) ‘

BRI = (1Y

The dependence on the two-variable function a(z,Z)
completely drops out and the chiral correlator is determined
by the derivative A'(z) of the single-variable function
introduced above.

B. Constraints from crossing symmetry

The correlation function (3.6) must be invariant under
permutations of the four operators. Interchanging the first
and the second operators implies the constraint

Z z
z—1'z-1’

G(z,z;a,a)zG( 1—a,1—a), (3.14)

whereas invariance under interchanging the first and the
third operators requires

474 (= 1)2(a—1)2
G(z,Z;a,a)zzz(a @1

(1-2)*1-2)°

xG<1—z,1—z-L Ll) (3.15)

a—1"a-

Additional permutations do not give rise to any additional
constraints.

Using Eqgs. (3.9) and (3.10) we can express these
constraints in terms of a(z,zZ) and h(z). Much as in
[62,102], we find that from each of the above equations
a constraint can be extracted that applies purely to the
single variable function h(z):

1 2
h’(z):(z_l)zh’ <Zf1> :(Zil)zh’(l—z).

(3.16)
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Defining g(z) := —z*/'(z), these constraints take the form

9(z) =9<Z%1> = <Z_Ll)4g(1 -2).

This is precisely the crossing symmetry constraint for the
four-point function of a chiral operator of dimension two.
Of course none of this is a coincidence—both the structure
of this equation and the existence of a decoupled crossing
relation for h(z) are a direct consequence of the chiral
algebra described in [50]. We will solve (3.17) in the next
subsection.

The remaining constraints from crossing symmetry amount
to the following two relations for the two-variable function:

1 z z
@-1°(z- 1)5”(z—1’z—1> -0
zza(z,Z2) —(z=1)(z=1)a(l —=z,1 =7)

1 h(1-2z)—h(l—2) h(z)-h(z)
_(z—Z)3< (z-1)(z-1) * 2z )

(3.17)

a(z,z) -

(3.18)

When reformulated in terms of the conformal block expansion
the first equation is easily solved, while the latter is the
nontrivial crossing symmetry equation that will be the subject
of the numerical analysis.

1. Solving for the meromorphic function

We will see in the next section that consistency with the
six-dimensional OPE requires that g(z) is meromorphic in z
and admits a regular Taylor series expansion around z = 0
with integer powers. This leads to the ansatz

9(2) =B1 + Poz 4+ P + u + -

The crossing symmetry constraints (3.17) imply that §, =
0 and 8, = f5. The full form of g(z) is then fixed in terms
of f; 3 according to

9(z) = B <1 +z4+ T i4z)4)

(3.19)

Z4 + Z4
(1-2)*

+ﬁ3<z2+z3+ ——
-z

>, (3.20)

which implies that

2 1 1 1 1
h(z):_m(?_z—l_(z—1)2_3(z—1)3_2>

—ﬂ3 <Z—Z%1+10g(1 —Z)) +ﬂ5, (3.21)

where f5 is an integration constant. From (3.10) we see that

this constant does not affect H?) (z,Z;a, @) and therefore
can be set to any convenient value.
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This leaves us with the determination of the parameters f;
and /5. The former is determined from the normalization of
the operator ®(x,y). We fixed this normalization in (3.5),
which led to a normalization of the twisted operator ®(z) as
shown in (3.12). Compatibility of (3.13) with this equation
implies that —z%/'(z) — 1 as z = 0, and therefore

p=1 (3.22)
The superconformal block decomposition described in the
next section can be used to show that the parameter S is a
certain multiple of the squared OPE coefficient of the stress
tensor. It would be relatively straightforward to work out
the precise proportionality constant in this manner, but the
chiral algebra provides an even more efficient way to find
the same result. Indeed, the twisted correlator in (3.13) is
proportional to the four-point function of Virasoro stress
tensors in the chiral algebra [50]. The two-dimensional self-
OPE of stress tensors takes the familiar form

T()T(0) ~ % + 27;(20) + —aTZ(O) ,

(3.23)

with a two-dimensional central charge ¢ whose precise
meaning will be discussed shortly. We chose to normalize
the four-point function such that the unit operator appears
with coefficient one, so in the chiral algebra ®(z)

T(z)+/2/c. Comparing the above OPE with (3.20) with
f1 = 1 we find a match of the leading term, and at the first
nontrivial subleading order we find
8
=—. 3.24
pr=- (3:24)
Supersymmetry dictates that ¢ is related to the coefficient C

in the two-point function of the canonical six-dimensional
stress tensor, which takes the form [118]

(T (T (O) = S T ),

I/wpo(x) :% <I;4p(x)1w(x) +I;w(x)1up(x) _%5uu5pa> )

X, X,
1, (x)=8,,—275". (3.25)

X
The precise proportionality constant can be determined from
the free tensor multiplet, for which ¢ = 1 [50] and Cy = i—‘é‘
[119]. Therefore C7 =: i—‘ﬁ‘ c. For the (2, 0) theories of type g
this central charge was determined in [50] to be

¢ = 4dghy + r,, (3.26)

with d, hgv, and r, the dimension, dual Coxeter number, and

rank of g, respectively.
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An important consequence of the above analysis is that
the right-hand side of the second crossing symmetry
equation in (3.18) becomes manifestly dependent on ¢
through /A(z). The ¢ central charge thus becomes an input
parameter for the numerical bootstrap analysis. This is
reflected in the ¢ dependence of the numerical results shown
below.

IV. SUPERCONFORMAL BLOCK
DECOMPOSITION

The superconformal block decomposition of the four-
point function of this decomposition (3.6) was sketched in
Sec. II—here we present the technical details. We will
describe how the various multiplets that are allowed by the
selection rules contribute to the functions a(z,z) and h(z).
We will further show that the full contribution of many
short multiplets can be determined from the known form of
h(z), allowing us to formulate a crossing symmetry
equation that refers exclusively (and explicitly) to unknown
SCFT data.

A. Superconformal partial wave expansion

We begin by considering the form of the regular (non-
supersymmetric) conformal block decomposition of the
four-point function. The operators ®*# transform in the 14,
or the [2,0], of 80(5);. Consequently we may find
operators in the following 80(5); representations in its
self-OPE:

([2,0] ® [2,0]); = [0,0]&®[2, ][4, 0]eB[0, 4],

(2.0] ® [2.0]), = [0.2]®[2.2] (4.1)
The first (second) line contains the representations appear-
ing in the symmetric (antisymmetric) tensor product. The
conformal block decomposition of G(z,z;a, @) therefore
takes the following form:

G(z.z;a.a) = Z(Y’(a, a)Z&Qi@(a Z)>, (4.2)
k,

rer

with re R = {[0,0],[2,0],[4,0],[0,4],]0,2],[2,2]} the
set of 80(5), representations, k, labeling the different
operators in representation r appearing in the OPE, and
(A, Ak . € ) denoting the OPE coefficient, scaling dimen-
sion and spin of the operator, respectively. By Bose
symmetry, only even (odd) # can appear for symmetric
(antisymmetric) r. The Y"(a,@’) are harmonic functions
that encode the 80(5) invariant tensor structure associated
with representation r. Their exact form is given in (B2). The

functions g(f)(z, z) are the ordinary conformal blocks of
six-dimensional CFT for a correlation function of identical
scalars—they are given by (B1) with A, = A3, =0.
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TABLE L.
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Superconformal block contribution from all superconformal multiplets appearing in the OPE of two stress tensor multiplets.

The contributions are determined from the atomic building blocks. Bose symmetry requires that # is an even integer. Here A is the

dimension of the superconformal primary.

X A a¥(z,2) h¥(z) Comments

L£[0,0], , A ax ,(z,2) 0 Generic long multiplet, A > £+ 6
B[0,2],_, ¢+ al ,(2,2) 0 £>0

D{o.4) g ao(2.2) 0

B[2,0],_, £+6 a4 (2.2 27 h,,(2) £>0

D[4,0] 8 aio(z.2) hi(z)

B0, 0], £+4 0 he, ,(z) Higher spin currents, £ > 0
D[2,0] 4 0 h3'(z) Stress tensor multiplet

1 0 0 h'(z) Identity

Supersymmetry introduces additional structure in the
decomposition (4.2), since the conformal blocks
corresponding to operators in the same supermultiplet
can be grouped together into what we may call super-

blocks. The superconformal block expansion can be
written as
G(z.Z;a.@) 2,12 (ZY a,@)AY(z, z)) (4.3)
rer

where the sum runs over superconformal multiplets X,
with only one unknown squared OPE coefficient 13, per
superconformal multiplet. The functions A¥(z,Zz) are
finite sums, with known coefficients, of ordinary six-

dimensional conformal blocks Q(Ai‘;")(z,i) corresponding
to the different conformal primary operators k, that
appear in the same X multiplet.

Superconformal Ward identities dictate that each super-
conformal block—that is, each expression of the form
S er Y (a, @)A¥(z,7)—can also be written in the form
given in (3.9) and (3.10). To determine the superconformal
blocks it therefore suffices to determine the contributions
a¥(z,z) and h¥(z) of a given multiplet X' to the two
functions a(z,z) and h(z).

B. Superconformal blocks

In Sec. II we introduced selection rules for which
superconformal multiplets can make an appearance in
the OPE of stress tensor multiplets, which we reproduce
here for convenience:

D[2,0] x D[2,0] ~ 1 + D[2,0] + D[4,0] + D[0, 4]

+ B[2,0], + B[0,2], + B[0,0], + L[0,0], , (4.4)

In order to define the superconformal blocks corresponding
to these multiplets we introduce two basic elements, which

we call the aromic contributions to a(z,Z) or h(z). These
two functions take the form

4

% (2,2) = 0,-2;
ay ,(z.2) 6‘5(A—f—2)(A+5+2)g 2 Z,2),
p—1
(e) = TP = 1262, (4.5)
where gf) (Ay— Ay, Ay —Ay;z,Z) is  the  ordinary

conformal block for a correlation function of four operators
with unequal scaling dimensions A; given in B1)."” We
claim that the superconformal block for any representation
in (4.4) can be recovered from these atomic contributions in
the manner specified in Table 1.

Let us first momentarily take for granted that there are
no other atomic contributions besides a¥ ,(z,Z) and
h(z). The particular combinations shown in Table I

are then uniquely determined by decomposing the super-
conformal blocks into ordinary conformal blocks and
requiring that the only conformal multiplets appearing are
actually included in the superconformal multiplet under
consideration. This decomposition can be done with the
help of (B3), which for each af ,(z,z) or hf(z) leads to

six functions A%(z,z) that describe the exchange of
operators in the representation r of 8o0(5)g. Each of
these A%(z,Z) in turn admits a decomposition in a finite
number of conformal blocks, and by enumerating these
blocks we arrive at the conformal primary operator
content of the superconformal multiplet. As an example
we can consider af ,(z,Z) with >4 and A > +6,
where this procedure leads to the following primary
operator content:

""In [49] the function that we call a¥ ,(z.Z) was given as an
infinite sum of Jack polynomials. Our more transparent expres-
sion was derived by pulling the conformal Casimir operator
through A, given in (3.11).
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00, 02 o o4 P2 @40
(A), A+, (A+2)n (A+2), (A+3),, (A+4),
(A+2), A+ (A+2), (A+4),n (A+3)sy
(A+2), (A+3),3 (A+2)pn (A+4), (A+5).,
(A+2), (A+3)y (A+4)n (A+4),n (A+5).y
(A+4),y (A+3),y (A+4), (A+6),
(A+4), (A+3)5 (A+4)p0 (4.6)
(A+4), (A+5),5 (A+6),,
(A+4),p (A+5),, (A+6),
(A+4),s (A+5)p (A+6)ps
(A+6),n (A+5)s3
(A+6), (A+T7),y
(A+6)pn (A+T7)py
(A+38),
This list contains precisely the conformal primaries in the A u?a(z,z)] = 0. (4.8)

superconformal multiplet £[0,0]5.,,¢ /54 that could ap-

pear in the self-OPE of ®148}(x). It is easy to check that
spurious operators would be introduced by adding any
additional a} ,(z,Z) or hj(z), and so we arrive at the first

entry of Table L. For Aj(z) with = ¢ +4 and £ > 0 the
same analysis yields

00] 02] 20]
(Z+4), (45, (£+6),
(6 +6)r2 (+T)r1s @7)
(€ +8)p4a

Using the same logic we conclude that this has to be the
superconformal block for a 5[0, 0], multiplet. For the other
entries in Table I the analysis is analogous, though
computationally more subtle: certain conformal multiplets
vanish from (4.6) for A=7¢+6 and A =7+ 4, and in
some cases cancellations occur between a¥ 4 ,(z,Z) and
. 4(2).

It remains to justify our claim that the atomic functions
given in (4.5) are unique. For the single-variable part this
follows immediately from the structure of the chiral algebra
[50], since Aj(z) is just the standard 81, conformal block.
For the two-variable part we prove the claim by contra-
diction. Suppose there exists a hypothetical alternative
atomic function a*(z, z). This function is, by assumption,
a building block for a superconformal block and so must
admit a decomposition into a finite number of conformal
blocks in each R-symmetry channel. We can assume in this
decomposition there is no block in the R-symmetry channel
with Dynkin labels [4, 0], because according to (4.10) we
can always remove those by adding a} ,(z,z). [Although
Eq. (4.6) is modified for low values of A and 7, the function
ay ,(z.z) continues to contribute exactly one block in this
channel.] From the first equation in (B3) we then find that

The solution space to this equation can be parameterized in
terms of Jack polynomials. Substituting these solutions in
the second equation in (B3) produces the operator content
in the [2, 2] channel. For any nonzero a*(z, z) this operator
content will always contain operators of twist zero or twist
four with nonzero spin. The former are not allowed by
unitarity and the latter do not appear in any of the
superconformal multiplets allowed by the selection rules.
We therefore conclude that @*(z,z) cannot exist, and
a} ,(z,z) and hif(z) are the only allowed building blocks.

The second and third entries in Table I can be understood
in terms of the decomposition of a long multiplet at the
unitarity bound [see the second and last equations in (A6)].
The selection rules forbid superconformal multiplets of
type A to appear in the OPE, and this is corroborated by the
vanishing of the OPE coefficient of the superconformal
primary [i.e., the singlet operator (A), in (4.6)] precisely
when A — 6 4 ¢ in a} ,(z,Z). The superconformal block
for the long multiplet then smoothly becomes the super-
conformal block for the B0, 2], (for £ > 0) or D|0, 4] (for
¢ = 0) multiplets at the unitarity bound.

The full list of superconformal blocks in Table I allows us
to trivially solve the first crossing equation in (3.18) by
restricting £ to be an even integer in both a¥ ,(z,z) and
h%(z). This is just the manifestation of Bose symmetry at the
level of these functions. We can also justify the assumption
made in deriving (3.20), namely that /(z) admits a regular
Taylor series expansion around z = 0 with integer powers:
this follows from the behavior of A (z) near z = 0.

C. Solving for the short multiplet contributions

From the solution for A(z) given in (3.21) and the
expression for superconformal blocks in terms of atomic
blocks in Table I we will be able to determine the full
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contribution to the four-point function of all short multip-
lets that contribute to A(z). In principle there could be an
ambiguity in this procedure since the contributions of some
supermultiplets to /(z) may cancel. However, multiplets of
type B0, 0], contain higher spin currents. These are the
hallmark of a free theory and we will therefore impose their
absence from the spectrum of operators. With those out of
the way, the superconformal block interpretation of /(z) is
unambiguous.

The decomposition of (z) into atomic blocks takes the
following form:

h@)=hi)+ Y b ().
¢=-2,Ceven
bf:(f+1)(f+3)(f+2)2§!(§+2)!!(§+3)!!(i+5)!!
18(Z+2)!11(2¢ +5)!
+8(2““(f(f+7)+11)(f+3)!!1“(§+2))7 (49)

c (2+5)1

where b_, should be thought of as the limit of the above
expression as Z — 2, which gives b_, =8/c. In this
decomposition we have set the unphysical integration
constant in (3.21) to fs = —1/6 + 8/c.

The coefficients 2b, with # > 0 are now the squared
OPE coefficients of B[2,0],_, and D[4, 0] multiplets. We
can therefore split the two-variable function into two parts:

a(z,z) = a(z,2) + a"(2.2), (4.10)

where we now have

a*(z,2) Z 2°bsa , ,(2.2),

¢=0,7 even

(4.11)

and the unknown function a"(z, ) encodes the contribution
of all the blocks on the first three lines of Table I:

Z 23 008 ,(2.2).

A>£+6,
>0,/ even

(4.12)

We note that a"(z, z) includes both the long multiplets and
the B0, 2] and DJ0, 4] short multiplets, whose dimensions
are protected but OPE coefficients unknown.

The crossing symmetry problem can now be put into its
final form by substituting the decomposition (4.10) into
(3.18):

2z2a"(z2,2) + (z—=1)(z=1)a*(1 = z,1=3)

1 (=3 —h(1-2) h(Z)—h(z)
‘(z—z>3< C-NE-1) | = )

+(z=-1D)(Ez-1)a*(1=2z,1-7) —zzd"(2,2).

(4.13)

The right-hand side of this equation is known from (3.21)
and (4.11) and depends on a single parameter c. The
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left-hand side is given by (4.12) and features an infinite set
of undetermined OPE coefficients and scaling dimensions.
Equation (4.13) can now be exploited to constrain these
parameters. This analysis can proceed either numerically or
(using a particular limit) analytically. The aim of the next
two sections is to present the details and the results of an
extensive numerical analysis. Analytic results can be found
in Appendix C.

V. NUMERICAL METHODS

We will numerically analyze the crossing relation (4.13)
to obtain bounds on the allowed CFT data. In this section
we briefly review the now-standard approach to deriving
such bounds. We first repackage the terms in the crossing
equation as a sum rule:

Zﬂz AN (2.2) = A (2,25 ¢). (5.1)

Here the sum runs over the unfixed spectrum of the theory,
for which the OPE coefficients are also unknown, and we
have defined

= (z—2)%zza¥ ,(2.2)
+(zZ-2 0 -2 -2)ay,(1-2z1-2).
(5.2)

Zt.f(z’ 2)

A (z,Z; ¢) denotes the right-hand side of (4.13), which is
completely fixed in terms of the central charge c.

Following [36] we can put constraints on the allowed
spectrum of operators by acting on the crossing equation
with R-valued linear functionals. The rough idea is to start
with an ansatz about the spectrum of operators and then to
try to rule out this ansatz by producing a nonzero linear
functional such that

, YV (A,?) € trial spectrum.  (5.3)

A typical example of such an ansatz would be to pick a
large number A, > 6 and to assume that all multiplets of
type £[0, 0], o have A > A,. If we can produce a functional
satisfying (5.3), then this ansatz is inconsistent with (5.1)
and we conclude that the theory must have a multiplet of
type L£[0,0],, with A < A,. Lowering A, and repeating
the process leads to a lowest possible A for which such a
functional exists; this A is then the best upper bound. An
analogous procedure can be used to produce upper bounds
on the scaling dimensions of the lowest unprotected
operators of higher spins.

In a similar vein, we can bound the squared OPE
coefficients of a particular operator contributing as
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AZ. ,.(z,2) to the crossing symmetry equation. Such
bounds are obtained by performing the following optimi-
zation problem:

Minimize ¢p[A*(z,Z;¢)], PlAR. 4 (2.2)] =1,
PIAX ,(2,2)] 20, Y {A, £} #{A*, ¢} € trial spectrum.
(5.4)

Denoting the minimum of the optimization by
Pmin[A* (2,25 ¢)] = M, there is an upper bound on the
squared OPE coefficient

/le*f* <M. (5.5)
If the minimum is negative, then this bound rules out the
spectrum that went into the minimization problem entirely,
because a negative upper bound is inconsistent with the
unitarity requirement AZA%* > 0. In other words, the func-
tional in this case will satisfy the conditions of (5.3).

If it happens that the block A3}. ,.(z, Z) is isolated, in the
sense that it is not continuously connected to the set of
blocks for which the functional is required to be positive in
(5.4), lower bounds on the squared OPE coefficient of the
corresponding operator can also be obtained. This is
accomplished by instead fixing P[A%. ,.(z.2)] = 1.
The same minimization problem then gives

ﬂzA*f* > -M. (5.6)
If M > 0, this constraint is redundant, as unitarity already
required the squared OPE coefficient to be non-negative.

Bounds on the central charge follow a similar recipe. The
right-hand side of (5.1) depends in a simple manner on the
central charge:

1
A(z,7,¢) = A(z,2) + EAg(z, 7). (5.7)

We require the functional to be one on A¥(z,z) and
maximize the action of the functional on —A4%(z,z). This
produces a lower bound

€ 2 Prax[—A5(2.2)]. (5.8)

As has become the standard in the numerical bootstrap
literature, we pick a basis of functionals consisting of
derivatives evaluated at the crossing symmetric point
7=27= % The functionals in our setup can therefore be
written as

A
(2] = D 0uddf(2,2)] .oy

m,n=0

(5.9)

Within such a family we then search for real coefficients
a,,, that produce the best possible bound. We truncate the
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sum by only considering derivative combinations such that
m, n < A. Another way of thinking about this truncation in
the space of functionals is that the bounds for fixed A only
probe the truncated crossing equation that arises by expand-
ing (3.18) in a Taylor series of order A in z and z about
7=z= % These bounds for each A must be obeyed by
physical theories, but as we increase A we become sensitive
to more and more of the structure of the crossing equation, so
the bounds will improve. The symmetries of the functions
appearing in (5.1) allow us to only consider m < n with
m + n even.

To find functionals we use linear and semidefinite
programming techniques, which were pioneered in [36]
and [71], respectively. For most of the results shown in this
paper we have used the IBM ILOG CPLEX linear program-
ming optimizer, interfaced with Mathematica."® This opti-
mizer works with machine precision and is consequently
quite fast, but in practice we find that it is limited to A < 22
before serious precision issues arise. Higher values of A
were needed for reliable extrapolations in Figs. 1 and 10.
Those results were obtained using the semidefinite pro-
gramming approach with the arbitrary precision solver
SDPB [64]. Readers interested in the technical details of our
numerical implementation—such as the discretization used
for linear programming, the degree of polynomial approx-
imations used for the semidefinite approach, or SDPB
parameter files—should feel free to email the authors.

Finally, let us note that the numerical bounds derived
using CPLEX in the following section are generally not
entirely smooth for A > 18. Instead, we often find sparsely
distributed outlier points. This is because machine preci-
sion is barely sufficient to obtain bounds with these values
of A. Because these “failed searches” occur rather infre-
quently and the tendency of the bounds as a function of ¢ is
still clearly distinguishable, we have included all the values
up to A = 22 in our plots.”

VI. RESULTS

The undetermined CFT data that appear in our crossing
symmetry relation amount to
(i) OPE coefficients /12D[0, , and A%[o.z]f of the short
multiplets that are unfixed by the chiral algebra;
(i1) scaling dimensions A, A’f, ... and OPE coefficients
Ap, A, ... of all long (L]0, 0], ,) multiplets.
In the following subsections we present numerical results
which constrain a subset of these parameters. These

BAs explained in, e.g., [36], the use of these linear program-
ming techniques requires the discretization of the scaling di-
mensions appearing in the trial spectrum and truncation in spins.
We have checked numerically that our results are not sensitive to
refinements of these approximations.

In several cases we have verified that our results do not
significantly change when we repeat the analysis at arbitrary
precision with SDPB [64].

025016-17



CHRISTOPHER BEEM et al.

constraints will in all cases depend on the ¢ central charge
of the theory, which (as we explained previously) enters the
crossing symmetry equation (4.13) via the coefficients of
the predetermined multiplets. However, we begin by
investigating a more elementary question: Are all positive
values of ¢ consistent with crossing symmetry, unitarity,
and the absence of higher spin currents?

As we explain below, the existence of a lower bound for
¢ has profound implications for the A; theory.

A. Central charge bounds

Let us start by asking which values of the ¢ central
charge are allowed in unitary theories. The numerical
methods presented in the preceding section allowed us
to obtain a lower bound for ¢. Our best numerical result can
be summarized as the following:

Result.—Every unitary and local six-dimensional (2, 0)
superconformal theory without higher spin currents must
have ¢ > 21.45.

This bound was obtained with A = 59.*° While this result
is a welcome discovery, the bound is still a ways off from the
lowest central charge of any of the known theories—namely
¢ = 25 for the A theory.

However, we have found that the behavior of this lower
bound as a function of A is incredibly regular. This is
shown in Fig. 1, which contains—in addition to the value
quoted above—also a large number of data points corre-
sponding to bounds for lower values of A. From the figure
it is clear that our best lower bound has not yet converged as
a function of A and is likely to improve substantially if A is
increased significantly. However the most obvious feature
of Fig. 1 is that the data points display an extraordinarily
linear dependence on 1/A. We can use a linear fit
extrapolate to infinite cutoff, leading to the prediction that
the bound converges to ¢ = 25 as A — c0.?' This is our first
indication that our numerical study of the crossing sym-
metry constraints is more than a mathematical exercise: the
value ¢ = 25 is precisely the value corresponding to the A;
theory.

We should note that the approximately linear behavior for
large A in Fig. 1 is alittle surprising, because there is currently
no precise theory that parametrizes the A dependence of the
bounds even in the asymptotic regime. Nevertheless it seems
entirely plausible to state the following:

Conjecture.—The lower bound on ¢ converges exactly
to 25 as A — oo.

The validity of this conjecture would have important
physical consequences. The numerical problem of finding a

Recall from Sec. V that the dimension of the search space
increases o« A2. Consequently, for larger values of A we obtain
better bounds but at a greater computational cost. This best result
with A =59 had a search space of dimension 870.

2As an example, we find ¢, = 25.06-212.7A"" from an
ordinary least-squares regression through the last ten data points.
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lower bound on ¢ has a dual formulation where one finds a
solution to the truncated crossing symmetry equations
rather than a functional. Solving this dual problem is
equivalent to proving that a functional does not exist
and vice versa. It was pointed out in [59,60] and used
extensively in [78] that at the lowest possible value of ¢ this
dual solution is unique, and in all known cases it appears to
converge to a complete crossing symmetric four-point
function. In our case, this uniqueness implies the following
corollary to our conjecture:

Corollary.—For a unitary (2, 0) superconformal theory
with ¢ =25 and without higher spin currents there is a
unique crossing symmetric four-point function of the stress
tensor multiplet.

Therefore, at the level of this correlation function, the A,
theory can be completely bootstrapped. We emphasize that
the determination of a single correlation function is no
small feat: it contains information about infinitely many
scaling dimension of unprotected operators (in this case the
R-symmetry singlet operators of even spin) and their OPE
coefficients. There would then be little room for the other
crossing symmetry equations to exhibit any freedom what-
soever, and in this scenario the full A; theory is likely to be
nothing more than the unique solution of the crossing
symmetry equations at ¢ =25. In Sec. VID we will
investigate the possibilities for bootstrapping the A; theory
in more detail and discuss what we can learn about this
theory with finite numerical precision.

B. Bounds on OPE coefficients

In this section we present bounds on the OPE coef-
ficients of the short multiplets (D[0,4] and 50, 2],, with
¢ =1,3,...) that are not determined by the chiral algebra.
In Appendix C we derive from crossing symmetry that the
B0, 2] , multiplets must be present for all sufficiently large
Z. To study the low-spin cases we must use numerical
methods. Here we focus on the D[0,4], B[0,2],_,, and
BJ0, 2] ,_5 multiplets.

1. D[0,4] OPE coefficient bounds

In Fig. 2 we show upper bounds for the (squared) OPE
coefficient of the D[0,4] multiplet as a function of the
central charge. Unitarity requires XZD[O’ n > 0, so the squared

OPE coefficient is restricted to the unshaded region of
Fig. 2. Of particular interest are the regions at small and
large central charge. Let us first discuss the small central
charge regime. The upper bound crosses zero for small
values of the central charge, and to the right of these
crossing points the upper bound is negative so any con-
sistent solution to the crossing symmetry equations is
forbidden. These crossing points thus translate into a lower
bound for ¢, which are precisely the lower bounds from
Fig. 1. We then see that the vanishing of /1%[0’ n is in some

sense responsible for the lower bound on ¢, and a solution
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inverse central charge c¢. The different curves correspond to different values of A = 18, ...,22, with the black curve representing the
strongest bound. The red vertical line represents the A; theory. The right plots are magnified at very large central charge. The dashed
green line corresponds to the supergravity answer quoted in (2.10).

to crossing at ¢,,;,, cannot have a D[0, 4] multiplet appearing
in this OPE. We saw in Sec. II that the D0, 4] multiplet is
absent only from the A; theory, so there is a nice
consistency between this result for /IZD[OA] and our con-
jecture above regarding the asymptotic value of ¢, (A).
For good measure, we also report that without extrapola-

tion to A — oo these results give a rigorous bound 0 <
A4 < 0.843 for the A, theory—this is the red interval
in Fig. 2.

The large central charge limit is shown in detail on the
right plot of Fig. 2. The supergravity solution lies below our
upper bound, which is an important consistency test of our
numerics. What is more striking is that the two results are
so close. For infinite A the numerical result may well
coincide with the supergravity result at very large c¢. This
provides another strong indication that the numerical
analysis can indeed “mine” the crossing symmetry con-
straints and recover the physics of the true (2, 0) theories, as
opposed to simply producing bounds.*

For intermediate values of ¢ the D[0, 4] multiplets should
be present for all ¢ > 25. This is consistent with our

A similar match between supergravity results and numerical
bounds, including 1/c corrections, was observed in [62] for
N = 4 super Yang-Mills.

bounds, which we expect to remain strictly positive in this
region. In the limit A — oo one would hope that the bounds
will again be saturated by the other known (2, 0) theories,
simply because these are the only known solutions to
crossing symmetry that can prevent the bounds from
decreasing even further. This would imply that the devia-
tions of our bound from the straight-line behavior at large
central charges should correspond quantum M-theoretic
corrections to eleven-dimensional supergravity.

2. B[0.2] OPE coefficient bounds

In Fig. 3 we show upper bounds for the (squared) OPE
coefficients of the B5[0,2], and B[0,2]; multiplets. The
behavior of the bounds near ¢y, can be seen in the left two
plots. General consistency of the bounds implies that they
have to be zero when ¢ < ¢, but the way they approach
zero is rather different both from the D0, 4] case and from
one another. The # = 1 bound tends to zero sharply but
relatively smoothly, whereas the £ =3 bound displays
genuine step function behavior. This brings up a certain
subtlety concerning the solution to crossing symmetry at
Cmin- As has been investigated in, e.g., [60], the extremal
solution at finite A is unique but only an approximate
solution of the full crossing equation. For the case £ = 3,
the step function behavior indicates that the corresponding
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FIG. 4. Upper bound for the dimension of the first long scalar multiplet. The different curves correspond to A = 18, ..., 22, with the
black curve representing the strongest bound. The shaded region is excluded by the numerics. The vertical red line is located at
the central charge of the A, theory. On the right we display the bound for very large c, with the green dashed line corresponding to the

supergravity result (2.7).

multiplet is present in the approximate solution with a
coefficient that is given by its value at the kink—so
approximately 19.25 for A =22. This number should
decrease somewhat as A increases but will probably stay
finite. The £ =1 bound, on the other hand, is strictly
speaking equal to zero at ¢, and the corresponding
multiplet is absent from the extremal approximate solution.
But the bound increases sharply as we move away from
Cmin Up to a value of 10. It may well be the case that this
bound will ultimately develop the same step function
behavior as observed for £ =3 as A is increased. In that
case the absence of the # = 1 multiplet in the approximate
solution would be a numerical artifact, and the true A — oo
extremal solution would include such a multiplet with a
coefficient of ~10.

The large central charge behavior is shown in the plots
on the right of Fig. 3 with dashed lines indicating the
supergravity results [54]. The numerical bounds converge
very well towards the supergravity results, confirming once
more that these bounds are sensitive to the physics of the
actual (2, 0) theories.

It follows from the general analysis in Appendix C that
for £ — oo the OPE coefficients /1% 02, will converge to a
linear function of 1/c¢ for all the allowed values of ¢, with
coefficients that can be extracted from the supergravity
solution. The bottom left plot in Fig. 3 corresponds to £ =
3 but is already strikingly linear. For higher £ we expect an
even better match with the light cone prediction.

C. Bounds on scaling dimensions

In this subsection we turn our attention to the long
multiplets. For the four-point function under consideration
these multiplets are necessarily of type L£[0,0], , with ¢
even. We will be solely concerned with the quantum
number A—the scaling dimensions of these multiplets.
An investigation of the OPE coefficients for long multiplets
is left for future work.

1. Scalar operators

In Fig. 4 we present upper bounds on the dimension A,
of the first long scalar multiplet. We recall that unitarity of
the corresponding representation of the superconformal
algebra requires that Ay > 6. Below the value ¢,;,(A) there
can be no solution to crossing symmetry, so we have a
sharp cutoff at that value for each A.

With A = 22 we find an upper bound of approximately
7.08 for the A; theory at ¢ = 25 that increases monoton-
ically with ¢ until reaching a value of approximately 8.11 at
infinite central charge.”® The latter value is quite close to
the generalized free-field solution at Ay = 8, to which it
presumably would converge at higher A. The leading 1/¢
behavior obtained from supergravity, while consistent with
the bound, does not appear to follow it very closely. We
believe that this is simply an artifact of slow convergence in
the scalar sector.”* Indeed, the large ¢ behavior shown in
Figs. 2 and 3, and also in Figs. 7 and 8 below, suggests that
as A — oo the bounds will be exactly saturated by the
supergravity result. This is the most natural option from a
physical perspective because we do not expect any other
theories to exist at very large central charge.

For intermediate values of ¢ we have upper bounds for
A, that are valid for all the physical (2, 0) theories. It is
again natural to suspect that these bounds will be saturated
by the actual theories and in this way the bounds actually
offer a (very rough) estimate of the actual scaling dimen-
sions. For example, we see that the (A,, A3, A4) theories
should have unprotected £[0,0], o scalar multiplets with
primaries of dimensions Ay < (7.7,7.9,8.0), respectively.
(For the A, theory we provide a more refined estimate
below.) We emphasize that these are the first estimates of

# As discussed in [102] this monotonicity is a generic property
of the kind of bounds studied here.

A similar pattern was observed for 4d N' = 4 SCFTs in [62]:
the bounds are saturated with much better accuracy for spin
greater than zero.
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FIG. 5. Bound on the dimension of the first spin zero long
multiplet as a function of the inverse central charge ¢, with the
DI0, 4] short multiplet excluded from the spectrum. The different
bounds correspond to A = 14,15, ...22. The vertical red lines
marks the central charges of the A; and A, theories.

unprotected operator dimensions in the (2, 0) theories. It
would be very interesting if they could be verified through
other means.

2. Removing the D|0.4] multiplet

The bounds in Fig. 4 were obtained without imposing
any constraints (besides non-negativity) on the OPE coef-
ficient /1723 04- However, since the D[0, 4] short multiplet is
absent from the A; theory, we can give our bounds for the
A theory a boost by imposing by hand that ﬂ%)[o, 5= 0 and

recomputing the upper bound A. This also gives us some
insight into the possibility of additional theories beyond the
known A, theory that may have no D|0, 4] in the spectrum.

The resulting plot is shown in Fig. 5. For small ¢ we see
that we can get by without the D0, 4] multiplet—crossing
symmetry can easily be satisfied as long as the theory has
an unprotected operator in the unshaded region. Precisely at
¢ = Cpip the bounds in Figs. 4 and 5 coincide, since we

already know that iZD[O. 5= 0 at ¢y, For larger ¢ the bound

falls off quickly and approaches the unitarity bound
Ay = 6. An extrapolation of the bounds at ¢ = 98 (corre-
sponding to the A, theory) suggests that for A — oo the
bound will end up at A~ 6. For higher ¢ the rate of
convergence is even better. Since the contribution from the
D[0,4] multiplet is exactly the same as that of a long
multiplet at A = 6, we may then conclude that one must
reintroduce the D[0, 4] multiplet for ¢ > 98 in order to
satisfy crossing symmetry. In this sense crossing symmetry
dictates the presence of these multiplets for theories with
sufficiently large c.

We also note that the bounds in Fig. 5 seem to be
converge much better than those in Fig. 4. We will take
advantage of this in Sec. VI D where we will focus more on
the A; theory.

PHYSICAL REVIEW D 93, 025016 (2016)
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FIG. 6. Upper and lower bound for the dimension of an
unprotected scalar operator. Every consistent theory must have
an operator in the unshaded region. This region collapses to a
point precisely at ¢,,;,,, which demonstrates the uniqueness of the
corresponding truncated solution. The different curves corre-
spond to A = 18, ...,22, with the black curve representing the
strongest bound. The vertical red line marks the central charge
corresponding to the A; theory. Following the extrapolation in
Fig. 1, we expect the cusp to converge to a point on this line and
thereby determine the scaling dimension of the first unprotected
scalar operator in the A; theory.

3. Adding a lower bound

The solution to the crossing symmetry equation at ¢y, is
expected to be unique. Figure 4 does nothing to display this
uniqueness, because it merely shows that the theory at ¢,
needs to contain an unprotected scalar operator anywhere
between the unitarity bound and the best upper bound of
approximately 6.8. We can improve the situation by adding
a lower bound as shown in Fig. 6. In general the lower
bound is rather weak and for sufficiently large c it hits the
unitarity bound where it becomes meaningless. However,
close to ¢, the lower bound is strong, and at ¢, it is
practically coincident with the upper bound. At this point
there is no freedom left, and for that value of c;, there has
to be an operator precisely at the cusp in order to satisfy the
truncated crossing symmetry equations. In this way Fig. 6
more accurately reflects the uniqueness of the solution to
the truncated crossing equations.

The lower bound was found by searching for a functional
that is positive everywhere except in an interval ending at
the upper bound.” The lower bound is then obtained by
making this interval as small as possible. A small caveat is
in order: the existence of such a functional implies that
there must be an operator whose dimension is contained in
the interval, but in principle there could be additional
operators also below the lower bound. Although we do not
expect these operators to be present on physical grounds,

»Because of numerical subtleties the end point of the interval
has to be chosen to lie sli%)htl% higher than the upper bound. We
have taken it to be A" "™ +0.05.
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FIG. 7. Upper bounds for the dimension of the first unprotected spin two operator. The different curves correspond to A = 18, ..., 22,
with the black curve representing the strongest bound, and the shaded region is excluded by the numerics. The vertical red line on the left
plots corresponds to the central charge of the A; theory. The plot on the right is a zoomed in result for very large ¢, with the green dashed
line corresponding to the known supergravity answer given in (2.7). The third plot is a magnification of the small central charge region.

we can never completely rule out their existence because
we can always take their OPE coefficients to be infinitesi-
mally small.

4. Spinning operators

Figures 7 and 8 present upper bounds on the first
unprotected spin two and spin four operators (operators

of type L£[0, 0], , for £ = 0, 2). The structure of these plots
is the same as before, and we again would expect these
bounds to be saturated by physical theories. This is
exemplified at very large ¢ where the bounds agree very
well with mean-field theory and the 1/c¢ correction
obtained from supergravity (2.7). No gap is assumed in
the spectrum of scalar operators when obtaining these
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FIG. 8. Upper bound for the dimension of the first unprotected spin four operator. The different curves correspond to different values
of A = 18, ..., 22, with the black curve representing the strongest bound, and the shaded region is excluded by the numerics. The vertical
red lines on the left correspond to the central charges of known (2, 0) theories. The plot on the right is a zoomed in result for very large c,
with the green dashed line corresponding to the known supergravity solution given in (2.7).
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FIG.9. Bounds on the spin 0, 2, 4 superconformal primary dimensions when a gap is imposed in one of the other channels for a cutoff
of A = 22. These bounds are for the central charges corresponding to the A and A, theories and to the generalized free-field theory limit
¢ = oo and are obtained with the addition of the short multiplet D[0,4]. The dashed lines show the bounds on (A(, A,, A;) from
imposing gaps in a single channel, and the full green lines denote the dimensions obtained from generalized free-field theory. The
allowed region corresponds to the inside of the “rectangles” delimited by the dots.

bounds, so the presence or absence of the D0, 4] short
multiplet is irrelevant.

In contrast to the scalar and the spin four bounds (below),
we do not observe step function behavior at c¢,;,, but rather
a more gradual decrease of the bound towards the unitarity
bound. We recall that the 1[0, 2], block masquerades as an
L[0,0],, , block at the unitarity bound A, = 8, so the non-
step function behavior in Fig. 7 is presumably related to the
same phenomenon the top left plot of Fig. 3.

Although we have not performed a more detailed
investigation, the following provides a likely explanation
of the behavior in the spin two channel.*® Suppose that the
approximate solution to crossing symmetry obtained at ¢,
with finite A has a small bias: instead of a 5[0, 2], block it
has an £[0,0],, , block which sits just above the unitarity
bound. As in the scalar and spin four channel, the presence
of such a block would technically imply step function
behavior of the bound at c,;,, but since the block appears
only slightly above the unitarity bound the step can be quite
small and we would not observe it in Fig. 7. This long block
is very similar to the B[0,2], short block and therefore
effectively replaces it in the approximate solution to

*This paragraph is rather technical. The uninitiated reader
may wish to skip to its last sentence.

crossing symmetry. In this way the upper bound on the
B[0, 2], OPE coefficient at ¢, can consistently be zero,
which is precisely what is observed in the top left figure of
Fig. 3. Of course we expect the bias to disappear in the limit
where A — 0. In the current scenario this happens through
a decrease of the dimension A, of the L£[0,0], , block
towards the unitarity bound, where it degenerates into a
BJ0, 2], block. At this point we would find a step function
at cin in Fig. 7, and indeed the transition already appears to
become sharper for higher A. Similarly, the bound in Fig. 3
at ¢, Will have to transition towards the dimension of the
first unprotected operator and therefore also become
infinitely sharp in the limit of large A. In summary, then,
the relative smoothness of these particular transitions at
Cmin 18 plausibly a numerical artifact and we expect to
recover genuine step function behavior as A — oo.

5. Combining spins

So far our upper bounds for the scaling dimensions have
been for just a single spin channel. We can also combine
spins and obtain (for fixed c) exclusion plots in the higher-
dimensional space spanned by (Ag, Ay, A4, ...). In Fig. 9
we show such exclusion plots in the two-dimensional
subspaces spanned by the pairs (Ag, A,), (Ag, A,4) and
(A, A,). We have the fixed value of ¢ to correspond to
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either the A, theory, the A, theory, or infinity. The bounds
obtained in the preceding subsections already dictate that
the allowed dimensions are inside the squares delimited by
the dashed lines. As we impose gaps simultaneously in two
channels we numerically carve out a smaller part of this
square, and the dimensions must now be below the dots
shown in Fig. 9.

We have claimed above that both at large and at small
central charge the bounds are saturated by physical theo-
ries. In particular, we claim that the spin zero and the spin
two bounds should converge to the same solution of the
crossing symmetry equations. If this is the case, then the
combined bounds plotted in Fig. 9 should converge to
perfect rectangles, and deviations from this shape may
indicate that something is amiss.

For ¢ = oo we in addition know that the vertex of this
square should be localized at the known values
(Ag,Ar,A4)=(8,10,12). We indicated this with the green
lines in Fig. 9 and observe that the numerical bounds indeed
nicely follow the outline of a square. Again, for A — co we
expect these points to converge precisely onto these squares.

For finite c, the absence of noteworthy features in Fig. 9
is also reassuring. The fact that we do not yet find sharp
rectangles can be ascribed to the relatively poor conver-
gence of the bounds, and we expect improvement for larger
values of A. Turning the logic around, given that we are
forced to work with finite A we can obtain somewhat
improved estimates of scaling dimensions by estimating the
location of the corner points.27

D. Bootstrapping the A, theory

We now focus our attention on the A; theory, for which
we have argued that the correlator under consideration is be
completely fixed by crossing symmetry. Its full determi-
nation using these numerical methods would, however,
require infinite computational resources. The aim of this
section is to show a few examples of results that can be
obtained at a finite numerical cost.

1. Estimates for the lowest-dimensional scalar operator

Let us first estimate the dimension of the first long scalar
multiplet. We have three ways of doing so: we can
extrapolate from the cusp at c,;, in Fig. 6, vertically down
from the bound at ¢ = 25 in the same figure, and finally
vertically down from the bound at ¢ = 25 obtained without
the D|0, 4] multiplet in Fig. 5. These three estimates should
converge to the same scaling dimension and this offers a
good cross-check of the extrapolations.

These bounds are shown in Fig. 10. The data points in this
plot were obtained using the semidefinite approach with
sppB—consequently we could extend to higher values of A

In [62] similar methods were used to improve the estimate of
the 1/c corrections in four-dimensional N' = 4 theories.

PHYSICAL REVIEW D 93, 025016 (2016)
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FIG. 10. Upper bounds on the dimension of the first long
spin zero multiplet as a function of the inverse of the cutoff A
for the minimum central charge c;,(A) (black dots) and for
¢ =25 with (red dots) and without (blue dots) the D0, 4] short
multiplet.

than in Figs. 5 and 6. We have added extrapolations which
were obtained by fitting the last n data points for various
values of n with an exponential function and showing the
ones that give the lowest and highest extrapolated values.

Figure 10 gives us enough confidence to claim that all three
approaches will indeed ultimately converge to the same
point. The most reliable way to accurately estimate this point
is from the bottom curve, which corresponds to the bound
without the D[0, 4] multiplet and has almost converged. From
its best value at A = 40 we extract the following bound:

Result.—If the A; theory does not have a DJ[0,4]
multiplet of operators, then it must have an unprotected
scalar operator of dimension A, < 6.443.

Besides the strict upper bound, the three extrapolations
in Fig. 10 together with the aforementioned uniqueness of
the theory at c,;, encourages us to put forward an addi-
tional conjecture:

Conjecture.—The A; theory has an unprotected scalar
operator of dimension 6.387 < A, < 6.443.

Proving this conjecture would require a rigorous estimate
of the lower bound. This might be possible with the use of
more sophisticated computational techniques, for example
by studying multiple correlators following the blueprint
of [63].

2. Estimates for the second lowest-dimensional
scalar operator

We can also constrain the dimension A{, of the second
unprotected scalar operator in the spectrum of the A
theory. We can bound A, from above if we are willing
to commit to a value A, of the first unprotected scalar
operator. Since we do not exactly know A, we plot in
Fig. 11 the upper bound on A{ as a function of A,. The
figure again contains three sets of curves corresponding to
the three different methods discussed above, with a color
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FIG. 11. Bound on the dimension of the second scalar super-
conformal primary dimension Aj, as a function of the dimension
of the dimension of the first scalar superconformal primary A,
See the main text for a detailed explanation. The cutoff is
increased from A = 14 to 22, with the darker lines corresponding
to the strongest bound A = 22. The region shaded in gray is the
one excluded by the strongest bound.

coding that matches Fig. 10. We will explain each set of
curves in turn.

The black curves were computed®™ at c¢;,(A). The
uniqueness of the solution to crossing for these values of
¢ can be seen in that when A, < A,—the first scalar
dimension in the unique solution—we always rediscover
that operator and have A{ = A,. Hence the horizontal
plateaus in the black curves for low A(. Once A reaches A,
then A( can rise to the dimension of the next operator, and
this leads to the sharp jump precisely along the diagonal
Ay = Aj. If we increase A, further, then we have no
solution to crossing symmetry. The top of each peak is then
the best estimate for the next scalar operator.

In the red and blue curves we have set ¢ = 25 with and
without the D[0,4] multiplet. Both curves end when A
reaches the upper bound given in Fig. 10 as a function of A.
The red curve coincides with the blue curve for small Aj—
in that case the presence of the D|0, 4] multiplet apparently
does not change the bound” on Aj. On the other hand, for
higher values of Ay we can only satisfy crossing symmetry
if the D[0,4] is also present, and the kink marks the
transition between these two regimes. The location of the
kink is then our best estimate for the pair (Ag, Af)) inan A,
theory without a D[0, 4] multiplet.

The bounds shown are computed at ¢ = ¢, + 0.01, since at
Cmin @ functional is always found, even if no bound is imposed,
whose zeros are the dimensions of the operators in the unique
solution to the truncated crossing equation. This makes it hard to
obtain bounds on operator dimensions.

This is corroborated by an analysis of the dual problem,
which shows that along this segment the D[0,4] multiplet is
absent from the truncated crossing symmetry equations, even if
we in principle allow for its presence.

PHYSICAL REVIEW D 93, 025016 (2016)

We can speculate about the shape of these curves in the
limit where A — 0. In that case we expect all three bounds to
coincide. The red segment past the kink will therefore shrink
to zero size, and the shape of the blue curve below the kink
will be increasingly convex, with a limiting shape similar
to the sharp peak that we already observe in the black curve.
The highest point of the black curve in turn will move further
left. Its position will have to coincide with the eventual
location of the kink, and this is then where we can read off A|,.
Notice that all these tendencies are already visible by
extrapolating from the curves obtained for lower A.

Let us finally provide a few numbers. If the A theory does
not have a D[0, 4] multiplet, then we can use the bounds
given by the blue curve. We conclude that the second scalar in
the A; theory must have A6 < 9.19. Furthermore, from a
cautious extrapolation from the location of the kink we
conjecture that in addition Aj, 2 8.3.

3. Bounds for OPE coefficients

Next we present bounds on various OPE coefficients,
again as a function of the dimension A, of the first
unprotected scalar operator. In Fig. 12 we show an upper

bound for the A; theory on /1%[0’0], the coefficient of the

unprotected operator of dimension A, and an upper and a
lower bound for A2 J As explained in Sec. V, a lower

D[0.4
bound on /1%[0.4] is possible because for Ay > 6 this

multiplet is isolated. The numerical lower bound however
becomes useless for small A since /1%[0’ 4 > 0 by unitarity.

The kink in the left plot of Fig. 12 coincides with the
kink in Fig. 11 and also agrees with the point where the
lower bound on /1%[0‘4] crosses zero in the right plot of
Fig. 12. In this way we observe again that a D0, 4]
multiplet would be required if we try to increase A, past
the kink. Although we cannot rigorously prove the absence
of the D[0,4] multiplet, the right plot of Fig. 12 does
provide a rigorous upper bound on the coefficient of the
corresponding conformal block.

As illustrated by Fig. 2, for infinite A we expect the upper
bound in the right plot to decrease to zero. We also expect the

upper bound on /1% 0] © exhibit a sharp peak in this limit, for
the same reason as in the previous discussion concerning the
large A behavior of the blue and red curves in Fig. 11. The
eventual location of the kink is therefore again our best
estimate for the pair (Ao, 47, ). From the left plotin Fig. 12
we conclude that the A; theory, with or without a DJ0, 4]
multiplet, must have /1%[0’0] < 1.92 for the first unprotected

scalar operator. We expect it to not be smaller than 1.8 based
on extrapolation of our current results.

4. Bounds on the second lowest-dimensional
spinning operators

We have also investigated the dimensions of the second
operators of spin two and four. The results are shown in
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FIG. 12. Left: Bound on the OPE coefficient (squared) of a scalar operator of dimension A, in the A; theory. We vary A, from the
unitarity bound to the dimension bound obtained in Fig. 4. For this plot we allow for the presence of the short operator D0, 4]. Right:
Lower and upper bound on the OPE coefficient squared of a possible D0, 4] multiplet in the A, theory, as a function of the dimension of
Ay. In both plots the cutoff is increased from A = 14 to 22. The excluded values of the OPE coefficient correspond to the shaded region.
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Bound on the dimension of the second spin ¢ = 2, 4 superconformal primary dimension A} ,, as a function of the dimension

of the dimension of the first spin £ = 2,4 superconformal primary A, 4 for ¢ = 25. The cutoff is increased from A = 14 to 22.

Fig. 13 where we assume there to exist an operator of
dimension A,, in the allowed range and bound the
dimension of the second operator A ,.

For both spins we observe a small steplike feature for a
small value of A, and A, which is most likely an artifact of
working at finite A, similarly to what was observed in
Fig. 7. Increasing the value of A, and A4 we find an upward
sloping upper bound for the next operator and again a
cutoff at the maximal allowed value of A, ,. These cutoff
values can also be read off from Figs. 7 and 8 at ¢ = 25.
These plots are the spin two and four analogues of Fig. 11,
and in the large A limit we again expect them to converge
towards a sharp peak. This behavior is already very much
apparent in the spin four plot.30 Again, the location of the
peak in principle provides us with reasonable estimates for
the pairs (A, 4, A} ).

For these plots we do not impose any gap in the scalar sector,
and the inclusion or exclusion of the D0, 4] multiplet therefore
does not affect the numerics.

5. Combining spins

Finally, we can repeat the analysis leading to Fig. 9 while
disallowing the DI0, 4] multiplet. The resulting bounds for
the combinations (Ag, A,) and (Aj, Ay) are shown in
Fig. 14. Notice that the (A,, A;) plot would be the same
as in Fig. 9, because in that case no gap is imposed in the
scalar sector and a scalar long multiplet approaching the
unitarity bound mimics precisely the D[0, 4] short operator.
Figure 14 shows significant improvement over Fig. 9: the
shape is more rectangular and the numerical values of the
bounds are also significantly lower. We in addition observe
a better rate of convergence (not shown in Fig. 9).

In Fig. 15 we impose simultaneous gaps in all three of
the lowest spin operators, with (left) or without (right) the
DI0, 4] multiplet. The region inside the approximate cuboid
is allowed; the region outside of it is excluded. This being
just the three-dimensional analogue of the two-dimensional
plots shown in Figs. 9 and 14, the allowed region in the
space of these three dimensions should eventually converge
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Combined exclusion plots for the lowest dimension operators of spin zero, two and four in the A; theory with a cutoff

A =14, ...,22. These bounds improve on Fig. 9 because we enforced the absence of the D[0, 4] multiplet.

AO 6.0

12.0
115
Ag 110
105
10.0

A, 93 10.0

FIG. 15.

A, : 10.0

Simultaneous bounds on the spin zero, two, and four superconformal primary dimensions when a gap is imposed in one of the

other channels for a cutoff of A = 22. These bounds are for the central charges corresponding to the A; theory (¢ = 25) and are obtained
with (left) and without (right) the addition of the short multiplet D[0, 4]. The allowed region is inside of the region delimited by the

golden surface.

to a perfect cuboid, which would once more demonstrate
the uniqueness of the solution with scaling dimension
determined by the location of its vertex. We ascribe the
deviation from this cuboidal shape in Fig. 15 to the finite
value of A. Naturally, since we expect that with A — oo the
numerical bootstrap will show that this multiplet is absent
at ¢ = 25, the cuboids on the left and on the right of Fig. 15
should be converging to the same final bound. In this sense
demanding the absence of the D0, 4] multiplet is just a
trick to overcome the slow convergence of our numerical
results, leading to bounds closer to their A — oo values.
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APPENDIX A: UNITARY REPRESENTATIONS
OF 03p(8*|4)

We recall the classification of unitarity irreducible
representations of the 08p(8*|4) superalgebra. These have
been described in [91,95,120] and are reviewed in [50].
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There are four linear relations at the level of quantum
numbers that, if satisfied by the superconformal primary
state in a representation, guarantee that the resulting
representation is (semi)short. We adopt the following
notation for labeling these relations:

1 3
A: A:§C1 +CQ+§C3+2(d1 +d2)+6,

1
B:A:§c1+cz+2(d1+d2)+4, c3 =0,

1
C: A:§C1+2(d1 +d2)+2,

D:A =2(d, + dy),

C2:C3:0,

Cq :C2:C3:O. (Al)

The superconformal primaries of generic multiplets which
obey no shortening condition, i.e., long multiplets, obey

1 3
L: A > ECI +C2+5C3 +2(d1 +d2) +6
Here [d), d,] are the Dynkin labels of the 30(5); repre-
sentation of the superconformal primary®' and [c;, ¢,. c3]
are the Dynkin labels of 3u*(4), which are related to the
orthogonal basis quantum numbers, (h, h,, h3), by

(A2)

1 1 1 1
h1:§C1+C2+§C3, h2:§C1+§C3,

1 1
h3:§C1—§C3. (A?))

Short superconformal multiplets can be specified by the
type of shortening condition they obey, together with
the two 30(5); and the three 8u*(4) Dynkin labels of
the superconformal primary. For these multiplets the
dimension of the superconformal primary is then fixed
in terms of this information from (A1). For long multiplets,
L, one must specify the dimension of the superconformal
primary in addition to the aforementioned quantum num-
bers. We will denote such a multiplet by

X[(A)icr crc33dydy], X =AB.CD.L. (A4)

In the special case of operators that transform as symmetric
rank ¢ traceless tensors of 30(5, 1) (which is the case for
most operators discussed in this paper), we simplify the
expression to
X[dy. do]a) r- (AS)
For a representation in any one of the classes listed in
(A1), the structure of null states in the Verma module built
on the superconformal primary depends on the 8o(5,1)
representation of that primary. Every short representation
possesses a single primary null state, with the additional

'We use 80(5) conventions for the Dynkin labels, so the 5 has
Dynkin labels [1, 0]. The authors of [49] use u8p(4) conventions
which means that the labels are interchanged.
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TABLE II. The primary null state for each of the shortened
multiplets, expressed in terms of a combination of supercharges
acting on the superconformal primary. The supercharges Oy,
transform in the (4, 4) of u8p(4)g x 8u*(4). The expression in
the second column is schematic—the actual null state is a linear
combination of this state with other descendants. The rightmost
column contains the Dynkin labels corresponding to the combi-
nation of supercharges. Notice that Lorentz indices are implicitly
antisymmetrized because of the identical R-symmetry indices on
each supercharge.

‘A[cthvc?a;dlst} Ql4l//:0 [O?Os_l;ov]]
Aley, ¢,05dy, ds] Qui3Quy =0 [0,-1,0;0,2]
A[CI,O, O;dl,dz} Q12Q13Q14l// =0 [—1,0,0;0, 3]
Al0,0,0;d,,d] Q1190 Q1%uw =0 [0,0,0;0,4]
B[Cl,Cz,O;dl,dz] Q13l//:0 [O,—l,l,O,l]
Blc;.0,0:d,, dy] Qnluy =0 [-1.0,1;0,2]
B[0,0,0;d,. d,) 91121 C1w =0 [0,0,1;0,3]
C[C],0,0;dl,dﬂ lel//:0 [—1,1,0;0,1]
C[O, 0, O; dl N dz] Qll lel// =0 [0,1,0;0,2]
D[0,0,0;d,. d,] Oy =0 [1,0,0:0,1]

null states being obtained by the action of additional raising
operators on the null primary. Different locations for the
primary null state lead to different multiplet structures,
which we summarize in Table II. In all cases, when some of
the c; are written, the last one is necessarily nonzero. The
quantum numbers d , in all cases are only restricted to be
non-negative integers. The multiplets of the type
B[Cl ,Co, 0, O, O], C[Cl s O, O, dl, dz] with dl + dz < 1, and
D[0,0,0;d,,d,] with d| + d, <2 contain conserved cur-
rents or free fields. In particular, the stress tensor multiplet
is D[0,0,0;2, 0], which we denote simply by D2, 0].

This structure of null states makes the decomposition
rules for long multiplets transparent. Starting with a generic
multiplet £ approaching the A-type bound for its dimen-
sion, the following decompositions take place [which
decomposition occurs depends on the 80(5, 1) representa-
tion of the long multiplet]:

[,[A* +5;C1,C2,C3;d1,d2];))./4[c1, Co, CB;dhdZ]

® Alcy,ca,c3— 15dy, dy + 1],
ﬁ[A* +5;Cl,C2,0;d1,d2];)>./4[€1,Cz,o;dl,dz]

C[A* +5;C1,0,0;d1,dz];;A[Cl,0,0;dl,dz]

®Clc; —1,0,0;d,,d, + 3],
E[A* + 5,0,0,0, dlv dz]—O)A[O, O, 0, dlv dz]

5—

®D[0,0,0:d,.d, +4]. (A6)

In the partial wave analysis of the stress tensor multiplet
four-point function the only recombinations that play a role
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are the second and last ones, where in both cases only the
second multiplet appearing in the decomposition is allowed

PHYSICAL REVIEW D 93, 025016 (2016)

stress tensors are precisely the ones whose OPE coefficients
that were fixed in (4.11).

by selection rules in the OPE. There is a relatively short list
of multiplets that can never appear in a recombination rule:

APPENDIX B: SUPERCONFORMAL BLOCKS
B[Cl ,Co, 0, dl . {0, 1}],

Cley.0,0;d,,{0,1,2}],
D[0,0,0;d,,{0,1,2,3}].

In this Appendix we collect various expressions that are
relevant for the decomposition into superconformal blocks
of the stress tensor multiplet four-point function.

Let QA (A2, Asy32,Z) with A;; = A; — A; be the six-
dimensional nonsupersymmetric conformal blocks for a
four-point function of scalar operators with conformal
dimension A;, i =1, ...,4. These conformal blocks were
given in closed form in [104,121]:

(A7)

Amusingly, the Q-chiral operators that give rise to currents
of the protected chiral algebra of [50] are all selected from
among these nonrecombinant representations. The oper-
ators in this list that make an appearance in the OPE of two
|

£+3 (A—4)(£+3)

711 " e e+ 1)

LAl A )AL+ A =) (A L+ Ay —4)(A—C — Ay - 4)
(A—£-5)(A—¢—4)2(A-¢-3)

_A—4(A+f—A12)(A+5+A12)(A+K+A34)(A+K—A34)
A-2 16(A+7-1)(A+6)*(A+7+1)
2(A—4)(Z +3)ApAgy

A+ (A+¢-2)(A+¢—4)(A+7—6)

4 _
Q(A>(A12, A34;Z, Z) = FOO

f02

-7:11

+

Fors (B1)

where

2)% ¢ A+7-A A+72+A
Foum(2,2) = ((ZZZ_)Z> ((—%) z"+32’”2F1< 3 24, 5 34+n,A—|—f—|—2n,z>
A-?C—-A A-C+A
x2F1<212—3+m,;—34—3+m,A—f—6+2m,Z>—(z<—>2)>.

The harmonic functions for the various 80(5) irreducible representation appearing in the decomposition of the four-
point function (4.2) are given by [49,122]

8(c+17) 8
YEY (. a) = 62 + 12 + dor — 2
(a,&) = 6=+ 1° + 401 9 +63’
Y2 (a, @) = 6% — 12 4(‘77—7)’

2 1
YO (a, @) = 6> + 7> = 201 (o +7) ,

3 6

Y02(a,q) =06 -1,
20) (g, &) = 2
Y= (a, @) a—|—1—§,

(B2)

where o = aa and 7 = (a—1)(a—1).
The superconformal blocks for the D[2, 0] four-point function decomposition were studied in [49]. We quote here the

results relevant for our purposes. For each 80(5), channel the superconformal blocks can be extracted from two functions
a(z,z) and h(z) as follows:
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1 _
Ao (z,2) = 3 u*Ay[uta(z, 7)),
1
Apg(z,2) = §M4A2[“(” - Da(z,2)].

A(2.2) = g Aaful3(v + 1)~ wa(z )],

Ao (2.2) = s | (0= D04 D =3 Jate. )| -

1 I 1 2
A[z,o](z, Z) = §M4A2 ((7) — 1)2 — gM(U + 1) + El/ﬂ)d(z, Z):| + M2 (ZZ

4 5

PHYSICAL REVIEW D 93, 025016 (2016)

Aoa(e.2) =gt (04 17 =5 0= 17 = Julo 4 1)+ 550 Ja(a.2)

5(z-72)

Each A}; ;(z,Z) admits a decomposition in a finite sum of
conformal blocks given in (B1) with A; = 4, with positive
coefficients. As explained in Sec. IV, the relative coefficients
between conformal primaries belonging to the same super-
conformal multiplets are fixed, and there is only one unfixed
OPE coefficient per superconformal multiplet. This is
apparent from the form of (B3), where we see we only need
to specify how each superconformal multiplet contributes to
a(z,z) and h(z). This information is summarized in Table L.
To go from the contribution of each superconformal multiplet
to a(z,z) and h(z) to a finite sum over conformal blocks,
which includes acting with the differential operator A,, one
can make use of the recurrence relations given in Appendix D
of [49], which were corrected in [83].

APPENDIX C: LIGHT CONE LIMIT

The light cone limit of crossing equations has proved
useful for studying the large spin asymptotics of the
|

,(5(1—2) + 2 (2) + (5(1 —2) + )N ()
Z2

(=DM LEDHC) (MO =K
_h(z) =h(z) ZH(2) + Zzh’(2)>
(z-2) 2(z-3)? '
+u2(2zz+5(1—z)+5(1—z))%- (B3)

|

operator spectrum [57,58,123—130]. Here we analyze the
crossing equation (4.13) in the light cone limit. We
show that the BJ0,2], operators with # > 1 are neces-
sarily present in the theory and obtain the large # limit
of their OPE coefficients. We also find the large spin
limit of the OPE coefficients and anomalous dimensions
of twist eight long multiplets. The large ¢ limit of all
these results (in addition to similar calculations not
shown here for the twist ten and twelve long multiplets)
match with expectations from eleven-dimensional
supergravity.

1. Light cone crossing symmetry equation

Our first order of business is to determined the light cone
limit of the building blocks of the main crossing equa-
tion (4.13), which we recall takes the form

zza"(z,z2) — (z—=1)(z=Da"(1 = z,1 = 2) + z22d*(2,2) = (z= 1)(z - )e&*(1 = 2,1 = 2)

e o)
1 (h(1=)—h(1-2) k() - h(2)
‘<z—z>3< c-DE-1) | z ) )

C"(z.2)

where we have explicitly separated out the protected and
unprotected parts. The function /(z) is given in (3.21) and
it has the following asymptotic behavior:

1 1 8
= ———= 0(7%),
=0z 2 cZ+ ()
-1 1 1+8/c
h(z) = — O(log(l —2z)).
(Z)z—>l3(1—2)3+(1—2)2 l—Z + <0g< Z))

(€2)

|

As in Sec. IV we have set the integration constant f5 =
—1/6 + 8/c so the coefficient of z° in the expansion of /(z)
becomes —1/2, the same as the z° contribution of A3(z).
The conformal block decomposition of 4(z) then takes the
form

h(z)= Y beh¥ ().

£=—4.,f even
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The coefficients b, define the function a*(z,7) as

(5]

@(2,2) = Y 2beat,,(2.2). (C4)

7=0,¢ even

The atomic blocks aj ,(z,7) are defined in (4.5). We will need their asymptotic behavior:

2ILRGE AL SE L AL FAED )>
Z) |,

aRe2.2) 2@ HW( A-7-2)(A+7+2)

In the z — 1 limit we find from (C2) that the crossing symmetry becomes

1 1 1 1 1 [(P-27"47-27+1 8(z—1log(z)—1)
C(2) = S1(1=2)? (32(1 —z)3> T <3z(1 —z)3> 1 —z( -2 @1y )
+ O(log(1 - z2)). (Co)

Replacing z — (1 —z) in (C5) we find that in the same limit

(1-2)1=2)a"(1-2z1-32) = 0((1 —z)&=4-9/2) = 0(1), (C7)

Vnd

where in the last equality we have used A, > # + 6 with A, the dimension of the operator(s) of lowest twist. This part of C*
is therefore completely regular as z — 1 and we find

C*(z,2) = (limzza"(z,2)) + O(1), (C8)

z—1 z—1

where the behavior of the first term is unknown since we cannot yet say much about a“(z,Z) in the relevant limit.
Finally for C* we observe the A = ¢ + 4 specialization of (C5) gives

Pasle?) =, 0@ +0(2). ©9)
and therefore
#(2:2) = 55 (00) = b-yi3(2) ~ () + 0 1), (c10)
which leads directly to
(1= 2)(1=2)ar(1 21— z):lmw( 2) = byhi(1=2) = byht(1 =)+ O(1).  (CI1)
We thus find that
0*(2.2) = (limeze (2.7)) - u—z;ﬁ (h(1=2) = b_yh(1 —=2) = b_oh(1=2)) + 0(1).  (C12)

Although ¢*(z, Z) is a known function, we do not have sufficient analytic control over it to find its z — 1 behavior. We will
make an estimate below.

Combining (C6), (C8), and (C12) above we have our final light cone crossing symmetry equation:
o L 1 1 1 1 8 -2z -5z+1 6zlog(z)
lim(zzd (z, —
inzee 3+ 363D = s (o o) T e 0o (g
+ O(log(1 —z)). (C13)
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In the next subsection we will extract specific information
about the spectrum and OPE coefficients from this equation.
Before doing so, it is worthwhile to discuss it in slightly
broader terms. To this end we compare (C13) with a specific
solution to the crossing symmetry equations at large c. At
strictly infinite ¢ the only known solution to the crossing
symmetry equations, and therefore also to (C13), is the so-
called mean-field solution aMF(z, 7). By definition this is the
four-point function that is totally disconnected; i.e., it is a
sum of products of two-point functions. At order 1/c we get
corrections to the mean-field solution from eleven-dimen-
sional supergravity on AdS, x S*. The resulting function
aSG(Z, Z) can be read off from the results in [48,54].32

What (C13) tells us is that as 7 — 1, the leading behavior
of the left-hand side—up to O(log(1 — z))—is the same as
the mean-field solution plus 1/c times the supergravity
result, even for finite values of c. More precisely, for all ¢
we can write

. 1
limzZa(z, 2) = zzaM(z,2) + EzZaSG(z, 7)
=

+ O(log(1 — z)).

This is why the mean-field theory and the supergravity
solutions will feature prominently in the rest of our
discussion.

(C14)

2. OPE decomposition

To get a handle on (C13) we follow [57,58] and consider
the series expansion around zZ = 0. On the left-hand side we
find a power of z(4=“=9/2 for the leading term of a
conformal block. In this sense powers of z count the twist
of the operators. On the right-hand side we see that for each
inverse power of (1 — z) we have an expansion in powers of
Z with the most singular term being z~!, plus, eventually,
some logarithmic terms that we discuss below. These
powers need to be matched on the left-hand side by
operators of approximate twist four, six, eight, etc. The
first two leading orders in (1 — z) are the same as the mean-
field solution. Therefore, in a distributional sense the
operators and OPE coefficients of the left-hand side must
approximate the mean-field solution at large ¢ for any even
twist. The 1/c in the second subleading term in the (1 — z)
expansion then implies certain corrections to the mean-field
behavior, which in turn are dictated by the supergravity
solution.

a. Mean-field behavior at large ©

Let us first consider the twist four operators. These are
present only in @#(z,Z) and they need to reproduce the

*2As a check of our computations we have verified that the
supergravity result satisfies (C13). The relation between what is
called a(z,z) and h(z) here and the F(z,z) in [54] is

F(z.Z) = —22(z - 2)%a(z. 2b) — L12=2E),

PHYSICAL REVIEW D 93, 025016 (2016)

coefficient of z~! on the right-hand side of (C13). To see
this we take the Z — O limit of both sides, which allows us
to use (C10) but with z and 7 interchanged. In this way we
easily find a precise match of all the terms of order z~! on
both sides.

Next we can consider the twist six and eight operators,
which should reproduce the coefficient of z° and z',
respectively, on the right-hand side of (C13). Here we
face a small problem because the function @*(z,Z) also
contains twist six and twist eight descendants. We therefore
need to expand (C10) to 2 orders higher in z (and
interchange z and z for the problem at hand). We could
in principle compute these corrections if we could resum
the terms coming from the subleading corrections in (C9)
(again with z and Z interchanged). Unfortunately these
terms do not appear to be easily summable. Things simplify
if we only aim to reproduce the most singular term in
(C13), that is, the term of order (1 —z)™ (and we still
consider only the terms of order 7 and z'). In that case we
can just take the large £ limit, and the corrections to (C9)
(with z and Z interchanged) take a simple factorized form:

, =2 1172 1y 3 1
Pacle g T (3 (G rg) v+
=0 g g g g
3
+107F 0(z, f“)). (C15)

We can sum these corrections to find that

a)((z’z)ffog_sl (h(z) - b_4hgt(z) - b_zh%t(z)) (Z_Z—F% =z

z—1

+Z3—2+§+13—0+ 0(2)) +0((1-2)7%)

b <i+i+ﬁ+ 0(2)) +0((1-2)7),

(1-z)*\3z> 6z 30
(C16)
and therefore, after substituting in (C13),
1 1 17
li = U 7— N = 0 =2
lim zZa (z,2) 0= (6+30Z+ (z ))
+0((1-2)72). (C17)

A closer examination of (C5) reveals a similar structure as
for the twist four blocks, namely

_ 207724 _8+2z(r=2)
ariee(2.2) == B0=2) W i42(2) (2 +z zz)

+0(z7/%2). (C18)

This is useful because we already know how to repro-
duce a (1 —z)~* singularity with /§(z), namely
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3 at _ 1 -2
f:_;even <_ﬁ_1> bfhf+4(z);] (S +O0((1-2)7%).

(C19)

In this sum # is even, which means it is useful only for
7/2 4+ ¢ + 2 even, that is only when the twist is a multiple
of four. To obtain results valid for all twists we must also be
able to reproduce a (1 —z)™3 singularity as a sum over
h¥(z) with odd #. Simply the term (1 — z)~> does not have
decomposition in these blocks, but just as the combination
given in (3.21) had a decomposition in even blocks we can
add subleading corrections to the (1 — z)~* singularity such
that it admits a block decomposition. The following
function does admit a decomposition in odd # blocks:

AL S D +1—ihmd
321 (z=1) "3(z—17 '3 & 70
(C20)
with the coefficients d, given by
-6+ 11 -6)(F+3
d, = + e +3) (c21)

924841 (£ - 1)

Using that information it is not hard to find the leading
behavior of the OPE coefficients of the twist six operators,
which take the form™

\/7_1'2_4,”13/2
’%W,fffoozfdﬂs T T a0 T

(C22)
This proves that the B0, 2],_, multiplets with asymptoti-
cally large ¢ are necessarily always present in a six-
dimensional (2, 0) theory. For the twist eight operators
we need to first subtract the descendants of the twist six
operators, which we find account for 15/30 of the 17/30.
Repeating the above procedure we find that

3.27

20\ a2
TS G

2
A 30720

bpir+--= .. (C23)

This equation may be a little misleading as it needs to be
understood more in a distributional sense than as an exact
equality. We will explain this in more detail below. We have
checked that these OPE coefficients (as well as the twist ten
and twelve ones) match the mean-field theory OPE
coefficients derived in [54] in the large ¢ limit.*

BWe refer to [57,58] for a more careful derivation which
shows that the terms shown in this equation are all reliable at
lar%f .

The relation between the (square) of the OPE coefficients of
[54] and here is 2275 = 27(£ + 1)A7%%.

PHYSICAL REVIEW D 93, 025016 (2016)

b. 1/c¢ corrections

We would now like to investigate the leading corrections
da(z,7) to the mean-field solution. In the light cone limit
the manifest changes are due to 1/c¢ corrections on the
right-hand side of (C13) and in a*(z,7). These will then
induce some corrections to the very high spin operators in
a"(z, z) that we would like to compute. Our main equation
therefore becomes

lim(z260% (2, 2) + 2264 (2, 7))
—

8 [(-272-57+1
‘c<1—z>( W1 -2
+ O(log(1 —z)).

6z log(z)
S (1-3)° >
(C24)

Before we analyze this equation, we should note that the
mean-field solution has nonzero OPE coefficients for all the
operators of high spin and twist in a“(z,Z), and the
corrections to these positive coefficients that we are about
to compute are subleading [because they sum to a power
(1-2z)7! instead of the (1—z)> for the mean-field
solution]. They will therefore not be able to affect the
positivity of the original number.

We again expand the right-hand side as a power series in
Z. The leading order is z~! which, as before, corresponds to
twist four operators and is therefore captured by a@*(z, 7).
Indeed, using (C10) and interchanging z and Z we find that

lim(z26a% (2.2))

z-0

—lim <_—1 (6h(z) = 6b_4 Y (z) = 6b_2 15 (2)) + O G))

—=1\22

— ((%Jr 0(log(1—z))> +0<%>> (C25)

which reproduces the coefficient of z~! in (C24). The
contribution of the twist four operators is therefore
consistent.

To say something about the higher twist operators we
need to use (C15) again. As usual we relate the large £ limit
to the most singular term in (1 —z), and therefore the
correction to (C25) takes the form

8§ (1 5 43
(4T =74 0(72
c(l—z)(2+2+loz+ z ))

+ O(log(1 - z2)).

lim(zz6a#(z.2)) =

z=0

(C26)
Combining this equation with (C24) we now find

: = u 5)) — 8 é @' Z\)7 72
lg}(zzéa (Z’Z))_c(l—z)( 5710 - 6log(z)z+0(z ))

+0(log(1-72)). (C27)
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The leading term is a correction to the OPE coefficients of
the twist six operators in a“(z,Z). The subsequent two
terms correct both the OPE coefficients and the scaling
dimensions of the twist eight long multiplets. (The absence
of alogarithm at the leading order is consistent with the fact
that the twist six operators are protected.) We see that the
corrections obtained from supergravity are in fact universal;
i.e., at large spin the corrections to OPE coefficients and
operator dimensions have the same structure for all the (2,
0) theories, and only the prefactor 1/c is different. Notice
that these are additional corrections that appear on top of
1/¢ corrections to the mean-field solution.

Let us finally compute the anomalous dimensions at
large spin and match them to the supergravity result. We
write

)at, (z2).  (C28)

a“(z,z) = ; / dre(z

with a distribution ¢(z, ¢) that takes the form

=> 8(t-20-2n—y(n.¢)P,,.  (C29)

and as £ — co we have y(n,£) — O and P, , — P which
are the mean-field theory values. The leading-order cor-
rection then takes the form

ZZ ( SPMET 4 PMFT(n £)y(n.£) d‘i)

X as,, (2, 7). (C30)

As before, we claim again that the right-hand side is an
accurate representation of the summand for asymptotically

PHYSICAL REVIEW D 93, 025016 (2016)

large #, and as z — 1 it reproduces (C27). In the limit
where 7 — 0 we can use the first line of (C5) (with z and Z
interchanged) to see that the logarithm on the right-hand
side of (C27) can only appear from the term involving d/dn
acting on the twist eight operators with n = 4. Isolating this
term, and substituting (C5), we find that

lim ) PMT(4,2)y(4,£)27"h2 4(2)

z—1

7
288
O(log(1 —z)). (C31)
Tei-g
From (C2) we see that we can reproduce the (1 — z)~! if we
pick
POy (4 ) = =92 e, (C32)

where b, 1o is just the term proportional to 1/c¢ in b,,.
Using the coefficient (C23)

MFT 3-27
PMFT(4,6) = = Z bt (C33)
we find that
bfﬂ 17280 .
4,7) = —60—==— o(¢73); C34
r4.0) 5~ 005 = S O (o)

similarly, we have computed the twist ten and twist twelve
anomalous dimensions, and they agree precisely with the
large £ limit of the conformal block decomposition of the
supergravity solution of [54].
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