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We present numerical studies of quantum walks on C60 and related graphene structures to investigate their
transport properties. Also known as a honeycomb lattice, the lattice formed by carbon atoms in the graphene
phase can be rolled up to form nanotubes of various dimensions. Graphene nanotubes have many important
applications, some of which rely on their unusual electrical conductivity and related properties. Quantum walks
on graphs provide an abstract setting in which to study such transport properties independent of the other
chemical and physical properties of a physical substance. They can thus be used to further the understanding
of mechanisms behind such properties. We find that nanotube structures are significantly more efficient in
transporting a quantum walk than cycles of equivalent size, provided the symmetry of the structure is respected
in how they are used. We find faster transport on zigzag nanotubes compared to armchair nanotubes, which
is unexpected given that for the actual materials the armchair nanotube is metallic, while the zigzag is
semiconducting.
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I. INTRODUCTION

Quantum versions of random walks have been extensively
studied for the past three decades, leading to a range of
applications. In this paper, we focus on their transport prop-
erties. Their potentially exponential quantum speedup over
equivalent classical random-walk transport was first proved in
an algorithmic setting by Kempe [1,2] on a hypercubic graph,
followed by Childs et al. [3] on a specially chosen “glued trees”
graph. In a physical setting, quantum transport on spin chains
[4] is isomorphic to continuous-time quantum walks. This led
to intensive study of how to optimize quantum state transfer
over short chains, as reviewed by Kay [5,6], with applications
such as quantum wires to connect components in quantum
devices for communication and computation. Quantum walks
can also reproduce the phenomenon of Anderson localization
[7–9], highlighting the importance of controlling the quantum-
walk parameters to achieve efficient transport. Studies by
Krovi and Brun [10,11] expose the role of symmetry in the
underlying graph structures in quantum-walk transport.

Noting the importance of graphene and related sub-
stances as materials with many interesting electrical properties
[12–17], in this paper we apply quantum versions of random
walks to study quantum transport properties on various
structures based on C60 and graphene lattices. The variation
in conductivity of graphene is exploited in diverse applica-
tion [18–22]. Recently, continuous-time quantum walks on
graphene lattices have been studied by Foulger et al. [23] to
implement a quantum-walk search algorithm and apply this
to communications between selected nodes on the lattice.
The lattice is also called “honeycomb” and other studies
of quantum walks on this type of graph can be found
in [24–26].

*h_bougroura@hotmail.com
†viv.kendon@durham.ac.uk

Analytical solutions for quantum walks on graph struc-
tures are challenging. Even the simplest cases of the cycle
[27], hypercube [28], and Cartesian lattices [29–31] require
significant mathematical effort. For perfect state transfer on
small graphs, where the quantum state of the walker is exactly
reproduced at the target node, analytical results are known for
a few special cases, reviewed by Kendon and Tamon [32].
This is also because perfect state transfer is hard to achieve
in general, and for many applications it is sufficient to obtain
fast probabilistic transfer. Analytical solutions usually require
a homogeneous graph structure, either finite or infinite, or
parameter tweaking for each situation [6]. There are techniques
to compose compatible small graph structures into larger
ones [33] for which the analytical solutions can also be
combined, but there are limitations to this method. For studies
on more general structures, numerical simulation is the best
option, allowing the range of structures to be extended to be
more practically relevant. It is also generally the case that
discrete-time and continuous-time quantum walks give similar
results on the same graphs, and their equivalence has been
shown analytically for the line [34] using a method that can be
expected to generalize for other homogeneous lattices. While
the continuous-time walk can be more tractable analytically,
for numerical simulation the unitary operators of the discrete-
time walk are more convenient than the numerical integration
required for the continuous-time walk. We therefore carried out
our studies using the discrete-time quantum walk. Discrete,
coined quantum walks can be implemented using atoms
trapped in optical lattices, for example, and honeycomb lattices
can be created this way. Internal degrees of freedom of the
atoms then play the role of the quantum coin by coupling to
the direction of motion of the atoms as the optical lattice is
modulated [35–38].

The paper is organized as follows. In Sec. II, we define our
model of a quantum walk and discuss its behavior on cycles.
In Sec. III, we apply the quantum walks to C60 and graphene
nanotubes, focusing on the efficiency of transport between
specified points on the structures. In Sec. IV, we summarize
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our findings and discuss their applications and directions for
future research.

II. QUANTUM WALKS ON GRAPHS

We define a discrete-time, coined quantum walk on a
regular, connected, undirected graph G as follows. First we
specify the graph on which the quantum walk takes place. For
a graph G with n nodes, let V be the set of nodes and E be the
set of edges connecting pairs of nodes. We label each node with
a unique number v ∈ Zn, and identify the edges by the labels of
the nodes they connect. Thus, for u,v ∈ V , we have (u,v) ∈ E

iff there is an edge (u,v) connecting node u to node v. Graph G

is undirected, i.e., (u,v) ≡ (v,u), and connected, and there is at
most one edge between any pair of nodes. The degree d(v) of
node v ∈ V is the number of edges meeting at v. For a regular
graph of degree d, we have d(v) = d ∀v ∈ V . In order to
support the dynamics of the quantum walk, at each node v ∈ V

we label the ends of the edges at that node from 0 . . . (d − 1)
in an arbitrary but fixed order. For a,b ∈ {0 . . . (d − 1)}, we
define an edge label function,

e(u,a) = (v,b), (1)

that returns the ordered pair of labels at the other end of the
ath edge at node u, i.e., the bth edge at node v.

A discrete-time, coined quantum walk on a regular,
connected, undirected graph G has a discrete Hilbert space
H = HG × Hd , where HG has dimension n corresponding to
the number of nodes, and Hd has dimension d corresponding
to the number of edges d meeting at each node. We choose a
natural and convenient set of basis states, |j,c〉 ≡ |j 〉 ⊗ |c〉,
with j ∈ Zn and c ∈ Zd . A quantum walker can thus be
thought of as a particle with an internal degree of freedom
of dimension d that is located on a node, or in superposition
on nodes, of the graph. A general state |ψ(t)〉 of the quantum
walker at time t can be written as

|ψ(t)〉 =
∑

j∈V,c∈Zd

αj,c(t)|j,c〉, (2)

where the coefficients αj,c(t) are complex amplitudes nor-
malized such that

∑
j,c |αj,c(t)|2 = 1. The dynamics of the

quantum walk are unitary in discrete-unit time intervals [39].
We utilize a flip-flop shift operator S. For the benefit of those
readers who are unfamiliar with the action of this shift operator,
we will explain its action in detail for clarity. The operator S

acts on both the coin state and position of the walker to move
it between nodes that are connected by edges. It is defined by
its action on the basis states,

S|u,a〉 = |e(u,a)〉 = |v,b〉, (3)

making use of the edge label function defined in Eq. (1).
We note that e[e(u,a)] = (u,a), and hence S · S|u,a〉 = |u,a〉,
confirming that S is its own inverse, and therefore unitary. A
coin operator C acts only on the coin degrees of freedom. We
are free to choose C to be any unitary operation of dimension
d. There are some natural choices for C that we will introduce
and discuss later. The role of the coin operator is equivalent
to tossing the coin in a classical random walk: it rearranges
the amplitudes for different coin states. A single step of the

quantum walk consists of a coin operation followed by a shift,
giving

|ψ(t + 1)〉 = S · (1n ⊗ C)|ψ(t)〉, (4)

where 1n is the identity operation on the position space Hn

of the quantum walker. A quantum walk of T steps from an
initial state of |ψ(0)〉 can be written as

|ψ(T )〉 = (
S · (1 ⊗ C)

)T |ψ(0)〉. (5)

The initial state has a significant impact on the subsequent
quantum walk, unlike for a classical random walk, where the
initial state is irrelevant to the long-time behavior. This is
because the quantum walk is a deterministic, unitary dynamics.
The range of choices for the initial state is large, and we
are interested in transport properties that are not particularly
sensitive to the choice of initial state. For the quantum walk on
the line, for example, the spreading rate is linear, regardless of
the initial state [29]. For the studies presented here, we used
unbiased, symmetric initial states, either in terms of the coin
states at a single node or an equal superposition of such states
on a group of neighboring nodes.

To motivate our choices of coin operators, we first consider
a quantum walk on one of the simplest small graph structures,
i.e., the cycle. A cycle Cn with n nodes has a set of edges
{(j,j + 1)}, with j ∈ Zn and addition modulo n, so that node
(n − 1) is connected to node 0. The shift operator is thus

SC =
∑

j

(|j + 1,0〉〈j,1| + |j − 1,1〉〈j,0|), (6)

where we have used a consistent labeling of the nodes and
ends of the edges such that the label 1 is on the end of the
edge that connects node j to node j + 1, and vice versa for
label 0; see Fig. 1. This choice of labels is not necessary, but
it does simplify the analysis, both numerical and analytical.
The cycle has degree d = 2, so we need a two-dimensional
coin operator. Ideally, we also want our coin operator to be
unbiased so that no matter which direction the walker arrived
from, it has an equal chance of leaving by either edge. We can
achieve this by using the Hadamard operator

H = 1√
2

(
1 1
1 −1

)
. (7)

A symmetric form

Hi = 1√
2

(
1 i

i 1

)
(8)

can also be used. In general, a phase factor of π (−1 and
i × i in the above, respectively) can be distributed in various
equivalent ways, with corresponding cosmetic changes in the
quantum walk [40].

The discrete-time quantum walk on the cycle was solved
analytically by Aharonov et al. [27], and its properties are
well studied. Of particular note for our purposes is its use
in quantum state transfer. Using cycles of even-n size, the
quantum walk starts at one node with the aim of reaching
the opposite node. First noted for n = 4 by Travaglione and
Milburn [41], this can provide perfect state transfer for suitably
chosen coin operators (not always the unbiased Hadamards)
[42,43] and initial states. We used a corresponding size of n
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FIG. 1. A cycle C18 with 18 nodes, showing a convenient set of
node (j) and edge ({0,1}) labels as described in the text. The two
opposite nodes are designated “Initial” and “Target,” and the nodes
between them are mapped in pairs (as colored, shaded grey) to a set
of levels, so the progress towards the target node can be quantified.

cycle to provide a benchmark for evaluating the performance
of quantum-walk transport on graphene structures.

A. Numerical methods

Our numerical simulation code was written in PYTHON 3.5
using the NUMPY, SCIPY, and MATPLOTLIB packages [44–47].
Most of the simulations took no more than a few minutes
each on standard desktop computers, so no special numerical
optimization techniques were required. Figures of the C60 and
nanotube structures were drawn using VIRTUAL NANOLAB [48].

B. Transport measures

There are many possible properties of quantum walks that
can be calculated. For the smallest simulations, we visualized
the probability distribution step by step to obtain a detailed
picture of the behavior. We then calculated the average position
over time, 〈x〉, where x is the position mapped to levels as
shown in Fig. 1,

〈x〉 =
∑
c,j

x(j )|αc,j (t)|2. (9)

We also calculated the accumulated arrival probability A(T ).
The accumulated arrival probability is equivalent to putting a
“sink” at the target node and summing the probability of the
walker being in the sink after each step of the quantum walk,

A(T ) =
T∑

t=0

∑
c

|αa,c(t)|2, (10)

where a is the target node, and αc,a(t) is reset to zero before the
next step of the quantum walk is applied. This is a nonunitary

FIG. 2. 180 steps of a quantum walk on a cycle C18 with 18
nodes mapped to 10 levels from start (0) to target node (9); see Fig. 1.
Average position (gray, left axis) and arrival probability (blue, right
axis) plotted against the number of time steps for coin operator H

(solid line, dark grey). A classical random walk using an unbiased
two-sided coin (black) is shown for comparison.

process with a practical operational interpretation. After each
step of the quantum walk, the target node is measured
to check for the presence of the walker. It will be found
with probability |αc,a(t)|2. With probability 1 − |αc,a(t)|2, the
walker is somewhere else on the graph and the quantum walk
continues to evolve, but without the amplitude on node a

because we just found out it is not there. Note that A(T ) is
a monotonically increasing function of time because once the
quantum walker has arrived at node a, it does not leave it. After
comparing 〈x〉 with A(T ), we chose the latter as the clearest
indicator of successful quantum transport.

With the sink at the target site, an analytical solution is
even more challenging. For the cycle, a numerical comparison
of average position and arrival probability is shown in Fig. 2,
along with the equivalent quantities for a classical random
walk, for comparison. For short times, the quantum walk
arrives sooner, and the arrival probability approaches unity
faster, than the classical random walk. For longer times, the
curves cross and the classical random walk approaches unity
faster. For very long times, both asymptote to unity (see the
Appendix). In general, a quadratic speedup is expected for
quantum walks on the cycle when compared with a classical
random walk [49]. This is an asymptotic result for large cycles
and does not apply directly to small cycles such as C18. The
short-time behavior, i.e., a steep rise in the arrival probability in
the first 20 time steps, is the quantum speedup in this instance.

C. Coin operators

There is another natural choice for the coin operator that
models many realistic situations. As well as shifting to a
connected node at each time step, the quantum walker may
have a third choice, i.e., to stay at the current node. This can
be achieved using a coin of dimension c = d + 1. Thus, for
the cycle, this needs a coin of dimension three. We tested the
walk on the cycle using a coin operator known as a Grover
coin operator. The Grover coin operator can be defined for any

062331-3



BOUGROURA, AISSAOUI, CHANCELLOR, AND KENDON PHYSICAL REVIEW A 94, 062331 (2016)

FIG. 3. A quantum walk of 400 steps on a cycle C18 with 18
nodes mapped to 10 levels from start (0) to target node (9); see
Fig. 1. Arrival probability plotted against the number of time steps
for coin operators H (blue, dark grey), G3 (green, mid grey), and F3

(turquoise, light grey). A classical random walk using an unbiased
two-sided (black, solid line) and three-sided (black, dotted line) coin
is shown for comparison.

dimension d � 2,

Gd = 1

d

⎛
⎜⎜⎝

2 − d 2 · · · 2
2 2 − d · · · 2
...

...
. . .

...
2 2 · · · 2 − d

⎞
⎟⎟⎠. (11)

For d = 2, it reduces to the Pauli σx operator, which corre-
sponds to steps in a single direction (completely biased). In
three dimensions, it is

G3 = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠. (12)

The Grover coin operator has the highest degree of symmetry
possible in a unitary operator. The incoming direction is
already special, but all other directions are treated exactly
the same for both amplitude and phase of the outgoing state.
The arrival probability for the quantum walk with a G3 coin
operator is shown in Fig. 3.

Another three-dimensional coin operator is the Fourier coin
operator, which can also be defined for any dimension,

Fd = 1√
d

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 ω · · · ωd

...
...

. . .
...

1 ωd · · · ωd×d

⎞
⎟⎟⎟⎠, (13)

where ω = e2πi/d is the complex dth root of unity. For d =
2, the Fourier coin operator reduces to the Hadamard coin
operator in Eq. (7). The Fourier coin operator is unbiased for
all dimensions, i.e., the walker is equally likely to leave by any
available edge, regardless of which it arrived along. However,
this comes at a cost of the relative phases being different for
each direction to ensure the coin operator is unitary overall.
Since the phase factors are what gives the quantum walk its
advantage over the classical random walk, the Fourier coin
operator can produce very different quantum-walk behaviors
when compared with the Grover coin operator. The use of F3

for a cycle with a “wait state” is also shown in Fig. 3. Out

of all of these choices for coin operator, we can see that the
Hadamard coin is the fastest: both H and G3 beat the classical
random walk for short times, while F3 only beats the classical
three-sided coin for short times, and in fact never reaches the
opposite side with certainty; see the Appendix.

III. RESULTS

We now present our results for the transport properties of
quantum walks on C60 and various carbon nanotube structures.
First, the different possible coin operators are compared on
C60. Then the role of symmetry in the structures themselves is
investigated by using different combinations of starting nodes
and target nodes. Finally, we studied nanotubes made from
cylinders of graphene, both with capped ends and as loops, to
explore how the width and length affect the overall transport
efficiency.

A. Comparison of coin operators on C60

The graphene structures that are the focus of our work
all have nodes with d = 3. Our first investigation was to
compare several natural choices of coin operators to see
how sensitive the transport properties are to different coin
operations. Clearly, the G3 coin of Eq. (12) is an obvious
choice, along with F3. We can also choose a c = d + 1 = 4
coin with a “wait state,” with corresponding four-dimensional
coin operators. We tested G4 and F4 and also a tensor product
of two Hadamard coin operators, H ⊗ H . In a similar manner
as for the cycle, we chose an initial node on the C60 structure
and designated the opposite node the target node; see Fig. 4.
The intermediate nodes are mapped to levels corresponding
to the number of edges traversed on the shortest path from
the initial node. Figure 5 shows a quantum walk on this C60

structure from one node to the opposite node. From the graph,

FIG. 4. A C60 colored to indicate the levels from the initial node
(blue, left, darkest grey): level 1 (red left, second darkest grey), level 2
(lime, fifth lightest grey), level 3 (orange , fourth darkest grey), level 4
(yellow, lightest grey), level 5 (green , sixth darkest grey), level 6
(white), level 7 (grey, third darkest grey), level 8 (red right, second
darkest grey), level 9 (target, blue , darkest grey).
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FIG. 5. A quantum walk of 700 steps on C60 between single
opposite nodes, mapped to 10 positions as in Fig. 4. Arrival
probability plotted against the number of time steps for coin operators
G3 (green, solid line, mid grey), G4 (green, dashed line, mid grey),
F3 (turquoise, solid line, light grey), F4 (turquoise, dashed line, light
grey), and H ⊗ H (yellow, dashed line, very light grey). A cycle C18

is shown (blue, dark grey) along with classical random walks for a
three-sided (black, solid line) and four-sided (black, dashed line) coin
and the cycle (black, dotted line) for comparison.

we can see that the G3 coin operator was consistently the best
choice for transport properties, outperforming all the other
walks even for long times. We have therefore focused on
this coin operator for presenting the results in the following
sections. We tested other coin operators on all structures and
found their performance to be essentially the same in relation
to G3 as in Fig. 5. We also tested for more time steps (see
Appendix) to confirm that all the d = 3 coins and the classical
random walks do eventually arrive with unit probability, while
the quantum walks with wait states do not.

B. Role of symmetry in transport on C60

We considered transport by quantum walk across C60 with
superposition initial and target states chosen to increase the
symmetry between the initial and target nodes. Figure 6 shows
two possible orientations with the initial and target nodes
forming a face of the structure, as marked in blue. The transport
from a single node to the diametrically opposite node shown in
Figs. 4 and 5 has less symmetry than starting on a pentagonal
face or a hexagonal face. It also has ten levels, rather than eight
for the face-terminated orientations. A proper comparison of
transport on these configurations must make allowance for
this. We could give the ten-level systems a two-level head
start. We can also compare with the corresponding cycles, C14

and C18, to provide a benchmark for the performance. Both
give the same result, so we present the comparison with the
cycles here. We find that the more symmetric initial states
are more efficient, with the more symmetric hexagonal face
slightly better than the pentagonal face. The details are shown
in Fig. 7, to be compared with Fig. 5, using the line for the
cycles C14 and C18, respectively, for calibration.

Figure 8 shows the structure end on, illustrating how
the hexagonal face has higher symmetry compared with the
pentagonal faces, which are inverted with respect to each other.

FIG. 6. C60 with different initial positions (a) an equal superposi-
tion of all nodes of a pentagonal face, and (b) an equal superposition
of all nodes of a hexagonal face. The nodes between the initial and
target faces are colored (shaded grey) to indicate their grouping into
eight levels.

C. Transport on nanotube structures

We now turn to our studies of quantum-walk transport on
graphene structures. There are two distinct ways to join up
a sheet of graphene to form a tube, depending on whether
the “zigzag” pattern runs round the tube or lengthways along
the tube. The pattern orthogonal to the zigzag direction is
known as “armchair.” Thus we have zigzag nanotubes with
the zigzag running around the tube, and armchair nanotubes
with the zigzag running along the length of the tube. Both of
these were tested and compared. There is a third way to join
up graphene into nanotubes, where the zigzag runs obliquely.
We did not test nanotubes of this type in this study because
there are a rather large number of possibilities, all with less
symmetry than the chosen configurations, and we have already
demonstrated that symmetry significantly enhances transport
on C60.
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FIG. 7. A quantum walk of 400 steps on C60 mapped to eight
levels using the G3 coin comparing different starting positions:
hexagon (green, upper, darker mid grey) and pentagon (red, lower,
lighter mid grey). A quantum walk with the H coin on a cycle C14

(blue, dark grey) is also shown. The corresponding classical random
walks (black dashed, dotted, and solid lines, respectively) are shown
for comparison.

In order to compare with the cycle, we joined the ends
of the nanotubes to form a torus and studied the transport
from one position on the ring to the opposite side; see Fig. 9.
The distance from the start is projected onto a line segment
in the same way as for the cycle shown in Fig. 1, so we can
track the progress from the initial nodes to the target nodes.

The results for various diameters of zigzag and armchair
nanotube are compared in Fig. 10, with the results for a cycle
C14 to provide a benchmark comparison. The first thing to
note is that the diameter of the nanotubes does not affect the
transport properties in this setting. Nanotubes of diameter six,
ten, and 14 all gave identical results for the same length. Next
we note that both forms of the nanotube are consistently better
at transporting the quantum walk to the target nodes than the
cycle C14. The zigzag nanotube shows faster transport than
the armchair nanotube, with both approaching unit probability
eventually; see the Appendix.

To confirm the supremacy of the armchair nanotubes more
generally, we also tested different lengths of nanotube; see
Fig. 11. The pairs of zigzag (green) and armchair (red) plots
can be seen to rise further apart for larger loops, indicating
that the zigzag nanotube loops are providing faster transport

FIG. 8. C60 viewed end on to illustrate how the hexagonal initial
and target pair (left) are more symmetric than the pentagonal initial
and target pair (right).

FIG. 9. (a) Zigzag carbon nanotube loop with 90 repeats forming
91 levels, and (b) armchair loop with 55 repeats forming 56 levels,
from the sets of initial and target nodes marked in blue. A few of the
nodes are colored (shaded) to indicate the mapping to levels; compare
Fig. 1.

over the equivalent lengths. Both consistently outperform the
cycles of equivalent lengths.

D. Transport on capped nanotubes

Joining the nanotubes into loops like cycles puts a strain on
the nanotubes and is not a natural form in which they occur.
Bare ends of nanotubes can be irregular, which will not help
with efficient coupling or transport. For nanotubes of matching
diameter, a cap of half a C60 structure can be attached to the
ends. This is like having an elongated C60 molecule, and the
zigzag or armchair character determines whether the end of the
cap is a pentagon or hexagon. An example with an armchair
configuration that has pentagons at the ends is shown in Fig. 12.
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FIG. 10. A quantum walk of 150 steps on loops of zigzag (green,
darker mid grey) and armchair (red, lighter mid grey) carbon nanotube
with diameters of 6 (×), 10 (dashes), and 14 (circles), and length
corresponding to eight levels. Cycle C14 (blue, dark grey) is shown for
comparison. Corresponding classical random walks shown in black
(zigzag) and yellow (armchair, light grey), classical random walk on
C14 (black, solid line).

Results for quantum walks on these structures are shown in
Fig. 13. The zigzag nanotubes give the fastest transport over
short times, as can be seen more clearly for the longer lengths
of nanotube. The armchair nanotubes providing the highest
arrival probability at later times (the longer lengths were run
for more steps to confirm this; not shown in Fig. 12). Both types
of nanotubes outperform cycles of the same number of levels.
A comparison between capped nanotubes and nanotube loops
is shown in Fig. 14, revealing that the nanotube loops with the
same number of levels are slightly better for short lengths, but
worse for longer lengths, when the armchair capped nanotube
approaches unit arrival probability fastest. This is likely due
to the contribution from the caps reducing as a proportion of
the total length for longer nanotubes. The long-time behavior
of both is shown in the Appendix.

E. Scaling of transport

Let us now consider the scaling of the transport rate
on loops and capped nanotubes. To do this analysis, we
examine the number of steps when the probability of arrival
exceeds 50%, N0.5 as a function of the number of levels in

FIG. 11. A quantum walk on loops of carbon nanotube of length
10 (solid line), 20 (dashed line), 30 (dotted line), and 40 (circles,
solid line) levels for zigzag (green, darker mid grey) and armchair
(red, lighter mid grey). Cycles (blue, dark grey) of corresponding
lengths are shown for comparison.

FIG. 12. An armchair nanotube with caps, with a pentagonal face
at each apex. For a zigzag nanotube, the apices are hexagons (not
shown). The level structure is as for the nanotube loops, but with only
one round of carbon atoms per level.

the structure. This captures short time behavior where Figs.
11–14 indicate that simple scaling might be obtained. This
analysis allows us to differentiate between faster rates of
transport on different structures (appearing as the slope of this
quantity) and constant shifts in this quantity which may be
caused by the formation of the wavefronts which propagate
the walker. In addition to providing qualitative information,
we perform linear fits to this data which provide quantitative
measurements of the transport rates.

Let us first consider the nanotube loops, for which the
number of steps required for a 50% probability of arrival N0.5

is plotted in Fig. 15. As we can see, the number of steps to reach
50% probability scales linearly with the number of levels, but
does so at a different rate for different structures; therefore the
difference in arrival time between armchair, zigzag, and loop
geometries grows linearly with the number of levels. In fact
by this metric, transport on a zigzag nanotube loop is almost
twice as fast as on the cycle (see Table I for numbers extracted
by numerical fitting).

We find similar results for the arrival time on capped
nanotubes, as depicted in Fig. 16; however, we find that the
difference in arrival times between zigzag and armchair is
less dramatic. The data in Table I reveal that this is due to
a combination of the fact that considering a capped rather
than loop geometry makes transport on zigzag nanostructures
slower, but makes the transport faster on armchair structures.

IV. SUMMARY

We have demonstrated that transport for discrete-time
quantum random walks is significantly faster on graphs corre-
sponding to a variety of real-world nanostructures than it is on

FIG. 13. A quantum walk on lengths of capped carbon nanotube:
zigzag (green, darker mid grey), armchair (red, lighter mid grey) of
lengths 10 (solid line), 20 (dashed line), 30 (dotted line), and 40
(circles, solid line). Cycles of corresponding lengths shown (blue,
dark grey) shown for comparison.
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FIG. 14. A quantum walk of 300 steps on capped carbon
nanotubes zigzag (green, solid line, darker mid grey) and armchair
(red, solid line, lighter mid grey), compared with nanotube loops
(dashed line).

simple cycles. In particular, we have demonstrated this for a
C60 fullerene graph and a variety of configurations of graphene
nanotube structures, including nanotubes with fullerine caps.
Our results consistently show that the nanostructures provide
faster transport. Moreover, we demonstrate that in most
cases, the walker eventually reaches the marked site with
unit probability, thus showing that under many, but not all
circumstances, these structures do not have the problem of
infinite hitting times.

Transport across cycles is faster than on the line [6], hence
we have also demonstrated that these structures provide faster
transport than walks on a line. The fact that the coined
discrete-time quantum-walk model exhibits faster transport
than a simple line may be a discrete-time counterpart of the
continuous-time effects which allow for ballistic transport on
real-world carbon nanotubes [14–17].

The behavior on these materials can be traced back to
the massless behavior of electrons at the Dirac point in the
graphene band structure [13]. On the other hand, a discrete-
time random walk does not carry with it an inherent notion of
momentum or energy, so a band structure cannot be defined. In

FIG. 15. Number of steps until 50% arrival probability vs number
of levels for zigzag (green circles) and armchair (red squares) loop
structures and the cycle (blue stars). Dashed lines are linear fits, the
numbers extracted from these fits are summarized in Table I.

TABLE I. Values extracted from linear fit y = mx + b for the
data in Figs. 15 and 16 and coefficient of determination r2 ≡
1 −

∑
i (yi−fi )2∑
i (yi−ȳ)2 , where fi are the data and y is the fitting function,

for each of the fits.

Structure m b r2

Cycle 2.12 −2.00 0.9996
Loop: zigzag 1.08 0.00 0.9986
Loop: armchair 1.43 −2.00 0.9997
Capped: zigzag 1.20 −1.50 0.9986
Capped: armchair 1.33 −1.50 0.9996

future work, it would be interesting to examine the possibility
of a connection between the transport behavior we see and the
band structure of these materials.

We have also compared transport behavior between dif-
ferent nanostructures and have found that zigzag nanotubes
exhibit faster transport than their armchair counterparts. In
contrast, theoretical results for electrons in carbon nanotubes
show that zigzag nanotubes behave as semiconductors, while
armchair nanotubes behave as metals [16,17]. Therefore, in
this respect, the relative transport efficiency between these
structures for discrete-time random walks is qualitatively
different from what is seen in electron transport. We further
see that for capped nanotube structures, the arrival probability
for a zigzag nanotube always approaches unity, while it does
not for the armchair, again indicating better transport for the
zigzag structures.

It would be interesting in future work to examine which
one exhibits faster transport for continuous-time quantum
walks with the same starting conditions that we used. On one
hand, such walks would be subject to the band structure of
the continuous material, but, on the other hand, they would
be strongly out of equilibrium, unlike the cases typically
examined in electronic transport calculations. Furthermore, it
would be interesting to perform the same calculations as here,
but with chiral nanotube structures, and compare the results

FIG. 16. Number of steps until 50% arrival probability vs number
of levels for zigzag (green circles) and armchair (red squares) capped
nanotube structures and the cycle (blue stars). Dashed lines are linear
fits, the numbers extracted from these fits are summarized in Table I.
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FIG. 17. Quantum and classical random walks on C18 for 1200
steps showing that arrival times converge see right axis and corre-
sponding black (classical walk) and blue (quantum walk, dark grey
in print) lines to unity for both, while the oscillations about 4.5 for
the average position continue indefinitely for the quantum walk, see
left axis and corresponding (light) grey lines. Compare with Fig. 2.

with electronic behaviors to further investigate the relationship
between electronic and quantum-walk properties.
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APPENDIX: LONG-TIME BEHAVIOR
OF QUANTUM WALKS

The long-term behavior of the quantum walks studied in
this paper is presented here, in particular regarding whether
the probability to arrive at the marked state approaches unity,

FIG. 18. Quantum and classical random walks on C18 for 5000
steps showing the two-dimensional (2D) coins converge to unity,
while the 3D coins do not in the quantum case, but do in the classical
case. Here, 5000 steps of a quantum walk on a cycle C18 with 18
nodes are mapped to 10 levels from start (0) to target node (9); see
Fig. 1. Arrival probability plotted against the number of time steps for
coin operators H (blue), G3 (green), and F3 (turquoise). A classical
random walk using an unbiased two-sided (black, solid line) and
three-sided coin (black, dotted line) is shown for comparison.

FIG. 19. A quantum walk of 10 000 steps on C60 between
single opposite nodes, mapped to 10 positions as in Fig. 4. Arrival
probability plotted against the number of time steps for coin operators
G3 (green, solid line), G4 (green, dashed line), F3 (turquoise, solid
line), F4 (turquoise, dashed line), and H ⊗ H (yellow, dashed line).
A cycle C18 is shown (blue) along with classical random walks for a
three-sided (black, solid) and four-sided (black, dashed) coin and the
cycle (black, dotted line) for comparison.

FIG. 20. A quantum walk of 400 steps on loops of zigzag (green)
and armchair (red) carbon nanotube with diameters of 6 (×), 10
(dashes), and 14 (circles), and length corresponding to eight levels.
Cycle C14 (blue) shown for comparison. Corresponding classical
random walks shown in black (zigzag) and yellow (armchair);
classical random walk on C14 (black, solid line).

FIG. 21. A quantum walk of 60 000 steps on capped carbon
nanotubes zigzag (green, solid line), armchair (red, solid line),
compared with nanotube loops (dashed line), and corresponding
classical random walks for zigzag (pink) and armchair (yellow), to
show the long-time behavior.
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as far as we can determine this from numerical studies. As
Fig. 17 shows, this always happens for the cycle without a
“wait” state. Furthermore, if we do not measure, we see that the
classical walk converges to a constant probability to be found
on the marked site, while the quantum probability continues
to fluctuate for all time.

On the other hand, Fig. 18 shows that on the cycle,
convergence to unity does not occur for the F3 coin which
includes a wait state, although it does for some others which
include a wait state. This parallels some of the behavior for
C60 starting on a single site, with a single marked site. As
illustrated in Fig. 19, the arrival probability converges to

unity for coins without wait states, but does not for coins
which do have them. We see similar behavior for the nanotube
loop arrival probability depicted in Fig. 20, which depicts the
results for a nanotube loop using a G3 coin, and for which
arrival probabilities all approach unity. However, as Fig. 21
illustrates, this is not true for all cases of capped nanotubes,
in particular this probability does not approach unity for the
capped armchair nanotube. It is also interesting to note that
for the uncapped version of the armchair nanotube, the arrival
probability does approach unity, but it does so much slower
than either the zigzag nanotube or the cycle. This very slow
arrival warrants future study.
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