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S U M M A R Y
Estimating the depths of target horizons from seismic reflection data is an important task
in exploration geophysics. To constrain these depths we need a reliable and accurate velocity
model. Here, we build an optimum 2-D seismic reflection data processing flow focused on pre-
stack deghosting filters and velocity model building and apply Bayesian methods, including
Gaussian process emulation and Bayesian History Matching, to estimate the uncertainties of
the depths of key horizons near the Deep Sea Drilling Project (DSDP) borehole 258 (DSDP-
258) located in the Mentelle Basin, southwest of Australia, and compare the results with the
drilled core from that well. Following this strategy, the tie between the modelled and observed
depths from DSDP-258 core was in accordance with the ±2σ posterior credibility intervals
and predictions for depths to key horizons were made for the two new drill sites, adjacent to
the existing borehole of the area. The probabilistic analysis allowed us to generate multiple
realizations of pre-stack depth migrated images, these can be directly used to better constrain
interpretation and identify potential risk at drill sites. The method will be applied to constrain
the drilling targets for the upcoming International Ocean Discovery Program, leg 369.
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1 I N T RO D U C T I O N

Velocity model building is a critical step in seismic reflection pro-
cessing. An optimum velocity field can generate flat common image
gathers (CIGs) and well-focused images in time or depth domain.
Nevertheless, taking into account the noisy and band limited nature
of the seismic reflection data and the ambiguity in the velocity es-
timation, the generated velocity field is only our best estimate of a
set of possible velocity fields (Bickel 1990; Tieman 1994; Kosloff
& Sudman 2002). Hence, all the calculated depths and the images
produced are just our best approximation of the true subsurface.

Although incorporating anisotropic parameters (Thomsen 1986;
Alkhalifah & Tsvankin 1995; Alkhalifah 1997) during the veloc-
ity analysis stage can assist to constrain better the depth results
(Hawkins et al. 2001), the non-uniqueness of the velocity field still
remains an open problem as different velocity fields can lead to
nearly equally flat arrivals in CIG (Chitu et al. 2008). The prob-
lem is worse in the absence of any well log information, where
the velocity field cannot be calibrated, rendering the final structural
image only a sample among the most probable images, as an opti-
mally focused image does not necessarily mean accuracy of depths
(Al-Chalabi 1994, 2014).

Conventionally, the initial estimation of the reflection time and
root mean square velocities (Vrms) for each geological layer is based

on picking the local maxima on a semblance spectrum (Neidell
& Taner 1971), computed from common mid-point (CMP) gath-
ers. The ambiguity associated with the velocity model building is
shown schematically in Fig. 1. The CMP gather is normal move-
out (NMO) corrected with 3 slightly different velocity fields after
4.2 s two-way-time (TWT), but visually the reflection arrivals ap-
pear equally flat (Figs 1a and b). Earlier than 4.2 s, the maxima
are less ambiguous to pick and the degree of precision of each
picked value is higher. However, the velocity model building for
deeper structures is compromised by the low depth to offset ratio
and the attenuated frequency and amplitude content of the signal.
This velocity–depth issue limits the sensitivity of residual moveout
to velocity changes and indicates that the semblance spectrum as a
tool lacks the resolution to provide us with a unique velocity model
(Lines 1993). Tomographic inversion in the migrated domain for
velocity estimation is inherently non - unique (Jones 2014) as it is
trying to match the observed time values by choosing different com-
binations of depth (z) and slowness (s) values (Jones 2010). Multiple
realizations of the same boundary can be created, all having slightly
different pairs of z, s (Fig. 1c).

Attempts have been made to incorporate statistical informa-
tion in seismic reflection data processing and perform uncertainty
analysis for constraining velocities or depth results (Abrahamsen
et al. 1991; Landa 1991; Chitu et al. 2008; Lewis et al. 2015;
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Figure 1. Uncertainty in velocity model building. (a) The semblance spectrum as a velocity estimation tool gives robust time–velocity picks for the shallow
parts, but for later times the envelope of possible picked pairs (dashed black lines) becomes broader due to attenuation effects and poor depth to offset ratio. (b)
The three velocity models (under colours red, purple and green), having differences only after 4.2 s TWT, result in equally flat gathers but can lead to different
shapes and depths for the same horizons after pre-stack depth migration (pre-SDM). (c) Tomographic inversion in the depth migration domain preserves the
observed invariant time (t1) of an arrival by using different values of thickness (z) and slowness (s). As a consequence, the mapping from time to depth can
result in slightly different realizations of the same boundary. (panel c, modified from Jones 2010, fig. 5.23).

Messud et al. 2017). The uncertain nature of the produced velocity
field can be addressed by statistically analysing the given veloc-
ity model to quantify the uncertainty associated with each pick. In
this paper, we will use high resolution 2-D seismic reflection data
and develop a robust processing flow to effectively combine seismic
analysis with Bayesian methods such as Gaussian Process emulation
and Bayesian history matching (BHM), to quantify uncertainties in
velocity models using a suite of algorithms called BRAINS [from
Bayesian Regression Analysis In Seismology (Caiado et al. 2012)].
This paper can be considered as an extension of (Caiado et al. 2012),

where a part of the methodology was initially outlined. However,
this is the first time that the model with the statistical techniques
are formalized and detailed. Also, to our knowledge, this is the first
time that a combination of Gaussian Process emulators and BHM
is implemented as part of a seismic processing flow.

The objective of this study is to estimate the uncertainties asso-
ciated with the depths of drilling targets for the upcoming Inter-
national Ocean Discovery Program project, leg 369 (Hobbs et al.
2017), located in Mentelle Basin, SW Australia (Fig. 2 a; Borissova
2002; Direen et al. 2007). In this area, stratigraphic information
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Figure 2. (a) Bathymetric map of Mentelle Basin. The positions of 2-D seismic lines (dashed black lines) and planned well locations (red circles) are shown.
Red dashed line represent the segment reprocessed in this paper. Insert, the two new planned well positions adjacent to DSDP-258 are marked in blue (4B - 4C).
(b) DSDP-258 borehole tied to ghost free Pre - Stack time migrated (preSTM) profile S310-07. In the lithological interpretation: vertical hatching carbonate
oozes; horizontal hatching chalks; wavy hatching black shales; black stipples glauconitic sands. Blue dashed lines intersecting profile S310-07, indicate the
positions of Wells 4C, 4B respectively.
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is available from the Deep Sea Drilling Project (DSDP) borehole
258, which penetrated a series of carbonate oozes, limestones, black
shales and sands (Davies et al. 1974; Fig. 2b), deposited during the
Cretaceous Hothouse period (90–70 Ma). Part of the sedimentary
sequence may contain evidence for sudden decrease in atmospheric
CO2 concentrations with associated periods of glaciation (Kuypers
et al. 1999). By drilling and recovering samples from targeted ge-
ological sequences, we can collect valuable information about the
palaeotemperature regime, biotic records, ocean circulation and tec-
tonic history of the region.

Poor core recovery and the lack of wireline sonic information
from DSDP-258, means that the depth predictions of key horizons
is based entirely on the velocity values inferred from surface seis-
mic data. As the sensitivity of differential move out, during the
velocity analysis stage using a semblance spectrum, is linked to the
frequency content of the wavelet in pre-stack data (CMP gathers;
Chen & Schuster 1999; Jones 2010), we opt to follow a complete
seismic reflection processing flow with the main focus on improv-
ing the temporal resolution of the seismic data. This is achieved by
eliminating the source and receiver ghost notches in the pre-stack
domain using inverse deghosting filters. The latter approach allows
us to perform pre-stack depth migration (pre-SDM) on the ghost
free CMP gathers, and produce an image with optimum spatial reso-
lution and focusing, which aids to better constrain the interpretation.

We use the probabilistically derived velocity estimates to retrieve
the depth information for key boundaries, tied to borehole 258
and make predictions for the depths of drilling targets for the two
planned wells 4B–4C, located adjacent to the borehole DSDP-258.
Finally, as the probabilistic approach produces a posterior distri-
bution of velocity values, we generate a set of velocity fields and
produce different realizations of pre-SDM images for the line seg-
ment intersecting the planned wells (Figs 2a and b).

2 G E O L O G I C A L S E T T I N G O F T H E
S T U DY A R E A

The western and southern margins of Australia are defined as the
two arms of a triple junction that formed during the final stages of
the Gondwana breakup (Powell et al. 1988; Royer & Coffin 1992;
Direen et al. 2007).

One of the most important geological features of that region
is the Mentelle Basin (MB). It is a sparsely explored, deep water
sedimentary basin, located between the Naturaliste Plateau and the
southern part of the Western Australian Shelf. Seismic images based
on early seismic surveys showed that Mentelle basin is elliptical
in shape, with minor and major axes 200 km east-west and 220 km
north-south, respectively. Its main depocenter, is believed to contain
sediments from Cretaceous to Holocene which produce an interval
of more than 3.0 s TWT on the seismic image (Borissova 2002;
Bradshaw et al. 2003). These sediments are possibly underlain by
older sediments from an earlier rifting event. The presence of a
thick sedimentary sequence in the MB gives a petroleum potential
similar to that of the southern Perth Basin (Borissova 2002).

The stratigraphic features of the MB are not delineated as this
area is sparsely drilled. Nevertheless, the results of the borehole
site (DSDP-258) in conjunction with newly processed and repro-
cessed seismic data from GA S280 and S310 surveys, Shell Petrel
Development Survey and Geoscience Australia Continental Mar-
gins Surveys 18 (Sargent et al. 2011), allowed the division of the
stratigraphy of MB into seismically derived tectonostratigraphic
megasequences (Maloney et al. 2011).

3 M E T H O D S

3.1 Gaussian process emulators for modelling seismic
velocities

In the Bayesian framework, the expert’s knowledge about the pa-
rameters that govern a system are represented using prior distribu-
tions, then the available data, in conjunction with a sampling model
(likelihood function), are used to update our knowledge about these
parameters (posterior distribution). In seismic reflection processing,
we can use the observed amplitudes of reflection events in a CMP
gather {Aij}, offsets {Xj}, recorded traveltimes {T (r )

i j } and picked
{Vrmsi –T0i } or derived {Vint.i –T0i } pairs as prior information and
we aim to quantify the uncertainty of {�T0i , �Vrmsi , Vinti , �Zi} for
the horizons of interest. BRAINS suite (Caiado et al. 2012) uses a
combination of Bayesian methods, such as emulation and BHM, to
quantify these uncertainties.

Our approach is based on a discrete subsurface model (Appendix
A1), with a finite number i of geophysical layers and a given array of
source (Sj)–receiver (Rj) pairs, j = 1, ..., m. These are symmetrically
placed around a CMP, with Xj being the distance between Sj and
Rj. For every Xj and hyperbolic event (layer) i, we have observed
amplitude values Aij and recorded time Tij. Also, for each layer we
can assign a zero-offset two–way traveltime T0i , its time increment
�T0i , a root-mean-square velocity Vrmsi with its velocity increment
�Vrmsi , an interval velocity Vinti and a thickness �Zi. Our model
seeks to estimate variables {�T0i , �Vrmsi , Vinti , �Zi} and their
relevant uncertainties, from observed data {Aij, Xj, T (r )

i j }, taking
into account the prior information from picked {Vrmsi , T0i } or {Vinti ,
T0i } pairs derived during the velocity analysis stage.

In the case of isotropic conditions, the recorded traveltime of a
wave to propagate, under the ray assumption, from seismic source
Sj to detector Rj, T (r )

i j , can be expressed as

T (r )
i j =

√
T 2

0i
+

(
X j

Vrmsi

)2

+ εi j + ei j , (1)

where εij accounts for the model discrepancy due to propagating ap-
proximations and isotropic assumptions, eij corresponds to record-
ing errors. Although recording error (eij), is present in a construction
of a statistical model, as the observations are indirect and recorded
with a finite accuracy, it is the model discrepancy term (εij) that has
a key role in our statistical representation. Model discrepancy inte-
grates all the simplifications of physical laws, used to describe the
model, with our incomplete knowledge about the system explored
and represents our inability to build a model which depicts reality
(Craig et al. 1997). Thus, by including the εij term not only we
address the potential issue of overfitting the model to the observed
data (Andrianakis et al. 2015) but we also produce uncertainty esti-
mations for the output variables of interest. As expressed in eq. (1),
εij term represents effects related with anisotropic wave propagation
(ε, δ anisotropic parameters) and ray tracing approximation.

Typically, these error terms are ignored which results in the Dix
equation (Dix 1955), where we can relate Vrmsi and Vinti as

Vinti =
√

T0i V 2
rmsi

− T0i−1 V 2
rmsi−1

T0i − T0i−1

(2)

and calculate the thickness �Zi of each layer as

�Zi = Vinti �T0i

2
. (3)

Eqs (2) and (3) are based on the hyperbolic approximation of
the recorded traveltime. Including the error terms in eq. (1) allows
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a more robust approach, which is not restricted to hyperbolic as-
sumptions but can express more complex models for incorporating
recorded traveltime from seismic rays which follow a non-normal
trajectory. We use the above equations to construct a Gaussian Pro-
cess (GP) model. A GP can be thought as the generalization of the
univariate Gaussian probability distribution and formally is defined
as ‘a collection of random variables with any finite number of which
having a joint Gaussian distribution’ (Rasmussen & Williams 2006).
They are well established models, applied in a variety of spatial and
temporal problems (Ripley 1991) including geostatistics (Matheron
1973; Journel & Huijbregts 1978) and Kalman filters (Ko & Fox
2009). A GP is fully defined by its mean, m(a) and covariance
k(a, a′) functions with a, a′ representing samples from the random
vector.

In this paper we will use the Gaussian Process emulators. An
emulator is defined as a stochastic belief specification, which ex-
presses probabilistic judgements for a deterministic function f(a)
(Craig et al. 1997; O’Hagan 2006; Vernon et al. 2010; Caiado &
Goldstein 2015). Commonly, they are expressed in the following
form:

fh(a) =
∑

βh j ghj (a) + uh(a), (4)

where a is input value, βhj unknown scalars, ghj(a), known deter-
ministic functions and uh(a) is a stochastic process, normally a
GP with zero mean and a square exponential covariance function.
Index h represents the output variable. As a result, in eq. (4) we can
incorporate our beliefs and the uncertainties about each variable of
the system explored.

In our statistical analysis, we use two emulators for uncertainty
quantification. First, a local (1-D) emulator (Appendix A1), where
we make the assumption that a set of traveltimes related to a given
horizon in a single CMP can be approximated as a sample of a
continuous function with a hyperbolic trend. If any finite set of
traveltimes from this hyperbolic curve is believed to follow a mul-
tivariate Gaussian distribution, we can assume that the recorded
traveltime curve is a GP with respect to offset x

T (r )
i (x)|�T0(1,...i) , �Vrms(1,...,i) ∼ GP(mti (x), ki (x, x ′)) (5)

or expressed in a form consistent to eq. (1) as

T (r )
i (x) = (t2

0i
+ x2υ−2

rmsi
)1/2 + ui (x). (6)

The first term of the right-hand side represents the mean function
mti (x) and the second term a stationary stochastic process with zero
mean and a square exponential covariance functions kti (x, x ′), with
the mean and covariance functions given below:

mti (x) = (t2
0i

+ x2υ−2
rmsi

)1/2 (7)

kti (x, x ′) = σni + σsi exp

(
− (x − x ′)2

di

)
. (7)

The terms x and x′ define two random points from the offset space
within a single CMP. Comparing eq. (1) with expression (7) we can
see that the hyperbolic trend of traveltime equation is stored under
the mean function mti (x) and the error terms εij, eij are stored under
the noise parameters σni , σsi of the covariance function. The param-
eter di represents the length-scale of the function and defines how
far the x, x′ values should be to become uncorrelated. The covari-
ance function, can be adjusted to specific applications by correctly
tuning its hyperparameters (σni , σsi , di). As our prior knowledge
about their appropriate values reflects our knowledge about the sys-
tem, they can be treated as constants that need to be set manually
or derived from an optimization process using the training data

(Rasmussen & Williams 2006). In our case, the training data can
be thought of as the set of prior T0i −Vrmsi , T0i −Vinti pairs picked
during the velocity analysis stage. Based on the velocity analysis
interval (spacing between two consecutive picked pairs), the picked
values and also their variability along the picked velocity layer, we
can manually calibrate accordingly, the noise, scale and length pa-
rameters of the covariance function and provide starting points for
their values. Subsequently, the parameters are refined using a gra-
dient search to find a local maximum in the likelihood and retrieve
values in an area of high probability. Eqs (5)–(7) can be formu-
lated analogously for linking T (r )

i with Vinti and �Zi, rendering the
Bayesian model multidimensional.

Second, a 2-D emulator expands the 1-D uncertainty estimation
into a 2-D multigather representation by assuming that the variables
�T0i , �Vrmsi , Vinti and �Zi, for every geophysical boundary, follow
a GP over the CMP positions (xc) along a profile (Appendix A2).
The latter, is used to constrain the intergather areas and produce
estimates in regions where we do not have available prior pick
pairs.

3.2 Bayesian History Matching for model space reduction

In order to perform model calibration and reduce the parameter in-
put space we use the approach known as BHM (Craig et al. 1997;
Vernon et al. 2010). BHM is an established method and combined
with emulation techniques has been tested successfully in a vari-
ety of different scientific disciplines such as reservoir modelling
(Craig et al. 1997; Cumming & Goldstein 2009) climate modelling
(Caiado & Goldstein 2015) and galaxy formation modelling
(Vernon et al. 2010). BHM should not be confused with the term
History Matching widely used in the oil industry, as in the latter
case, we are trying to match empirical data, such as production
rates and observed pressure from well logs, with a complex model
(normally called simulator) that is assumed to represent part of the
subsurface (reservoir), where the parameters that govern the model
do not include any uncertainty estimation. On the contrary through
the process of BHM, all the possible models that can match our ob-
served data are identified (Vernon et al. 2010). Following the same
notation as in eq. (4), in BHM, we aim to identify and iteratively
discard input values, a, of the parameter space for which the evalu-
ation of a function (emulator) fh(a) is not likely to provide a good
match to the observed data L. The parts of parameter space that
are discarded are called implausible and the process of reducing the
space is accomplished using the probabilistic criterion of implau-
sibility Ih(a) (Craig et al. 1997; Vernon et al. 2010). The general
definition of Implausibility is given below.

Definition 1. Implausibility

For a given choice of input value a with modelled output fh(a), ob-
servation vector Lh and taking into account all the variances present
in the system Varh(system), implausibility Ih(a) is defined as:

I 2
h (a) =

(
Lh − fh(a)

)2

Varh(system)
. (8)

Large values of Ih(a) indicate that, taking into account all the
uncertainties of the system (denominator of eq. 8), it is very unlikely
to obtain acceptable matches between the model outputs and the
observed data at input a. However, small values of Ih(a) do not
necessarily mean that the input value a is correct (Vernon et al.
2010). The Implausibility measure Ih(a), as expressed in eq. (8),
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refers to multidimensional models (h number of output variables).
A 1-D example of the above form, taking into account all the types
of uncertainties present in our system (eq. 1) and based on the GP
model as expressed in eq. (5), can be formulated as

I 2
i (a) =

(
Li − E∗(T (r )

i (a)
))2

Var∗(T (r )
i (a)) + Var(εi ) + Var(ei )

, (9)

where Li our observed data, E∗(T (r )
i (a)), Var∗(T (r )

i (a)) the poste-
rior mean and posterior variance of Gaussian Process emulator and
Var(εi), Var(ei) are the variances of the modelling and observation
error, respectively. Index i, represent each velocity layer. The ob-
served data Li, for every discrete velocity layer associated with a
hyperbolic event in a CMP gather, is the local maximum value of
the semblance spectrum of that hyperbolic trend calculated from
the observed offset Xj, amplitude values Aj and recorded time Tj.
The non-implausible space is gradually reduced by applying multi-
ple iterations of BHM. In order to identify the region of implausible
input values, we use a cut - off limit based on Pukelsheim’s 3σ rule
(any continuous unimodal distribution at least 95 per cent of the
probability is within three sigma of the mean) (Pukelsheim 1994).
Based on that rule, input values a for which Ih(a) > 3σ are consid-
ered implausible and are discarded. The iterative BHM procedure
is usually repeated until the difference between the regions, after
successive iterations, becomes small or the posterior variance is
suitably small (Andrianakis et al. 2015).

As BRAINS model is multidimensional (T (r )
i is linked with �T0i ,

�Vrmsi , Vint.i and �Zi, referred as index h in eq. 8), we opt to build
separate implausibilities for every output h. A simple combination
between the implausibility measures can be performed by taking
the maximum implausibility IM(a) = maxIh(a) which can be used
to find regions of input values a with large IM(a) values. Note
that the application of BHM is a fast process as it excludes the
implausible space without considering the full input and output
space simultaneously, dissimilar to other calibration methods such
as Markov Chain Monte Carlo (MCMC) or maximum likelihood
methods where the calibration is performed taking into account all
input / output parameters (Andrianakis et al. 2015).

A pictorial example of GP emulation with BHM calibration in
seismic reflection data processing is presented in Fig. 3. The conven-
tional semblance spectrum plots (Fig. 3a), for a number of CMP’s
along a profile, are picked to derive an initial estimate of T0–Vrms

pairs (red circles) associated with a number of seismic boundaries
(Fig. 3b). The pairs do not include any sort of uncertainty mea-
surement and are linearly interpolated between non–adjacent CMP
positions (gray dashed lines). As a result, this process leads to
unique T0–Vrms and Z–Vint. volumes and unique subsurface images
in time and depth domain. For the statistical approach, the T0–Vrms

pairs along with CMP gathers which contain the observed param-
eters L = [Aj, Xj, Tj] transformed in the semblance space, are used
as input data to the local (1-D) GP emulator to derive an estimate
of the most probable functions evaluated at each picked pair. By
means of calibration, we reduce the parameter space substituting
the semblance spectrum by an implausibility spectrum which is cal-
culated using eq. (8). In Fig. 3(c), a Z–Vint. map is presented, with the
picked pairs being spatially linked with the pre-SDM image shown
in Fig. 3(d). The coloured band inside the trend indicates different
levels of implausibility. In the regions where the posterior mean is
far from the observed values the implausibility is considered large
(red colour), indicating that an input pair in that band is unlikely to
give an output that will match the observations L. On the contrary,
if we choose to make our pick in the lower implausibility regions

(green areas), the posterior variance will decrease, with a simulta-
neous decrease of the non–implausible region. A further decrease
of parameter space can be achieved by iteratively performing BHM
in the non-implausible regions.

The process continues in all CMP locations where we provided
prior pick information and terminates when one of the aforemen-
tioned criteria is reached. The posterior mean and variance estima-
tions for the picked pairs, serve as a guide to perform uncertainty
analysis along the profile using the multigather 2-D emulator aiming
to produce probabilistic estimates in the intra-CMP gathers area.

Note that the implausibility map is not restricted to the Z–Vint.

space but it is calculated for any combination of T0 or Z with Vrms

or Vint. pairs. Each implausibility pair has different shape and size,
locally (in every CMP location) and also laterally (along CMP loca-
tions), incorporating the different level of uncertainty in each picked
pairs and spatial positions. Also, the regions between the prior infor-
mation picks in each map are bounded by the posterior ± 2σ curves
(blue dashed curves), with the posterior mean function curve (solid
black curve) intersecting regions of lowest implausibility. This inter-
layer representation of uncertainty can be achieved by interpolating
the posterior results.

The final output of this process is a set of uncertainty quantifi-
cation for all T0, Vrms, Vint and Z parameters for each horizon of
interest (Fig. 3d). An important by-product of the technique is that
by quantifying the uncertainty of Vint. values, we can generate a set
of velocity fields bounded by the ±2σ curves and produce different
realizations of pre-SDM images. The latter tool can be critical in
regions with complex geology or for data rich in low frequency con-
tent and noise level, where a sole realization of imaged structures
may not adequately identify risk at proposal drill sites.

3.3 Data pre-conditioning for input to BRAINS

As our primary goal is to develop a horizon based velocity model
discretized in a number of layers (Appendix A1), the final version
of the velocity field aims to produce flat CIG gathers and focused
images in time and depth domain. Therefore, the processing steps
are tailored appropriately to build an optimum velocity field which
will be used as prior information to BRAINS algorithm. Concur-
rently, in order to clarify the target horizons of the profile we shaped
the amplitude spectrum by eliminating the source bubble pulse coda
and the source and receiver ghost notches in the shot domain.

The pre-stack de-signature and deghosting process combined
with the reposition of the data through the application of pre-stack
time migration (pre-STM)/pre-SDM, are the two key steps in the
processing flow described below and they have a dual effect in
improving BRAINS estimation. First, by improving the temporal
resolution pre-stack, sharper reflections events become apparent in
CMP domain, which are transformed into well-defined local max-
ima in the semblance space. As BRAINS and the process of BHM
use the semblance spectrum (L observed data) as a tool to constrain
the posterior results, the pre-stack deghosting gives extra precision
to the model’s outputs. Second, the pre-stack reposition of the data is
mandatory, as it focuses the reflection events and eliminates the dip-
dependence of stacking velocity (Vst.), providing a better constrain
to prior information (T0, Z with Vrms, Vint. pairs).

3.3.1 Time domain processing

The raw shot gathers for line S310-07 are provided by Geoscience
Australia (detailed acquisition parameters in Table 1, processing
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Table 1. Acquisition specifications for line S310-07.

Parameter Value

Source type Tuned point-source air-gun array
Gun type Bolt 1500LL air guns
Nominal source volume 70.3 L (4290 cu in)
Nominal source pressure 13.7 Mpa (2000 psi)
Nominal source depth 7 ±1 m
Shotpoint interval 37.5 m
Streamer type Sercel Seal Solid
Number 1
Streamer Length 8100 m
Number of groups 648
Group length 12.5
Nominal streamer depth 10 ±1 m
Nominal inline offset 94
Recording system Sercel SEAL v5.2
Record length 12 s
Sample interval 2 ms
Low-cut filter/ slope 2 Hz at 6 dB/Oct, Digital Low-Cut: OFF
High-cut filter/ slope 200 Hz at 370 dB/Oct
Recording format SEGD 8058 rev.1 32bbit IEEE

Table 2. Processing sequence applied to seismic line S310-07 (time
domain).

S310-07

Reformat and geometry import – CDP spacing = 6.25 m – Nominal CDP
fold = 108

Instrument delay correction = 100 ms, source–receiver datuming
Zero phase low cut Butterworth filter 4 Hz, 18 db/octave
Modelled debubble inverse filter (shot gathers)
Deterministic inverse filter for source’s notch compensation (shot gathers)
derived from post-stack amplitude spectrum
Receiver’s notch compensation in f – x domain (shot gathers)
CMP Sorting and Velocity analysis (every 312.5 m / 50 CMPs)
Straight ray isotropic Kirchhoff Pre Stack Time Migration (Pre-STM)
Spherical Divergence Correction
Outer Trace Mute and Stack
Time variant zero phase Butterworth filter:
10-20-100-125 at seabed (sb),
10-20-100-125 at sb + 0.3 s,
8-15-100,120 at sb + 0.6 s,
5-10-90-110 at sb + 0.9 s,
3-8-50-70 at sb + 2.5 s
Frequency – distance (f − x) deconvolution for random noise attenuation
Amplitude–phase Inverse Q compensation = 200
Cosmetic sea noise mute

sequence in Table 2). Initially, geometry acquisition information is
imported to the profile and gun and receivers’ static corrections are
applied to the shot gathers to compensate for the tow depths of the
source and streamer. A time-invariant low cut filter is used to reduce
the low frequency swell noise. The first step for the spectrum shaping
is to create a debubble operator to eliminate the source’s bubble
pulse coda. The inverse operator is modelled using the Nucleus
source modelling package [Petroleum Geo services (PGS)] which
takes into account the acquisition parameters, the volume and type
of air guns and the physical parameters of the water (sound speed and
temperature) during the seismic acquisition. The filter is convolved
in the pre-stack (shot) domain as the periodicity of the bubble pulse
is close to constant from shot to shot (Sargent et al. 2011). The
source’s notch effect was eliminated in the same domain, using
a deterministic inverse filter constructed following the approach
of Sargent et al. (2011). Although the deterministic inverse filters

can be applied pre-stack, their periodicity and shape is tailored
to the average observed notches observed in the stack amplitude
spectrum. Similarly, the receiver’s notch amplitude compensation
is performed on a shot by shot basis by applying an automatic
receiver’s deghosting filter in the f–x domain, after plane wave
decomposition and separation of up–going and down–going waves
(Amundsen 1993).

The deep water environment of the segment (more than 2.5 Km
depth from sea level) generates long path multiples that do not in-
terfere with the signal of the sedimentary sequence. As a result, we
chose not to apply any demultiple techniques. After sorting shot
gathers into CMP gathers, several passes of manual velocity anal-
ysis and subsequent straight ray isotropic Kirchhoff pre-STM are
performed, aiming at building a smooth velocity field appropriate
to produce flat image gathers. The final velocity model is also used
for divergence correction to compensate for geometrical spreading.
Before stacking, the flat time gathers underwent an outer trace mute
to avoid any stretch effects at far offsets.

In the post-stack domain, random noise elimination is achieved
by application of frequency–distance (f–x) deconvolution (Canales
1984) and amplitude/phase inverse Q filter is applied to compensate
for the attenuation during seismic wave propagation (Wang 2002).
Time - variant bandpass filtering and cosmetic sea noise mute com-
plete the processing of the profile in the time domain.

In Fig. 4, we present the comparison between images with (Figs 4a
and b) and without (Figs 4c and d) notch compensation. The ghost
free image shows optimum focusing and is characterized by a broad-
band amplitude spectrum (Fig. 4e). The retrieved frequency content
improves the temporal resolution of the profile, which results to
sharper seismic boundaries and by inference more constrain inter-
pretation, especially at the shallow sedimentary sequence (arrows
and curly brackets in Figs 4b and d). Note, however, that the presence
of basalts at around 4.5 s TWT (Maloney et al. 2011) attenuates the
high frequency content of the seismic energy (Maresh et al. 2006)
resulting in a poor reflectivity in the sub-basalt region.

3.3.2 Depth domain processing

Although the processing flow in the time domain yielded acceptably
focused images, the 1-D representation of the velocity model used
in the time migration algorithm (Hubral 1977; Black & Brzostowski
1994) sets a limit to the precision of the velocity model building
(Jones 2010, 2012). Thus, we opted to use the final version of the
pre-STM velocity field as a starting model to perform isotropic
Kirchhoff pre-SDM on the deghosted CMP gathers. As our well
positions lie in an area with a relatively simple geological struc-
ture (Fig. 2b), we chose to run subsequent passes of vertical update
(Deregowski 1990) to refine our input velocity field until accept-
ably flat CIG gathers were produced. The resulted depth migrated
images gathers are stretched back to time using the smoothed ver-
sion of the final velocity field for filtering and cosmetic final residual
moveout correction (RMO) and converted back to depth domain for
stacking. This additional editing of velocity field assisted to con-
strain better the prior information for input to the Bayesian model
and simultaneously assured that the velocity model is suitable to
pre-SDM applications.

Even in an environment with subhorizontal layers and rela-
tively simple subsurface structure like our area of interest, the
pre-STM and pre-SDM profiles show some structural differences,
with the latter showing local sharpening of the faulted zones close
to well locations (Figs 5a and b). Furthermore, the amplitude
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Figure 6. Comparison between prior and posterior mean pre-SDM images. (a) Image generated using the prior Vint velocity field (superimposed). (b) Image
using the posterior mean Vint velocity field (superimposed). (c) The velocity fields and images do not present any significant differences, therefore possible
structural changes can become apparent after using a structural difference plot, which is the result of subtracting the posterior mean image (b) from prior
image (a). The image features’ changes are more pronounced in the deeper parts of the profile as a direct consequence of top–down reposition of the signal.
(d) Example of signal difference extracted from a depth window of CDP number 4100 (red dashed line in panel (c)), as calculated by subtracting the posterior
from the prior signal.

compensation in the seismic gathers in time domain has gener-
ated a profile in depth domain with optimum spatial resolution and
focusing (Figs 5a and b). Thus, the application of pre-stack in-
verse filters serves as an amplitude shaping tool in both domains, in
contrast with implementing deterministic post-stack inverse filters
(Sargent et al. 2011), which can produce flat amplitude spectrum
and improved image resolution only in the time domain.

4 R E S U LT S A N D D I S C U S S I O N

Using the final version of the t0 − Vrms, t0 − Vint. pairs as prior
information for BRAINS along with the deghosted preSTM image
gathers and performing BHM to reduce the parameter space, we
calculate the posterior distribution of t0, Vrms, Vint and z for each
CMP value and make uncertainty estimations for the variables of
interest. Initially, the posterior mean Vint. field was used as input to
the depth migration algorithm. A comparison between the images
produced using the prior and posterior mean Vint fields is given in
fig 6. The pre-SDM profiles do not indicate any major structural
differences as the models used are nearly identical. This is a direct
consequence of the Gaussian Process model used and the prior
picks made, as the mean function in eq. (5) encodes the hyperbolic
approximation of the seismic wave propagation. As the latter is

also used to define the moveout trajectory for semblance spectrum
calculation associated with hyperbolic events in CMP positions
along a profile, the closest the prior t0–Vrms or t0–Vint. picks are to the
local maxima semblance value, the less difference will be observed
between prior and posterior mean models and by inference depth
images.

Differences are resolved after subtracting the posterior mean pre-
SDM image (Fig. 6b) from its prior equivalent (Fig. 6a), resulting in
a structural difference plot (Figs 6c and d). The images’ dissimilar
features are now emphasized, indicating regions of differential depth
shift. As the migration algorithm repositions the time signal to the
depth domain in a top-down basis, the cumulative differences of
velocity field with respect to depth get larger and map to more
pronounced depth image shifts. Note that as the velocity fields show
minor differences, this effect generates only a vertical structural
stretch with no resolvable lateral structural changes.

In terms of depth predictions, although we used an isotropic
approximation of pre-SDM, the tie with the borehole information
is acceptable with a misfit of approximately 4 per cent (21 m) at
the glauconitic sandstones level (Figs 7a and b). The large misfit
at the bottom shales level is attributed to the indistinct reflectiv-
ity boundary between limestones and shales (Figs 7a and b). Note,
however, that the observed depths from DSDP-258 are consistent
with the ± 2σ credibility intervals. This result reassures us that

Downloaded from https://academic.oup.com/gji/article-abstract/213/3/2161/4925578
by University of Durham user
on 18 April 2018



2172 D.G. Michelioudakis, R.W. Hobbs and C.C.S. Caiado

Figure 7. Posterior depth results and probabilistic imaging. (a) Pre-SDM image for S310-07 profile. Dashed vertical lines represent the wells’ locations, with
the posterior range of interval velocity/depth values for each layer superimposed as filled coloured regions (red, green and blue colours for Well 4C, DSDP-258
(Well 4A) and Well 4B, respectively). Zoomed panel shows the region associated with the yellow rectangle as an example of the posterior mean and ± 2σ

trends for top glauconitic sandstones (red solid trend in zoom represent posterior mean values, dashed lines in zoom the ± 2σ intervals respectively). (b) The
predictions for the cumulative thickness of drilling targets for each well location, associated with the lithological interpretation from Fig. 2. (c) A number of
pre-SDM structural difference plots, using Vint. sampled from the posterior distribution. The superimposed coloured map represents the normalized difference
between the randomly generated Vint. velocity fields used to produce each profile and the posterior mean. Panels c(i) and c(iii) demonstrate the ±2σ end
members for black shales velocity layer with the remaining layers preset to take random values from the posterior distribution. Zoomed panel from c(i) shows
how the difference plot is generated. Fig. c(ii) same as in (a). Panels c(iv), c(v) and c(vi) represent fields allowed to span the total Vint. space of the posterior
distribution.
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our posterior mean velocity field is a good representation of the
local velocity field and, by inference, can be used to make pre-
dictions about the depths to horizons in the new well locations
(Figs 7a and b).

The uncertainty quantification not only results in a numerical es-
timation of depth values for key horizons, but can be also used to
generate a set of probabilistic images by sampling Vint. values from
the posterior distribution and using the latter as input to pre-SDM
algorithm. In Fig. 7(c), we present a number of structural differ-
ence plots, produced by subtracting each resulted pre-SDM image
realization, derived using a probabilistic velocity field, from the pos-
terior mean image. The plots display a number of probable depth
and shape positions for geological boundaries of interest, in accor-
dance with the differences between the sampled velocity fields and
the posterior mean velocity field [Figs 7c(i) and (iii) ± 2σ end mem-
bers for posterior black shales velocity, Figs 7c(iv)–(vi) randomly
generated values for all velocity layers, Fig. 7c(ii) posterior mean
image). In positions where the differences are closer to extreme
values, the local image features start changing in shape (localized
red maxima in Figs 7c(iii) and (iv)).

The randomly generated values, bounded by the ± 2σ credi-
bility intervals for every CMP position and every velocity layer,
incorporate a confidence measure associated to each picked pair
which is a combination of the observed data (amplitude values Aij,

recorded traveltime T (r )
i j , distance Xj), and prior picks positions.

Thus, the retrieved vertical pattern of blue (negative) and red (posi-
tive) regions in the normalized velocity difference plots of Fig. 7(c)
approximates the Gaussian Process pattern depicted in Fig. 3(c),
where the ± 2σ curves, along a velocity layer, show decreased
uncertainty close to the prior picked CMP positions and increased
between them. These regions have a spacing of approximately 50
CMPs positions, driven by the velocity picking spacing used to
generate the prior velocity model for time and depth migration
(Table 2). We expect that the mapping of the uncertain nature of
velocity models to image realizations, especially in areas with com-
plex geological structures such as salt diapirs or basalt intrusions,
is critical to constrain better the most probable interpretations and
risk.

The observed misfit between the modelled mean and true depths
at the glauconitic sandstones level can be primarily attributed to the
isotropic approximation of BRAINS and the migration algorithm
used. As described in expressions (5)–(7), the Gaussian process em-
ulator does not include an explicit representation of epsilon (ε) and
delta (δ) anisotropic parameters (Thomsen 1986), therefore these
terms are not statistically quantified as an output from the model.
The uncertainty related with anisotropic conditions is integrated
in our system into the model discrepancy term which value is set
accordingly to accommodate the mismatch in the predicted depths
and observed data, driven primarily by excluding Thomsen’s ε and
δ parameters. This approach was chosen in order to avoid nar-
row posterior variances which would indicate overconfident depths
predictions for the drilling targets, predictions that could not be
supported for the result extracted using an isotropic depth migra-
tion algorithm alone, without the confirmation from independent
observations (well logs).

Although indirect, this compensation of the anisotropic param-
eters through a unified discrepancy term can be considered as the
optimum solution in our system. Firstly, the lack of any wireline
log information concerning seismic velocities does not facilitate
the process of anisotropic velocity model building as the true ve-
locity values could be implemented to better constrain the prior
information in our model and simultaneously be used as a starting

point for higher order NMO correction (fourth-order correction,
η parameter). Furthermore, due to the uncertain tie between the
observed reflectivity in the final pre-STM/pre-SDM images and the
lithological boundaries (especially at the boundary between lime-
stones to black shales), any scaling of the target horizons to match
the observed depths (Davies et al. 1974) using an inferred δ param-
eter value is impractical and contains the risk of assigning observed
reflectivities to incorrect geological boundaries and hence depths.
As a result, trying to infer the anisotropic parameters and provide
their uncertainty estimations, without any well control, was a task
prone to uncertainties that could compromise the predictions of
velocities and depths for the horizons of interest.

However, there is an additional, more subtle reason that justifies
our approach. It has been shown (Al-Chalabi 2014), that the in-
clusion of a fourth-order term during NMO correction (estimation
of η parameter) is associated with a large increase in the observed
variance compared to the simpler second-order hyperbolic approxi-
mation mainly due to the strong anti-correlated nature between Vnmo

and η variables. This result indicates, that an anisotropic approach
during the velocity analysis stage combined with anisotropic migra-
tion algorithms, although may result to better focusing of the final
image and possibly better prior/posterior mean depth results, does
not lead to a better uncertainty quantification of velocity values.

5 C O N C LU S I O N

We have presented a method to quantify the uncertainty of depths
and related values in seismic reflection data processing. Our seismic
reflection processing strategy was separated into two distinct parts.
First, we aimed to improve the temporal and spatial resolution of the
region close to the planned well locations by performing source’s
and receiver’s notch compensation in the pre-stack domain. Then,
we focused on the velocity model building in the time and depth
domain in order to generate well focused images and constraint prior
information for input to the BRAINS model. By using Gaussian
Process emulators conjointly with iterative BHM, we managed to
retrieve the depths of the key horizons as known from DSDP-258
borehole and make predictions about the expected depths of same
horizons for wells 4B and 4C, respectively.

As the probabilistic approach results in a distribution estimation
for Vint, we generated sets of new velocity models and perform pre-
SDM to produce different image realizations. In this way, we were
able to map differences in velocity models to differences in image
features for our horizons of interest.

The GP emulators are deliberately parametrized to exclude ex-
plicit uncertainty estimations for anisotropic parameters (ε, δ). In-
stead, the anisotropic effects during seismic wave propagation are
unified in the model discrepancy term (εij or σni ), a term which is
easier to tune and with the synergy of prior information of picked
{Vrms, t0} or {Vint., t0} pairs, it allows constrained posterior results.
The inclusion of the anisotropic terms as independent variables in
our model along with their explicit uncertainty estimation, would
require well log information concerning true seismic velocities and
also well to seismic tie to unambiguously map observed reflectivi-
ties from seismic data to lithological boundaries. Even in that case,
their incorporation could pose problems concerning the robustness
of their uncertainty estimations, as in time domain the terms are
accessed solely through η parameter (Alkhalifah & Tsvankin 1995;
Alkhalifah 1997), a term that is strongly coupled to the small-offset
moveout velocity (Vnmo), that a useful uncertainty estimation is in
question.
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The statistical model described in this paper is based on the dis-
crete layer velocity model representation and can be easily coupled
with a layer-based tomographic inversion scheme. The challenge
will be to incorporate an analogous model to gridded or hybrid
velocity model representations (Jones et al. 2007) for complex ge-
ological structures, where the velocity regime is controlled by a
combination of vertical compaction gradients and sharp velocity
contrasts.
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A P P E N D I X : B AY E S I A N M O D E L S
A N D G AU S S I A N P RO C E S S I N S E I S M I C
R E F L E C T I O N

In the following, we will briefly describe the 1-D and 2-D
Gaussian Process emulators used. See (Caiado et al. 2012) for a
full description of the models.

A1 1-D emulator

Suppose a discretized subsurface model, with a finite number of
interfaces bi and a given array of source–receiver pairs, Sj and Rj,
containing m pairs. All the pairs are symmetrically placed around a
CMP, with Xj being the distance between Sj and Rj. As the medium
is discretized, we can associate to every layer i, a two way traveltime
T0i with its time increment �T0i , a root-mean-square velocity Vrmsi

with its increment �Vrmsi and a thickness �Zi. Furthermore, let Tij

be the real time for a wave ray to propagate from seismic source
Sj to detector Rj, by refracting at interfaces bi to bi − 1, reflecting at
bi and refracting back to the receiver’s position. In case of parallel
boundaries and isotropic conditions, the real traveltime Tij is defined
as

Ti j =
√

T 2
0i

+
(

X j

Vrmsi

)2

+ εi j , (A1)

where εij counts for the modelling error due to propagating approx-
imations and isotropic assumptions.

Now, the recorded traveltime T(r) is a combination of the real
traveltime Tij plus a set of recording errors eij, resulting in the
equation

T (r )
i j =

√
T 2

0i
+

(
X j

Vrmsi

)2

+ εi j + ei j . (A2)

A generalization of eqs (A1) and (A2) uses Gaussian Process tech-
niques, works in function space instead of weight space and com-

pensates for the lack of flexibility of the standard regression methods
(Rasmussen & Williams 2006).

For 1-D case, we assume that a set of traveltimes, related to
a certain interface in a CMP gather, is a sample of a continuous
function with a hyperbolic trend. If a finite set of times in that curve
follows a multivariate Gaussian distribution, we can think that every
reflection hyperbola in a CMP gather is a Gaussian Process (GP)
over offset x.

In a function form, the recorded traveltime curve, for a particular
layer, T (r )

i is a Gaussian Process

T (r )
i (x)|�T0(1,...i) , �Vrms(1,...,i) ∼ GP(mti (x), ki (x, x ′)) (A3)

with mean and square exponential covariance functions

mti (x) = (t2
0i

+ x2υ−2
rmsi

)1/2

ki (x, x ′) = σni + σsi exp
(
− (x−x ′)2

di

) (A4)

where x and x′ define two random points from the offset space in
a single CMP, σsi is a scale parameter, σni is a noise parameter
and di is a length parameter. The last parameters are regarded as
constants or can be set manually. The joint prior for both �T0(1,...i)

and �Vrms(1,...,i) is given by(
�T0(1,...i)

�Vrms(1,...,i)

)
∼ N

((
μt0i

μυ(i)

)
, 	(t0,υrmsi)

)
(A5)

and their prior distribution is written as

π (υrms, t0) =
n∏

i=1

π (�t0i , �υrmsi
) (A6)

with π (�t0i , �υrmsi
), the density of the joint prior in (A5).

In a similar manner, we can express the likelihood function of
the GP in (A3) as

π (t (r )
i (x)|υrmsi , t0i ) = π

(
t (r )
i (x)|�t0(1,...,i) , �υrms(1,...,i)

)
. (A7)

Finally, the posterior distribution is given as the combination of
the prior distribution (A6) and the likelihood (A7), resulting in the
following expression

π (υrms, t0|t (r ))=π (υrms, t0)
∫

x

π
(

t (r )
i (x)|�t0(1,...,i) ,�υrms(1,...,i)

)
π (t (r )(x))

dx

(A8)

with π (t(r)(x)), a normalizing constant that can be evaluated
numerically.

A2 2-D emulator

For the 2-D case, we expand the 1-D Gaussian Process into a multi-
gather representation by assuming that the variables �T0i , �Vrmsi ,
Vint.i and �Zi, for every geophysical boundary, follow a GP over
the CMP positions (xc) along a profile. As a result, for the recorded
traveltime T (r )

i we have

T (r )
i (x, xc)|�T0(1,...i) (xc),�Vrms(1,...,i) (xc)

∼ GP
(
mti (x, xc), ki (x, x ′, xc)

)
(A9)

with mean and square exponential covariance functions

mti (x, xc) = (
t0i (xc)2 + x2υrmsi (xc)−2

)1/2

ki (x, x ′, xc) = σni (xc) + σsi (xc)exp
(
− (x−x ′)2

di (xc )

)
.

(A10)
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In a similar manner, as �Vrmsi and �T0i follow a GP, they take the
following form

�Vrmsi (xc) ∼ GP
(

mυ (xc), σnυi + σsυi exp

(
(xc − x ′

c)2

dυi

))
(A11)

�T0i (xc) ∼ GP
(

mt0 (xc), σnti + σsti exp

(
(xc − x ′

c)2

dti

))
(A12)

with mυ (xc), mt0 (xc) polynomial functions, xc, x ′
c two different CMP

locations along the profile and σnυi , σsυi , dυi , σnti , σsti , dti noise,
scale and length parameters for �Vrmsi (xc) and �T0i (xc), respec-
tively. The multigather case model compensates for lateral variations
in the velocity field. Analogous expressions can link the recorded
traveltime T (r )

i (x, xc) with Vint(i) (xc) and �Zi(xc) allowing proba-
bilistic estimations for all variables of interest in seismic reflection
processing.
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