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1 Introduction and summary

It has recently been observed that any four-dimensional conformal field theory with ex-

tended supersymmetry has a protected sector that is isomorphic to a two-dimensional chiral

algebra [1]. The existence of such a sector leads to a wide variety of insights, including new

unitarity bounds and powerful organizing principles that underlie the spectrum of BPS op-

erators of such theories. Furthermore, the constraints of crossing symmetry are eminently

tractable for correlation functions in this subsector, and solving the “mini-bootstrap” prob-

lem associated with these constraints is an important preliminary step towards implement-

ing the full numerical bootstrap program for unprotected correlation functions in such
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theories. An obvious question that presents itself is whether such a structure can be re-

produced in superconformal field theories (SCFTs) in spacetimes of dimension d ‰ 4.

The arguments presented in the four-dimensional case were fairly general, with the

existence of a protected chiral algebra following entirely from the existence of an sup1, 1|2q

superconformal subalgebra of the full superconformal algebra for which the sup1, 1q sub-

algebra acts as anti-holomorphic Möbius transformations on some fixed plane. A similar

subsector will consequently exist in any theory for which the superconformal algebra in-

cludes such a subalgebra. A quick survey of the available superconformal algebras [2, 3]

leads to a rather short list of possibilities:

I sup2, 2|2q : N “ 2 in d “ 4.

II sup2, 2|4q : N “ 4 in d “ 4.

III ospp8‹|4q : N “ p2, 0q in d “ 6.

IV sup1, 1|2q : “Small” N “ p0, 4q and N “ p4, 4q in d “ 2.

The first two entries on this list were the subject of [1]. In this work we explore the third.

The six-dimensional case holds particular interest since six-dimensional p2, 0q SCFTs

remain quite mysterious. To the best of our knowledge, no correlation functions have been

computed in these theories except in the free case, or indirectly for the An theories at large

n by means of the AdS/CFT correspondence [4, 5]. This makes the presence of a solvable

subsector all the more interesting, as the structure of the computable correlators may hold

some clues about the right language with which to describe p2, 0q SCFTs more generally.

The appearance of chiral algebras in the context of the six-dimensional p2, 0q theories

does not come as a complete surprise. The AGT correspondence [6, 7] relates instanton

partition functions of four-dimensional theories of class S [8] to Toda correlators, suggesting

a deep connection between p2, 0q SCFTs and chiral algebras. More precisely, there should

be a connection between the p2, 0q theory labelled by the simply laced Lie algebra g and the

chiral algebra Wg. However, the microscopic origin of this symmetry has so far remained

unclear. Our main result is that the protected chiral algebra associated to the p2, 0q SCFT

of type g is precisely the Wg algebra! In this context, the generating currents of Wg

arise very concretely as cohomology classes of half-BPS local operators in the SCFT. This

observation seems a likely starting point for a truly microscopic understanding of the AGT

correspondence.

Our analysis involves a few technicalities, but the essential argument is not difficult to

summarize. As in [1], we identify a privileged set of BPS operators that is closed under the

operator product expansion. These operators are defined by passing to the cohomology of

a certain nilpotent supercharge Q . The requirement that a local operator be annihilated

by this supercharge restricts it to lie on a fixed plane R2 Ă R6. The space-time dependence

of a Q -closed operator within the fixed plane is also slightly unusual: its orientation in

R-symmetry space is correlated with its position on the plane. Concretely, if pz, z̄q are

complex coordinate on the plane, the schematic form of a Q -closed operator is

Opz, z̄q :“ uIpz̄qOIpz, z̄q , (1.1)

– 2 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
7

where OIpz, z̄q is a conventional local operator that obeys a suitable BPS condition. The

index I runs over the components of a finite-dimensional irreducible representation of the

sop5q R-symmetry, and uIpz̄q are simple functions of z̄. (The precise form is dictated by

“twisting” the right-moving slp2q Möbius symmetry acting on z̄ by an sop3qR subgroup

of sop5qR.) The crucial point of this construction is that the anti-holomorphic position-

dependence of such an operator is Q -exact, meaning that its cohomology class depends on

the insertion point meromorphically,

rOpz, z̄qsQ  Opzq . (1.2)

Consequently, correlation functions of these twisted operators are meromorphic functions

of the insertion points, and as such they inherit the structure of a two-dimensional chiral

algebra.

This formal construction associates a chiral algebra to any p2, 0q SCFT. Since chiral

algebras are very rigid structures, we may hope to completely characterize the ones as-

sociated to the known p2, 0q theories by leveraging a minimal amount of physical data as

input. In particular, the spectrum of half-BPS operators provides a useful starting point

for the analysis. Recall that half-BPS operators of a p2, 0q theory sit in rank k traceless

symmetric tensor representations of sop5qR, and have conformal dimension ∆ “ 2k. The

highest-weight states of these sop5qR representations form a ring. Our starting postulate

(well-motivated from several viewpoints [9, 10]) is that this ring is freely generated by a

set of elements in one-to-one correspondence with the Casimir invariants of g — in other

words the ranks tkiu of the generators of the half-BPS ring coincide with the orders of the

Casimir invariants of g. The cohomological construction maps each of these generators to a

generator of the chiral algebra with spin ki. For example, each p2, 0q theory contains a sin-

gle half-BPS operator with k “ 2. This is the superconformal primary of the stress-tensor

multiplet. This operator is mapped to a spin-two chiral operator, which plays the role of

a holomorphic stress-tensor in the chiral algebra. Higher-rank generators of the half-BPS

ring map to higher-spin currents of the chiral algebra. Another piece of information that

is not hard to recover is the central charge of the Virasoro symmetry associated with the

two-dimensional stress tensor. This can be read off from the appropriately normalized two-

point function of half-BPS operators, which in turn is proportional to certain coefficients

in the six-dimensional Weyl anomaly.

A natural conjecture is that the generators arising from the half-BPS ring are the

complete set of generators of the chiral algebra. This guess passes the following non-trivial

test. On general grounds, one can argue that the character of the chiral algebra is equal to

a certain limit of the superconformal index of the parent p2, 0q theory. Precisely this limit

has been studied in [11, 12], where a simple expression was proposed for the case of the An
theory. That expression takes precisely the form one would expect for a chiral algebra for

which the half-BPS generators are the only generators.

All in all, we are led to the following conjecture:

Conjecture 1 (Bulk chiral algebra) The protected chiral algebra of the six-dimensional

p2, 0q superconformal theory of type g “ tAn, Dn, Enu is isomorphic to the Wg chiral algebra
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with central charge

c2d “ 4dgh
_
g ` rg .

Even after making the above assumptions, our argument falls short of a general proof

of this conjecture, as we are not aware of a uniqueness theorem for W algebras with the

same set of generators as Wg. A priori, the associativity constraints may admit multiple

solutions for the singular OPE coefficients, leading to inequivalent chiral algebras with

identical sets of generators. In simple cases such as g “ A1, A2, which correspond to the

Virasoro and to the Zamolodchikov W3 algebras respectively, it is easy to prove that the

crossing symmetry relations admit a unique solution. This is also known to be the case

for the A3 and A5 theories [13, 14]. For the A4 case, it is known that the solution is not

unique [14], but the additional solution corresponds to a W algebra with null states present

for generic values of the central charge, which would conflict with the match of the vacuum

character with the superconformal index.

This conjecture has immediate implications for the spectrum and interactions of the

p2, 0q theories. For example, it predicts that the OPE of two half-BPS operators must

contain an infinite tower of protected multiplets obeying certain semi-shortening conditions,

with calculable OPE coefficients. This is essential information in setting up the conformal

bootstrap program [15] for p2, 0q theories, along the lines taken in [16] for N “ 4 SCFTs in

four dimensions. The application of bootstrap methods to p2, 0q SCFTs will be the subject

of a forthcoming publication [17].

As an illustration of the kind of information that can be extracted from the chiral

algebra, we consider three-point functions of half-BPS operators. The Wg algebra computes

them exactly, for any g. Specializing to g “ An, we take the large n limit (for fixed operator

dimensions) of the three-point couplings calculated from the chiral algebra, and compare

them with the holographic prediction computed using eleven-dimensional supergravity.1

We find an exact match. The agreement of these two completely different, technically very

involved calculations is quite miraculous and constitutes strong evidence for our conjecture.

More importantly, we now have a procedure for computing half-BPS three-point functions

exactly at finite n.

With a view towards a microscopic derivation of the AGT correspondence, we also

consider superconformal defect theories that preserve an sup2, 2|2q superalgebra. For any

g, there exists a family of such defects whose members are labelled by embeddings ρ :

slp2q Ñ g [8].2 In the construction of class S theories, these defects create “punctures”

on the UV curve, with each such defect carrying a global symmetry group equal to the

centralizer of ρpslp2qq Ă g.

The algebraic analysis underlying the existence of a protected chiral algebra in the

theory living on these defects is identical to that of [1]. In particular, the global symmetry

1Note that in contrast to the analogous comparison for N “ 4 supersymmetric Yang-Mills theory in four

dimensions [18, 19] — wherein a non-renormalization theorem [20] allows the correlators in question to be

computed at weak ’t Hooft coupling and compared to the supergravity computation at strong coupling —

there has heretofore been no independent calculation of these three point functions even at large n.
2The additional structure associated with outer automorphism twists around the defect (cf. [21]) is left

for future work.
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of these defects implies the existence of affine currents for the same symmetry algebra in

the two-dimensional context. However in contrast to the purely four-dimensional setting,

we do not expect the chiral algebra associated to defects to include a meromorphic stress

tensor, since such an operator is associated with a four-dimensional stress tensor, which

will be absent from the defect theories. Though this is a somewhat strange characteristic

from a physicist’s perspective, such algebras play a major role in the connection between

two-dimensional conformal field theory and the geometric Langlands correspondence (see,

e.g., [22, 23]). We are led to the following natural conjecture, which brings the potential

connection to the geometric Langlands into sharp relief:

Conjecture 2 (Defect chiral algebra) In the p2, 0q theory of type g, the protected chiral

algebra of a codimension two defect labelled by the embedding ρ is isomorphic to the quantum

Drinfeld-Sokolov reduction of type ρ of the g affine Lie algebra at the critical level,

k2d “ ´h
_ . (1.3)

Our claims regarding the bulk and defect chiral algebras are strongly reminiscent of

the AGT correspondence [6, 7] and of its generalization to include surface defects [24].

Strictly speaking, the AGT correspondence applies to the p2, 0q theory compactified on

a complex curve C and subjected to the Ωε1,ε2 deformation in the remaining four non-

compact directions. Similarly, the construction of [24] applies to the same compactification

accompanied by a codimension two defect that also wraps C and spans two of the four

non-compact directions. In the story with no defects wrapping the UV curve, the resulting

partition functions enjoy Wg symmetry with central charge

c2d “ rg `

ˆ

b`
1

b

˙2

dgh
_
g , (1.4)

where b2 :“ ε1{ε2. In the presence of defects wrapped on C, the partition functions display

affine g invariance at level [25]

k2d “ ´h
_ ´

1

b2
. (1.5)

Our construction, on the other hand, does not involve an explicit Ω deformation and fea-

tures the six-dimensional theory in flat space. Nevertheless, at the level of chiral algebras,

we reproduce these symmetries for the case b2 “ 1 (i.e., ε1 “ ε2) in the bulk case and

b2 Ñ 8 (i.e., ε2 “ 0) in the presence of defects. That these particular values of b should

arise is somewhat reasonable. In the bulk case, b ‰ 1 would break the sop4q symmetry of

the transverse space, whereas the construction used in this paper respects that symmetry.

In the defect case, b2 ‰ 8 would imply an effective compactification of the plane transverse

to the defect. In such a scenario, one would expect to find a four-dimensional stress tensor

in the resulting defect theory. In the construction considered here, such a four-dimensional

stress tensor is certainly absent, and one sensibly discovers that the defect chiral algebra

is at such a level that it contains no meromorphic stress tensor. The connection between

the chiral algebras described in this paper and the AGT correspondence will be pursued

in greater detail in future work.
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The organization of this paper is as follows. In section 2, we recall the logic of [1]

and provide the specifics of its application to the ospp8‹|4q superconformal algebra. We

further characterize the local operators that may play a role in the protected chiral algebra

of six-dimensional superconformal theories. In section 3, we consider the simple case of

the abelian p2, 0q theory, which is a free theory and completely tractable. This serves to

illustrate some aspects of the correspondence that will prove useful in the more abstract

case of the interacting theories. In section 4, we review what is known about the half-BPS

spectrum of the p2, 0q SCFTs and motivate the bulk chiral algebra conjecture. We show

that this conjecture passes a number of checks, both at the level of the superconformal

index, and at the level of three-point functions for the An theory at large n. In section 5,

we address the case of half-BPS defect operators and motivate the above-stated defect chiral

algebra conjecture. Various technical details and useful points of reference are included in

several appendices. In particular, appendix C discusses the construction of the irreducible

characters of the ospp8‹|4q which may be useful in future work.

2 Chiral symmetry in a protected sector

In this section we set up the general algebraic machinery that is responsible for the existence

of a protected chiral algebra of six-dimensional p2, 0q theories. Our approach is a direct

generalization of the approach of [1] that was used to uncover a similar structure in four-

dimensional N “ 2 SCFTs. That such a generalization should exist is made apparent by

observing that the four-dimensional N “ 2 superconformal algebra is a subalgebra of the

six-dimensional p2, 0q superconformal algebra. The six-dimensional case turns out to be

somewhat richer, however, due to the intricacies of p2, 0q superconformal representation

theory. We will keep the exposition relatively brief. We refer the interested reader to the

early sections of [1] for a detailed description of the analogous four-dimensional case.

We first select a fixed chiral algebra plane R2 Ă R6 on which our chiral algebra will

live. The first order of business is to determine the maximal subalgebra of the full super-

conformal algebra that fixes this plane. The p2, 0q superconformal algebra is reviewed in

detail in appendix A. It is isomorphic to the Dp4, 2q superalgebra,3 the maximal bosonic

subalgebra of which is the product of the sop6, 2q conformal algebra times a uspp4q R-

symmetry algebra. The choice of R2 Ă R6 breaks sop6, 2q to the slp2q ˆ slp2q conformal

algebra on the plane, times the sop4q – sup2q1ˆsup2q2 algebra of rotations in the transverse

R4. We can regard slp2q ˆ sup2q2 ˆ uspp4q as the bosonic subalgebra of the superalgebra

Dp2, 2q Ă Dp4, 2q, so all told we are concerned with the embeddings

slp2q ˆ su1p2q ˆ
´

slp2q ˆ sup2q2 ˆ uspp4q
¯

Ă slp2q ˆ sup2q1 ˆDp2, 2q Ă Dp4, 2q . (2.1)

3This is the complexified superalgebra. The relevant real form is ospp8‹|4q. Our construction is per-

haps most naturally phrased in terms of complexified algebras, but we will not be overly concerned with

the distinction between complexified algebras and their real forms. Using the natural real forms can be

mnemonically helpful, e.g., in distinguishing the slp2q Möbius transformations from the sup2qR subalgebra

of the uspp4q R-symmetry that will be introduced shortly.
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Crucially, Dp2, 2q contains a sup1, 1|2q subalgebra, which is a necessary condition for the

cohomological construction of [1] to go through.4

Let us describe this embedding more explicitly. Introducing coordinates xµ, µ “

1, . . . , 6 for R6, we take the chiral algebra plane to have complex coordinates z “ x1 ` ix2

and z̄ “ x1 ´ ix2. The generators of the two-dimensional conformal algebra slp2q ˆ slp2q

that acts on this plane can be identified as follows (see appendix A for our conventions):

L0 “
1

2
pH` L1q , L`1 “ K21 , L´1 “ P12 , (2.2)

L̄0 “
1

2
pH´ L1q , L̄`1 “ K43 , L̄´1 “ P34 .

We have introduced Cartan generators L1,2,3 that generate rotations in the tx1, x2u,

tx3, x4u, and tx5, x6u planes, with eigenvalues h1,2,3, respectively.5 The sup2q1 and sup2q2
subalgebras correspond to self-dual and anti-self dual rotations in the tx3, x4, x5, x6u direc-

tions, with generators

sup2q1 : M1
2 , M2

1 , M1
1 ´M2

2 ” L2 ` L3 , (2.3)

sup2q2 : M3
4 , M4

3 , M3
3 ´M4

4 ” L2 ´ L3 .

The uspp4q generators are denoted by RAB with A,B “ 1, . . . , 4. Finally the fermionic gen-

erators of the Dp2, 2q subalgebra comprise eight Poincaré supercharges tQA, rQAu and their

special conformal conjugates pSA, rSAq, transforming under a uspp4q ˆ sup2q2 R-symmetry.

The embedding of these supercharges into the six-dimensional superalgebra is given by

QA :“ QA4 , rQA :“ QA3 , SA :“ S4
A ,

rSA :“ S3
A . (2.4)

The identification makes it clear that pQA, rQAq and pSA, rSAq transform as doublets of

sup2q2.

From the Dp2, 2q supercharges, we construct four interesting nilpotent supercharges

and their conjugates, generalizing the two that appeared in [1]:

Q 1 :“ rQ1 ´ S3 , Q
:
1 :“ rS4 ´Q2 , (2.5)

Q 2 :“ Q1 ` rS3 , Q
:
2 :“ S4 ` rQ2 ,

Q 3 :“ rQ2 ´ S4 , Q
:
3 :“ rS3 ´Q1 ,

Q 4 :“ Q2 ` rS4 , Q
:
4 :“ S3 ` rQ1 .

Because the Dp2, 2q superalgebra is the supersymmetrization of the right-moving slp2q

conformal algebra, all of these supercharges commute with the left-moving slp2q generators.

The key point, as in four dimensions, is to define an R-symmetry twist of slp2q that is exact

4An inequivalent choice of maximal subalgebra preserving the plane is Dp2, 1q ˆDp2, 1q Ă Dp4, 2q, but

this is not relevant for our purposes since Dp2, 1q does not have an sup1, 1|2q subalgebra.
5Our conventions are such that the highest- and lowest-weight components of an sop6q vector vµ are

vh.w. “ pv1 ` iv2q{
?

2 and vl.w. “ pv1 ´ iv2q{
?

2.
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with respect to the Q i. If we take the maximal subalgebra sup2qRˆup1qr Ă uspp4qR,6 then

such a twisted algebra zslp2q can be defined as the diagonal subalgebra of slp2q ˆ sup2qR,

pL´1 :“ L̄´1 `R´ , pL0 :“ L̄0 ´R , pL`1 :“ L̄`1 ´R` . (2.6)

The twisted generators occur as Q i commutators as follows,

2pL0 “ tQ 1, Q
:
1u “ tQ 2, Q

:
2u “ tQ 3, Q

:
3u “ tQ 4, Q

:
4u , (2.7)

pL´1 “ tQ 1, Q4u “ ´ tQ 2, rQ4u “ tQ 3, Q3u “ ´ tQ 4, rQ3u ,

pL`1 “ ´ tQ 1, rS2u “ tQ 2, S2u “ ´ tQ 3, rS1u “ tQ 4, S1u .

In any unitary superconformal representation one will necessarily have pL0 ě 0 on any
pL0 eigenstate, with the equality saturated if and only if all Q i and their conjugates Q

:

i

annihilate the state. Additional interesting bosonic generators are those that appear in

mutual commutators of the Q i. Defining Zij :“ tQ i, Q ju, we have

Z12 “ Z34 “ 0 , (2.8)

Z13 “ ´Z24 “ M4
3 ,

Z14 “ L2 ´ L3 ´ 2r “M3
3 ´M4

4 ´ 2r ,

Z23 “ L2 ´ L3 ` 2r “M3
3 ´M4

4 ` 2r .

We are now in a position to define the protected chiral algebra of a six-dimensional

p2, 0q theory. In principle, the cohomology of any one of the Q i will have the structure

of a chiral algebra. It turns out that all four Q i define the same cohomology, and so the

structure of interest is the simultaneous cohomology of all four nilpotent supercharges. Let

us outline the main points of the construction.

A local operator Op0q inserted at the origin is a “harmonic representative” of a Q i

cohomology class if it is annihilated by Q i and its conjugate Q :i (separately for each i), which

happens if and only if it obeys rpL0,Op0qs “ 0, i.e., if it has quantum numbers satisfying

E ´ h1

2
´R “ 0 . (2.9)

It follows that, as stated above, the cohomology classes of all four Q i coincide. Moreover,

from eq. (2.8) we can deduce that a state obeying the above condition is necessarily

invariant under up1qr and sup2q2, and so must satisfy the additional relations

r “ 0, h2 ´ h3 “ 0 . (2.10)

A priori, h2 “ h3 need not be zero, so Q i cohomology classes are allowed to form

non-trivial representations of sup2q1.

At this point, the construction of [1] can be carried over verbatim. Operators obeying

the condition (2.9) can be translated away from the origin (within the chiral algebra plane)

by means of the twisted momentum operator pL´1,

Opz, z̄q “ ezL´1`z̄pL´1Op0, 0qe´zL´1´z̄pL´1 . (2.11)

6This is the subalgebra under which the 5 of uspp4q decomposes as 30 ‘ 1`1 ‘ 1´1.
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A local operator at the origin with rpL0,Op0qs “ 0 is necessarily an sup2qR highest weight

state, carrying the maximum eigenvalue R of the Cartan. Indeed, if this were not the case,

states with greater values of R would have negative pL0 eigenvalue, violating unitarity. We

denote the whole spin k representation of sup2qR as OpI1¨¨¨I2kq, with Ii “ 1, 2. Then the

operator obeying (2.9) is O11¨¨¨1p0q, and the twisted-translated operator at any other point

is given by

Opz, z̄q :“ uI1pz̄q ¨ ¨ ¨ uI2kpz̄q O
pI1¨¨¨I2kqpz, z̄q , uIpz̄q :“ p1, z̄q . (2.12)

By construction, such an operator is annihilated by Q i, and thanks to the second line of

eq. (2.7) its z̄ dependence is Q i-exact. It follows that the cohomology class of the twisted-

translated operator defines a purely meromorphic operator,

rOpz, z̄qsQ  Opzq . (2.13)

Operators constructed in this manner have correlation functions that are meromorphic

functions of the insertion points, and enjoy well-defined meromorphic OPEs at the level of

the cohomology. These are precisely the ingredients that define a two-dimensional chiral

algebra.

2.1 Elements of the Q cohomology

The next step is to determine precisely which operators in a p2, 0q SCFT have the right

properties to play a role in the protected chiral algebra. The representation theory of the

p2, 0q superconformal algebra has been worked out in [26–28] and is discussed in detail in

appendix B. Let us summarize the salient points here.

A generic representation is specified by a set of sop6q Dynkin labels, rc1, c2, c3s, a pair

of uspp4qR Dynkin labels, rd1, d2s, and the scaling dimension, E, of the superconformal

primary operator. In terms of the sop6q quantum numbers ph1, h2, h3q and uspp4q quantum

numbers pR, rq introduced above, the Dynkin labels can be written as

c1 “ h2 ´ h3 , c2 “ h1 ´ h2 , c3 “ h2 ` h3 , (2.14)

d1 “ R´ r , d2 “ 2r . (2.15)

Shortening conditions arise when certain linear relations for these quantum numbers are

satisfied. In particular, (semi-)short representations come in four series, for which the

quantum numbers introduced here satisfy the following conditions,

A : E “ h1 ` h2 ´ h3 ` 2R` 2r ` 6 , (2.16)

B : E “ h1 ` 2R` 2r ` 4 , h1 ě h2 “ h3 ,

C : E “ h1 ` 2R` 2r ` 2 , h1 “ h2 “ h3 ,

D : E “ 2R` 2r , h1 “ h2 “ h3 “ 0 .

Operators satisfying (2.9) only appear in a select subset of these representations. The

complete list, along with the location within the full representation of the relevant operator,

is determined in appendices C and D. The results are summarized in table 1.

– 9 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
7

Series Primary Q -chiral Level

Bp‹q rc1, c2, 0s; rd1, 0s rc1, c2 ` 2, 0s; rd1 ` 2, 0s 4

B r0, c2, 0s; rd1, 0s r0, c2 ` 2, 0s; rd1 ` 2, 0s 4

Cp‹q rc1, 0, 0s; rd1, 1s rc1 ` 1, 1, 0s; rd1 ` 2, 0s 3

Cp‹q rc1, 0, 0s; rd1, 0s rc1 ` 2, 0, 0s; rd1 ` 1, 0s 2

D r0, 0, 0s; rd1, 2s r0, 1, 0s; rd1 ` 2, 0s 2

Dp‹q r0, 0, 0s; rd1, 1s r1, 0, 0s; rd1 ` 1, 0s 1

D r0, 0, 0s; rd1, 0s r0, 0, 0s; rd1 ` 0, 0s 0

Table 1. Summary of superconformal representations that contain chiral algebra currents. The

quantum numbers of the primary and the Q -chiral operators are displayed, along with the level in

the representation where one may find the Q -chiral operators. Representations labelled with a star

are those that seem to be absent from actual p2, 0q theories.

Of the representations listed, the most familiar are those in the D series. In these

representations the superconformal primary is quarter-BPS (half-BPS if d2 “ 0). It is

interesting to note that in practice, all D series multiplets in the known p2, 0q theories are

believed to transform in representations that appear in the tensor product of sufficiently

many copies of the r1, 0s, and for this reason representations of type Dr0, 0, 0; d1, 1s are

expected to be absent [10].

The half-BPS operators form a ring, the half-BPS ring, which is a generalization of

the chiral ring in four-dimensional supersymmetric theories. An important property of the

half-BPS operators is that they are the operators with the lowest possible dimension given

their sup2qR quantum numbers. Using this fact in conjunction with sup2q selection rules,

one quickly sees that the chiral algebra operator associated to a generator of the half-BPS

ring can never appear as a normal ordered product. This means that the generators of

the half-BPS ring are necessarily mapped to generators of the chiral algebra. This is a

structurally identical result to the fact that in the four-dimensional case, generators of the

so-called “Hall-Littlewood chiral ring” are mapped to chiral algebra generators.

The B and C series appearing in table 1 are more exotic representations that satisfy

semi-shortening conditions at level two or greater. Although these are somewhat unfamiliar,

we will see in the rest of this paper that the presence of B series representations is necessary

and natural from the point of view of the protected chiral algebra.

3 The free tensor multiplet

Having established this basic machinery, let us consider the chiral algebra of the abelian

p2, 0q theory. This is the theory of a free tensor multiplet, and so the chiral algebra can

be constructed explicitly. The tensor multiplet lies in an ultra-short representation of type

Dr0, 0, 0; 1, 0s that comprises a scalar, two Weyl fermions, and a two-form with self-dual

field strength. The quantum numbers of these fields are summarized in table 2.
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Operator ∆ sop6q uspp4qR pL0pψh.w.q

ΦI 2 1 5 0

λaA
5
2 4 4 1

2

ω`
rabs 3 10 1 1

Table 2. Field content of the abelian tensor multiplet.

Of these basic fields, the only one satisfying (2.9) is the uspp4q highest-weight compo-

nent of the scalar multiplet. In our conventions, this is the field

Φh.w. “
Φ1 ` iΦ2
?

2
. (3.1)

Other fields and uspp4qR descendants of the scalar have strictly positive eigenvalues under
pL0. The meromorphic operator associated to Φh.w. can be constructed using twisted trans-

lation in the plane as was described in section 2, leading to the following cohomology class,

Φpzq :“

„

1
?

2
pΦ1pz, z̄q ` iΦ2pz, z̄qq ` z̄Φ3pz, z̄q `

z̄2

?
2
pΦ1pz, z̄q ´ iΦ2pz, z̄qq



Q

. (3.2)

The singular part of the meromorphic ΦˆΦ OPE follows directly from the free field OPE

of the scalar fields. Specifically, if we normalize the six-dimensional operators to have

canonical OPEs,

ΦIpxqΦJpyq „
δIJ

|x´ y|4
, (3.3)

then the resulting chiral algebra OPE takes a familiar form,

ΦpzqΦpwq „
1

pz ´ wq2
. (3.4)

This is the OPE of a up1q affine current,

Φpzq Jup1qpzq . (3.5)

The other operators in the free theory that obey (2.9) are just the normal ordered

products of holomorphic derivatives in the chiral algebra plane of Φh.w.. These map in the

obvious way to composites of the up1q current in the chiral algebra, e.g.,

:pBk112Φh.w.qpB
k2
12Φh.w.qpB

k3
12Φh.w.q : pBk1Jup1qpB

k2Jup1qpB
k3Jup1qqqq . (3.6)

The chiral algebra of the abelian p2, 0q theory is therefore precisely a up1q affine current

algebra.

It is worthwhile to take a moment to understand the appearance of Virasoro symmetry.

In four dimensions, Virasoro symmetry of the chiral algebra followed from the presence of a

stress tensor in four dimensions. In six dimensions, we again find that Virasoro symmetry

comes for free with the six-dimensional stress tensor multiplet. The six-dimensional stress
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tensor lies in a short representation of type Dr0, 0, 0; 2, 0s, in which the stress tensor is a

level-four descendant. The superconformal primary is a dimension four scalar transforming

in the 14 of uspp4q. In the case of the free theory, this primary is the symmetric traceless

bilinear of scalar fields,

Op14qIJ :“ :ΦpIΦJq: . (3.7)

As a half-BPS operator, the highest weight state of Op14qIJ obeys (2.9), and upon mapping

to the chiral algebra this is identified with the un-normalized Sugawara operator in the

up1q affine current algebra,

ruIpz̄quJpz̄qOp14qIJ pz, z̄qsQ “: Op14qpzq Spzq :“ pJup1qJup1qqpzq . (3.8)

If we further canonically normalize this operator as T pzq :“ 1
2Spzq, then direct computation

leads to the standard OPE of a holomorphic stress tensor in two dimensions,

T pzqT p0q „
1{2

z4
`

2T p0q

z2
`
BT p0q

z
, (3.9)

where the Virasoro central charge is that of a up1q current algebra, namely c2d “ 1. As

was the case in four dimensions, we see that although the holomorphic stress tensor in the

chiral algebra arises from the stress tensor multiplet in six dimensions, it corresponds to

an operator in that multiplet which is not the six-dimensional stress tensor itself.

This evaluation of the chiral algebra central charge for the abelian theory is useful

since it determines for us the constant of proportionality between the two-dimensional and

six-dimensional central charges. Recall that the Weyl anomaly of a p2, 0q theory takes the

form [29]

A6d “ aE6 ` c1I1 ` c2I2 ` c3I3 ` scheme dependent , (3.10)

where E6 is the Euler density and I1,2,3 are certain Weyl invariants whose precise form is

unimportant for our purposes. The ratios of the two- and three-point functions of stress

tensor multiplets in the p2, 0q theories are fixed in terms of the coefficients ci of the Weyl

invariants, and these constants in turn have their ratios fixed by supersymmetry [30].

There will therefore exist a universal constant of proportionality between c2d and any one

of the ci that follows from supersymmetry and therefore holds for any choice of g. Having

determined this constant in the abelian theory, the same result will necessarily hold for

any p2, 0q theory. We have the general result

c2dpgq

cipgq
“

1

ctens
i

. (3.11)

This relation will prove useful in the discussion of the non-abelian theories to come. Notice

that, in contrast with the four-dimensional case, the central charge of the chiral algebra of

the p2, 0q theories is always positive.

4 Chiral algebras of interacting p2, 0q theories

A direct analysis in the style of the previous section is not possible when g is non-abelian.

Nevertheless, we find compelling evidence in favor of the bulk chiral algebra conjecture put
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forward in the introduction. Let us first make some elementary observations that serve to

motivate our claim.

Recall that the moduli space of vacua for the p2, 0q theory of type g is the orbifold

Mg “ pR5qrg{Wg . (4.1)

where rg is the rank and Wg the Weyl group of the Lie algebra. Let us further define the

following complex subspace of Mg,

M1{2
g :“ Crg{Wg . (4.2)

The spectrum of half-BPS operators in the p2, 0q theories has been studied in, e.g., [10]

(see also [9, 31]). These papers found confirmation of a folk theorem that states that the

ring of BPS operators of an SCFT is isomorphic to the ring of holomorphic polynomials

on (an appropriate subspace of the) moduli space of the theory. In the present case, this

amounts to the statement that the ring of half-BPS operators in the p2, 0q theory of type

g is isomorphic to the holomorphic polynomial ring on M1{2
g .

This ring can be given a simple description using the Harish-Chandra isomorphism.

It is freely generated, with generators given by elements Oi, i “ 1, . . . , rg that correspond

to the Casimir invariants of g. The degree of each generator is equal to the degree of

the invariant. In the language of superconformal representations, this means that the

generators of the half-BPS ring live in Dr0, 0, 0; ki, 0smultiplets where ki is the degree of the

i’th Casimir invariant. This was understood explicitly in [9, 10, 31] for the An´1 theories,

where this is a single Casimir invariant of degree k “ 2, 3, . . . , n. The generalization to

other choices of g is straightforward.

In section 2 we saw that the meromorphic currents associated to generators of the

half-BPS ring are necessarily generators of the associated chiral algebra. A minimal

guess would then be that the chiral algebra for the p2, 0q theory of type g is a W algebra

generated by precisely these currents. This guess is made more appealing upon noting

that the chiral algebra Wg that appears in the AGT correspondence [6, 7] for class S
theories of type g has exactly such a structure (see, e.g., [32]). Indeed, our conjecture is

that the protected chiral algebra of the type g theory is precisely Wg, and we will find

compelling evidence in favor of this claim.

Before moving on to specific checks, we can determine the central charge of the

non-abelian chiral algebra independent of any guesswork by using eq. (3.11). The six-

dimensional Weyl anomaly for g “ An´1 has been determined explicitly in [33], and the

relevant anomaly coefficients obey the following relation,

cipAn´1q “ p4n
3 ´ 3n´ 1qctens

i . (4.3)

Consequently, the central charge of the chiral algebra of the An´1 theory takes a suggestive

form,

c2dpAn´1q “ 4n3 ´ 3n´ 1 . (4.4)

This is precisely the value of the central charge of the An´1 Toda CFT for b2 “ 1, or in

the language of the AGT correspondence [6], for ε1 “ ε2.
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For the sake of completeness, we can also derive the result for the more general case.

Here the anomaly coefficients take the form7

cipgq “ p4dgh
_
g ` rgqc

tens
i , (4.5)

where dg, h
_
g , and rg are the dimension, dual Coxeter number, and rank of g, respectively.

The prediction for the central charge of the chiral algebra is then

c2dpgq “ 4dgh
_
g ` rg , (4.6)

which again matches the relevant Toda central charge for b2 “ 1.

4.1 Testing with the superconformal index

Certain limits of the superconformal index for the An theories have been computed via

supersymmetric localization in five-dimensional supersymmetric Yang-Mills theory [11, 12].

The most general superconformal index (defined here with respect to the supercharge Q14)

takes the form [28]

Ipp, q, s, tq :“ Trp´1qF eβtQ14,S4
4uqE´Rph2´h3`2rtR´rsh2`h3 . (4.7)

The states that contribute to this index obey a shortening condition,

tQ14,S4
4u “ E ´ 2R´ 2r ´ h1 ´ h2 ` h3 “ 0 . (4.8)

The index undergoes a radical simplification when the fugacities are specified so that the

combinations of Cartan generators that appear in the exponents all commute with some

additional supercharge. In particular, we may choose the fugacities so that the index has an

enhanced supersymmetry with respect to Q23. In this case, the resulting partition function

will only receive contributions from operators that obey the additional shortening condition

tQ23,S3
3u “ E ´ 2R` 2r ´ h1 ` h2 ´ h3 “ 0 . (4.9)

The relevant index with this property is equivalent to the unrefined index studied in the

aforementioned paper. In our conventions, the unrefined index is recovered by setting

t “ 1, whereupon the index becomes independent of p as well, and we are left with an

index that depends on only two fugacities

Ipq, sq :“ Trp´1qF eβtQ14,S4
4uqE´Rsh2`h3 . (4.10)

This is the six-dimensional analogue of the Schur index that was defined for four-

dimensional N “ 2 SCFTs in [36].

The operators that contribute to this index are exactly the Q -chiral operators defined

in section 2. As a consequence, this index can be reinterpreted as a Witten index of the

7Although we are not aware of this result appearing explicitly in the literature, this is the unique

expression compatible with the known central charge of the An series and with the structure of R-symmetry

anomaly polynomials, which are known for any g [34, 35].
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associated chiral algebra. Recall that the construction of section 2 includes an SUp2q global

symmetry inherited from the sup2q1 rotations transverse to the chiral algebra plane in six

dimensions. In particular, the combination h2 ` h3 plays the role of (twice) the Cartan of

this flavor symmetry, and we have

Ipq, sq “ I2dpq, sq :“ TrHχpnqp´1qF qL0s2j1 , (4.11)

where we have denoted the Hilbert space of the chiral algebra by Hχpnq. In terms of the

six-dimensional Lorentz group, Q -chiral operators necessarily occur in representations with

Dynkin labels rc1, c2, 0s. The spin-statistics theorem in six dimensions implies that c1 ` c3

is equal to fermion number (mod 2). Now because c1 “ 2j1 for a Q -chiral operator, it

follows that j1 is half-integral for fermionic operators appearing in the index and integral

for bosonic operators. Consequently there can be no cancellation between bosonic and

fermionic operators that contribute to the unrefined index.8

In [12], the unrefined index of the worldvolume theory of n coincident M5 branes was

computed in Upnq five-dimensional SYM. The resulting expression is relatively simple,

Ipq, s;nq “
n
ź

k“1

8
ź

m“0

1

1´ qk`m
“ P.E.

«

q ` q2 ` ¨ ¨ ¨ ` qn

1´ q

ff

, (4.12)

where P.E. denotes plethystic exponentiation,

P.E.
“

fpxq
‰

:“ exp

«

8
ÿ

m“1

fpxmq

m

ff

. (4.13)

Since the calculation was done in the Upnq theory, it contains an extra factor corresponding

to the index of the free tensor multiplet that describes the center of mass degrees of freedom.

In other words, for the interacting theory we have

IAn´1pq, sq “
Ip2,0qpq, s;nq
Ip2,0qpq, s; 1q

“

n
ź

k“2

8
ź

m“0

1

1´ qk`m
“ P.E.

«

q2 ` ¨ ¨ ¨ ` qn

1´ q

ff

. (4.14)

Note that this index is actually independent of the fugacity s. In conjunction with the

above argument for the absence of cancellation between states with the same sup2q1 spins,

this implies that in the An series theories there are no Q -chiral operators transforming

in representations with non-zero c1 — namely the only superconformal representations

from the list in section 2 that actually make an appearance will be Br0, c2, 0; d1, t0, 1us

and Dr0, 0, 0; d1, t0, 2us. Consequently all operators contributing to the unrefined index are

bosonic, and the index can be reinterpreted as the partition function of the chiral algebra,

IAn´1pqq “ TrHχpnqq
L0 . (4.15)

The index in eq. (4.14) has precisely the form of the vacuum character of a chiral

algebra generated by currents of spins s “ 2, 3, . . . , n (with no null states appearing in

8This is a notable feature that, in particular, does not hold for the Schur index in four dimensions.

In that setting, there can be “accidental” cancellations between protected operators that individually do

contribute to the index.
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the vacuum Verma module). The algebra WAn´1 is precisely such a chiral algebra, and

indeed when the central charge is set as in (4.4) then the vacuum module can be seen to

contain no null states (aside from those obtained by acting with L´1 and the higher-spin

equivalents) [32]. In fact, given the stated spectrum of generating currents, WAn´1 is very

likely to be the unique solution of crossing symmetry with no nulls (up to the choice of

central charge).9 This provides compelling support for the claim that the protected chiral

algebra of a p2, 0q theory is the corresponding Wg (at least for the An series). Turning the

logic around, we have a simple prediction for the generalization of (4.14) for general g:

IDnpq, sq “ P.E.

«

qn ` pq2 ` q4 ` ¨ ¨ ¨ ` q2n´2q

1´ q

ff

, (4.16)

IE6pq, sq “ P.E.

«

q2 ` q5 ` q6 ` q8 ` q9 ` q12

1´ q

ff

,

IE7pq, sq “ P.E.

«

q2 ` q6 ` q8 ` q10 ` q12 ` q14 ` q18

1´ q

ff

,

IE8pq, sq “ P.E.

«

q2 ` q8 ` q12 ` q14 ` q18 ` q20 ` q24 ` q30

1´ q

ff

.

4.2 Three-point couplings at large n

As a more refined check of our claim, we can compute the three-point functions of half-BPS

operators for the An´1 series in the large n limit. While there is no way aside from our chiral

algebraic approach to compute half-BPS three-point functions for general g, the result at

large n is accessible holographically using eleven-dimensional supergravity in AdS7ˆS
4.10

In particular, the three-point functions of “single-trace” half-BPS operators can be com-

puted. The notion of a single-trace operator that is applicable here is that of generalized free

field theory, since in the p2, 0q theories there is no obvious sense in which gauge-invariant op-

erators are constructed from elementary matrix-valued fields. The single trace half-BPS op-

erators are therefore the generators of the half-BPS chiral ring, which at large n comprise a

single scalar operator Opkq for each k “ 2, 3, . . . ,8 with scaling dimension ∆ “ 2k. Such an

operator transforms in the k-fold symmetric traceless tensor representation of sop5qR. The

three-point functions of these operators are required by symmetry to take the general form

xOpk1qI1
px1qOpk2qI2

px2qOpk3qI3
px3qy “

Cpk1, k2, k3q

x∆123
12 x∆231

23 x∆312
31

xCI1CI2CI3y , (4.17)

where xij :“ xi ´ xj and ∆ijk:“∆i ` ∆j ´ ∆k. The CIi form an orthonormal basis of

traceless symmetric tensors of sop5q and xCI1CI2CI3y denotes the unique scalar contraction

of the three tensors. For large values of n these three-point couplings scale as n´3{2, and

9For the A1, A2, A3, and A5 cases the corresponding Wg is the only solution to crossing symmetry with

the given generators, while for A4 there is an additional solution for which the vacuum module contains

singular vectors for arbitrary central charge [13, 14].
10The Dn case can presumably be treated similarly.
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the leading order terms have been computed in [4, 5] using the supergravity description.

They were found to take the form [5]

Cpk1, k2, k3q “
22α´2

pπnq
3
2

Γ

ˆ

k1 ` k2 ` k3

2

˙

¨

˝

Γ
´

k123`1
2

¯

Γ
´

k231`1
2

¯

Γ
´

k312`1
2

¯

a

Γp2k1 ´ 1qΓp2k2 ´ 1qΓp2k3 ´ 1q

˛

‚ , (4.18)

where kijk :“ ki ` kj ´ kk and α :“ 1
2pk1 ` k2 ` k3q. The operators for which this formula

holds are canonically normalized, with two-point couplings given by

xOpkiqI pxqOpkjqJ pyqy “
δijδIJ
|x´ y|2ki

. (4.19)

This is the result that should be compared to the Wn three-point couplings in the

appropriate large n limit.

First, recall how the chiral algebra correlation functions are obtained

from (4.18), (4.19). We should replace the operators OpkqI pxq by their twisted coun-

terparts (which we shall denote Wpkqpzq) as in (2.12), whereupon the resulting correlation

function will be meromorphic and interpretable as a chiral algebra correlator. This

amounts to a simple transformation of (4.17),

xOpk1qI1
px1qOpk2qI2

px2qOpk3qI3
px3qy ùñ xWpk1qpz1qWpk2qpz2qWpk3qpz3qy “

Cpk1, k2, k3q

z
1
2
k123

12 z
1
2
k231

23 z
1
2
k312

34

.

(4.20)

Making the same replacement leads to canonical normalizations for the chiral operators,

xWpkiqpzqWpkjqpwqy “
δkikj

pz ´ wq2ki
. (4.21)

Our claim is thus that the three-point couplings Cpk1, k2, k3q will be exactly reproduced

by the structure constants of the Wn algebra (with appropriately normalization for the

currents) in the double scaling limit,

nÑ8 , c2d Ñ8 ,
c2d

4n3
Ñ 1 . (4.22)

Note that because of the double scaling, the limiting W algebra will not be the well-

known W8 algebra of Pope, Shen, and Romans [37, 38]. Instead to analyze this limit we

will take advantage of the fact that in the limit of large central charge, the quantum chiral

algebras Wg have classical counterparts WpClq
g . These are nonlinear Poisson algebras that

can be described in terms of the Poisson brackets of a set of generators that are the classical

limits of the generating currents of Wg. Moreover, the structure constants of the quantum

and classical W algebras agree at leading order in the 1{c2d expansion.

We further make use of the fact that the Poisson algebras WpClq
n are limits of a one-

parameter family of universal classical W algebras W8rµs [39–42]. For generic values of µ,

this algebra has one generator each of spin 2, . . . ,8, while at positive integer values of µ

it truncates to the WpClq
n algebras,

WpClq
n “W8rµ “ ns . (4.23)
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The structure constants of W8rµs in a primary basis are known in closed form [43]. We

can take the double scaling limit of these results explicitly in order to determine the large

n correlators. The calculation itself is tedious and we found the form of the structure

constants to be not illuminating in general, so we display here the appropriate double-

scaled limit of some of the functions that make an appearance.

The relevant terms in the chiral algebra are the linear terms, which take the form,11

WpkiqpzqWpkjqpwq „
αkipn; c2dqδ

ij

pz ´ wq2ki
`
βkikjkkpnqWpkkq

pz ´ wqki`kj´kk
` . . . , (4.24)

where in terms of the functions defined in the reference, the two-point functions are given by

αkpn; c2dq :“ ´
p2k ´ 1qc2d

6Nkpnq
, (4.25)

while the three-point functions take the form

βkikjkkpnq “ ´
pki ` kj ´ kk ´ 1q!Crki, kjstkku,t0u

Nkipnq
. (4.26)

In the scaling limit, the functions Nkipnq are given by

lim
nÑ8

Nkipnq “ p´1qki`1 6pki ´ 1q!2

p2ki ´ 1q!
n2ki´4 `Opn2ki´6q . (4.27)

The coefficients Crki, kjstkku,t0u are defined for general n in [43] and are quite complicated.

In the scaling limit, the non-vanishing structure constants simplify dramatically relative

to the generic case. With a significant amount of massaging they can be put into the form

Crki, kjstkku,t0u“p´1q
kk`ki´kj´2

2 ˆ
nkk`ki´kj´2

2kk`ki´kj´1
ˆpkijk´1q!!pkjki´1q!!pkkij´1q!!

ˆ
pki ` kj ` kk ´ 2q!

pki ` kj ` kk ´ 3q!!
ˆ

p2kj ´ 1q!!

p2ki ´ 3q!!p2kk ´ 3q!!
ˆ

1

p2kk ´ 1qp2kj ´ 2q!pkijk ´ 1q!
.

(4.28)

Note that the currents for which (4.24) holds differ from the canonically normalized

currents with which we should compare the supergravity results. They can be rescaled to

implement the canonical self-OPE according to

Wpkiq Ñ ĂWpkiq “
Wpkiq

a

αkipn; c2dq
, (4.29)

which leads to the following prediction for the three-point couplings that we should be

computing,

Cpki, kj , kkq “

a

αkkpn; c2dq
a

αkipn; c2dq

b

αkj pn; c2dq

ˆ βkikjkkpnq . (4.30)

11Here we are using slightly different indexing conventions from those used in [43]. For us, the indices

i, j are equal to the spin of the current, while in the reference the convention was that ithere “ ihere ´ 1.
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Remarkably, upon plugging in the above expressions and further massaging the result, one

recovers precisely the supergravity three-point functions displayed in eq. (4.18)!12 This

agreement between W algebra structure constants and supergravity correlation functions

is an important confirmation of our claim, and goes to demonstrate the power of having

identified a chiral algebraic structure in the p2, 0q theories. In principle, this reduces the

problem of finding arbitrarily many corrections to these three-point couplings to the much

better defined problem of determining the quantization of the W8rµs in the double scaling

limit order by order in the 1{c2d expansion.

Finally, we should remark that there is in principle some freedom in the choice of gen-

erators in terms of which one chooses to express a W algebra, and by making a redefinition

of the form Wpkiq ÑWpkiq`λiWpkjqWpki´kjq, for example, one may obtain an equally good

set of generators. In the double scaling limit considered here, such a redefinition can be

seen to only affect subleading terms as long as we are looking at non-extremal three-point

functions, i.e., ki`kj ă kk and similarly for permutations of the indices. Strictly speaking,

our check (and the results of [4, 5] themselves) are only valid in the non-extremal case,

due to subtleties of operator mixing in extremal correlators (cf. [44]). Nevertheless, using

the chiral algebra construction there is no obstruction to computing extremal three-point

functions, and in fact any extremal n-point function of half-BPS operators is completely

determined by the corresponding chiral algebra correlation function.

5 The chiral algebras of codimension-two defects

Finally, we come to the subject of chiral algebras associated to codimension-two defects.

In the theory of type g, there is an important class of half-BPS codimension-two defects

labelled by embeddings ρ : slp2q Ñ g [8]. The defect labelled by ρ carries a global symmetry

h Ă g that is the centralizer of the image ρ in g.

These defects play a fundamental role in bridging six- and four-dimensional physics.

Upon twisted compactification on a Riemann surface C, a p2, 0q theory will flow to an

N “ 2 superconformal field theory in four dimensions. These are four-dimensional SCFTs

of class S. The codimension-two defects appear in two different roles in this context:

(i) If a defect fills the non-compact R4, and is thus located at a point on C, then its

presence changes the four-dimensional theory. The resulting SCFT inherits the global

symmetries of the defect.

(ii) If instead a defect wraps C and occupies a subspace R2 Ă R4, then it gives rise to a

codimension-two defect of the four-dimensional theory.

The four-dimensional worldvolume of such a defect enjoys sup2, 2|2q superconformal invari-

ance, and consequently comes with a protected chiral algebra of exactly the sort discussed

in [1]. Consider the maximal defect operator in the theory of type g (corresponding to the

12In order to recover exact agreement with (4.18) it is necessary to make careful choices of the signs for

the square roots appearing in (4.30). With some work, these choices can be made systematically.
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trivial embedding ρ “ id), which carries g global symmetry with flavor central charge given

by [21]

k4d “ 2h_ , (5.1)

where h_ is the dual Coxeter number of g. Using the dictionary of [1], one sees that the

chiral algebra supported on this defect will necessarily include as a subalgebra an affine g

current algebra at level

k2d “ ´h
_ . (5.2)

This is the critical level, for which the Sugawara construction becomes singular, and con-

sequently the current algebra is without stress tensor. The most economical possibility

is that the chiral algebra associated to the SCFT living on the maximal defect is just

the current algebra at the critical level. An immediate check comes from another entry

in the dictionary of [1]: the stress tensor of the protected chiral algebra arises from the

sup2qR symmetry current of the four-dimensional theory, which in turn belongs to the same

superconformal multiplet as the four-dimensional stress tensor. The SCFT living on the

defect, however, is not expected to have a local stress tensor (and hence, by supersymme-

try, there should be no R-symmetry current). This dovetails nicely with the absence of a

stress tensor in the current algebra at the critical level. Taking inspiration from the AGT

correspondence and its generalization [24] (see also [21, 25]) to scenario (ii), we further

conjecture that the chiral algebra associated to the defect labelled by ρ is the quantum

Drinfeld-Sokolov reduction of type ρ of the current algebra at the critical level.

A quantitative check of our conjecture comes from an analysis of the protected spec-

trum of four-dimensional SCFTs of class S. By leveraging generalized S-duality and the

existence of special limits where some of these theories admit Lagrangian descriptions,

the general form for the superconformal index of class S theories has been completely de-

termined [36, 45, 46]. We may then hope to use this detailed knowledge to infer some

properties of the mother p2, 0q theory and of its various defect operators. A salient feature

of of the general formulae for the class S index13 is the presence of factors K̂ρpq, aq that

are naturally associated to codimension-two defects localized at punctures on C. (This

is the configuration (i) mentioned above). Indeed for each puncture of type ρ there is a

puncture factor, K̂ρpq,aq, which is a function of the superconformal fugacity q and of the

flavor fugacities a of the global symmetry algebra h Ă g. What’s more, there are no other

building blocks appearing in the class S index that depend purely on local properties of

the punctures. This strongly suggests that K̂ρpq, aq should be an intrinsic property of the

codimension-two defect of type ρ. We may therefore suspect that K̂ρpq,aq, once suitably

normalized (see below), is the Schur index of the SCFT living on the defect of type ρ,

which in turn is equal to the character of associated the chiral algebra. Under this assump-

tion, our defect chiral algebra conjecture leads to a sharp prediction: K̂ρpq, aq must be the

character of the irreducible vacuum module of the quantum Drinfeld-Sokolov reduction of

the current algebra of type g at the critical level.

13For our purposes we should focus on the Schur limit of the index, which depends on a single super-

conformal fugacity q. According to the dictionary of [1], the Schur index of the SCFT corresponds to the

graded character Trp´1qF qL0 of the associated chiral algebra.
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Below, we prove this statement for maximal defects in the An theories. For the Dn

and En theories a completely analogous proof is possible using the results of [47, 48].

For non-trivial embeddings, one needs to take into account the effects of the quantum

Drinfeld-Sokolov reduction on the character of the chiral algebra. A proof that the resulting

expressions again agree with the corresponding puncture factors can be found in [49].

5.1 The critical character

The irreducible vacuum character of an affine Lie algebra at the critical level has been

shown to take the form [50]

chLλ “

ř

w̄PW̄ signpw̄qew̄pλ`ρq´ρ
ś

ᾱP∆̄`
p1´ q´xλ`ρ,ᾱ_yq

ś

αP∆re
`
p1´ e´αq

. (5.3)

The notation here is standard in the mathematical literature, see [50] for a detailed expla-

nation. Here λ is the highest weight of the module, which we will take to be trivial, but

the formula is actually valid for all cases where all but the zeroth Dynkin labels of λ are

non-negative integers.

A comparison eq. (5.3) to a suitably normalized puncture factor requires some rewrit-

ing. For λ “ 0 we can use the Weyl denominator formula to simplify the numerator, and we

can also write out the product of the real positive roots in the denominator. Recognizing

that χadj “
ř

ᾱP∆̄`
peᾱ ` e´ᾱq ` r leads to the final form,

chL0pq,aq “ P.E.

¨

˝

q

1´ q
χadjpaq ´

rq

1´ q
`

ÿ

ᾱP∆̄`

qxρ,ᾱ
_y

˛

‚ . (5.4)

This equation is valid for any g.

Let us now turn to the consider the factors K̂ρpq, aq. In the An´1 theories the embed-

dings ρ : slp2q Ñ slpnq are labelled by Young tableaux with n boxes. We will be concerned

with the trivial embedding, in which case the flavor symmetry is maximal and equal to slpnq.

The corresponding Young tableau is Λ “ . . . . From eq. (6.9) of [36], one finds that

K̂Λpq, aq “
n
ź

j,k“1

P.E.

˜

aja
´1
k q

1´ q

¸

“ P.E.

ˆ

q

1´ q
χadjpaq `

q

1´ q

˙

, (5.5)

where the n flavor fugacities ai correspond to the orthonormal basis of An´1 and satisfy
śn
i“1 ai “ 1. To obtain the above expression we have used the fact that the adjoint

character for An´1 takes the form χadjpaq “
řn
j,k“1 aja

´1
k ´ 1.

Before we can compare this expression to eq. (5.4), we should consider its normaliza-

tion. Reasoning based on the superconformal index only defines K̂ρpq, aq up to an overall

q-dependent multiplicative factor. Our interpretation suggests a natural normalization, be-

cause the index of the trivial defect (i.e., no defect whatsover) should be identically equal

to 1. The trivial defect corresponds to the principal embedding, whose associated Young

tableau is the dual tableau Λt, so the precise version of our claim is

chL0 “
K̂Λpq,aq

K̂Λtpqq
. (5.6)
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The factor for the trivial puncture, K̂Λtpqq, is again easily determined from the results

of [36]. We find that14

K̂Λpq, aq

K̂Λtpqq
“ P.E.

ˆ

q

1´ q
χadjpaq ´

řn
i“2 q

i

1´ q

˙

. (5.7)

Upon comparing (5.7) and (5.4) we see that the flavor fugacity dependence matches per-

fectly. Matching the extra q-dependent terms requires the relation

ÿ

ᾱP∆̄`

qxρ,ᾱ
_y “

n q ´
řn
i“1 q

i

1´ q
, (5.8)

which is indeed a simple fact of life for the An´1 Lie algebras.
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A The p2, 0q superconformal algebra

A.1 Oscillator representation

In order to establish conventions for the the six-dimensional superconformal algebra, we uti-

lize an oscillator representation (cf. [51]). We define a set of four fermionic oscillators with

their conjugates, pca, c̃
aq, along with four (symplectic) bosonic oscillators αA. The indices

a and A run from one to four, and the oscillators satisfy (anti-)commutation relations

tca, c̃
bu “ δ b

a , rαA, αBs “ ΩAB , (A.1)

where Ω is the skew-symmetric symplectic matrix with Ω14 “ Ω23 “ 1 and other unrelated

entries equal to zero.

The fermionic generators of the superconformal algebra are fermionic bilinears of the

basic oscillators,

QAa :“ caαA , SaA :“ c̃aαA , (A.2)

14Eq. (5.7) makes it clear that the null states that are subtracted from the Verma module are precisely

those of the Wn algebra. This is in fact a well-known result, for example it is an essential ingredient in the

construction of Hecke eigensheaves using conformal field theory [23].
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whereas the bosonic bilinears make up the generators of the bosonic subalgebra sop6, 2q ˆ

uspp4q,

Pab :“ ca cb ,

Kab :“ c̃a c̃b ,

RAB:“ αA αB ,

M b
a :“ ca c̃

b ´
1

4
δ b
a cc c̃

c ,

H :“
1

2
ca c̃

a .

Repeated indices are summed over.

The fermionic anti-commutators are as follows

tQAa,QBbu “ ΩABPab ,
tSaA,SbBu “ ΩABKab ,

tQAa,SbBu “ δ b
a RAB ` ΩABM b

a `
1

2
δ b
a ΩABH ,

while the non-vanishing commutation relations of the bosonic generators amongst them-

selves are given by

rPab,Kcds “ δ c
b M d

a ` δ
d
a M c

b ´ δ
c
aM d

b ´ δ
d
b Mc

a ,

rPab,M d
c s “ δ d

a Pbc ´ δ d
b Pac `

1

2
δ d
c Pab ,

rKab,M d
c s “ δbcKad ´ δacKbd ´

1

2
δ d
c Kab ,

rM b
a ,M d

c s “ ´δ
d
a M b

c ` δ
b
c M d

a ,

rH,Pabs “ Pab ,
rH,Kabs “ ´Kab ,

rRAB,RCDs “ ΩACRBC ` ΩBCRAD ` ΩADRBC ` ΩBDRAC .

Finally, the fermionic charges have the following commutation relations with the bosonic

subalgebra,

rPab,QCcs “ 0 ,

rKab,QCcs “ δ b
c SaC ´ δ a

c SbC ,

rM b
a ,QCcs “ δ b

c QCa ´
1

4
δ b
a QCc ,

rH,QCcs “
1

2
QCc ,

rRAB,QCcs “ ΩACQBc ` ΩBCQAc ,

rPab,ScCs “ δ c
b QCa ´ δ

c
aQCb ,

rKab,ScCs “ 0 ,

rM b
a ,ScCs “ ´δcaSbC `

1

4
δ b
a ScC ,

rH,ScCs “ ´
1

2
ScC ,

rRAB,ScCs “ ΩACScA ` ΩBCScA .

A.2 Subalgebras

It will be convenient to explicitly define various subalgebras of Dp4, 2q. First of all, let us

fix our conventions for the generators of various maximal and Cartan subalgebras of the
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Charge QAa h1, h2, h3 pj1, j2q R r sup2, 2|2q Dp2, 2q

Q11 ``` p`, 0q ` ` Q1
`

Q21 ``` p`, 0q ` ´

Q31 ``` p`, 0q ´ ` Q2
`

Q41 ``` p`, 0q ´ ´

Q12 `´´ p´, 0q ` ` Q1
´

Q22 `´´ p´, 0q ` ´

Q32 `´´ p´, 0q ´ ` Q2
´

Q42 `´´ p´, 0q ´ ´

Q13 ´`´ p0,`q ` ` Q1

Q23 ´`´ p0,`q ` ´ rQ1
9̀ Q2

Q33 ´`´ p0,`q ´ ` Q3

Q43 ´`´ p0,`q ´ ´ rQ2
9̀ Q4

Q14 ´´` p0,´q ` ` Q̃1

Q24 ´´` p0,´q ` ´ rQ1
9́ Q̃2

Q34 ´´` p0,´q ´ ` Q̃3

Q44 ´´` p0,´q ´ ´ rQ2
9́ Q̃4

Table 3. Supercharge summary. All orthogonal basis quantum numbers have magnitude one half.

The four-dimensional subalgebra acts on the h2 and h3 planes, while the two-dimensional chiral

subalgebras act in the h1 plane.

bosonic symmetry groups. There is a maximal subalgebra sup2qR ˆ up1qr Ă uspp4q, with

generators tR˘, Ru, and r that we can take to be given by

R` “ R12 , R´ :“ R34 , R :“ ´
1

2
pR14 `R23q , r :“

1

2
pR14 ´R23q . (A.3)

This is the subalgebra under which the 5 of uspp4q decomposes as 5 Ñ 30 ‘ 1`1 ‘ 1´1.

The generators R and r define the orthogonal basis of weights for sop5q, and are related to

the sop5q Dynkin weights d1 and d2 according to

d1 “ R´ r , d2 “ 2r . (A.4)

The orthogonal basis for the Cartan subalgebra of sop6q is given by the generators of

rotations in the three orthogonal planes in R6,

L1 :“
1

2
pM1

1 `M2
2 ´M3

3 ´M4
4q ,

L2 :“
1

2
pM1

1 ´M2
2 `M3

3 ´M4
4q ,
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L3 :“
1

2
pM1

1 ´M2
2 ´M3

3 `M4
4q .

We denote the eigenvalues of these generators by Li|ψy “ hi|ψy. These orthogonal basis

quantum numbers are related to the Dynkin basis rc1, c2, c3s of sup4q according to

h1 “
1

2
c1 ` c2 `

1

2
c3 , h2 “

1

2
c1 `

1

2
c3 , h3 “ ´

1

2
c1 ´

1

2
c3 . (A.5)

There are a number of superconformal subalgebras of Dp4, 2q. In the text, a par-

ticularly important role is played by the maximal supersymmetrization of the algebra of

anti-holomorphic Möbius transformations in the tx1, x2u plane, which is a Dp2, 2q alge-

bra. In addition, the four-dimensional N “ 2 superconformal algebra sup2, 2|2q can be

embedded such that the four-dimensional rotation group is sup2q1 ˆ sup2q2 and the four-

dimensional R-symmetry group is sup2qR ˆ diagrup1qr, up1qL1s. The precise map between

the supercharges for these two embeddings is shown in table 3.

B Unitarity irreducible representations of ospp8‹|4q

We recall the classification of unitarity irreducible representations of the ospp8‹|4q super-

algebra. These have been described in [26–28]. There are four linear relations at the level

of quantum numbers that, if satisfied by the superconformal primary state in a represen-

tation, guarantee that the resulting representation is (semi-)short. We adopt the following

notation for labelling these relations:

A : E “ h1 ` h2 ´ h3 ` 2R` 2r ` 6 , (B.1)

B : E “ h1 ` 2R` 2r ` 4 , h1 ě h2 “ h3 ,

C : E “ h1 ` 2R` 2r ` 2 , h1 “ h2 “ h3 ,

D : E “ 2R` 2r , h1 “ h2 “ h3 “ 0 .

Note that we are using conventions for the orthogonal Cartans such that the highest weight

state of the 5 of uspp4q has R “ 1 and r “ 0, and the highest weight state of the 4 of sop6q

has ph1, h2, h3q “ p
1
2 ,

1
2 ,

1
2q.

For a representation in any one of the classes listed above, the structure of null states in

the Verma module built on the superconformal primary depends on the sop6q representation

of that primary. Every short representation possesses a single primary null state, with the

additional null states being obtained by the action of additional raising operators on the null

primary. Different locations for the primary null state lead to different multiplet structures,

which we summarize in table 4. In all cases, when some of the ci are written, the last one

is necessarily non-zero. The quantum numbers d1,2 in all cases are only restricted to be

non-negative integers. The multiplets of the type Brc1, c2, 0; 0, 0s, Crc1, 0, 0; d1, d2s with

d1` d2 ď 1, and Dr0, 0, 0; d1, d2s with d1` d2 ď 2 contain conserved currents or free fields.

In particular, the stress tensor multiplet is Dr0, 0, 0; 2, 0s.

This structure of null states makes the decomposition rules for long multiplets trans-

parent. Starting with a generic multiplet approaching the A-type bound for its dimension,
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A[c1,c2,c3;d1,d2] Q14 ψ “ 0 [ 0, 0, -1 ; 0, 1 ]

A[c1,c2, 0 ;d1,d2] Q13Q14 ψ “ 0 [ 0, -1, 0 ; 0, 2 ]

A[c1, 0 , 0 ;d1,d2] Q12Q13Q14 ψ “ 0 [ -1, 0, 0 ; 0, 3 ]

A[ 0 , 0 , 0 ;d1,d2] Q11Q12Q13Q14 ψ “ 0 [ 0, 0, 0 ; 0, 4 ]

B[c1,c2, 0 ;d1,d2] Q13 ψ “ 0 [ 0, -1, 1 ; 0, 1 ]

B[c1, 0 , 0 ;d1,d2] Q12Q13 ψ “ 0 [ -1, 0, 1 ; 0, 2 ]

B[ 0 , 0 , 0 ;d1,d2] Q11Q12Q13 ψ “ 0 [ 0, 0, 1 ; 0, 3 ]

C[c1, 0 , 0 ;d1,d2] Q12 ψ “ 0 [ -1, 1, 0 ; 0, 1 ]

C[ 0 , 0 , 0 ;d1,d2] Q11Q12 ψ “ 0 [ 0, 1, 0 ; 0, 2 ]

D[ 0 , 0 , 0 ;d1,d2] Q11 ψ “ 0 [ 1, 0, 0 ; 0, 1 ]

Table 4. The primary null state for each of the shortened multiplets, expressed in terms of a

combination of supercharges acting on the superconformal primary. The expression in the second

column is schematic, since the actual null state be a linear combination of this state with other

descendants. The rightmost column contains the Dynkin labels corresponding to the combination

of supercharges. Notice that the Lorentz indices are implicitly antisymmetrized because of the

identical R symmetry indices on each supercharge.

the following decompositions take place (which decomposition occurs depends on the sop6q

representation of the long multiplet):

ψrE˚ ` δ; c1, c2, c3; d1, d2s ÝÑ
δÑ0

Arc1, c2, c3; d1, d2s ‘ Arc1, c2, c3 ´ 1; d1, d2 ` 1s , (B.2)

ψrE˚ ` δ; c1, c2, 0; d1, d2s ÝÑ
δÑ0

Arc1, c2, 0; d1, d2s ‘ Brc1, c2 ´ 1, 0; d1, d1 ` 2s ,

ψrE˚ ` δ; c1, 0, 0; d1, d2s ÝÑ
δÑ0

Arc1, 0, 0; d1, d2s ‘ Crc1 ´ 1, 0, 0; d1, d2 ` 3s ,

ψrE˚ ` δ; 0, 0, 0; d1, d2s ÝÑ
δÑ0

Ar0, 0, 0; d1, d2s ‘ Dr0, 0, 0; d1, d2 ` 4s .

There is a relatively short list of multiplets that can never appear in a recombination rule:

Brc1, c2, 0; d1, t0, 1us , (B.3)

Crc1, 0, 0; d1, t0, 1, 2us ,

Dr0, 0, 0; d1, t0, 1, 2, 3us .

Amusingly, the Q -chiral operators that give rise to currents of the protected chiral algebra

are all selected from among these non-recombinant representations.

C Characters of ospp8˚|4q

In this appendix we discuss a method to compute the characters for the various UIRs

of ospp8˚|4q discussed in the previous appendix. We will then use these characters to

enumerate the full set of Q -chiral operators given in table 1 in the main text.
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The characters are defined as

χRpa,b, qq “ TrRpa
c1
1 ac22 ac33 bd11 bd22 q∆q

where rc1, c2, c3s and rd1, d2s are the sup4q and sop5q weights of a state in the Dynkin

basis, respectively, and ∆ is its scaling dimension. The trace runs over all states in the

representation.

We will below write χpOq to denote a monomial of the fugacities associated to an

element O of ospp8˚|4q. As an example, consider the two sop5q raising operators R`1 and

R`2 corresponding to the positive simple roots. Their respective Dynkin labels are r2,´2s

and r´1, 2s and therefore

χpR`1 q “
b21
b22
, χpR`2 q “

b22
b1
. (C.1)

C.1 Long representations

The character for a generic long representation Lrc1, c2, c3; d1, d2s, whose highest weight

has scaling dimension ∆, is easily constructed. It takes the form

χLpa,b, qq “ q∆χrc1,c2,c3spaqχrd1,d2spbqP pa, qqQpa,b, qq (C.2)

In this expression the terms χrc1,c2,c3spaq and χrd1,d2spbq are just the sup4q and sop5q char-

acters of the irreducible highest weight representation with the given Dynkin labels. The

terms P pa, qq and Qpa,b, qq then represent the action of the supercharges and the deriva-

tives and are defined as

Qpa,d, qq “
ź

A,a

p1` χpQAaqq P pa, qq “
6
ź

µ“1

p1´ χpPµqq´1 . (C.3)

We will now rewrite equation (C.2) in a form that is useful to describe the short rep-

resentations below. To this end, we notice that the characters χrc1,c2,c3spaq and χrd1,d2spbq

can be written as orbits over the Weyl group W ,

χrc1,c2,c3spaq “
ÿ

wPWsup4q

wpa1q
c1wpa2q

c2wpa3q
c3M pwpaqq , (C.4)

χrd1,d2spdq “
ÿ

wPWuspp4q

wpb1q
d1wpb2q

d2R pwpbqq . (C.5)

The factors Mpaq and Rpbq are the denominators of the Verma module characters, obtained

from a product over all negative roots,

Mpaq “
6
ź

i“1

`

1´ χpM´
i q
˘´1

“
1

´

1´ a2

a2
1

¯´

1´ 1
a1a3

¯´

1´ a2

a2
3

¯´

1´ a1

a2a3

¯´

1´ a1a3

a2
2

¯´

1´ a3

a1a2

¯ ,

Rpbq “
4
ź

j“1

`

1´ χpR´j q
˘´1

“
1

´

1´ 1
b1

¯´

1´ 1
b22

¯´

1´ b1
b22

¯´

1´
b22
b21

¯ . (C.6)
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Notice that the elements of the Weyl group act on the fugacities, whereas in the usual Weyl-

Kac character formula they act on the highest weight (in a shifted way). Our expressions

for the irreducible characters are however a direct rewriting of the Weyl-Kac character

formula. Since the factors P pa, qq and Qpa,b, qq are invariant under the Weyl group we

may also write the full character (C.2) as

χLpa,b, qq “ q∆
ÿ

wPW

wpa1q
c1wpa2q

c2wpa3q
c3wpb1q

d1wpb2q
d2

ˆMpwpaqqRpwpbqqP pwpaq, qqQpwpaq, wpbq, qq

(C.7)

where we defined W “ Wsup4qˆsop5q, the Weyl group of the maximal compact bosonic

subgroup of OSpp8˚|4q. In the following we will denote the Weyl symmetrizer sum as

v. . .wW so that we may write

χLpa,b, qq “
1

q∆ac11 a
c2
2 a

c3
3 b

d1
1 b

d2
2 MpaqRpbqP pa, qqQpa,b, qq

9

W
. (C.8)

As we will shortly see, this form of the character extends most easily to short multiplets.

C.2 Short representations

For shortened UIRs of ospp8˚|4q the superconformal primary state is annihilated by a subset

of the supercharges15 and, in the case of free fields or conserved currents, of the momentum

operators as well. In that case there is a remarkable (but conjectural) recipe [28, 52, 53]

to compute the character: the only changes required in (C.8) are to simply remove from

Qpa,b, qq and P pa, qq those combinations of supercharges and momentum operators that

annihilate the highest weight state, and to dial ∆ to the correct scaling dimension of the

superconformal primary. For example, table 4 shows that for a short multiplet of type

Arc1, c2, c3; d1, d2s with c3 ą 0 and d2 ą 0 the only supercharge that generates a primary

null state is Q14 to which we associate the monomial χpQ14q “ b2q
1{2{a3. The recipe then

leads to

χArc1,c2,c3;d1,d2spa,b, qq“

4

5q∆ac11 a
c2
2 a

c3
3 b

d1
1 b

d2
2 XpaqY pbqP pa, qqQpa,b, qq

˜

1`
b2q

1{2

a3

¸´1
<

=

W
(C.9)

with ∆ “ 6 ` c1{2 ` c2 ` 3c3{2 ` 2d1 ` 2d2. Notice that the additional factor effectively

removes from Qpa,b, qq not only the primary null state but also all the states obtained

from it by the action of further supercharges - this is always what we have in mind when

we say that we ‘remove’ a certain combination of supercharges.

We have implemented the recipe in Mathematica and obtained in this way expres-

sions for the irreducible characters of all the shortened representations. The characters so

obtained match known results and satisfy the correct recombination rules. Furthermore,

when we compute the superconformal index from these characters by dialing the fugacities

in an appropriate manner we find the expected form where only the “ground states” in

15The exact null state is generically a linear combination of states obtained by acting with the supercharges

and other lowering operators. This distinction is however irrelevant for the discussion in this appendix.
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the cohomology of a particular supercharge contribute. We therefore believe the resulting

expressions to be correct.

Notice that the recipe requires a precise enumeration of all the different combinations

of the supercharges that annihilate the superconformal primary, which is in fact rather

subtle. To illustrate the general idea, consider once more the Arc1, c2, c3; d1, d2s multiplet

with c3 ą 0 but now with d2 “ 0. In that case we can act with an sop5q lowering operator

on the primary null state condition Q14ψrd1,0s “ 0 to find that Q24 also annihilates the

superconformal primary state,

0 “ R´2 Q14ψrd1,0s “ rR
´
2 ,Q14sψrd1,0s “ Q24ψrd1,0s . (C.10)

The correct character therefore becomes

χArc1,c2,c3;d1,0spa,b, qq “
4

5q∆ac11 a
c2
2 a

c3
3 b

d1
1 b

0
2MpaqRpbqP pa, qqQpa,b, qq

˜

1`
b2q

1{2

a3

¸´1 ˜

1`
b1q

1{2

b2a3

¸´1
<

=

W

,

(C.11)

where we used that χpQ24q “ b1q
1{2{pb2a3q. In the remainder of this appendix we dis-

cuss how to systematically enumerate all the supercharge combinations that lead to such

additional terms in the character formula.

C.2.1 Null states and supercharge combinations

We would like to find combinations of supercharges that annihilate the superconformal

primary state, besides those obtained from the action of zero or more supercharges on

the primary null states listed in table 4. As in the previous example, such additional

combinations arise from the action of sup4q or sop5q lowering operators on the null states,

at least for low values of the Dynkin labels of the superconformal primary. The action of

the lowering operators on the individual supercharges is as follows:

QA1

QA2

QA3

QA4

M´
1

M´
2

M´
3

Q1a

Q2a

Q3a

Q4a

R´2

R´1

R´2

(C.12)

Let us first consider new null states appearing from the action of the Lorentz generators.

Using the first diagram given above, and the specific pattern of shortening conditions in

table 4, we find the following rule: if

Q1a1 . . .Q1akψrc1,c2,c3;d1,d2s “ 0 (C.13)
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then the additional shortenings with the same R symmetry indices are obtained by taking

all possible actions of the lowering operators M´
i . Therefore if

rM´
i1
, . . . , rM´

im
,Q1a1 . . .Q1akss “: Q1b1 . . .Q1bk ‰ 0 (C.14)

then the resulting combination of supercharges annihilates the superconformal primary and

so the corresponding term needs to be subtracted from Qpa,b, qq in the character formula.

For example, consider the Brc1, 0, 0; d1, d2s multiplet. Table 4 shows that the primary null

state is given by

Q12Q13ψrc1,0,0s “ 0 (C.15)

Acting with M´
3 and then further with M´

2 , both of which annihilate the superconformal

primary, we find the additional null states

Q12Q14ψrc1,0,0s “ 0 Q13Q14ψrc1,0,0s “ 0 (C.16)

These combinations therefore also need to be removed from the factor Qpa,b, qq. The

explanation behind our general rule tracks the logic of this example: from a direct analysis

one finds that if (C.14) is non-zero for a specific combination of the M´
i then each M´

i in

this combination annihilates the superconformal primary and the result follows.

Next we consider the R symmetry quantum numbers. By carefully matching how

many states should be removed at a given level against the number of states available one

uncovers the following slightly more involved pattern. First of all, we find that for d2 ą 3

the above analysis suffices and there are no additional terms that need to be removed from

Qpa,b, qq. To see what happens for d2 ď 3 let us consider the type Dr0, 0, 0; d1, 3s multiplet

as an example. We obtain from table 4 that the superconformal primary is killed by Q11

and, in agreement with the rule given above, we find three more shortenings by acting with

M´
a . Altogether this leads to

Q11ψr0,0,0;d1,3s “ 0 , Q12ψr0,0,0;d1,3s “ 0 , Q13ψr0,0,0;d1,3s “ 0 , Q14ψr0,0,0;d1,3s “ 0 .

(C.17)

Let us now demonstrate that the highest weight state in this multiplet satisfies the addi-

tional relation:

Q21Q22Q23Q24ψ “ 0 (C.18)

and therefore that this combination of supercharges also needs to be removed from the

character formula. In order to show (C.18) it suffices to realize that one may rewrite this

expression as a linear combination of the following terms:

pR´2 q
4Q11Q12Q13Q14ψ

pR´2 q
3rR´2 ,Q11Q12Q13Q14sψ

pR´2 q
2rR´2 , rR

´
2 ,Q11Q12Q13Q14ssψ

R´2 rR
´
2 rR

´
2 , rR

´
2 ,Q11Q12Q13Q14sssψ

Q11Q12Q13Q14pR´2 q
4ψ

(C.19)
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with coefficients that are easily determined but unimportant for our analysis. Now, each

of the states listed above is null: the first four because the commutators evaluate to a term

that vanishes due to the shortening (C.17), and the last one because ψ has d2 “ 3.

Notice that (C.18) is precisely the shortening condition of Ar0, 0, 0; d1, d2s type acted

upon with pR´2 q4. This is indicative of the following general pattern. Let us enumerate

the shortening types by an integer X “ t1, 2, 3, 4u for tA,B, C,Du, respectively. Then,

in a short multiplet of type X rc1, c2, c3; d1, d2s with X ´ d2 ą 0 and d1 ą 3, we need to

additionally remove from Qpa,b, qq precisely those combinations of the supercharges that

one obtains from the action of pR´2 qd2`1, pR´2 qd2`2, . . . , pR´2 q4 on the combination states

of type pX ´ d2qrc1, c2, c3; d1, d2s.
16

In a similar vein one finds that further factors may need to be removed if, in addition to

d2 ď 3, the superconformal primary has d1 ` d2 ď 3. In that case one should also remove

the supercharge combinations obtained from the action of pR´1 qd1`1 on the shortening

conditions of type pX ´ d1 ´ d2qrc1, c2, c3; d1, d2s obtained using the above procedure for

d2 ă 3, as well as all the supercharge combinations obtained from all the other sop5q

lowering operators acting on this combination.

Finally, when the multiplet contains conserved currents one should further remove

the action of certain momentum operators from P pa, qq. We have not implemented this

in detail, relying instead on the known form of short representations of the conformal

algebra [52] to obtain expressions that match our expectations.

C.2.2 Contribution to the unrefined superconformal index

The explicit form of the characters is obviously rather involved. It does not seem wortwhile

to reproduce them here, but they are available from the authors upon request. On the other

hand, we can use these characters to compute the contribution to the superconformal index

of each shortened multiplet. If we in addition take the unrefined limit of the superconformal

index as described in section 2.1 then the expressions simplify drastically. We find a non-

zero contribution only for the following six cases:

Brc1, c2, 0; d1, 0s :
q4`d1`c1{2`c2

1´ q
χc1psq Dr0, 0, 0; d1, 0s :

qd1

1´ q

Crc1, 0, 0; d1, 0s :
q2`d1`c1{2

1´ q
χc1`2psq Dr0, 0, 0; d1, 1s :

q3{2`d1

1´ q
χ1psq (C.20)

Crc1, 0, 0; d1, 1s :
q7{2`d1`c1{2

1´ q
χc1`1psq Dr0, 0, 0; d1, 2s :

q3`d1

1´ q

with

χλpsq “
sλ`1 ´ s´λ´1

s´ s´1
(C.21)

the sup2q character corresponding to the irrep with highest weight λ. These are the Q -chiral

operators described in the main text.

16Notice that the Lorentz indices in the shortening conditions are always antisymmetrized so one may

take the sop5q indices to be symmetrized. The precise statement is that one has to remove precisely one

term in the sum that symmetrizes the sop5q indices, but it does not matter which term.
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D Q -chiral operators

In this appendix we provide an alternative and more direct derivation of the Q -chiral

operators. The derivation presented below does not require the computation of characters

and may give a more intuitive picture behind the presence of Q -chiral operators in shortened

UIRs. The results that we obtain are in complete agreement with those of the previous

appendix.

As explained in the main text, a Q -chiral operator satisfies the following defining set

of conditions for its quantum numbers:

rL̂0,Op0qs “ 0 ùñ
E ´ h1

2
´R “ 0 , (D.1)

By unitary, an operator satisfying this condition will necessarily obey the additional rela-

tions

h2 “ h3 , r “ 0 . (D.2)

Now the important question for us is where such states may appear in a UIR of the six-

dimensional superconformal algebra. Let us start by determining some general properties

regarding the placement of such an state in a six-dimensional represenation. First, we can

see that such a state must be in the highest weight state of its sop5q representation. Indeed,

consider a state |ψyrd1,0s that obeys the Q -chirality conditions and has Dynkin weights

rd1, d2s. The action of the positive simple roots of uspp4q on this state will be as follows,

R`1 |ψyrd1,d2s “ λ1|ψyrd1`2,d2´2s ,

R`2 |ψyrd1,d2s “ λ2|ψyrd1´1,d2`2s ,

for some coefficients λ1,2. If either λ were non-zero, one can easily see that the resulting

state would violate unitarity in the sense that sums of squares of some supercharges would

have negative eigenvalue when acting on that state. Consequently, a Q -chiral state must

necessarily be a sop5q highest weight.

The story of sup4q representations is not quite as simple. This is because the super-

charges involved in these arguments all commute with the subgroup sup2q1 Ă sup4q. If we

consider the action of the positive simple roots of sup4q acting on a Q -chiral state ψrc1,c2,c3s,

M`
1 ψrc1,c2,c3s „ ψrc1`2,c2´1,c3s ,

M`
2 ψrc1,c2,c3s „ ψrc1´1,c2`2,c3´1s ,

M`
3 ψrc1,c2,c3s „ ψrc1,c2´1,c3`2s .

The second and third of these states will violate unitarity if non-zero. The first, on the other

hand, could be an allowed state that also satisfies the Q -chirality conditions, and indeed the

first represents the action of the raising operator of sup2q1. We may conclude that within a

given representation of sup4q ˆ sop5q, the only potential Q -chiral operators are of the form

pM´
1 q

k|ψyh.w. ,
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which fill out the representation of sup2q1 in which the sup4q highest weight transforms.

For the purpose of identifying representations in which Q -chiral operators reside, it will

therefore be sufficient to look for highest weight states of sup4q ˆ sop5q that are Q -chiral,

and subsequently include any additional states in the relevant sup2q1 multiplet.

We can do this as follows. The highest weight state of any sup4qˆ sop5q representation

appearing in the superconformal multiplet will be a linear combination of states, at least

one of which will take the form of up to sixteen supercharges acting on the superconformal

highest weight state:

ψh.w. “ Q ¨ ¨ ¨Qψs.c.h.w. ` . . .

Thus, we can search for Q -chiral operators searching of states of this form with the correct

quantum numbers. The possible operators of this type are immediately restricted by the

fact that L̂0 must have positive eigenvalues on any physical state, and there are only four

supercharges whose action reduces the value of L̂0. Thus we are actually only interested

in operators of the form

Qn1
11Q

n2
12Q

n3
21Q

n4
22ψ ,

with ni “ 0, 1.17

The most that the L̂0 eigenvalue of any superconformal primary state can be lowered

before reaching a Q -chiral operator is therefore two. Consequently, the types of multiplets

that may conceivably contain Q -chiral operators are those which the superconformal pri-

mary has L̂0 eigenvalue less than or equal to two, along with some additional r symmetry

constraints. The possible cases are easily enumerated to be the following:

Brc1, c2, 0; d1, 0s , Crc1, 0, 0; d1, t0, 1us , Dr0, 0, 0; d1, t0, 1, 2us .

Let us consider these options in order.

i A multiplet of type Brc1, c2, 0; d1, 0s. In this case there is a potential Q -chiral operator

including a term of the form Q12Q22Q21Q22ψs.c.h.w.. Indeed, one can check that such

a state does exist (it is not excluded by the shortening conditions), and it is in the

highest weight state of the following projection:

Qb4ψ
ˇ

ˇ

rc1,c2`2,0;d1`2,0s
.

Note that generally speaking c1 may be non-zero, in which case such a Q -chiral

operator will lie in an SUp2q multiplet of Q -chiral operators.

ii(a) The next consideration is Crc1, 0, 0; d1, 0s. For such a multiplet, there are potential

Q -chiral operators including terms of the following forms: Q11Q12ψscp, Q11Q22ψscp,

Q21Q12ψscp, or Q21Q22ψscp. It turns out that only the first of these actually appears

in the highest weight component of a Q -chiral operator, which is as follows:
`

Qb2 b ψ
˘ ˇ

ˇ

rc1`2,0,0;d1`1,0s
.

17There are also supercharges that do not shift the value of L̂0, and one may at first think that those

could be included in the action as well. However, those supercharges will necessarily shift the value of r,

meaning that if a Q -chiral operator existed that included an action of such a supercharge, there would be

another operator present with L̂0 “ 0 and r ‰ 0, which would violate unitarity.
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There will always be a non-trivial SUp2q multiplet of Q -chiral operators in this case.

ii(b) We also consider the case Crc1, 0, 0; d1, 1s. In this case the potential Q -chiral operators

include terms of the form Q21Q12Q22ψscp and Q11Q12Q22ψscp. Again, only the first

of these appears in a highest weight Q -chiral operator, which is as follows:

`

Qb3 b ψrc1,0,0;d1,1s

˘ ˇ

ˇ

rc1`1,1,0;d1`2,0s
,

We have a non-trivial SUp2q multiplet again.

iii(a) Finally, we consider the (at least) quarter BPS states of type D. For Dr0, 0, 0; d1, 0s,

these are actually half BPS states, and the superconformal primary itself is Q -chiral,

ψr0,0,0;d1,0s .

iii(b) For Dr0, 0, 0; d1, 1s, the possible Q -chiral states include terms of the form Q12ψscp
and Q22ψscp. The second of these is in the same multiplet as the first, which gives

us a Q -chiral highest weight state in the following projection:

`

Qb ψr0,0,0;d1,1s

˘ ˇ

ˇ

r1,0,0;d1`1,0s
.

iii(c) Finally, for Dr0, 0, 0; d1, 2s, the only possible Q -chiral states include the term

Q12Q22ψscp, which occurs in the following projection:

`

Qb2 b ψr0,0,0;d1,2s

˘ ˇ

ˇ

r0,1,0;d1`2,0s
.
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