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Abstract

A new topology optimisation algorithm is implemented and presented for

compliance minimisation of continuum structures using a volume preserving

mechanism which effectively handles a volume constraint. The volume pre-

serving mechanism is based on a unique combination of the level set method

and a boundary element based bi-directional evolutionary structural opti-

misation approach using a bisectioning algorithm. The evolving structural

geometry is implicitly represented with the level sets, efficiently handling

complex topological shape changes, including holes merging with each other

and with the boundary. Numerical results for two-dimensional linear elas-

ticity problems suggest that the proposed adaptation provides smooth con-

vergence of the objective function and a more robust, smoother geometrical

description of the optimal design. Moreover, this new implementation allows

for efficient material re-distribution within the design domain such that the

∗Corresponding author
Email address: baseerullah@gmail.com (BaseerUllah)



objective function is minimised at constant volume. The proposed volume

preserving mechanism can be easily extended to three-dimensional space.

Keywords: topology optimisation, boundary element method, level set

method, BESO

1. Introduction

The main goal of structural optimisation is to provide an optimal design

which should effectively comply to its intended objectives and at the same

time satisfies the constraints imposed upon it. The demand for low-cost,

light weight and high performance structures can be addressed through the

development of high performance structural optimisation methods. Among

the three types of structural optimisation, i.e. size, shape and topology,

topology optimisation is the most beneficial from economic perspective and

the most challenging from engineering perspective. According to [1], topology

optimisation methods can be broadly classified into density based and level

set based methods. In density based methods, the geometry of the structure

is represented through a material distribution of two or more phases, e.g.

[2, 3], etc. In the second category an implicit boundary description is used

to represent the structural geometry, e.g. [4, 5, 6, 7, 8], which are based on

the level set method (LSM) [9].

In the LS based optimisation techniques, the performance of an evolv-

ing structural geometry can be evaluated using different geometry mapping

approaches. According to [1], the most commonly used approaches are im-

mersed boundary and conforming discretisation. There also exists another

approach, where a fixed Eulerian mesh can be used for the LSM implemen-
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tation and a body conforming approach for the evolution of the structural

response. The body conforming approach can be based either on:

• the finite element method (FEM) based domain discretisation

• the boundary element method (BEM) based boundary only discretisa-

tion

The reduction of problem dimensionality with the use of BEM based body

conforming mapping is very attractive as compared to the FEM based do-

main discretisation. In the literature of structural optimisation, researchers

combined the BEM with the LSM for the solution of optimisation problems in

both two and three-dimensions, e.g, compliance minimisation [10, 11, 12, 13],

sound scattering [14, 15], heat conduction [16], etc.

An improvement in the structural performance of a candidate design can

be based either on the shape sensitivity information (e.g. [6, 17, 18, 19]) or

through an evolutionary approach based on a criterion such as von Mises (e.g.

[4, 20]). The basic concept of evolutionary structural optimisation (ESO) is

based on the progressive removal of inefficient materials, which evolves the

structure towards an optimum [21, 22]. The bi-directional evolutionary struc-

tural optimisation (BESO) presented in [23] also allows for efficient material

to be added at the same time as the inefficient material is removed.

The removal and addition of materials in most of the finite element (FE)

based BESO approaches are linked with the element removal and addition,

which provides optimal designs with checkerboard patterns and jagged edges.

Therefore, filtering process is always required to minimise the occurrence of

these undesirable effects [24, 25]. In the boundary element (BE) based BESO
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approaches [26, 27] the material removal is accomplished through hole inser-

tion and boundary movements, and addition through boundary movements

only. However, due to the explicit geometry representation adopted in [26],

special care is always required when hole merges with each other and with

the boundary. The BE based BESO approach has been further integrated

with the LSM for the solution of both two and three-dimensional optimisa-

tion problems in [12, 28], which allows for the complex topological changes to

take place automatically. As reported in the literature, the BE based BESO

approaches largely eliminate the common problems occur in the FE based

approaches, e.g. checkerboard patterns, jagged edges and mesh dependency.

However, these methods are based on the target volume based stopping cri-

terion instead of the most desirable, i.e. the minimisation of the objective

function at constant volume criterion, which would provide optimal designs

with improved performance.

A new optimisation method presented in this paper is based on a com-

pliance minimisation objective function with a volume constraint, for linear

elastic problems. In order to exactly satisfy the volume constraint, a novel

methodology has been proposed for the constant volume preserving mecha-

nism within the BEM and LSM framework. The proposed implementation

exactly satisfies the volume constraint and, in addition, allows us to monitor

the structural performance through a direct measurement of the compliance

at constant volume during the optimisation process. The volume preserving

mechanism is based on the bisectioning algorithm, which precisely adjusts

the material removal in accordance with the material addition.

The effectiveness of the proposed implementation is thoroughly evaluated
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through the numerical examples presented and it has been observed that this

new algorithm provides smooth convergence of the objective function and

better geometrical description of the final design, i.e., the optimal geometries

produced are smoother, and have more uniformly sized members, than those

reported in [20, 21, 26, 28]. In addition, this new implementation allows

us to evaluate its intended purpose of minimising the objective function at

constant volume, which is of a paramount importance for designing high

performance structures. Therefore, this is a clear advantage of this method

over the those presented in [20, 26, 28], where the optimal designs are based

on the minimisation of the specific strain energy without incorporating the

constant volume constraint. Hence, in each of the optimisation problem

considered in this study, the performance of the proposed implementation is

exceptional and the minimisation of compliance at constant volume has also

been accomplished.

This paper is organised as follows. In section 2, we discuss the BE and

LS based BESO approach. In Section 2.5 the implementation details of the

volume preserving algorithm are presented. The optimisation procedure is

provided in Section 3. In Section 4, we present numerical examples, and

discuss the performance of the proposed optimisation method. The paper

closes with some concluding remarks in Section 5.

2. The BE and LS based BESO approach

A classical problem in structural optimisation is to find the stiffest struc-

ture with a given volume of the material. According to the BESO approach,

a structure can be optimised through the progressive removal of inefficient
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and addition of efficient materials based on the sensitivity information. In

the current implementation the design sensitivities are evaluated through the

BEM and the LSM is then used to evolve the structural geometry in accor-

dance with the BESO criterion. The integration of the various numerical

techniques used in this study is discussed in detail as follows.

2.1. Problem statement

In the current implementation the design objective is to find the optimal

topology of a structure with minimum compliance subject to a volume con-

straint. Consider an elastic structure with analysis domain Ω and boundary

Γ. The boundary Γ is decomposed such that

Γ = Γ0 ∪ Γ1 ∪ Γ2 (1)

where Γ0 corresponds to regions having Dirichlet boundary conditions (where

displacements are zeros), Γ1 corresponds to non-homogeneous Neumann bound-

ary conditions (where tractions are prescribed) and Γ2 corresponds to homo-

geneous Neumann boundary conditions (traction free). Γ0 and Γ1 are fixed

and Γ2 is allowed to vary during the optimisation process.

The optimisation problem can be expressed as finding Γ2 to minimise

the compliance (i.e. a measure of the strain energy), subject to the volume

constraint. Mathematically, the optimisation problem can be stated as:

Minimise: J(u) =

∫
Γ

1

2
tiuidΓ (2)

Subject to: G =

∫
Ω

dΩ− Vt = 0

where ti and ui are the traction and displacement in the direction i, and Vt

is the target volume.
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According to the BESO concept, the low sensitivity (stress or strain en-

ergy) regions within a structure reflect the inefficient material utilisation and

the high sensitivity regions indicate insufficient material. Therefore, the pro-

gressive removal and addition of material in the BESO based optimisation

method allows efficient material re-distribution for the prescribed volume

of the material, accompanied with minimisation of the objective function.

Hence, this provides optimum structure with near the same (safe) sensitivity

(stress, strain energy) level.

2.2. Boudary element analysis

The BEM is used as a structural analysis tool in the current implementa-

tion. Due to the boundary only dicretisation the structural response can be

directly evaluated at the nodal points associated with the elements. More-

over, in a BE analysis stresses (or any other required property) inside the

design domain can be calculated at internal points as a post processing step.

The current implementation uses the boundary element analysis software

Concept Analyst (CA) [30]. Therefore, the complete optimisation code is

fully integrated within the CA.

2.3. Design sensitivity analysis

In most of the FE based BESO approaches the removal and addition of

materials is linked with the element removal and addition, which provides

optimal designs with checkerboard patterns and jagged edges. Therefore,

additional measures are always adopted to minimise the occurrence of these

undesirable effects. However, in the BE based BESO approaches [26, 28]

the material removal is accomplished through hole insertion and boundary
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movements, and addition through boundary movements only, without any

undesirable effects. The topological and shape sensitivities have been used

to identify regions with in the structure to be modified accordingly.

In the current implementation, both these sensitivities are based on the

von Mises stress criterion, which drive the removal and addition process in

order to achieve a minimum of the objective function. According to the

comparative study presented in [30], the criterion of von Mises stress in the

classical ESO method is equivalent (empirically) to the compliance minimisa-

tion criterion, and that the compliance minimisation problem can be solved

by directly using the von Mises stress criterion, and vice versa.

2.3.1. Topological sensitivity

The material removal inside the design domain is based on the hole nu-

cleation around internal points with the lowest value of the von Mises stress

(σV ). This indicates that the structural material has not been efficiently

utilised at the low stressed regions and can be removed accordingly. As pro-

posed in [20], hole nucleation takes place around internal points which satisfy

the following condition,

σV i ≤ fV σV min (3)

where σV i is the von Mises stress at a given internal point, σV min is the

minimum value of von Mises stress over all internal points in the current

iteration, and fV is the von Mises stress threshold factor. The hole insertion

mechanism and selection of fV are discussed in details in [20].
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2.3.2. Shape sensitivity

The von Mises stress has also been used as a criterion for shape sensitivity

information, i.e. to identify regions of low stress, where material will be

removed, and regions of high stress, where material will be added. The

removal and addition of material can be carried out through inward and

outward boundary movements, respectively, as proposed in [28]. Therefore,

boundary nodes with low and high stress values are identified as follows,

• σV n < 0.9RRσV r : remove material

• σV n > min(σV r, σY ) : add material

where σV n is the von Mises stress at a given boundary node, RR is the

removal ratio, σY is the material’s Yield stress, and σV r is the reference von

Mises stress. In the current implementation, σV r = σV max, where σV max is

the maximum von Mises stress in the initial design. Once the low and high

stressed nodes are identified the LSM is then used to evolve the structural

geometry.

2.4. Representation and evolution of the structural geometry

In the current implementation, the shape and topology of the evolving

structural geometry are represented through an implicit function ϕ, defined

as the signed distance of a particular point grid point from the boundary.

Mathematically, ϕ can be expressed as follows:

ϕ(x⃗)


< 0 x⃗ ∈ Ω (inside)

= 0 x⃗ ∈ ∂Ω or Γ (boundary)

> 0 x⃗ /∈ Ω (outside)

(4)
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The level set function ϕ can be evolved through the solution of a Hamilton-

Jacobi (HJ) equation [9]

∂ϕ

∂t
+ F |∇ϕ| = 0 (5)

where F is the velocity in the normal direction and t is the virtual time.

The structural optimisation problem can be solved by providing appro-

priate velocity values of F for use in Equation (5). Therefore, F is computed

from the structural response at the boundary. Based on the discussion in

Section 2.3.2, the von Mises stress at each node point is converted into a

scaled velocity through a stress velocity relationship presented in [28] as

given below:

• σV n ∈ [0, σt1] : σt1 = 0.5RRσV r , F = −1

• σV n ∈ [σt1, σt2] : σt2 = 0.9RRσV r , F ∈ [−1, 0]

• σV n ∈ [σt2, σt3] : σt3 = 0.95min(σV r, σY ) , F = 0

• σV n ∈ [σt3, σt4] : σt4 = min(σV r, σY ) , F ∈ [0, 1]

• σV n ∈ [σt4,∞) : F = 1

Once the boundary velocity is calculated for each node point, the same is

extended to the level set grid using the method of Adalsteinsson and Sethian

[32]. In the next step, the level set function is updated through the solution

of Equation (5) with an upwind finite difference approximation [33]. The

value of the time step size used is based on the Courant-Friedrichs-Lewy

(CFL) condition.
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During the optimisation process, at each iteration, the solution of Equa-

tion (5) updates ϕ(x⃗), which allows us to modify the structural geometry. The

ϕ(x⃗) = 0 contours (which represent the boundary of the modified geometry)

are traced in accordance with the contour tracing algorithm presented in [28].

Further, non-uniform rational B-splines (NURBS) [34] are fitted through the

zero level set intersection points which belong to Γ2 (i.e. the modifiable line

segments in Figure 1(a)) as proposed in [28]. The automatic meshing facility
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(a) NURBS through the zero level set

intersection points

(b) NURBS discretised with bound-

ary elements

Figure 1: Example of a reconstructed geometry for a cantilever beam

within CA is used to define elements on each spline, i.e. Figure 1(b), using a

setting which is designed to produce peak stresses to approximately 1% ac-

curacy, either with uniformly distributed boundary elements or with grading

as required for good BEM meshing practice.
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It should be noted that with a NURBS based geometry representation,

the BE meshing can be carried out independently of the level set grid size.

Thus the algorithm separates the BE mesh density from the LS grid size used

to determine the underlying geometry and allows accurate stress solutions

even using a coarse LS grid. Hence, this provides the freedom to use a suitable

grid size based on the required accuracy and computational efficiency during

the numerical implementation of the proposed method. Additionally, the

structural geometry is always represented in a standard CAD format.

2.5. Implementation of the constnat volume constraint

In this new implementation, a three step approach is proposed to add

and remove material at constant volume. Based on the von Mises stress

distribution within the design domain at a given iteration, the algorithm

calculates the amount of material which can be removed in the first step.

The amount of material which can be added is calculated in the second step.

In the third step, a bisectioning algorithm is used to adjust the removal

and addition at the same rate. Hence, this provides an efficient mechanism

which effectively preserves the required volume thereby exactly satisfying the

volume constraint.

The first step of this algorithm is implemented as follows:

1. Set ϕ̄ = ϕ.

2. After the BE analysis, select all those nodes along the structural bound-

ary with

σV ≤ σt2 (6)
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where σt2 is the stress level as defined in Section 2.4; assign velocity

F = −1 to all those nodes.

3. Extend velocities as assigned in step 2 to grid points in the narrow

band and update ϕ̄, i.e.

∂ϕ̄

∂t
+ F |∇ϕ̄| = 0 (7)

4. Calculate the new volume V1. The material removed around the low

stressed nodes, i.e. VR is given as

VR = V − V1 (8)

where V is the volume calculated before the level set update.

The amount of material which can be added is calculated in the second

step as follows:

1. Set ϕ̄ = ϕ.

2. Using the same BE analysis results as in (6) select all those nodes with

σV ≥ σt3 (9)

where σt3 is the stress level as defined in Section 2.4; assign velocity

F = 1 to all those points.

3. Extend velocities as assigned in the previous step and solve Equation

(7).

4. Calculate the new volume V2. The material added around the high

stressed nodes, i.e. VA is given as

VA = V2 − V (10)
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In some cases if the material addition is very low, i.e. VA < 1.0, then the

expression of σt3 is relaxed through a factor RA as follows

σt3 = (0.95−RA)min(σV max, σY ) (11)

where RA = 0.1, and is incremented by 0.1 until sufficient material addition

takes place, i.e. as per Equation (10) VA ≥ 1.0 .

During the numerical implementation, it has been observed that VR is

always greater than VA. Two options may be considered to make the material

addition and removal at the same rate:

• Increase VA while VR is fixed

• Decrease VR while VA is fixed

However, it can be seen that the material addition takes place with F = 1,

and if the material addition rate is increased in accordance with the removal

rate, then it requires that F > 1, and in some cases this may violate the CFL

condition. However, if the removal rate is decreased in accordance with the

addition rate, then F < 1, and in this case the CFL condition will always

be satisfied. Therefore, in the third step a bisectioning algorithm is used to

adjust the material removal in accordance with the material addition such

that a constant volume is maintained. Two additional factors are introduced,

i.e. lRm1 and lRm2 which bounds lRm. The complete algorithm is explained

in the following steps.

1. Initialise lRm1 = 0 and lRm2 = 1

2. Set ϕ̄ = ϕ
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3. Halve the interval, i.e.

lRm = (lRm1 + lRm2)/2 (12)

4. Assign velocity F = −lRm to all those points according to Equation

(6).

5. Extend velocities to grid points in the narrow band.

6. Solve Equation (7) and calculate the new volume V3.

7. Calculate VR = V − V3

8. if VA ≤ VR, lRm2 = lRm else lRm1 = lRm.

9. Terminate if |VA − VR| ≤ 10−2, otherwise go to step 2.

The implementation of the above algorithm provides an efficient mecha-

nism which exactly satisfies the volume constraint in the proposed BE and

LSM based BESO method.

The three-dimensional BEM and LSM based BESO approach for a specific

strain energy objective function without a constant volume implementation

has been studied in the authors previous work as reported in [12]. Where

it has been shown that the proposed approach can be easily extended to

three-dimensions. Firstly due to the natural extension of the LSM from two

to three-dimensional space [33]. Secondly, the LSM efficiently handles shape

and topology optimisation simultaneously through automatic hole nucleation

by the intersection of two approaching surfaces [35]. Hence, the constant

volume preserving mechanism can be easily extended to three-dimensional

structural optimisation problems.
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3. Optimisation algorithm

The proposed optimisation algorithm is illustrated in Figure 2 and sum-

marised as follows:

1. Define structural geometry with applied loads and constraints.

2. Initialize level set grid with signed distance function to represent struc-

tural geometry implicitly.

3. Trace the zero level set contours and convert them into a standard CAD

representation, i.e. NURBS.

4. Carry out boundary element analysis (BEA).

5. Check for hole nucleation; in case of hole nucleation go to step 4, oth-

erwise go to step 6.

6. Compute velocity at each node point of the structural boundary using

the BE analysis results.

7. Extend boundary velocities to level set grid points in the narrow band.

8. Solve Equation (5) to update the level set function.

9. Repeat the above procedure from step 3, until the stopping criterion is

satisfied.

4. Examples and discussion

The validity and efficiency of the proposed optimisation method with a

constant volume preserving algorithm are tested against some benchmarking

problems in the field of structural optimisation. The material properties and

various evolutionary factors used in these examples are:

• Poisson’s ratio = 0.3
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Figure 2: Optimisation flow chart

• Young’s modulus = 210 GPa

• Yield stress = 280 MPa

• RR = 0.01

Plane stress conditions are assumed with arbitrary thickness of 1 mm. All

examples are solved with a load P = 100 N. In order to allow for a little

growth in the problem geometry as the optimisation progresses, a fixed level
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set domain is used during the numerical implementation with size slightly

larger than the initial design domain. The optimisation process terminates

when the relative difference between the compliances of the five successive

iterations is less than 10−2 or when the given maximum number of iterations

has been reached.

4.1. Example-1

The first example considered in this study is a cantilever beam of aspect

ratio 1:1. The initial design with applied load and boundary conditions is

shown in Figure 3(a). The structure is constrained at the top and bottom of

the left hand edge with zero displacement boundary conditions and the load

P is applied at the right hand side of the bottom edge. The optimisation

problem is solved for a target volume V = 0.35V0 using three different choices

of the initial guessed design; V0 is the volume of the initial design domain.

The level set design domain is discretised with 40× 40 square cells.

Figure 3 shows the evolution history of the short cantilever beam start-

ing from a completely filled initial design. During the optimisation process

hole nucleation can be observed at different iterations. The value of hole

nucleation factor used in this case is fVM = 1.2.

The evolution of the compliance and volume fraction for the short can-

tilever beam at different stages of the optimisation process is depicted in Fig-

ure 4. The optimisation process starts from a completely filled initial design

domain, hence the volume of the initial design domain is considerably greater

than the target volume. In order to reach the target volume fraction the pro-

posed optimisation method allows material removal from the low stressed

regions of the structure through boundary movements and hole nucleation.
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(a) Initial Design (b) Iteration 14 (c) Iteration 42

(d) Iteration 60 (e) Iteration 268 (f) Iteration 450

Figure 3: Evolution of structural geometry for Example-1, initial design without pre-

existing holes

As a result the compliance increases initially up to iteration 268, where the

structure volume reaches the target volume, and the volume constraint is

exactly satisfied. Afterwards, the proposed volume preserving mechanism

allows the optimisation process to be carried out at constant volume. It can

be seen that once the volume constraint is satisfied the compliance initially

decreases and then remains stable up to the end of the optimisation process.

The optimisation process terminates when there is no further improvement

in the compliance of the structure.

As discussed above the implementation of a constant volume preserv-
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Figure 4: Convergence of objective function and volume for Example-1

ing mechanism exactly satisfies the volume constraint during the optimisa-

tion process. Further, the effectiveness of this new implementation can be

evaluated by comparing Figures 3e (the structure volume reaches the tar-

get volume with compliance around 0.48), and 3f (the optimisation process

terminates with compliance 0.442). It is evident from the optimal struc-

tural geometry at iteration 450 that the non-uniformity in sizes of the struc-

tural members at iteration 268 is effectively reduced through material re-

distribution at constant volume. This suggests that the proposed volume

preserving mechanism redistributes material within the design domain such

that the compliance is minimised at constant volume, and a more realistic

optimal geometry is obtained. Hence, in the absence of a volume preserving

mechanism, a sub-optimal design with non-smooth geometry would evolve.
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In order to further validate the proposed optimisation method, four differ-

ent tests are carried out for the optimisation of the short cantilever beam con-

sidering different initial designs and hole nucleation options; Table 1 shows

a comparison of these results.

In case-1, the optimisation process starts from a completely filled initial

design and hole there is no hole nucleation. The volume convergence takes

place at iteration 2700 and compliance convergence occurs at iteration 3500,

respectively.

In case-2, the addition of hole nucleation greatly accelerates the optimi-

sation process and the compliance convergence takes place at iteration 450.

A comparison of the final compliance values of case-1 and 2 suggests that

the use of hole nucleation mechanism not only provides fast convergence of

both the compliance and volume fraction, but also provides optimal designs

with improved performance.

In order to evaluate the sensitivity of the proposed method to the selection

of initial guessed designs, in case-2, 3 and 4, different initial designs are

considered, respectively. The result displayed in Table 1 suggests, that the

final optimal designs and compliance are very close to each other. Further,

the final optima are very similar to those available in the literature for this

type of benchmark example (e.g. [36]). This suggests that the proposed

optimisation method is insensitive to the selection of different initial designs.
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Case No Initial Design Final Design HN NIV NIC Compliance

1

(a) Initial Design (b) Iteration 14 (c) Iteration 42

(d) Iteration 60 (e) Iteration 268 (f) Iteration 450

NO 2700 3500 0.465

2

(a) Initial Design (b) Iteration 14 (c) Iteration 42

(d) Iteration 60 (e) Iteration 268 (f) Iteration 450

(a) Initial Design (b) Iteration 14 (c) Iteration 42

(d) Iteration 60 (e) Iteration 268 (f) Iteration 450

YES 280 450 0.442

3

(a) Initial Design (b) Iteration 40 (c) Iteration 97 (d) Iteration 300(a) Initial Design (b) Iteration 40 (c) Iteration 97 (d) Iteration 300

YES 107 300 0.442

4

(a) Initial Design (b) Iteration 22 (c) Iteration 100 (d) Iteration 300(a) Initial Design (b) Iteration 22 (c) Iteration 100 (d) Iteration 300

YES 125 300 0.442

Table 1: Results comparison with different initial designs and hole nucleation options for

Example-1; HN: Hole Nucleation option (YES/NO), NIV : Number of iterations at volume

convergence, NIC : Number of iterations at compliance convergence
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4.2. Example-2

In the second example, the minimum compliance problem is solved for a

cantilever beam of aspect ratio 1.5:1. Zero displacement boundary conditions

are prescribed at the top and bottom portions of the left hand edge and the

structure is loaded at the centre of the right edge as shown in Figure 5(a).

The specified target volume fraction for this example is V = 0.35V0. The

level set design domain is discretised with 60× 40 square cells.

In this example an initial design completely filled with material is con-

sidered, and hole nucleation is allowed using fVM = 1.6. The evolution of

the structural geometry at various stages of the optimisation process is de-

picted in Figure 5. Nucleation of holes can be observed in Figure 5(b-e). The

optimisation process comprised of hole insertion, evolution of both external

and internal boundaries, and merging of holes with each other and with the

boundary. Hence, both shape and topological changes take place simulta-

neously during the solution of the minimum compliance problem. The final

optimum is very similar to that presented in [10, 11]

The evolution of the objective function and volume fraction at each iter-

ation is depicted in Figure 6. Since the initial design domain is completely

filled with material, the optimisation process starts from a minimum value

of the objective function. Then it slowly increases as a result of the material

removal through boundary movements and hole insertion. A jump in the

compliance can be observed at iteration 16, which is mainly related to the

removal of material through insertion of a hole slightly larger than normal.

The two peaks recorded around iteration 107 and 120, respectively, can be

related to the removal of structural members through hole merging as shown
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(a) Initial Design (b) Iteration 16 (c) Iteration 33

(d) Iteration 60 (e) Iteration 107 (f) Iteration 300

Figure 5: Evolution of structural geometry for Example-2

in Figure 5(e). In the subsequent iterations the effect of these peaks dies out

quickly. Once the volume constraint is exactly satisfied, the objective func-

tion is gradually reduced and the optimisation process terminates at iteration

300, when the stopping criterion is satisfied.

It can be seen from Figure 6, that the structural volume reaches the tar-

get volume around iteration 107 (Figure 5e) with a maximum value of the

structural compliance. However, the implementation of the volume preserv-

ing mechanism then lowers the compliance through material redistribution

within the structural geometry. Further, this new implementation also allows

topological changes to take place at constant volume through hole merging

(in this case at iteration 120), with a slight increase in structural compliance.

In the subsequent iterations the structural performance is further improved

with a better description of the optimal geometry, i.e uniformity in the size of
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each structural member. This uniformity in structural members sizes would

not be achieved without using the constant volume preserving mechanism.

This suggests that the implementation of the volume preserving mechanism

is absolutely essential for high performance structural description.
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Figure 6: Convergence of objective function and volume for Example-2
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4.3. Example-3

This example considers a cantilever beam of aspect ratio 3:1. The speci-

fied target volume fraction for this example is V = 0.4V0. The level set design

domain is discretised with 90 × 30 square cells. The minimum compliance

problem is solved for an initial design as shown in Figure 7(a); zero displace-

ments boundary conditions are applied at the top and bottom portions of

the left hand edge and the load P is applied at the right hand side of the

bottom edge. The hole insertion factor used in this example is fVM = 1.2.

Nucleation of holes and their evolution afterwards allow hole merging with

each other and with the boundary as depicted in Figure 7. This demonstrates

that the current optimisation method has the capability to carry out both

shape and topology optimisation simultaneously. The optimal design closely

resembles that presented for a similar problem in [24].

The evolution histories of the objective function and the structural vol-

ume fraction at each optimisation iteration are depicted in Figure 8. The

optimisation process starts from a minimum value of the objective function,

a slow increase in the initial iterations is followed by a rapid increase after

iteration 45. This increase in the compliance is mainly due to the material

removal through insertion of large number of holes as can be seen in Figure

7(c). The volume constraint is satisfied around iteration 140. In the sub-

sequent iterations, the volume preserving mechanism redistributes material

within the design domain and reduces the structural compliance. The high

peak at iteration 162 is due to the removal of a structural member through

hole merging (see Figure 7(g)). The effect of this peak dies out quickly. The

structural performance is further improved through the final iterations, and
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the variation in some of the structural members size is minimised. A compar-

ison of the structural geometry description at iteration 162 and 300 (Figure

7) clearly demonstrates the effectiveness of the volume preserving mechanism

implemented in this study.
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(a) Initial Design (b) Iteration 30

(c) Iteration 50 (d) Iteration 65

(e) Iteration 100 (f) Iteration 120

(g) Iteration 162 (h) Iteration 300

Figure 7: Evolution of structural geometry for Example-3
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Figure 8: Convergence of objective function and volume for Example-3

29



4.4. Example-4

The final example considered in this study is the Michell’s type structure

as shown in Figure 9(a) of aspect ratio 2:1. Zero displacement boundary

conditions are applied in all directions at some portions of the left and right

hand sides of the bottom edge, and a downward load P is applied at midspan

along the bottom edge. The level set design domain is discretised with 80×40

square cells. The minimum compliance problem is solved for a target vol-

ume of V = 0.35V0. The evolution of the structural geometry, which is

mainly comprised of hole insertion and evolution of both internal and ex-

ternal boundary, at different stages of the optimisation process is depicted

in Figure 9. The evolution of the objective function and structural volume

fraction for the Michell’s type structure are depicted in Figure 10. In the ini-

tial iterations, the material removal through hole nucleation and boundary

movements raises the compliance and at iteration 180 the compliance reaches

its maximum value. Afterwards,the implementation of the volume preserv-

ing mechanism progressively enhances the structural performance through

the minimisation of compliance at constant volume. This enhancement can

also be validated from the comparison of Figure 10e and f, where the optimal

design has a smoother and more uniformly sized structural members. Again,

it can be seen that the use of such an optimisation algorithm without the

constant volume adaptation can result in suboptimal designs. Hence, a con-

stant volume preserving mechanism should be an essential part of structural

optimisation algorithm for obtaining high performance structures.
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(a) Initial Design (b) Iteration 50

(c) Iteration 100 (d) Iteration 125

(e) Iteration 180 (f) Iteration 350

Figure 9: Evolution of structural geometry for Example-4
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Figure 10: Convergence of objective function and volume for Example-4
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5. Conclusions

A bi-directional evolutionary structural optimisation method based on the

BEM, LSM and NURBS is presented in this paper. The proposed method

is capable of nucleating holes during the optimisation process using a stress

based hole insertion criterion.

In this paper a volume preserving mechanism is introduced which effec-

tively handles the volume constraint for the solution of minimum compliance

problems. The volume preserving mechanism is based on the bisectioning al-

gorithm which precisely adjusts the material removal in accordance with the

material addition. Thus, this new implementation fulfills the requirement of

a volume preserving technique in a LS and BEM based optimisation method.

The effectiveness of the proposed implementation is demonstrated through

the numerical examples presented, which provides smooth convergence of the

objective function and better geometrical description of the optimal geom-

etry than that without this implementation. The optimal geometries pro-

duced are smoother, and have more uniformly sized members, than those

produced without the new adaptation. In addition, this implementation

allows us to evaluate the proposed optimisation method for its intended pur-

pose of minimising the the objective function at constant volume, which is

of a paramount importance for designing high performance structures.

Numerical examples of two-dimensional structures are chosen to show the

computational efficiency (gained through boundary discretisation), conver-

gence speed and insensitivity of the optima to initial designs. Compared with

the available BEM and LSM based optimisation methods, the present method

generates similar optimal designs rapidly and largely eliminates the depen-
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dency on initial guessed designs with pre-existing holes. In addition, the

use of NURBS provides optimal designs in a standard CAD format without

any intermediate material densities along the structural boundary. There-

fore, from an engineering point of view the optimal designs can be easily

interpreted and be directly used in other design processes.
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