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A multi-cracked particle method for complex fracture problems in 2D

Weilong Aia,∗, Charles E. Augardea

aDepartment of Engineering, Durham University, South Road, Durham, DH1 3LE, UK

Abstract

Practical fracture problems are characterised by complex patterns of multiple and branching cracks,

somewhat far removed from the fracture problems used for validation of numerical methods, involving

single cracks, and the simulation of complex multi-tipped cracks brings many challenges to current nu-

merical methods. The cracking particle method (CPM) incorporates the description of a crack path into

the meshless nodes or particles used to discretise a domain. The CPM has recently been improved to

make the crack paths continuous and to include adaptivity. In this paper we take this improved CPM

further and introduce new crack particles which can model multiple fractures to handle crack branches

and crack junctions without the need for any specialised techniques such as enrichment. Some examples

with complex crack patterns are tested to show the performance of the proposed methodology and good

results are obtained which agree well with previous papers.

Keywords: Cracking particle method, meshless, multiple cracks, adaptivity

1. Introduction

Fracture is a common phenomenon affecting materials such as soil, bone and concrete, however theo-

retical work to study this problem is difficult to carry out since fracture is a highly non-linear behaviour.

In recent decades, several numerical methods have been used for fracture simulation, such as the finite el-

ement method (FEM) [33, 46, 52], the extended FEM (XFEM) [6, 18], the element-free Galerkin method

(EFGM) [9–11], the numerical manifold method (NMM) [27, 40, 48] and the cracking particle method

(CPM) [35, 38, 39], and many good predictions have been obtained for standard test cases [8, 31]. How-

ever, there are limitations to the use of some of these numerical methods when applied to more complex

examples. Specifically, in the FEM, a crack path is confined to mesh edges perhaps with the use of in-

terface elements [46]. In the XFEM and the EFGM, an explicit description of the crack path is required,

which is usually fulfilled using level set functions, and when the number of cracks increases, the expense of

updating the level set functions becomes very high [17, 50]. In the NMM, the discontinuities along crack

paths are handled by dividing the problem domain into “mathematical covers” and “physical covers”, but
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the generation of these covers is currently a bottleneck of this approach [14]. The phase field approach for

fracture modelling has been developed recently [2, 28, 29, 44], where crack propagation is handled by a

scalar field independent of the main discretisation (meshed or not), and the complexity of tracking crack

geometries is not required, although the evolution of the phase field during crack propagation brings an

extra calculation burden often making the method not computationally cheap. In the CPM, crack paths

are simulated by a set of cracking particles with discontinuous crack segments, as shown in Fig. 1 and

it is easy to update crack patterns by adding or deleting cracking particles, which makes it a suitable

candidate for complex fracture modelling [35, 38].

The CPM was first proposed by Rabczuk in 2004 [35], where the discontinuity at crack paths was

achieved by extra enrichments. It was later shown that these enrichments can be removed by splitting

the cracking particles into two new particles [39]. This CPM has been applied to static fracture [37],

dynamic fracture [24, 25] and ductile fracture [23]. There are also some papers using cracking-particle-

type methods for fracture modelling [15, 49]. Some integration issues are discussed in [45] and instabilities

are avoided by using stabilized nodal integration. The original CPM suffers from spurious cracking, as

mentioned in [39, 45], but this is addressed in [1] via a modified CPM using a bilinear cracking segment

approach where the cracking angle can be recorded using two crack branches so that more accurate

curvature of crack paths can be modelled. That paper also introduced an adaptivity scheme for use with

the method. The CPM has already been applied in 3D crack problems [38, 39], but spurious crack results

were found due to simple assumptions in the method, i.e. using a set of planar discontinuous segments to

approximate 3D non-planar crack surfaces. Possible solutions to this issue are to use level sets [22, 51] or

triangular meshes [4, 19]. Although level sets can provide an accurate crack description, updating these

functions is time consuming [51], while triangular meshes can explicitly describe crack propagation with

low cost [20]. This part of work is currently under development by the authors.

Here we describe a further development of the modified CPM which can deal with branched cracks

by splitting a cracking particle multiply. The paper is organized as follows: firstly, governing equations

of the modified CPM are presented. Then the description of the discontinuity at a crack path using the

CPM is demonstrated showing how it can be adapted for a branched crack. The adaptivity scheme of [1]

is also improved to deal with branched cracks. Some numerical examples are included to illustrate the

features of the modified CPM for complex fracture patterns.

2. Governing equations

Considering a two dimensional (2D) problem with domain Ω and boundary Γ, the equilibrium equation

(strong form) is

∇ · σ + b = 0 in Ω , (1)
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and the boundary conditions are

σ · n = t̄ on Γt , (2)

u = ū on Γu , (3)

where σ is the Cauchy stress tensor, b is the body force vector (if present), n is the unit normal to the

domain Ω and u is the displacement vector. t̄ and ū are traction and displacement constraints respectively

on the boundary Γ with Γ = Γt

⋃
Γu. However, for realistic problems a weak form (under the principle

of virtual work for instance) is applied alternatively as below and then discretised in the CPM using the

EFGM ∫

Ω

∇sδv : σdΩ =

∫

Ω

δv · bdΩ +

∫

Γt

δv · t̄dΓ . (4)

where “:” is the double dot product of tensors.

Trial functions for the weak form discretised using the EFGM are constructed via a moving least

squares (MLS) approximation since the approach is meshless and the approximated displacement is

uh(x) =
n∑

I

ΦI(x)uI = ΦTu , (5)

and the shape functions ΦI are

Φ(x) = pT(x)A(x)−1B(x) , (6)

where

A(x) =
n∑

I

wI(x− xI)p
T(xI)p(xI) , (7)

and

B(x) = [w1(x− x1)p(x1), w2(x− x2)p(x2), ..., wn(x− xn)p(xn)] . (8)

The weight functions wI can be chosen to follow many EFGM references, e.g. [7, 9, 21] and the function

used here (4th order spline function) is

wI(x− xI) = wI(s) =





1− 6s2 + 8s3 − 3s4 if s ≤ 1

0 if s > 1 ,

(9)

where s is the ratio between the distance of x and xI and the support size (also known as the dilatation

parameter) of node I.

3



3. Crack description

In meshless methods, there are two main approaches to describe the discontinuity at a crack: the

visibility criterion [9] and the diffraction criterion [32]. In the former approach, the influenced domain

(support) of a node is modified by deleting the part that is “shadowed” by the presence of the discontinuity.

A problem is the continuity of resulting shape functions that are not even C0 continuous, and the approach

can suffer from large errors and oscillations at crack tips for large dilatation parameters [32]. In the

diffraction criterion, a diffraction zone of the rays around a crack tip is considered and more accurate

approximations around the crack tip can be obtained [16, 32]. But, when the number of cracks increases,

the expense of defining diffraction zones becomes high. Some contributions, e.g. [5, 30, 41] tackle this issue

using weight functions for nodes which are modified around crack tips to improve accuracy, however here

we are mainly concerned with discontinuity modelling at crack junctions and branches. For simplicity,

therefore the visibility criterion is used rather than the diffraction criterion.

3.1. Complexities in the description of multiple cracks

The XFEM is one of the most popular methods for fracture modelling since the description of crack

paths is not linked to meshes, and remeshing is totally avoided [13]. However, the XFEM becomes

cumbersome for handling discontinuities of multiple and complex branching cracks. An example of a

cross crack is now used to illustrate this issue.

The displacement in the standard XFEM is approximated by extra enrichments based on a partition

of unity approach as

uh(x) =
n∑

I

ΦI(x)uI +

n1∑

I

ΦI(x)H(x)bI +

nc∑

I

ΦI(x)

(
4∑

k=1

Rka
k
I

)
, (10)

where H(x) is the Heaviside function with values +1 for nodes on one side of the crack surface and -1 on

the other side. n1 is a group of nodes with support totally cut by the crack, while nc is the set of nodes

with supports containing the crack tip. bI and aI are nodal enrichment unknowns and Rk are near-tip

enrichments and components of a vector as follows

R(r, θ) =

[√
r sin(

θ

2
),
√
r cos(

θ

2
),
√
r sin(θ) sin(

θ

2
),
√
r sin(θ) cos(

θ

2
)

]
, (11)

where r and θ are local polar coordinates at the crack tip. When two or more intersecting cracks (e.g.
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Fig. 2) are considered, the displacement field [3, 13, 17] becomes

uh(x) =

n∑

I

ΦI(x)uI +

n1∑

I

ΦI(x)H1(x)b1I +

n2∑

I

ΦI(x)H2(x)b2I

+

n3∑

I

ΦI(x)H3(x)b3I +

n1,2∑

I

ΦI(x)J1,2(x)cI+

n1,3∑

I

ΦI(x)J1,3(x)dI +

nc∑

I

ΦI(x)

(
4∑

k=1

Rka
k
I

)
.

(12)

In the equation above, the subscripts of H(x) and n indicate cracks 1 , 2 and 3, and n1,2 is a set of nodes

with supports containing the junction of cracks 1 and 2, similar to n1,3 for cracks 1 and 3. J1,2(x) and

J1,3(x) are two modified Heaviside functions with an extra value of 0 for the crack junctions, as shown in

Fig. 2. b1I , b2I , b3I , cI , dI and aI are nodal enrichment unknowns. When the number of cracks increases,

more enrichment terms are introduced and the computational cost rises.

For numerical methods (e.g. the XFEM and the EFGM) using a level set approach for the description

of crack patterns, the number of level set functions will increase linearly with the number of cracks, as

in [50], which also makes the simulation more complex. Even though it has been claimed that the NMM

provides a simpler way for displacement approximation, as in [3], the cost for generating physical covers

still hinders its application [14].

3.2. A simple approach to model multiple cracks using a CPM

In the CPM, crack paths are described by a set of cracking particles with discontinuous segments,

and crack geometries are obtained as their connection. With the use of bilinear crack segments, as in

[1] continuous crack paths are obtained and spurious cracking is avoided. In contrast to the methods

described above, it is relatively easy to develop a multiple-split cracking particle method to represent

complex crack patterns, and that is the crux of this paper. The method works as follows. For a cross

crack, such as in Fig. 3, the junction node D is split into 4 nodes D1, D2, D3 and D4 and its support

is also divided into 4 parts. The 4 nodes are not connected to each other and the crack opening at the

junction point is achieved by the relative displacements of nodes D1, D2, D3 and D4. The displacement

approximation is kept the same as Eq. 5 and the crack opening, marked as [[u(x)]], is

[[u(x)]] =
∑

I∈S+

ΦI(x
+)uI +

∑

I∈S−

ΦI(x
−)uI , (13)

where x+ and x− are two sets of nodes located on opposite sides of crack surfaces S+ and S− respectively.

The discontinuities along crack surfaces are captured by modifying the support domain in the CPM

rather than by using complex enrichment functions as in the XFEM. The visibility criterion (with the
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algorithm from [34]) is used to describe the connection among normal particles. When cracking particles

are involved, a simple strategy is used to distinguish these particles. The location of a cracking particle

i is given a small shift at the bisector direction θi of its sector support, Eq. (14), then the standard

visibility algorithm is used.




x′i = xi + 0.0001ri cos(θi)

y′i = yi + 0.0001ri sin(θi) ,

(14)

where ri is the support size, (xi, yi) is the location of node i and (x′i, y
′
i) is the shifted location. With

this strategy, four particles in the Fig. 3 (b) with the same location at the original particle D are shifted

in different directions, Fig. 4, and it is easy to assess visibility between nodes i and D1 while the other

three nodes are not visible to node i. Note that the shift is only used in the visibility algorithm and the

original location is used in the solution using the EFGM. The whole process is described in Algorithm 1.

Algorithm 1 Check the visibility between particles i and j

Input: Node information of nodes i and j
Output: status: 0 – invisible; 1 – visible
status← 1
if node j is outside the support of node i then
status← 0

else
if node i is a cracking particle then

shift the location of node i by Eq. (14)
end if
if node j is a cracking particle then

shift the location of node j by Eq. (14)
end if
status← standard visibility criterion

end if
return status

3.3. Crack propagation criteria

A comparison among different criteria for the crack propagation can be found in [12], and of those,

the maximum principal stress criterion maintains both efficiency and reasonable accuracy and is applied

here. Stress intensity factors (SIFs) are calculated by the interaction integral method [47],

I =

∫

A

(σaux
ij uj,1 + σiju

aux
j,1 − σaux

jk εjkδ1i)q,i dA, i, j, k ∈ [1, 2], (15)

where q is a weight function with value 1 at the crack tip and 0 at the integration domain boundaries, the

superscript “aux” indicates an auxiliary state which is initially predefined as in [47]. I is the interaction
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integral having the following relationship with SIFs,

I = 2α(KIK
aux
I +KIIK

aux
II ), (16)

and

α =





(1− ν2)/E for plane strain ,

1/E for plane stress ,

(17)

where E is the Young’s modulus and ν is the Poisson’s ratio. By choosing different auxiliary fields, SIFs

can be obtained accordingly, e.g. set Kaux
I = 1,Kaux

II = 0 to get KI = I/(2α). The crack propagation

angle θc is defined by setting the shear stress σrθ in a local polar coordinate system to zero following the

maximum principal stress criterion,

σrθ =
1

2πr
cos(θ/2)[

1

2
KI sin(θ) +

1

2
KII(3 cos(θ)− 1)] = 0. (18)

The solution is

θc = 2 arctan(
KI −

√
K2

I + 8K2
II

4KII
). (19)

These features required for numerical modelling of linear elastic fracture mechanics are covered in many

references [1, 6, 12].

4. Adaptivity

In the original CPM [35], a large number of nodes are required to obtain acceptable results, and it has

been shown that this problem can be alleviated by introducing an adaptivity strategy [36, 38]. Coarse node

arrangements can be set up at the beginning of an analysis and during the crack propagation process, fine

arrangements can be generated automatically around crack tips to fulfil the accuracy requirement. There

are difficulties with some adaptive schemes (e.g. [38]) where reconstruction of Voronoi cells is required

during adaptive steps, which leads to an increase of computational cost. Since the EFGM requires a

structured background grid of integration cells, it is convenient to base a refinement strategy on this as

well [36, 42], by dividing a cell into four sub-cells. A recovery strategy (to coarsen node arrangements)

proposed by Lee et al. [26] can further reduce the number of nodes, in which sub-cells are combined

together again.

Here we base the adaptive strategy on a quadtree structure. Cells with large errors are divided into

four sub-cells by a refinement approach, while a recovery function is used to combine sub-cells with small

errors together to the original cell. The procedure is quite simple and illustrated in Fig. 5, where a

background cell (numbered 1) with a large error is divided to four smaller cells (numbered 1, 2, 3, 4),
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where the small cell 1 inherits the original cell number, and five new particles (in white) are added which

are defined with half the support size of the particles in black. Then the support sizes of the four particles

that occupied the original cell 1 are reduced in size and multiplied by 4
√

0.5, which makes their support

match the density of surrounding particles. The recovery process is the reverse of the refinement with

five particles deleted as indicated in the Figure. A more detailed description of the procedure is given

in an earlier paper [1]. It is notable that although uniform cells are depicted in Fig. 5, the adaptive

strategy here is also applicable for methods using non-uniform cells. A recovery-based error estimator for

the EFGM described in [16] is used, which is the energy norm of the difference between the calculated

stress σh and the “projected” stresses σp (to approximate exact stresses) over the problem domain Ω as

below

‖Eg‖ =

{
1

2

∫

Ω

(σp − σh)TD−1(σp − σh)dΩ

}1/2

, (20)

where σp and σh are written in the Voigt notation, e.g. σp = [σpxx, σ
p
yy, σ

p
xy]T and

D =
E

1− ν2




1 ν 0

ν 1 0

0 0 (1−ν)
2


 for plane stress. (21)

σp is evaluated by an approximation at a point x with smaller supports

σp(x) =
m∑

k=1

Ψk(x)σh(xk) , (22)

where m is the total number of surrounding nodes xk with supports covering the point x, Ψk(x) are

shape functions obtained through the MLS scheme but with smaller supports. The normalized global

error ηg is defined with

ηg =
‖E‖
‖U‖ , (23)

‖U‖ =

{
1

2

∫

Ω

(σh)TD−1σhdΩ

}1/2

. (24)

The local error for a background cell i is evaluated by integrating over the local domain Ωi

‖Ei‖ =

{
1

2

∫

Ωi

(σp − σh)TD−1(σp − σh)dΩi

}1/2

. (25)

ηi =
‖Ei‖

‖U‖ /√ncell
, (26)

with ncell the total number of cells. The refinement and recovery are driven by the local error of a
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background cell, i.e. 


ηi > Lfin to be refined ,

ηi < Lrec to be recovered ,

(27)

where Lfin is the refinement trigger and Lrec is the recovery trigger. To make the global error lower than

the user defined target error ηt with the adaptivity, the following relationship from [1] is applied,

Lfin = 2ηt, Lrec = 0.5ηt . (28)

5. Numerical examples

To demonstrate the performance of the modified CPM for complex crack simulation, five 2D crack

problems have been tested as below. Plane stress conditions with elastic material properties E = 200GPa

and v = 0.3 are used unless stated otherwise. In all examples, SIFs in the presentation of results are

normalized by

FI = KI/(σ
√
πa), FII = KII/(τ

√
πa). (29)

5.1. A single crack under mixed mode loading

In this problem the behaviour of a single edge crack in a stress field which induces mixed mode fracture

is modelled. The problem domain is a square of side length w = 100 mm where the crack is of length

a = 0.5w as in Fig. 6. This problem is extracted from that of a central crack in an infinite plate under

biaxial tension σ = 100N/mm and shear τ = 100N/mm, where theoretical SIFs are KI = σ
√
πa and

KII = τ
√
πa. The target error in the adaptivity is ηt = 0.02. The analytical solutions for the near-tip

field are from Westergaard [43], i.e.





σxx = KI√
2πr

cos(θ/2)[1− sin(θ/2) sin(3θ/2)]− KII√
2πr

sin(θ/2)[2 + cos(θ/2) cos(3θ/2)],

σyy = KI√
2πr

cos(θ/2)[1 + sin(θ/2) sin(3θ/2)] + KII√
2πr

sin(θ/2) cos(θ/2) cos(3θ/2),

σxy = KI√
2πr

cos(θ/2) sin(θ/2) cos(3θ/2) + KII√
2πr

cos(θ/2)[1− sin(θ/2) sin(3θ/2)],

ux = KI

2µ

√
r

2π cos(θ/2)[κ− 1 + 2 sin2(θ/2)] + KII

2µ

√
r

2π sin(θ/2)[κ+ 1 + 2 cos2(θ/2)],

uy = KI

2µ

√
r

2π sin(θ/2)[κ+ 1− 2 cos2(θ/2)]− KII

2µ

√
r

2π cos(θ/2)[κ− 1− 2 sin2(θ/2)],

(30)

where µ and κ are material constants, as

µ =
E

2(1 + ν)
, κ = (3− ν)/(1 + ν) for plane stress (31)
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The analytical stresses are used as external loading as

f = σ · n =


σxxnx + σxyny

σxynx + σyyny


 , (32)

where n = [nx, ny] is the outer normal of each edge. The plate is fixed by setting as essential boundary

conditions

ux = 0, uy = 0 at x = w/2, y = w/2,

u+
y + u−y = 0 at x = 0, y = w/2,

(33)

where superscripts + and − stand for the two sides of the crack as in Eq (13).

A uniform distribution of nodes in Fig. 6 (b) is applied initially and subsequent adaptive particle

distributions can be seen in Fig. 7. From Fig. 8 (a), projected errors by Eq (20) are similar with

analytical errors where analytical stresses in Eq (30) are used. During adaptive steps, the predicted two

mode SIFs approach the exact values as shown in Fig. 8 (b). The deformations of two crack surfaces

are shown in Fig. 9, where both ux and uy can be seen to match the analytical solutions from Eq

(30). A comparison between adaptive and uniform refinements is given in Table 1, where it is clear that

adaptivity provides better accuracy for fewer particles and hence has a lower computational cost than

uniform refinement, although it should be noted that adaptivity requires an overhead for adaptive steps.

The calculating time is normalized by dividing the calculating time t0 for the initial particle arrangement,

i.e. time/t0, where t0 = 18.123s for running with Matlab on a PC (i7 4790, 16GB RAM).

5.2. Edge crack

The crack propagation of an edge crack in a plate under shear loading is studied in this second example,

and crack growth predictions which are calculated with different initial node arrangements are compared.

The geometry of the problem is depicted in Fig. 10, where the plate has width w = 70mm and height

h = 160mm and the crack length a = 0.5w, as in [26]. The lower edge of the plate is fixed and the upper

edge is under a shear τ = 100N/mm. Three different particle arrangements are set initially, as in Fig. 10

(b-d). The material properties are E = 206.8GPa and ν = 0.25 and plane strain conditions are assumed.

The target error is ηt = 0.05 for the adaptivity.

Adaptive steps can be seen in Fig. 11, where particles are added automatically around the crack tip

and refinements are recovered when the crack tip propagates away. The final crack path can be seen in

Fig. 12 for three cases. The results show that the difference of crack growth prediction through different

initial particle arrangements is negligible and all agree with results from [26].
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5.3. Cross crack

A cross crack in a square plate under biaxial loading is next considered. The geometry of this problem

is given in Fig. 13 with w = 20mm and w/h = 1. The initial crack length is set to a/w = 0.1 and this

ratio increases to 0.9 after the crack propagates. The biaxial tensile loading is σ = 100N/mm and the

left bottom corner is totally fixed to constrain the plate. The target error ηt = 0.06 for the adaptivity is

applied. Since this problem is symmetric, SIFs at the four crack tips are nearly the same, and the mode

II SIF is negligible.

Adaptive results are presented in Fig. 14 for this problem with initial particle arrangements as in

Fig. 15 (a). In Fig. 14 (a) the normalized global errors in Eq. (20) are obtained and it can be seen that

the convergence rate using the adaptive refinement is much higher than for uniform refinement, and a

converged value of the normalized KI can be obtained from Fig. 14 (b). Due to the use of adaptivity,

particle arrangements change during the crack propagation process, as shown in Fig. 15, and the number

of nodes increases from 112 to 1851. Similar particle arrangements can be found at all four crack tips

due to the problem’s symmetry. Four “masses” of nodes are generated automatically and travel with the

crack tips during crack propagation steps. Crack opening of the final step is shown in Fig. 16. Mode I

SIFs at one crack tip for different crack lengths are compared with Daux et al. [17] and good agreement

can be seen from Fig. 17.

5.4. Star shaped crack

The star shaped crack is more complicated than the cross crack, with an increase in crack tip number

from 4 to 6. The geometry of this problem is shown in Fig. 18 with w = 20mm and w/h = 1. The crack

length is initially a/w = 0.1 and increases to 0.9 after 8 crack propagation steps. The external loading is

the same as the cross crack, with σ =100N/mm, and for the adaptivity ηt = 0.06.

For this problem two sets of results are presented: firstly cracks are allowed to propagate but are

constrained to maintain the same direction. In the second set of analyses this constraint is removed. The

purpose of this approach is so that comparisons can be made to the results from Daux et al. [17] where

SIFs are calculated for this problem using different initial crack lengths and no propagation, these being

compared to the first set above. For the second set we include these to show that with propagation there

is very little deviation from the straight crack paths anyway.

Firstly, node arrangements during the adaptive steps are shown in Fig. 19 and the maximum number

of nodes generated during this process is 2158. Six “masses” of nodes can be seen around six crack tips

and all travel with the crack tip during the crack propagation steps. Node distributions at two horizontal

crack tips are symmetric while the situations at other crack tips are different, but the difference is small.

Comparing the calculated SIFs at crack tips A and B, as in Fig. 20, all show good agreement with Daux

et al. [17].
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In contrast for the second set, the propagating angle is not constrained, and crack paths are not kept

straight after crack propagation. Node arrangements are shown in Fig. 21 and it can be seen that node

distributions around the two horizontal cracks are no longer symmetric. The maximum number of nodes

becomes 2957. The calculated crack paths are depicted in Fig. 22, from which it can be seen that cracking

angles of all 6 cracks keep constant at the beginning and then change a little at the last few steps. This

is because the KII of both crack tips A and B are tiny compared with KI as shown in Fig. 20, so the

deformations of all cracks are mainly of mode I type and the changes of all six crack directions are small.

5.5. Tree shaped crack

The final example is the most complex where a “tree” shaped crack with ten crack tips is considered.

The geometry of this problem is presented in Fig. 23, with w = 6mm and w/h = 1, as in [27]. The

cracks are defined by a = b = 2c = 1mm and α = 45◦, β = 90◦. A biaxial tensile loading is applied,

σ = 100N/mm. During the adaptivity, the target error is ηt = 0.06.

The initial node arrangements are shown in Fig. 24 (a) and adaptive steps are presented in Figs.

24 (b) to (d). There are node refinements around the crack tips on both the left and right sides while

refinements for the other six crack tips are not required. The number of nodes changes from 262 to

848. Extracting the SIFs of crack tips A, B, C and D in Fig. 23, convergent values can be obtained

during adaptive steps (Fig. 25), where the superscripts on SIFs are used to indicate the crack tip. Good

agreement is obtained when compared with results in [27], except for minor differences for KII at crack

tip A. KII at crack tip A is near to 0 and the deformation is mainly of mode I type. Both KI and KII

SIFs at crack tips B and C are small compared with crack tips A and D. This may explain why there are

high levels of refinements around crack tips A and D but low levels for crack tips B and C it is low.

This tree shaped crack problem is more challenging if it starts from the edge, and we consider this

crack problem in a double cantilever beam. The geometry of the problem is w = 24mm and w/h = 3.

The crack pattern is not changed, with a = b = 2c = 1mm and α = 45◦, β = 90◦. The right side of beam

is fully fixed while the left side is under a pair of tractions with σ = 100N/mm, as shown in Fig. 26.

Adaptive steps are illustrated in Fig. 27 with initial node arrangements in Fig. 27 (a). There are

refinements generated automatically around all 10 crack tips while the right part of beam is not influenced.

The final number of nodes is 3359, 11 times larger than the initial value of 283. The crack opening is

depicted in Fig. 28 (a) and an enlarged view of the rectangular zone is shown in Fig. 28 (b). The

deformation of three cracks on the right is large. For the two branched cracks in the centre, only one

part is open. The other two single cracks are not under large deformation. Checking the calculated SIFs

at crack tips A, B, C and D as in Fig. 29, which are normalized by the same strategy as above, KI

values at crack tips A and D are nearly 3 times larger than the value at crack tip B while the KI value at

crack tip C is small. KII at node A is 0 so the deformation of crack A is mainly of mode I type, similar
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to crack tips B, C and D. This provides an explanation of why the deformations of cracks A and D are

larger than crack B, while the opening of crack C is negligible. There are no other references which study

this problem to our knowledge so it is difficult to make comparisons of accuracy regarding final SIFs,

however the example demonstrates the potential power of this modified CPM and the adaptive scheme

incorporated within it.

It is possible to use the proposed method to handle cases of crack coalescence, e.g. one crack growing

into and splitting another, by introducing a particle at the intersection point and subsequently splitting

it, but in this type of situation, when two crack tips are in close proximity, there will be difficulties in the

evaluation of the J-integral which are not covered in this paper, so this aspect is not demonstrated here.

6. Conclusion

In this paper, a multiple-split modified cracking particle method is proposed for complex crack sim-

ulations in 2D. The discontinuity at a crack is fulfilled by splitting the cracking particles into several

parts, and the crack opening at a location on the crack path can be simulated by relative displacements

of these cracking particles. In this methodology, there is no need to use level set (or other) functions to

describe discontinuities at crack paths and the expression of displacement approximation is kept simple.

An adaptivity strategy has been used to control the number of nodes. Some multiple crack problems

such as a cross crack, a star shaped crack and tree shaped cracks, have been tested to demonstrate the

advantages of the proposed methodology and good agreement with previous results is obtained.
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Figure 1: Crack description through the CPM.

Figure 2: Sign functions in the XFEM for crack modelling.
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Figure 3: Multiple-split cracking particle.

Figure 4: A simple strategy to distinguish cracking particles with the same location.
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Figure 5: Adaptive procedure including the refinement and the recovery approaches.
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Figure 6: A near-tip field for a central crack in an infinite plate: (a) configuration; (b) initial particle arrangement.
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Figure 7: Adaptive particle distributions for a near-tip crack: (a) step 2; (b) step 4; (c) step 7; (d) step 9.
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Figure 8: Adaptive results for a near-tip crack: (a) error estimation; (b) SIFs.
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(a) (b)

Figure 9: Final displacement for a near-tip crack: (a) ux; (b) uy .

Adaptive Uniform refinement

Node arrangements initial 20*20 20*20 60*60 100*100 200*200 300*300

Time/t0 28.539 1.000 4.755 12.890 68.773 224.550

Analytical error 0.00989 0.16039 0.09185 0.07103 0.05017 0.04095

Projected error 0.01083 0.17385 0.09886 0.07633 0.05385 0.04393

Error (KI) 0.00048 0.02895 0.01216 0.00775 0.00399 0.00262

Error (KII) 0.00029 0.02005 0.01446 0.00932 0.00481 0.00314

Table 1: Comparison between adaptivity and uniform refinement for the near-tip crack problem.
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Figure 10: An edge crack under traction on the top with different particle arrangements: (a) configuration; (b) case 1; (c)
case 2; (d) case 3.
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Figure 11: Crack propagation steps of an edge crack for case 1: (a) step 1; (b) step 4; (c) step 8; (d) step 12.
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Figure 12: Predicted crack growth of an edge crack with different initial particle arrangements: (a) case 1; (b) case 2; (c)
case 3; (d) comparison.

Figure 13: Configuration of the cross crack.

23



Figure 14: Adaptive results for initial cross crack: (a) error estimation; (b) normalized KI.

Figure 15: Adaptive steps for the cross crack with crack propagation: (a) initial nodes; (b) step 1; (c) step 3; (d) step 5;
(e) step 7; (f) step 9.
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Figure 16: Final crack opening of the cross crack enlarged by 50 times.

Figure 17: Normalized KI at one crack tip of the cross crack during crack propagation.
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Figure 18: Configuration of the star shaped crack.

Figure 19: Adaptive steps for star shaped crack propagation without angular change: (a) initial nodes; (b) step 1; (c) step
3; (d) step 5; (e) step 7; (f) step 9.
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Figure 20: Verification of SIFs for the star shaped crack: (a) KI at crack tip A; (b) KI at crack tip B; (c) KII at crack tip
B.
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Figure 21: Adaptive steps for star shaped crack propagation with angular change: (a) step 1; (b) step 3; (c) step 5; (d) step
7; (e) step 9; (f) step 10.
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Figure 22: Comparison of crack path between with and without cracking angle change.

Figure 23: Configuration of the tree shaped crack in a square plate.
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Figure 24: Adaptive steps for the tree shaped crack problem: (a) initial nodes; (b) step 2; (c) step 4; (d) step 6.
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Figure 25: Verification of SIFs for the tree shaped crack problem: (a) FA
I ; (b) FA

II (c) FB
I ; (d) FB

II ; (e) FC
I ; (f) FC

II ; (g) FD
I ;

(h) FD
II .
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Figure 26: Configuration of tree shaped crack in a double cantilever beam.

Figure 27: Adaptive steps for tree shaped crack in a double cantilever beam: (a) initial nodes; (b) step 2; (c) step 4; (d)
step 6.
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Figure 28: Crack opening for the tree shaped crack in a double cantilever beam enlarged by 20 times: (a) overall deformation;
(b) partial enlarged view.
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Figure 29: Calculated SIFs for the tree shaped crack in a double cantilever beam: (a) FA
I ; (b) FA

II (c) FB
I ; (d) FB

II ; (e) FC
I ;

(f) FC
II ; (g) FD

I ; (h) FD
II
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Highlights for paper “A Multi-Cracked Particle Method for 

Complex Fracture Problems” 

 A Multi-Cracked Particle Method is presented, which can provide a 

simple way to handle crack branches and crack junctions. 

 Adaptivity is introduced to improve the calculating efficiency. 

 Fracture problems with up to ten crack tips are considered and 

good results are obtained, which shows the performance of this 

methodology. 

Highlights (for review)


