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Abstract

We derive the linear instability and nonlinear stability thresholds for a prob-
lem of thermal convection in a tridispersive porous medium with a single tem-
perature. Importantly we demonstrate that the nonlinear stability threshold
is the same as the linear instability one. The significance of this is that the
linear theory is capturing completely the physics of the onset of thermal con-
vection. This result is different to the general theory of thermal convection
in a tridispersive porous material where the temperatures in the macropores,
mesopores and micropores are allowed be different. In that case the coin-
cidence of the nonlinear stability and linear instability boundaries has not
been proved.

Keywords: Tridispersive porous media, Convection in porous media,
Tridispersive convection, Nonlinear stability, linear instability

1. Introduction

A tridispersive porous medium is one where the solid skeleton contains
three types of pores. One type are the usual pores which are referred to as
macro pores. In addition there are pores on a smaller scale referred to as
meso pores, and cracks or fissures on a yet smaller scale which are referred to
as micro pores. The basic theory for thermal convection in a triple porosity
(tridispersive) medium was developed by Nield & Kuznetsov [16]. These
writers allowed for distinct velocity, temperature and pressure fields in each
of the pore systems, macro, meso and micro.
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The porosity associated with the macropores is denoted by φ, i.e. φ is the
ratio of the volume of the macropores to the total volume of the saturated
porous material. Furthermore, the meso pores generate a porosity ǫ which
is the ratio of the volume occupied by the mesopores to the volume of the
porous body which remains once the macropores are removed. This means
the fraction of volume occupied by the mesopores is ǫ(1 − φ). Then, the
micropores generate a porosity η which is the ratio of the volume occupied
by the micropores to the volume of the porous body which remains once
the macro and mesopores are removed. This yields the fraction of volume
occupied by the micropores being η(1−ǫ)(1−φ) while the fraction of volume
occupied by the solid skeleton is (1− η)(1− ǫ)(1 − φ).

Theoretical work on thermal flow in tridispersive porous media com-
menced with work of Nield and Kuznetsov [16]. Further work on various
problems is due to Nield & Kuznetsov [17], Cheng [5], Ghalambaz et al. [13],
and Straughan [22], chapter 13. Fundamental work on the thermal convec-
tion problem was developed by Kuznetsov & Nield [14]. These articles utilize
different velocities Uf

i , U
p
i and U c

i in the macro, meso and micropores, with
different temperatures T f , T p and T c.

Undoubtedly the current interest in tridispersive porous media is due to
the many applications arising in engineering and in real life. For example,
underground oil reservoirs are modelled as triple porosity systems, e.g. Ali et
al. [1], Deng et al. [7], Olusola et al. [18], Wang et al. [23]. Triple porosity
features in modelling methane recovery from coal beds, Wei & Zhang [24],
Zou et al. [25], and likewise is important in analysing the procurement of
drinking water from an aquifer, Zuber & Motyka [26]. In a context important
for the present work triple porosity is proving very important in geothermal
reservoir modelling, Siratovich et al. [19].

In this paper we develop and fully analyse thermal convection in a tridis-
perse porous medium when only one temperature is employed and the hor-
izontal layer containing the saturated porous medium is heated from below.
For many practical situations we believe this is sufficient. To achieve our aim
it is first necessary to derive a suitable mathematical model.

2. Basic model

We begin with fields in the solid, fluid in the macro pores, fluid in the
meso pores, and fluid in the micro pores, and we denote each phase by s, f,m
and c, respectively. As stated earlier the macro, meso and micro porosities
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are φ, ǫ and η. The actual fluid velocities in the macro, meso amd micro
pores are denoted by V f

i , V
m
i and V c

i and these are connected to the pore
averaged velocities in the macro, meso amd micro phases, Uf

i , U
m
i and U c

i ,
by the relations

Uf
i = φV f

i , Um
i = ǫ(1− φ)V m

i , U c
i = η(1− φ)(1− ǫ)V c

i . (1)

Let ǫ1, ǫ2 and ǫ3 be defined by

ǫ1 = (1−φ)(1− ǫ)(1−η), ǫ2 = ǫ(1−φ), ǫ3 = η(1−φ)(1− ǫ). (2)

Let the temperatures in the solid, macro, meso and micro phases be denoted
by T s, T f , Tm and T c, with (ρc)α, κα, α = s, f,m or c, being the product of
the density and specific heat at constant pressure, and the thermal conduc-
tivity, in each phase. We wish to write equations for energy balance in each
phase in the tridispersive porous medium and to do this we are guided by
Kuznetsov & Nield [14], equations (11) - (13) and (18) - (23), and also by
the equations for a single porosity porous medium under conditions of local
thermal non-equilibrium, cf. Straughan [22], equations (2.9) - (2.12).

The equations of balance of energy in the solid, macro pore, meso pore,
and micro pore phases are then

ǫ1(ρc)sT
s
,t = ǫ1κs∆T s + s1(T

f − T s) + s2(T
m − T s) + s3(T

c − T s), (3)

φ
[

(ρc)fT
f
,t + (ρc)fV

f
i T

f
,i

]

= φκf∆T f + h12(T
m − T f) + s1(T

s − T f), (4)

ǫ2
[

(ρc)mT
m
,t + (ρc)mV

m
i Tm

,i

]

=ǫ2κm∆Tm + h12(T
f − Tm)

+ h23(T
c − Tm) + s2(T

s − Tm),
(5)

and

ǫ3
[

(ρc)cT
c
,t + (ρc)cV

c
i T

c
,i

]

= ǫ3κc∆T c + h23(T
m − T c) + s3(T

s − T c). (6)

Equations (4) - (6) follow Kuznetsov & Nield [14] and assume interactions
in temperature between the macro and meso phases, and between the meso
and micro phases. The coefficients s1, s2, s3, h12 and h23 represent interaction
terms. The model with different temperatures is completed by adding equa-
tions (18) - (23) of Kuznetsov & Nield [14] together with the incompressibility
conditions for V f

i , V
m
i and V c

i .
In this work we are interested in a model in which T s = T f = Tm =

T c = T , where T is a common temperature. Since it is the same fluid in the
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macro, meso and micro phases we also assume ρc is the same for the f,m
and c terms. Thus, we may add (3) - (6) and employ (1) to derive a single
energy balance equation for the tridispersive porous medium. We put

(ρc)a = ǫ1(ρc)s + (ρc)f

and

ka = φκf + ǫ2κm + ǫ3κc + ǫ1κs

to derive the energy balance equation

(ρc)aT,t + (ρc)f (U
f
i + Um

i + U c
i )T,i = ka∆T. (7)

The model is completed by adjoining the momentum equations (18) - (23),
and the mass balance equations (14) and (16), of Kuznetsov & Nield [14],
which become for a single temperature T ,

0 = −
µ

Kf

Uf
i − pf,i − ζ12(U

f
i − Um

i ) + gρFαkiT,

0 = −
µ

Km

Um
i − pm,i + ζ12(U

f
i − Um

i )− ζ23(U
m
i − U c

i ) + gρFαkiT,

0 = −
µ

Kc

U c
i − pc,i + ζ23(U

m
i − U c

i ) + gρFαkiT,

(8)

and

Uf
i,i = 0, Um

i,i = 0, U c
i,i = 0. (9)

Thus, the complete model is described by equations (8), (9) and (7), making
thirteen equations in total for the thirteen variables Uf

i , U
m
i , U c

i , T, p
f , pm and

pc. We now investigate the problem of thermal convection in a tridispersive
porous medium according to the above system of equations.

3. Thermal convection

We shall assume the porous medium is contained in the horizontal layer
0 < z < d with the temperature at z = 0 held fixed at TL

◦C while the
temperature at z = d is kept fixed at TU

◦C with TL > TU .
To investigate thermal convection we study stability of the steady solution

Ūf
i ≡ 0 , Ūm

i ≡ 0 , Ū c
i ≡ 0 , T̄ = TL − βz , (10)
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where β is the temperature gradient

β =
TL − TU

d
. (11)

Now let uf
i , u

m
i , u

c
i , θ, π

f , πm, πc be perturbations to the steady solution
and then non-dimensionalize the resulting perturbation equations with the
substitutions

xi = x∗

i d , t = t∗T ,
µ

ζ12Kf

= µf ,
µ

ζ12Km

= µm,
µ

ζ12Kc

= µc, , (12)

where

T =
d2(ρc)a

ka
(13)

and where the velocity scale U and temperature scale T ♯, and the Rayleigh
number Ra are given by

U =
ka

d(ρc)f
, T ♯ = U

√

(ρc)fβd2ζ12
ρFgαka

(14)

and

Ra = R2 =
(ρc)fβd

2ρF gα

kaζ12
. (15)

The resulting perturbation equations have form

µfu
f
i + (uf

i − um
i ) = −πf

,i +Rθki, uf
i,i = 0 ,

µmu
m
i − (uf

i − um
i ) + ζR(u

m
i − uc

i) = −πm
,i +Rθki, um

i,i = 0 ,

µcu
c
i + ζR(u

c
i − um

i ) = −πc
,i +Rθki, uc

i,i = 0 ,

θ,t + (uf
i + um

i + uc
i)θ,i = R(wf + wm + wc) + ∆θ ,

(16)

where uf = (uf , vf , wf), um = (um, vm, wm) and uc = (uc, vc, wc), and ζR =
ζ23/ζ12. These equations hold in the domain {(x, y) ∈ R

2} × {z ∈ (0, 1)} ×
{t > 0}. The boundary conditions are

uf
i ni = 0, um

i ni = 0, uc
ini = 0, θ = 0, on z = 0, 1 , (17)

where ni is the unit outward normal to z = 0 or z = 1, and uf
i , u

m
i , u

c
i ,

θ, πf , πm, πc satisfy a plane tiling shape in the (x, y) plane. The periodic
convection cell which arises will be denoted by V.
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4. Linear instability

To determine the linear instability boundary one discards the nonlin-
ear terms in equations (16) and one seeks a solution in which uf

i , u
m
i , u

c
i ,

θ, πf , πm, πc have a time dependence like eσt. This leads to a system of
equations of form

µfu
f
i + (uf

i − um
i ) = −πf

,i +Rθki, uf
i,i = 0 ,

µmu
m
i − (uf

i − um
i ) + ζR(u

m
i − uc

i) = −πm
,i +Rθki, um

i,i = 0 ,

µcu
c
i − ζR(u

m
i − uc

i) = −πc
,i +Rθki, uc

i,i = 0 ,

σθ = R(wf + wm + wc) + ∆θ.

(18)

Theorem 1

The strong form of the principle of exchange of stabilities holds for system
(18), in the sense that σ ∈ R.
Proof.
Multiply equations (18) by uf∗

i , um∗

i , uc∗
i and θ∗, the complex conjugates of

uf
i , u

m
i , u

c
i , θ. Then integrate each resulting equation over the period cell V.

Denote by (·, ·) and ‖ · ‖ the inner product and norm on the complex Hilbert
space L2(V ) and then one may show after some integration by parts and use
of the boundary conditions,

(µf + 1) ‖ uf ‖2 −(um
i , u

f∗
i ) = R(θ, wf∗),

(µm + 1 + ζR) ‖ um ‖2 −(uf
i , u

m∗

i )− ζR(u
c
i , u

m∗

i ) = R(θ, wm∗),

(µc + ζR) ‖ uc ‖2 −ζR(u
m
i , u

c∗
i ) = R(θ, wc∗),

σ ‖ θ ‖2= − ‖ ∇θ ‖2 +R(wf , θ∗) +R(wm, θ∗) + +R(wc, θ∗).

(19)

Add the four equations in (19) to derive the following equation

σ ‖ θ ‖2=− ‖ ∇θ ‖2 −(µf + 1) ‖ uf ‖2

− (µm + 1 + ζR) ‖ um ‖2 −(µc + ζR) ‖ uc ‖2

+ (um
i , u

f∗
i ) + (uf

i , u
m∗

i ) + ζR
[

(uc
i , u

m∗

i ) + (um
i , u

c∗
i )

]

+R
[

(θ, wf∗) + (wf , θ∗)
]

+R
[

(θ, wm∗) + (wm, θ∗)
]

+R
[

(θ, wc∗) + (wc, θ∗)
]

.

(20)

Rearrange the functions uf , um, uc and θ in their real and imaginary parts
and put σ = σr + iσ1. Take the imaginary part of equation (20) to obtain

σ1 ‖ θ ‖2= 0. (21)
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We require ‖ θ ‖6= 0 and so σ1 = 0. Thus, σ ∈ R and the theorem is proved.
This result is important as it shows oscillatory convection does not hold.

Therefore, to find the linear instability boundary we analyze system (19)
with σ = 0.

To determine the linear instability critical Rayleigh number we remove
uf , um, uc, vf , vm, vc from equations (19) by taking the double curl of the
momentum equations in (19) and we retain only the third components of the
resulting equations. This leaves one needing to solve

µf∆wf +∆wf −∆wm = R∆∗θ ,

µm∆wm − (∆wf −∆wm) + ζR(∆wm −∆wc) = R∆∗θ ,

µc∆wc − ζR(∆wm −∆wc) = R∆∗θ ,

∆θ +R(wf + wm + wc) = 0 ,

(22)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian.

Theorem 2

The critical Rayleigh number is given by

Racrit = R2
crit = 4π2

[

(µf + 1)(µmµc + ζRµm + ζRµc) + µf(µc + ζR)
]

[

ζR(µm + µc + 9) + 4µc + µmµc + µm

] . (23)

Proof

Employ normal modes in (22) and then one may reduce the calculation for
the critical Rayleigh number to minimizing R in a and n, where

R2 =
Λ2

n

a2

[

(µf + 1)(µmµc + ζRµm + ζRµc) + µf(µc + ζR)
]

[

ζR(µm + µc + 9) + 4µc + µmµc + µm

] , (24)

and where Λn = n2π2 + a2. One shows that the minimum in (24) is achieved
for n = 1 and for a = π. Thus, the critical Rayleigh number is given by (23)
and the theorem is proved.

5. Nonlinear stability

Equation (23) delivers the linear instability threshold but it yields no
information on stability. In the absence of a nonlinear stability result theorem
2 is limited in use. One really needs to calculate a threshold for the nonlinear
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stability critical Rayleigh number and if this is close to the value in (23), then
the linear result is likely to be useful, cf. Straughan [20]. We now address
the nonlinear problem and achieve an optimal result. In order to achieve
this we employ inequalities involving an appropriate energy for system (16).
Results of asymptotic stability in this vein have been the subject of several
recent articles using a judicious choice of an energy functional, cf. Amendola
& Fabrizio [2], Amendola et al. [3], Amendola et al. [4], Deepika & Narayana
[6], Deseri et al. [8], Fabrizio & Lazzari [9], Fabrizio et al. [10], Fabrizio et

al. [11], Franchi & Morro [12], Nandal & Mahajan [15], Straughan [20–22].

Theorem 3

The critical Rayleigh number (23) of linear instability theory is the same
as the critical Rayleigh number of nonlinear stability theory, and thus, a
Rayleigh number below this ensures global asymptotic stability of the base
solution.
Proof

The proof begins by multiplying the uf
i equation in (16) by uf

i , the u
m
i equa-

tion in (16) by um
i , the uc

i equation in (16) by uc
i , the θ equation in (16) by

θ, and one integrates each over the period cell V. After some integration by
parts one may obtain the following identities

µf ‖ uf ‖2 +
(

uf
i , {u

f
i − um

i }
)

= R(θ, wf),

µm ‖ um ‖2 −
(

um
i , {u

f
i − um

i }
)

+ ζR (um
i , {u

m
i − uc

i}) = R(θ, wm),

µc ‖ uc ‖2 +ζR (uc
i , {u

c
i − um

i }) = R(θ, wc),

d

dt

1

2
‖ θ ‖2= R(wf + wm + wc, θ)− ‖ ∇θ ‖2,

(25)

where now (·, ·) and ‖ · ‖ denote the inner product and norm on the real
Hilbert space L2(V ). Add the four equations in (25) to obtain

d

dt

1

2
‖ θ ‖2= RI −D , (26)

where

I = 2(wf + wm + wc, θ) (27)

and the dissipation term is given by

D = ‖ ∇θ2 ‖ +µf ‖ uf ‖2 +µm ‖ um ‖2 +µc ‖ uc ‖2

+ ‖ uf − um ‖2 +ζR ‖ um − uc ‖2 .
(28)
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Define the term RE by

1

RE

= max
H

I

D
(29)

where H consists of L2 functions for uf
i , u

m
i and uc

i and H1 functions for θ.
Then from (26) one obtains

d

dt

1

2
‖ θ ‖2≤ −D

(

1−
R

RE

)

. (30)

If R < RE , say 1 − R/RE = a > 0, then by using Poincaré’s inequality in
(30) one sees that

d

dt

1

2
‖ θ ‖2≤ −aπ2 ‖ θ ‖2 . (31)

This inequality may be integrated to yield

‖ θ(t) ‖2≤‖ θ(0) ‖2 exp(−2aπ2t). (32)

Thus, inequality (32) shows that ‖ θ(t) ‖ decays exponentially provided
R < RE .

Next, form (25)1+(25)2+(25)3 to derive

µf ‖ uf ‖2 + µm ‖ um ‖2 +µc ‖ uc ‖2 + ‖ uf − um ‖2

+ ζR ‖ um − uc ‖2= R(θ, wf + wm + wc).
(33)

Employ the arithmetic-geometric mean inequality on the right hand side of
(33) to obtain

µf ‖ uf ‖2 +µm ‖ um ‖2 +µc ‖ uc ‖2≤ R2A ‖ θ ‖2 , (34)

where

A =
1

µf

+
1

µm

+
1

µc

.

Thus, from (32) and (34) one deduces that R < RE also guarantees decay
of uf ,um and uc. Hence, the condition R < RE represents a global (for all
initial data) nonlinear stability threshold.

9



To complete the proof of the theorem we need to solve the maximum
problem (29). For Lagrange multipliers λf , λm and λc, the Euler-Lagrange
equations which arise from (29) are found to be

REθki − µfu
f
i − (uf

i − um
i ) = λf

,i ,

REθki − µmu
m
i + (uf

i − um
i ) + ζR(u

m
i − uc

i) = λm
,i ,

REθki − µcu
c
i − ζR(u

c
i − um

i ) = λc
,i ,

(wf + wm + wc)RE +∆θ = 0.

(35)

We observe that equations (35) have the same form as equations (18) when
σ = 0. Thus the critical value of R2

E has the same value as Racrit in theorem
2 and the theorem is proved.

6. Conclusions

In this article we have produced a mathematical model for non-isothermal
flow in a saturated porous medium with a triple porosity system. The triple
porosity arises because the material has pores on a macro scale, meso pores
on a lesser length scale, and micro pores which are typically cracks or fissures.

We have analysed thermal convection in a horizontal layer of tridisperse
porous medium and have found the critical Rayleigh number, Racrit, given
by (23), which determines when convective motion will commence. This crit-
ical Rayleigh number depends on the permeabilities associated to the macro,
meso and micro porosity systems, and it also depends on the interaction co-
efficients for the flows between the same systems. We have shown that the
critical Rayleigh number is optimal in the sense that if the actual Rayleigh
number exceeds Racrit then convective motion will commence via the mech-
anism of stationary convection, whereas if the Rayleigh number is less than
Racrit then perturbations to the conduction solution (10) will decay to zero
exponentially in L2 norm.

For interpretation of results and comparision with other porous media lit-
erature it may be convenient to employ an alternative Rayleigh number which
does not directly involve the interaction coefficient ζ12. This is straightfor-
ward to do and so if we define an alternative Rayleigh number Ra1 by

Ra1 =
(ρc)f
ka

βd2gρFα
Kf

µ
(36)
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then one finds

Ra = µfRa1 . (37)

Values of the critical numbers for Ra1 may be easily obtained from (37) and
(23).
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