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R eanalyses are among the most used datasets in  
 the study of weather and climate. They provide  
 comprehensive snapshots of conditions at regular 

intervals over long time periods—often years or de-
cades. They are produced via data assimilation, a pro-
cess that relies on both observations and model-based 
forecasts to estimate conditions. Despite these hybrid 
origins, practitioners frequently refer to reanalysis data 
as “observations” and use them for the same purposes 
as traditional observations. They have been used to 
study atmospheric dynamics (Kidston et al. 2010), to 
investigate climate variability (Kravtsov et al. 2014), to 
evaluate climate models (Gleckler et al. 2008), as data 
in which to look for the presence of greenhouse gas 
fingerprints (Santer et al. 2004), and for many other 

purposes. Recently, reanalysis data were even used to 
rebut skepticism about the reliability of thermometer-
based estimates of twentieth-century global warming 
(Compo et al. 2013).

At the same time, some scientists warn that 
reanalysis data should not be equated with “real” 
observations and measurements (e.g., Schmidt 2011; 
Bosilovich et al. 2013). But if there are important 
differences between reanalysis data and familiar ob-
servations and measurements, such as those obtained 
from thermometers and rain gauges, what are these 
differences exactly? This essay examines four pos-
sible answers, considering how well each stands up to 
scrutiny. Some purported differences are shown to be 
illusory, while others are argued to be less significant 
than one might think. The most important difference 
is simply that errors and uncertainties associated with 
reanalysis results are often less well understood than 
those associated with observations. This difference 
can make it difficult to know what today’s reanalysis 
datasets can—and cannot—be appropriately used for, 
and points to the need for increased efforts to under-
stand and communicate the strengths and limitations 
of reanalysis systems.

DATA ASSIMILATION AND REANALYSIS. 
In general terms, data assimilation can be character-
ized as a process in which available information is 
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used to estimate as accurately as possible the state of 
a system (Talagrand 1997). In atmospheric data as-
similation, this information typically includes both 
observations from a variety of sources—ground-
based stations, ships, airplanes, and satellites—and 
forecasts from numerical weather prediction (NWP) 
models. The NWP forecast(s) provides a first-guess 
estimate of the atmospheric state, which is then 
updated in light of the observations. Different as-
similation methods perform the updating somewhat 
differently (see, e.g., Kalnay 2003; Rabier 2005).

Data assimilation is a crucial part of operational 
NWP today. It is used to produce the analysis of cur-
rent conditions that serves as the starting point for the 
next NWP forecast cycle; from gappy observations, 
the assimilation system delivers a complete gridded 
state estimate that provides values (initial condi-
tions) for all NWP model variables at all grid points. 
Advances in data assimilation methodologies in 
recent decades have been credited with significantly 
improving NWP forecasts (Kalnay 2003).

Since the 1990s, data assimilation also has been 
used to construct long-term datasets for use in climate 
and other research, in a process known as retrospec-
tive analysis, or reanalysis (Trenberth and Olson 1988; 
Bengtsson and Shukla 1988). Reanalysis involves 
performing data assimilation for past periods, using 
a current NWP model and data assimilation method 
and some or all of the data that are now available for 
those past periods. It produces a long sequence of 
comprehensive snapshots (analyses) of atmospheric 
conditions—a reanalysis dataset.1

The first major atmospheric reanalysis project was 
the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–
NCAR) 40-Year Reanalysis (Kalnay et al. 1996), which 
delivered global analyses at subdaily intervals for the 
period 1957–96. Numerous other reanalysis projects 
have since been undertaken, covering various spatial 
and temporal domains (see, e.g., Bromwich et al. 2010; 
Rienecker at al. 2011; Dee et al. 2011; Compo et al. 
2011). The University Corporation for Atmospheric 
Research (UCAR) Climate Data Guide (Dee et al. 

2015) provides an overview of key features of recent 
atmospheric reanalysis projects, including the time 
periods they cover, the frequency of data they provide, 
and the types of assimilation methods they employ.

These reanalysis datasets are in heavy use. The Web 
of Science database currently reports more than 13,000 
citations of the NCEP–NCAR 40-year reanalysis da-
taset. Reanalyses are attractive because they provide 
comprehensive, gridded estimates of atmospheric 
conditions at regular intervals over long time periods; 
this is a very convenient format for evaluating climate 
models, for climate change detection and attribution 
studies, and for many other purposes. Nevertheless, 
as noted above, some scientists warn that reanalysis 
data should not be equated with real observations. 
This raises the question: What important differences 
are there between reanalysis data and familiar observa-
tions and measurements?

THEORY-BASED INFERENCE VERSUS 
MIRRORING. One might think that reanalysis 
data and familiar observations and measurements 
differ as follows: Reanalysis datasets are produced via 
a complex inferential process that involves theory-
based calculation, whereas familiar observations and 
measurements are obtained directly from instrument 
readings that mirror atmospheric conditions.

But this is just not correct. It is true that reanalysis 
results are inferred with the help of theory-based 
calculation: producing the first-guess forecast(s) in-
volves calculating later conditions from earlier ones 
using NWP models that incorporate approximate 
laws of atmospheric motion as well as some empiri-
cal parameters and relationships. But many familiar 
observations and measurements also are inferred 
with the help of theory-based calculation; they are 
not obtained directly from instrument readings that 
mirror atmospheric conditions.

For instance, raw instrument readings often must 
be corrected for interfering factors. A raw rain gauge 
reading, for example, might need to be corrected for 
loss due to ambient wind interacting with the gauge; 
the final estimate of rainfall depth is not simply read 
off the gauge but is inferred using both the gauge 
reading and, say, an equation indicating how catch is 
reduced as a function of wind speed and precipitation 
type. This equation is likely to be informed by both 
theory and empirical data.

Some observations and measurements involve 
theory-based inference in an even more central way: 
results are derived from measurements of other physi-
cal variables or parameters, with the help of theory. 
For example, observations of relative humidity are 

1 The use of an unchanging NWP model and assimilation 
method avoids the artificial jumps and trends that appear 
in sequences of operational analyses as a result of periodic 
improvements to models and methods. Some artificial jumps 
and trends can still occur in reanalysis datasets, however, 
because of changes in the observational base over time (e.g., 
new instruments are added to the observing network and 
existing instruments are decommissioned and/or degrade 
in performance).
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sometimes derived from a combination of wet-bulb 
temperature, dry-bulb temperature, and pressure 
measurements using an equation (or a psychrometric 
chart) that is at least partly theory based. Likewise, 
observations of storm radial velocity are obtained 
from radar with the help of Doppler effect calcula-
tions. Results like these are sometimes called derived 
measurements or indirect observations.

Some metrologists and philosophers of science ar-
gue that virtually all scientific measurement involves 
inference: we infer measurement outcomes from in-
strument indications, with the help of a measurement 
model that is very often informed by theory (see Mari 
2005; Boumans 2006; Tal 2012). A measurement mod-
el is a conceptualization of i) the physical interactions 
that take place during a measuring process—both 
desired interactions and interfering ones—as well as 
ii) how the results of those interactions relate to values 
of the parameter(s) that we seek to measure. Such 
a model guides the inference from the rain gauge’s 
indication to the final estimate of rainfall depth and 
from the thermometer and barometer indications 
to the final estimate of relative humidity. In some 
cases, the inference from instrument indication(s) 
to measurement outcome is rather trivial—we might 
have good reason to take a particular thermometer’s 
indication at face value, for example—but in many 
other cases it is more complex, involving calculations 
informed by theory.

RELIANCE ON FORECASTS. A second, obvi-
ous way in which reanalysis results seem to differ 
from familiar observations and measurements is that 
reanalysis results are determined in part by forecasts, 
whereas familiar observations and measurements 
are not.

Reanalysis results do differ from familiar ob-
servations and measurements in this way. We saw 
above that both reanalysis results and many familiar 
observations and measurements are obtained with 
the help of theory-based calculations. In the case of 
reanalysis however, some of the equations used in the 
calculations relate variables at different times. These 
include the dynamical equations of NWP models that 
are used to produce the first-guess forecast(s) and, 
when variational assimilation methods are employed, 
to perform the assimilation. By contrast, theory-based 
calculations involved in familiar observation and 
measurement usually involve equations that relate 
variables at a single time. The equation used to cor-
rect for a rain gauge’s wind loss over a period requires 
information about wind speed during that period, 
not an earlier or later period. Likewise, a value for 

relative humidity at time t is calculated from values 
for temperature and pressure at t.

Is this a deep or important difference? Not nec-
essarily. What matters is that results have desired 
accuracy, that is, that they come close enough to the 
true values for variables and parameters, if there are 
such true values to be found. Results from equations 
that relate variables at different times can be just as 
accurate as results from equations that relate variables 
at a single time—it depends on the equations. So, the 
real question seems to be whether, in practice, the 
forecasts relied upon in reanalysis are as accurate as 
results calculated in the course of familiar observa-
tion and measurement. We return to this issue below, 
after considering one other candidate difference.

ILL-POSED INVERSE PROBLEMS. A third 
candidate for an important difference between 
reanalysis datasets and familiar observations and 
measurements is that producing reanalysis datasets re-
quires solving an ill-posed inverse problem, whereas 
producing familiar observations and measurements 
does not.

The challenge confronted in reanalysis is to recon-
struct the three-dimensional atmospheric state at t 
from gappy observations made around t—an inverse 
problem. The information provided by those obser-
vations, in conjunction with background theory, is 
insufficient to uniquely determine the state estimate, 
so the problem can be described as ill posed. Data 
assimilation is a particular approach to solving the 
problem: it brings in additional information, in the 
form of one or more NWP forecasts, that provides 
a first-guess state estimate or prior. By contrast, in 
most familiar observing and measuring practices, 
there is no need for a first-guess estimate or prior; 
the instrument readings made at t, in conjunction 
with background theory, are thought to be sufficient 
to determine a best-estimate value for the parameter/
variable of interest. This is reflected in the measure-
ment model.

It is worth noting, however, that some gridded 
datasets that are uncontroversially described as “ob-
servational”—surface temperature datasets like the 
Goddard Institute for Space Studies Surface (GISS) 
Temperature Analysis (GISTEMP; Hansen et al. 2010) 
and the Climatic Research Unit Temperature, version 
4 (CRUTEM4; Jones et al. 2012)—also are produced 
by solving an ill-posed inverse problem very similar to 
that solved in reanalysis; the problem is merely solved 
differently. A spatial interpolation approach is used 
to infer values for gridpoint variables as a function of 
nearby observations, which in some cases are rather 

1567SEPTEMBER 2016AMERICAN METEOROLOGICAL SOCIETY |



distant. While this approach does not involve NWP 
models, it is not model free: it relies on assumptions 
about the smoothness and typical structure of atmo-
spheric fields. Moreover, data assimilation is consid-
ered superior to spatial interpolation when it comes to 
producing analyses in real-time NWP operations; the 
first-guess forecast(s) used in the assimilation con-
tains additional valuable information derived from 
observations made at earlier times, which informed 
the initial conditions for the forecast(s).

Are results obtained by solving ill-posed inverse 
problems less accurate than results obtained from 
observing and measuring practices that do not re-
quire solving such problems? The answer again is “not 
necessarily.” If the first-guess estimate or prior used 
to solve the inverse problem is itself very accurate, 
then the final results obtained can be very accurate 
too. In practice, however, there may be reason to be-
lieve that a first-guess estimate or prior, while adding 
substantial valuable information, also contains some 
significant errors. As explained below, this is a key 
concern in reanalysis.

CALIBRATION AND UNCERTAINTY. A 
fourth candidate for an important difference is that, 
whereas there is good reason to think that familiar 
observations and measurements are rather accurate, 
the same cannot be said of today’s reanalysis datasets.

While this is an overgeneralization, it does point 
to an important difference between some reanalysis 
results and observations. Manufacturers of thermom-
eters and barometers have established methodologies 
for calibrating their instruments before they are 
shipped to users: the instruments can be expected to 
give results that are free from significant systematic 
error, at least for some period of use under specified 
operating conditions. In addition, users are informed 
of the typical remaining uncertainty associated with 
results: for example, that the thermometer gives 
readings with a 2σ accuracy of ±0.15°C.2 In the case 
of reanalysis, however, calibration remains very chal-
lenging, and results often are provided without any 
uncertainty information.

A common way to calibrate an instrument or 
system is with the help of accurate reference stan-
dards: the instrument’s results are compared to the 
standards and, if necessary, adjustments are made to 
ensure a close enough fit; the remaining deviations 
are indicative of the uncertainty associated with 
results. But for reanalysis systems, comprehensive 
reference standards—that is, accurate estimates of 
full atmospheric fields—generally are not available. 
(If they were, there might be little need for reanalysis!) 
Observations used to produce the reanalysis can-
not provide an independent basis for comparison. 
High-quality observations that are not assimilated, 
such as those obtained in special field campaigns, 
can be useful for learning about errors in reanalysis 
results in a piecemeal way, but they are available for 
a limited range of variables and times. The same is 
true for cross-validation techniques, in which some 
of the observations that would otherwise be as-
similated are reserved for estimating analysis errors 
(e.g., Thorne and Vose 2010; De Pondeca et al. 2011). 
Cross-validation techniques also either reduce the 
information base on which the reanalysis is built 
(if the reanalysis is not repeated with the reserved 
observations added) or else provide information 
about errors in different reanalyses than those that 
are ultimately of interest (if the reserved observations 
are subsequently assimilated).

An alternative approach to calibration involves 
correcting for component sources of systematic error. 
This was illustrated earlier with the rain gauge exam-
ple, where raw gauge readings were corrected for wind 
loss; if other interfering factors—evaporation, splash-
ing of drops, or wetting of gauge sides—were thought 
to be significant in a particular case, then corrections 
for those factors would need to be applied as well. In 
the case of reanalysis, this approach requires correct-
ing for, among other things, systematic error in the 
observations and in the first-guess forecast(s), and 
systematic error in raw reanalysis results that arises 
because assumptions of the assimilation algorithm 
are not perfectly met; the latter can include assump-
tions about how to map between observation space 
and model space (the observation operator), about 
the topology of the cost function in variational as-
similation methods (see Talagrand 2010), and so on. 
Identifying and correcting for these errors is difficult. 
Systematic errors in observations and the first-guess 
forecast(s) have received the most attention, but there 
are a number of obstacles: metadata are quite limited 
for many historical observations (e.g., Kennedy 2014), 
high-quality observations that might be used to quan-
tify forecast errors are available only for a limited 

2 In general, uncertainty refers to a lack of knowledge. In the 
context of measurement, a report of uncertainty indicates the 
possible error in an estimated parameter value (see JGCM 
2008, section 2.2, for other definitions). When calibration 
is successful, uncertainty stems primarily from random 
error or “noise” and is indicative of the precision of the mea-
surement. In practice, calibration is often incomplete, and 
uncertainty estimates also reflect some systematic effects, 
perhaps unrecognized.
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set of variables and times, and forecast errors are 
expected to be regime dependent. Errors in the first-
guess forecast(s) due to inadequate representation of 
physical processes in NWP models (i.e., model error) 
remain a particular source of concern. For further 
details and some proposals for ways forward, see, for 
example, Dee (2005), Desroziers et al. (2005), Dee and 
Uppala (2009), and Peña and Toth (2014).

Many of the obstacles to calibrating reanalysis 
results—such as the lack of independent reference 
standards—create similar challenges when it comes 
to quantifying the uncertainty associated with those 
results. In part because of this, many of today’s re-
analysis datasets are not accompanied by uncertainty 
estimates at all; only a best-estimate value is given for 
each gridpoint variable. (An exception is discussed 
below.) This is why many reanalysis results, if viewed 
as putative measurements of atmospheric properties, 
must be considered incomplete: in parallel to the view 
in meteorology that no forecast is complete without an 
estimate of forecast uncertainty (Tennekes et al. 1987; 
Zhu et al. 2002; NRC 2006), there is a view in metrology 
that no measurement is complete without an estimate of 
measurement uncertainty (e.g., JGCM 2008).

So some observations and reanalysis results dif-
fer in the following way: while the observations are 
produced using instruments that have undergone a 
careful process of calibration and that give results 
with uncertainties that can be confidently quantified 
and are relatively small, the errors and uncertainties 
associated with the reanalysis results remain less 
well understood and are likely to be large in some 
cases. But it is important not to overgeneralize; not 
all observations and measurements are accompanied 
by well-motivated uncertainty estimates, and for 
specific reanalysis variables (e.g., surface temperature 
in regions where there are many assimilated observa-
tions) there is good reason to think that the results are 
typically quite accurate. The mere fact that a result is 

an observation or that it is a reanalysis result does not 
tell us how accurate we should expect it to be.

THE IMPORTANCE OF UNCERTAINTY ES-
TIMATION. Providing information about errors and 
uncertainties associated with results—whether those 
results are observations or measurements, analyses 
or reanalyses, or even forecasts—is important. First 
and foremost, it is important for drawing appropriate 
conclusions from those results. For example, whether 
an apparent trend in time-series data (i.e., a linear fit 
with nonzero slope) is good evidence of a real change 
in conditions depends on whether the uncertainties as-
sociated with the data imply that the actual slope could 
easily be zero. Without uncertainty information, it is 
unclear what results provide evidence for (or against). 
That said, conclusions that are sensitive even to very 
small changes in results obviously are more suspect 
than conclusions that are robust to very large changes.

Related considerations motivate recent calls for the 
production of “climate quality” reanalyses. Thorne 
and Vose (2010) propose that reanalyses be consid-
ered of climate quality only if we can confidently 
estimate their uncertainties to be less than 10% of 
the expected multidecadal climate change signal 
(as indicated by a suite of climate models) across a 
small range of important physical indicators, such 
as temperature, large-scale precipitation, etc. But 
while Thorne and Vose are right to emphasize robust 
uncertainty quantification, it is unclear what benefit 
is to be had by adding the “climate quality” label. On 
the contrary, such a label might obscure the fact that 
results for some variables or fields have larger (or 
unknown) errors and uncertainties.3 It seems better 

3 Just as saying that a model is a “good” model—rather than 
saying what it is good enough for—can lead users to trust the 
model even where it is misleading, so could labeling some 
reanalyses “climate quality” lead to misplaced trust.

Table 1. What important differences are there between reanalyses and observations?

Candidate difference Conclusion

Reanalysis results are obtained by inference, 
while observations are not.

Not a real difference; both observations and reanalyses 
involve inference, often involving theory-based calculation.

Reanalysis relies on forecasts, while 
observation does not.

A real difference but not necessarily significant; what matters 
is whether results are sufficiently accurate.

Reanalysis involves solving an ill-posed inverse 
problem, while observation does not.

A real difference in many cases but not necessarily significant; 
what matters is whether the solution is sufficiently accurate.

Accuracy of reanalysis results is less well 
understood than that of observations.

A real difference in some cases and a significant one; makes it 
harder to judge appropriate use of reanalyses in those cases.
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to avoid such labels and to simply provide explicit 
uncertainty information.

Information about uncertainties is also important 
for evaluating whether techniques, instruments, 
and systems for producing results are working as 
expected. A set of results from different measuring 
techniques or instruments need not agree perfectly 
in their best-estimate values for parameters/variables, 
but if all goes well the differences between them 
should not exceed the differences that are expected, 
given their respective confidence intervals. Coming 
close to achieving this statistical consistency is a hall-
mark of successful measurement (Tal 2012). It is no 
guarantee that we are close to the true value of a pa-
rameter or variable, if there is a true value to be found, 
but a lack of consistency indicates that something 
has gone wrong somewhere. Without uncertainty 
estimates, it is impossible to check for consistency.

A good illustration of this sort of consistency check 
is found in a recent study involving the Twentieth-
Century Reanalysis (20CR), a global reanalysis cover-
ing the period 1871–2011 (Compo et al. 2011). 20CR is 
one of the few reanalyses that does provide uncertainty 
estimates; they are generated by 20CR’s ensemble 
Kalman filter assimilation methodology, which gives 
results in probabilistic form. Compo et al. (2013) com-
pared global surface temperature changes derived from 
20CR results with those derived from station-based 
thermometer data that were not assimilated in 20CR. 
They found that, while the datasets show rather good 

agreement (see Fig. 1), rigorous statistical consistency 
has not yet been achieved: “the mean square differ-
ences between [the datasets] are somewhat larger than 
expected from their respective confidence intervals…
This suggests that the data sets underestimate their 
uncertainty, particularly 20CR during the periods of 
disagreement” (Compo et al. 2013, 3171–3172). This 
underestimation of uncertainty may stem in part from 
the calibration-related challenges noted in the last sec-
tion, which in 20CR are partially addressed with the 
help of some “rather simplistic” (Compo et al. 2011, 
p. 21) assumptions about errors and uncertainties in 
the assimilated observations and forecasts.

Of course, even when reanalysis results lack rigor-
ous uncertainty estimates, there can be useful insight 
into their accuracy. Some reanalysis results are known 
to be determined primarily by observations that we 
can expect to be rather accurate. In addition, it is 
known that the NWP models used in reanalysis tend to 
give more accurate forecasts for some physical quanti-
ties than for others; for example, temperature is typi-
cally easier to forecast than precipitation. De Pondeca 
et al. (2011) note the possibility of providing a “quality 
mark” array for precipitation analyses, communicating 
factors that can help users gauge the trustworthiness 
of results at each grid point (e.g., whether the grid 
point is outside an effective radar coverage area).4 
Comparing reanalysis datasets with one another is 
also useful, since the spread among results indicates, 
at least prima facie, a lower bound on uncertainty (see 
also, e.g., Buizza et al. 2005; Langland et al. 2008; Wei 
et al. 2010). The reanalyses.org website serves as a 
central clearinghouse for a range of intercomparison 
efforts and provides other useful resources, including 
plotting tools.

CONCLUSIONS. It is tempting to think that what 
justifies warnings about reanalysis datasets is the fact 
that they are determined in part by NWP forecasts. 
There is some truth in this, but it is not reliance on 
these forecasts per se—the results of theory-based cal-
culation—that should prompt concern; after all, many 
trusted observations and measurements also are 
produced with the help of theory-based calculations. 
The real issue is that the errors and uncertainties 

4 Practitioners tend to treat as less reliable those reanalysis 
fields that are derived from the model’s state variables and for 
which no conventional observations are assimilated [see, e.g., 
the distinction among the A, B, and C fields in Kalnay et al. 
(1996)], but this is just a reasonable rule of thumb. Information 
at the level of gridpoint variables, such as the arrays suggested 
by De Pondeca et al. (2011), would be more useful.

Fig. 1. Evolution of near-surface temperature anom-
aly over land from 20CR (blue), the station-based 
CRUTEM4 dataset (red), and the average of five other 
station-based datasets (black). The 95% uncertainty 
ranges for 20CR (blue shading) and CRUTEM4 (yellow 
shading), as well as areas of overlap (green shading), 
are indicated (after Fig. 1 of Compo et al. 2013).
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associated with NWP forecasts, and with some other 
aspects of the reanalysis process, are only partially 
understood, leaving it unclear just how accurate we 
can expect many reanalysis results to be (see Table 1). 
This is in contrast to some familiar observations and 
measurements, such as those made using today’s 
standard thermometers and barometers, which have 
undergone a careful process of calibration, with 
uncertainties that can be confidently quantified and 
are relatively small. This is not, however, a universal 
difference between reanalysis data and observations; 
many observations are also reported without well-
motivated uncertainty estimates.

For any type of result—an observation or mea-
surement, an analysis or reanalysis, a forecast—un-
derstanding of errors and uncertainties is crucial for 
drawing appropriate conclusions about the system 
under investigation. Rather than an optional after-
thought, characterization of uncertainties should 
be considered part and parcel of the processes of 
observation, measurement, data assimilation, and 
forecasting. Where uncertainty estimation cannot be 
performed in a rigorous and quantitative way, it may 
still be possible to provide information (e.g., quality 
mark arrays) that will aid users in judging the relative 
trustworthiness of conclusions suggested by results. 
Increased efforts to provide such information for 
reanalyses, and to provide well-motivated quantita-
tive uncertainty estimates where possible, would be 
of significant value.
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