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Background in Historical Musicology.  In addition to making inferences about historical 
performance practice, it is interesting to ask questions about the experience of historical listeners. 
In particular, how might their perception vary from that of present-day listeners (and listeners at 
other time points, more generally) as a function of the music to which they were exposed 
throughout their lives. 
Background in Music Cognition. To illustrate the approach, we focus on the cognitive process 
of expectation, which has long been of interest to musicians and music psychologists, partly 
because it is thought to be one of the processes supporting the induction of emotion by music. 
Recent work has established models of expectation based on probabilistic learning of statistical 
regularities in the music to which an individual is exposed. This raises the possibility of 
developing simulations of historical listeners by training models on the music to which they 
might have been exposed.  
Aims. First, we aim to develop a framework for creating and testing simulated perceptual models 
of historical listeners. Second, we aim to provide simple but concrete illustrations of how the 
simulations can be applied in a preliminary approach. These are intended as illustrative feasibility 
studies to provide a springboard for further discussion and development rather than fully fledged 
experiments in their own right. Third, we aim to appeal to the expertise of historical musicologists 
in identifying useful research questions and appropriate constraints for the simulations, so these 
can be used to complement existing evidence on the perception of music by historical listeners. 
Main contribution. Our primary contribution is to develop and illustrate a framework which we 
believe can shed light on the perception of music by historical listeners and, in particular, how 
listeners of different periods might have generated different predictions to music as a function of 
differences in their musical experiences. The framework we develop involves several steps. First, 
identifying a research question; second, selecting a corpus (or corpora) to represent the musical 
experience of the listener(s) we want to simulate; third, identify the central musical features of 
interest and use them to develop a representation scheme for the selected compositions; finally, 
the model parameters are selected and the models are trained on the selected corpora to simulate 
particular listeners. We identify and discuss the decisions that must be made at each step. Finally, 
we illustrate the framework by training models on a range of corpora from different stylistic 
traditions from different locations and points in history, including analyses at the level of entire 
collections, individual compositions, and individual events. 
Implications.  The results of our illustrative analyses suggest that the trained models behave as 
we hypothesised, demonstrating sensitivity to stylistic similarities which could illuminate how 
listeners from different eras might have experienced musical structures. However, the approach 
is in need of expertise in historical musicology to establish clear and relevant research questions 
and to select appropriate parameters for the simulations. With such additional input, we believe 
simulated listeners will provide important insights, alongside other evidence, into the question of 
how our forebears experienced the music of their time. 
Keywords: music cognition, machine learning, historical musicology. 
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1. Introduction 

Recent decades have seen an increasing interest in historically informed performance, 
in which attempts are made to follow period performance practice wherever possible. 
However, the musical perception of modern audiences is affected by the music they 
have listened to throughout their lives and this music, in turn, will, in most cases, reflect 
several hundred years of musical change (e.g. Butt, 2002; Leech-Wilkinson, 2002). Of 
course, we cannot recreate a historically authentic audience (at least not ethically). But 
perhaps we can simulate one. 

Computational methods provide for the intriguing possibility of creating models that 
simulate the perception of listeners of different periods. In particular, we propose that 
machine learning methods for modelling the perception and cognition of music can be 
used to simulate the perception of an historical audience by training the model on the 
music that a listener might have heard during their lifetime. 

The approach may be capable of speaking to many interesting questions about early 
music itself as well as how it was perceived by contemporary listeners. One example is 
pitch spelling (e.g., Knopke & Jürgensen, 2012; Meredith, 2006) in which a model of 
how music was perceived could help to identify ambiguous pitch spellings in historical 
sources. It could also be useful in contributing evidence in cases of ambiguous 
authorship (e.g., van Kranenburg, 2008) and questions of stylistic influence between 
composers and performers (see, e.g., Cook, 2007, for an example in performance). On 
the level of musical style analysis, a model of a historical listener could make 
contributions in testing musicological theories about the characteristic features of 
musical styles (e.g., Volk & de Haas, 2013) and how such differences may be 
empirically explored by exposing contemporary listeners to them (Jürgensen, Pearson, 
& Knopke, 2014-2016). The approach could also contribute to questions of relevance 
in music cognition such as the development of tonal perception (e.g., Huron & Veltman, 
2006). 

This is a first attempt to define a framework for exploring the approach and we also 
give some illustrative examples as a very preliminary step towards illustrating its utility. 
The examples are just that – they are not intended to be fully fledged studies but to 
provide a proof of concept to inspire further discussion and development of the 
approach. In these examples, we focus on the cognitive process of expectation which 
has been widely studied in music cognition research (e.g., Huron, 2006; Meyer, 1956; 
Narmour, 1990), because it is an area in which we have experience (Eerola, 2004; 
Pearce, 2005) and which lends itself to a machine-learning approach. Furthermore, 
there is evidence that listeners’ musical expectations are influenced by musical 
experience (Eerola, 2004; Narmour, 1990). However, the approach itself is general and 
should apply beyond expectation to other psychological processes in music perception 
(e.g., perceptual discrimination, similarity, classification, memory, emotion, attention). 
In so doing, it would be appropriate to model both aspects of music perception that are 
sensitive to musical experience and those that are not. We focus on the former category 
in our examples below because they describe phenomena that might change between 
historical musical periods. 
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The approach is also broadly compatible with corpus-based approaches in empirical 
musicology (e.g., Cook, 2007; Knopke & Jürgensen, 2012; Meredith, 2006; van 
Kranenburg, 2008; Volk & de Haas, 2013), with an additional focus on models that are 
psychologically motivated in the sense that they account well for listeners’ perception 
of music. Finally, and importantly, to fully realise its potential, the approach needs 
interdisciplinary collaboration with historical musicologists to identify questions of 
interest and define appropriate constraints for the models. 

2. A cognitive model of music perception 

2.1. Introduction 
 
In this section, we summarise a computational approach to modelling expectation in 
music perception (Pearce, 2005). Although this is only one of several models of 
expectation in the literature (e.g., Collins et al., 2014; Margulis, 2005; Milne et al., 
2011; Narmour, 1990, Schellenberg, 1997; Temperley, 2007; Toiviainen & Krumhansl, 
2003) and related concepts such as tension (e.g., Farbood, 2012; Lerdahl & Krumhansl, 
2007; Rohrmeier, 2011), we choose it to exemplify the approach because it has useful 
features such as incorporating an experience-driven aspect, combining local (intra-
opus) and longer-term (extra-opus) effects on musical expectation, and the ability to 
combine information from multiple musical features, including tonal and non-tonal 
effects (all of which are described further below). The purpose of the models described 
here is to understand the cognitive processes involved in generating expectations about 
forthcoming events while listening to music. Expectations are of general interest in 
psychology, but have particular relevance to music as they are thought to be involved 
in the induction of emotion in the listener (Huron, 2006; Juslin & Västfjäll, 2008; 
Meyer, 1956). In simulating this aspect of music perception, the task for the model is 
to predict some feature of the next event in the music. Here we use melodic pitch 
expectations as an example (i.e., predicting the pitch of the next note in a melody) but 
the approach generalises naturally to predicting the interval, timing or duration of the 
next note, combinations of features of the next note, the next chord in a sequence and 
so on. 

2.2. Markov models 
 
The central feature of the modelling approach is to learn sequential, statistical 
dependencies between notes in an unsupervised manner through exposure to melodies. 
This is achieved using Markov models or n-gram models (Manning & Schütze, 1999, 
ch. 9) viewing a melody as a sequence of non-overlapping events, each represented by 
a property such as pitch. An n-gram model computes the conditional probability of an 
event given the n-1 preceding events in the sequence. The quantity n-1 is called the 
order of the model. An n-gram model estimates the conditional probability of an event 
e given the context c of the preceding n-1 events based on the frequency with which 
that event occurred in the same context in the prior experience of the model. 
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(1) 

where ce denotes the concatenation of c and e. The conditional probability p(e|c) varies 
between 0 and 1. Given a trained n-gram model, the degree to which an event appearing 
in a given context is unexpected can be defined as the information content (IC), h(e|c), 
of the event given the context and the model: 

 
(2) 

IC ranges from 0 to infinity: low values correspond to high probability events and vice 
versa. Given an alphabet ! of events (e.g., a set of pitches in our case) which have 
appeared in the prior experience of the model, the uncertainty of the model’s 
expectations in a given melodic context can be defined as the entropy, or average 
information content, of the events in !: 

 

 
(3) 

Entropy ranges from 0 to log2(|! |): low values indicate low uncertainty and vice versa. 
In modelling musical perception, entropy represents the predictive uncertainty about 
which musical event will come next in a given context (before that note actually arrives) 
while information content reflects the unexpectedness of the event that actually does 
follow. 

2.3. Extensions to Markov Models 
 
The present framework extends basic Markov modelling in three ways. First, we 
consider models with different fixed orders. Variable-order models, where the order 
used varies throughout prediction (Cleary & Teahan, 1997; Pearce, 2005) are also 
possible but not considered here. 

Second, the system may be configured with two components (Conklin & Witten, 1995; 
Pearce et al., 2006): first, the long-term model (LTM), which is exposed to an entire 
corpus (representing schematic effects of long-term exposure to music); second, a 
short-term model (STM), which is exposed only to the current melody (representing 
short-term processing of local structure in the current listening episode). The models 
may be used in combination or in isolation. There are five configurations: the STM 
alone (STM); the LTM alone (LTM); the LTM+, which is a version of the LTM that 
learns dynamically while predicting, in comparison to the LTM which is fixed and 
static after training; the STM and LTM together (BOTH); and the STM and LTM+ 
together (BOTH+). When used in combination (BOTH, BOTH+), each model 
generates a probability distribution predicting the pitch of each note as the melody 
proceeds, which are then combined (Conklin & Witten, 1995, Pearce et al., 2005). In 
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where ce denotes the concatenation of c and e. Given a trained n-gram model, the degree to which
an event appearing in a given context is unexpected can be defined as the information content,
h(e|c), of the event given the context and the model:
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1

p(e|c) . (2)
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Given an alphabet E of events (e.g., a set of pitches in our case) which have appeared in the prior
experience of the model, the uncertainty of the model’s expectations in a given melodic context
can be defined as the entropy or average information content of the events in E :

H(c) =
X
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p(e|c)h(e|c). (3)

In modelling musical perception, entropy represents the predictive uncertainty about which
musical event will come next in a given context (before that note actually arrives) while information
content reflects the unexpectedness of the event that actually does follow.

Extensions to Markov Models

The present framework extends basic Markov modelling in three ways. First, we consider mod-
els with di↵erent fixed orders. Variable-order models, where the order used varies throughout
prediction (Cleary & Teahan, 1997; Pearce, 2005) are also possible but not considered here.

Second, the system may be configured with two components Conklin & Witten (1995); Pearce
et al. (2005): first, the long-term model (LTM), which is exposed to an entire corpus (representing
schematic e↵ects of long-term exposure to music); second, a short-term model (STM), which is
exposed only to the current melody (representing short-term processing of local structure in the
current listening episode). The models may be used in combination or in isolation. There are five
configurations: the STM alone (STM); the LTM alone (LTM); the LTM+, which is a version of
the LTM that learns dynamically while predicting, in comparison to the LTM which is fixed and
static after training; the STM and LTM together (BOTH); and the STM and LTM+ together
(BOTH+). When used in combination (BOTH, BOTH+), each model generates a probability
distribution predicting the pitch of each note as the melody proceeds, which are then combined
(Conklin & Witten, 1995; Pearce et al., 2005). In this work, we only use a long-term model (LTM).

Third, the framework allows for modelling and combining di↵erent features present in and de-
rived from the events making up the musical surface. We have to treat music, and the perception
of it, as a multidimensional phenomenon since musical elements di↵er in pitch, timing, loudness,
timbre, spatial location and other attributes and these dimensions are known to influence per-
ception (Levitin & Tirovalas, 2009). Pitch perception alone shows evidence of multidimensional
cognitive representations (Shepard, 1982).

Therefore, each note is represented as a discrete event consisting of a conjunction of basic
features such as pitch, onset time, duration, loudness etc., which may assume one of a finite set
of values (the alphabet or domain of that feature). A multiple viewpoint framework (Conklin &
Witten, 1995; Pearce et al., 2005) may be used to predict a basic feature (e.g., pitch, onset time)
using multiple models trained on di↵erent abstract derivations of the basic feature (e.g., scale
degree, inter-onset interval). Furthermore, such representations may be selected automatically to
improve the predictive accuracy of the model by minimising information content (Chater, 1999;
Pearce, 2005). In this preliminary work, we do not use these advanced features of the framework,
focusing instead on comparing two basic features: pitch and pitch interval.

Summary

Using the system involves choosing a configuration (i.e., STM, LTM, LTM+, BOTH, BOTH+),
choosing the basic target viewpoints of interest and then choosing the set of source viewpoints used
in prediction (either manually or using viewpoint selection).

In this work we compare long-term models (LTM) with varying fixed orders using target view-
points of pitch and pitch interval (in this work the source viewpoint is always the same as the
target). Future work will develop more sophisticated models of historical listeners using more
complex sets of modelling parameters.
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the examples provided below, we focus on the long-term model (LTM). The reasons 
for this are explained in 3.1.1. 

Third, the framework allows for modelling and combining different features present in 
and derived from the events making up the musical surface. We have to treat music, 
and the perception of it, as a multidimensional phenomenon since musical elements 
differ in pitch, timing, loudness, timbre, spatial location and other attributes and these 
dimensions are known to influence perception (Levitin & Tirovalas, 2009). Pitch 
perception alone shows evidence of multidimensional cognitive representations 
(Shepard, 1982). Therefore, each note is represented as a discrete event consisting of a 
conjunction of basic features such as pitch, onset time, duration, loudness etc., which 
may assume one of a finite set of values (the alphabet or domain of that feature). A 
multiple viewpoint framework (Conklin & Witten, 1995; Pearce et al., 2005) may be 
used to predict a basic feature (e.g., pitch, onset time) using multiple models trained on 
different abstract derivations of the basic feature (e.g., scale degree, inter-onset 
interval). Furthermore, such representations may be selected automatically to improve 
the predictive accuracy of the model by minimising information content (Chater, 1999; 
Pearce, 2005). In this preliminary work, we do not use these advanced features of the 
framework, focusing instead on comparing two basic features: scale degree (MIDI note 
number mod 12, relative to tonal centre) and pitch interval (from previous note, in 
semitones, with sign representing direction). 

2.4. Summary 
 
Using the system involves choosing a configuration (i.e., STM, LTM, LTM+, BOTH, 
BOTH+), choosing the basic target viewpoints of interest and then choosing the set of 
source viewpoints used in prediction (either manually or using viewpoint selection). 

In this work we compare long-term models (LTM) with varying fixed orders using 
target viewpoints of scale degree and pitch interval (in this work the source viewpoint 
is always the same as the target). Future work will develop more sophisticated models 
of historical listeners using more complex sets of modelling parameters. 

We focus on Markov models since they have been shown to be capable of learning 
stylistic characteristics and accurately predicting listeners’ expectations. However, 
there is also work on other kinds of machine learning methods for music prediction, 
including neural networks (e.g., Cherla et al., 2013). Although the application of these 
methods to musical structure is in its infancy, they could be substituted into the 
framework in future, should they be shown to model expectations more accurately than 
the Markov models used in our examples below. 

2.5. Empirical support for the framework 
 
The use of this approach in a cognitive model of auditory expectation is motivated by 
empirical evidence of implicit learning of statistical regularities in musical melody and 
other sequences of pitched events (Oram & Cuddy, 1995; Saffran et al., 1999). 
Consistent with a process of statistical learning, melodic pitch expectations vary 
between musical styles (Krumhansl et al., 2000) and cultures (Carlsen, 1981; 
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Castellano et al., 1984; Curtis & Bharucha, 2009; Eerola, 2004, Kessler et al., 1984; 
Krumhansl et al., 1999), throughout development (Schellenberg et al., 2002) and across 
degrees of musical training and familiarity (Krumhansl et al., 2000; Pearce et al., 2010). 
In particular, research exploring differences in expectation between listeners with 
experience of different musical cultures (Carlsen, 1981; Castellano et al., 1984; Curtis 
& Bharucha, 2009; Eerola, 2004, Kessler et al., 1984; Krumhansl et al., 1999) is 
complementary to our proposal to study differences in expectation between listeners 
with experience of music of different historical periods. Indeed, recent work has 
attempted to simulate these effects of cultural musical exposure, using an approach 
related to the one we propose here (Curtis & Bharucha, 2009). 

In particular, there is evidence that pitch expectations are informed both by long-term 
exposure to music and by the encoding of regularities in the immediate context. 
Krumhansl, for example, showed that tonal expectations derived from probe-tone 
experiments (Krumhansl & Kessler, 1982) are closely related to zeroth-order 
distributions of chromatic scale degrees in large collections of music. Krumhansl 
argued that tonal hierarchies are acquired by statistical learning through long-term 
exposure to music. There is also evidence that local musical structure influences 
expectations. Oram & Cuddy (1995) conducted a series of experiments in which 
continuation tones were rated for musical fit in the context of artificially constructed 
sequences of pure tones in which the tone frequencies were carefully controlled. The 
continuation tone ratings of both trained and untrained listeners were significantly 
related to the frequency of occurrence of the continuation tone in the context sequence. 
Tillmann and colleagues have shown that target chords are processed more accurately 
and quickly when they are related both to the local and the global harmonic context 
(previous chord and prior context of six chords) respectively (Tillmann et al., 1998) 
and that these effects can be explained by a mechanism of implicit statistical learning 
of sequential harmonic patterns in music (Tillmann et al., 2000). 

There is also evidence that pitch expectations are influenced by higher-order 
probabilistic prediction. Saffran et al., (1999) showed that infants and adults are 
capable of implicitly learning first-order probabilities in tone sequences and using them 
to identify segment boundaries. These influences also hold for musical stimuli. In a 
study using Finnish spiritual hymns, Krumhansl, Louhivuori, Toiviainen, Järvinen & 
Eerola (2001) presented evidence for the influence of second-order probabilities on 
listeners’ pitch expectations. Extending these results, the model presented above has 
been tested by comparing its pitch expectations with those of human listeners (Pearce, 
2005). In a series of reanalyses of existing behavioural data (Cuddy & Lunny, 1995; 
Manzara et al., 1992; Schellenberg, 1997), it was shown that this model predicts 
listeners’ expectations better than existing models of melodic expectation based on 
innate principles (Narmour, 1990; Schellenberg, 1997). Using a novel visual cueing 
paradigm for eliciting auditory expectations without pausing playback, Pearce et al., 
(2010) confirmed that the model predicts listener’s pitch expectations in melodies 
without explicit rhythmic structure. Recent work has extended these findings to entropy 
as a model of uncertainty in music perception (Hansen et al., 2013). 
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To summarise, many studies suggest that melodic expectancy is a strong candidate for 
tapping into acquired knowledge of music through exposure (for a review, see 
Tillmann, Poulin-Charronnat, Bigand, 2014). Rather than compare expectations 
between cultures, as done in previous research, we propose to examine expectations 
between historical periods. The obvious problem is that we no longer have access to 
listeners from those periods for empirical psychological research. However, attempts 
to simulate the sensitivities of listeners of a particular period have been conducted by 
giving contemporary listeners exposure to different historical styles. Jürgensen, 
Pearson, & Knopke (2014-2016), for example, explicitly investigated perception of 
historical change – where highly conventionalised treatment of dissonance gave way to 
unprepared dissonance in the early decade of 1600 – by exposing contemporary 
listeners to varying amounts of musical examples from the time periods involved.  The 
results suggest that statistical learning through experience could account for some 
differences in familiarity ratings.  

3. Methodology 

3.1. Identifying Research Questions 
 
The most important part of this proposal is to demonstrate the kind of research 
questions that can be addressed with cognitive modelling and how such an approach is 
connected to information derived from a diverse set of music corpora. Given the 
interdisciplinary nature of the endeavour, these must be coherent in terms of 
musicological value, psychological validity and computational feasibility. 

How would a seventeenth-century listener have responded to a particular note in a 
Monteverdi madrigal? Are there events that would have been surprising to such a 
listener but which are not to a modern listener and vice versa? Would the sense of 
tension arising from a perception of uncertainty have been the same for a contemporary 
listener as for a modern day listener? These questions can be addressed to some extent 
by simulating listeners of different periods by exposing the model to music of those 
periods and comparing the responses of these simulated listeners to music of different 
periods (their own, future and past periods). Other research questions might address the 
amount of information present in different voices, the features enabling optimal 
prediction of music at different periods, issues of stylistic development and ambiguities 
involved in transcribing early sources. 

3.1.1. The present research question 
As a first step, we ask whether long-term models trained on different stylistic corpora 
(across cultures and time) are capable of simulating enculturated listeners to those 
corpora. Our preliminary approach is to compare models trained on different corpora, 
representing enculturated listeners in the respective stylistic traditions, to see if they 
differ in plausible ways. Specifically, we take a collection of seventeenth-century 
madrigals as our point in history and examine whether long-term models trained on 
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increasingly distant collections of music (culturally and historically) make increasingly 
different predictions about the structure of the madrigals. 

3.2. Selecting the Corpus 
 
To simulate a given listener, the model needs to be exposed to the same music that the 
listener has heard throughout their lifetime. Ideally, we would also simulate issues 
affecting the encoding (e.g., attention, arousal, interest, order effects and so on) and 
retrieval of the music (e.g., memory limitations). Although it might be interesting to 
model a specific listener in this way, we propose as a starting point, to simulate a typical 
listener of a given period by training the model on a representative sample of the music 
available within the culture of that listener. 

This raises both the thorny issue of what we mean by typical and representative and the 
vexed question of whether it is actually possible to construct such a corpus for a given 
historical period and culture. There is a balance to be struck between making the corpus 
so specific (in terms of modelling a given listener in a given place at a given time, to 
the extent that this is possible) that the results have limited scope and making it so 
general as to be meaningless. The appropriate approach will depend to some extent on 
the question being addressed. Another issue is that a representative sample of music for 
a typical listener of a given period in a given location may well have included pieces 
that have not survived or attracted continued interest and, therefore, are no longer 
readily available. 

3.2.1. The present corpus 
Here we illustrate the approach by comparing a seventeenth-century collection of 
madrigalsi with other collections of monophonic vocal music, representing a continuum 
from related to unrelated musical genres. The aim is to explore how sensitive the 
various representations are in quantifying broad stylistic differences between the 
corpora at the level of entire collections, individual compositions and specific events.  

3.2.2. Musical examples from the Coppini collection 
We took examples from Aquilino Coppini’s collection of madrigals titled musica tolta 
da i madrigali from 1607 (Jacobsen, 1998, 2003), which consist of 24 polyphonic vocal 
works by Banchieri, Gabrieli, Giovanelli, Marenzio, Monteverdi, Nanino and Vecchi. 
Coppini was an associate of Monteverdi and edited at least three books of madrigals 
(Rorke, 1984) under the support of the Cardinal Borromeo (Macy, 2011). The 
advantage of this Coppini collection is that it is available in electronic format, both 
from KernScoresii, and from the International Music Score Library Projectiii.  

3.2.3. Derived long-term models of musical styles (LTMs) 
To demonstrate the possibilities of the computational analysis of historical styles, a few 
points of reference are needed. In this case, an illustrative range of references is used 
to convey the sensitivity and consistency of the measures used. We chose six samples 
of music that vary in terms of stylistic similarity to the music contained in the Coppini 
collection. 
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The first collection comes from the substantial repertoire of J.S. Bach chorales, 
collected by C. P. E. Bach after J.S. Bach’s death (Dörffel, 1940). These 371 chorales 
are available in KernScoresiv.  

Second, we were fortunate to have access to an Early Renaissance collection containing 
384 polyphonic secular works composed between 1350-1450, many from the Chantilly 
Manuscript (Reaney, 1954). This corpus has been curated, encoded and supplied by 
Michael W. Beauvois.  

A more distant collection of vocal music is taken from a small sample of lieder by Franz 
Schubert (35 Lieder) and songs by Stephen Foster (38 songs). This collection, referred 
to here as Schubert & Foster songs (vocal lines only), is available from KernScoresv. 

Another stylistically distant collection of songs from KernScores is contained in the 
Essen collection (Schaffrath, 1995), from which we take all German folk songs (5365). 
Again, these are readily available in Kern formatvi. 

For our next most distant frame of reference, we took a sample of popular music, UK 
top 10 hits between 1960 and 1975, which contains 484 songs. We refer to this 
collection as Pop songs. 

Finally, the most remote point of comparison is taken from Native American songs of 
the Ojibway, Sioux, and Pawnee collected by Frances Densmore. This corpus of 366 
songs, edited by Paul von Hippel, is available onlinevii, and serves to illustrate the 
farthest departure from the original renaissance sample. By way of summary, basic 
information about these collections is presented in Table Error! Reference source not 
found..  

Table 1. Summary of the collections. 

Collection N Voices Notes Source 

Coppini collection 24 4-5 3112 KernScores 

Bach chorales 371 4 84666 KernScores 

Early Renaissance collection 384 4-5 51236 Private 

Schubert & Foster songs 73 Monophonic 10635 KernScores 

Essen collection 5365 Monophonic 301617 KernScores 

Pop songs 484 Monophonic 131697 Private 

Native American songs 366 Monophonic 22740 KernScores 
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3.3. Selecting the representation 
 
Once a suitable corpus has been identified, we have to ask how best to represent the 
music for the model. Although we are interested in modelling human perception, 
particularly melodic expectations, we do not attempt a completely accurate 
reconstruction of the physiological and psychological processes involved in auditory 
representation of sound from the ear upwards. Rather, we identify a level of 
representational abstraction in auditory processing that is appropriate to the questions 
of interest. Here, we are concerned with high-level musical structure, so we assume that 
lower-level mechanisms deliver a note-like representation of music, and take this as 
our musical surface. 

3.3.1. Transcription 
There are many issues involved in making accurate transcriptions into modern staff 
notation of original sources, whose notation systems may require interpretation and 
which may be handwritten, incomplete, damaged or otherwise ambiguous in a variety 
of ways. One potential application of the approach presented here would be to use a 
trained model to disambiguate the process by, for example, making predictions about 
the most probable pitch spelling or note duration (Knopke & Jürgensen, 2012). 

3.3.2. Basic representations 
It makes sense to start with the most fundamental properties of notes: their pitch and 
timing (duration and onset time), though other features such as dynamics, timbre and 
articulation would also be of interest. Therefore the task set for the model would be to 
predict the onset time and absolute pitch (the former represented in beats, the latter 
represented as MIDI note numbers, see Table Error! Reference source not found.) of 
the next note in the music, given the previous notes (assuming for now that we are 
dealing with monody - we come to polyphony below). In our example below we focus 
exclusively on pitch to illustrate the approach. 

3.3.3. Derived representations 
Previous research has demonstrated that derived viewpoints yield significant 
improvements, in terms of both improved prediction performance and fit to human data 
(Pearce, 2005). For pitch, representations of relative pitch, especially interval (in 
semitones, see Table Error! Reference source not found.), have proved particularly 
fruitful (Pearce et al., 2010). Another useful pitch representation is octave-equivalent 
pitch class (MIDI pitch modulo 12, see Table Error! Reference source not found.) 
eliminating octave information. Finally, chromatic scale degree can be computed by 
making pitch-class relative to a tonal centre such that, for example, 0 is the tonic, 2 the 
supertonic and so on (see Table 2). Linked viewpoints combining pitch features with 
rhythmic features have also shown their worth (Pearce, 2005), suggesting that pitch 
structure and rhythmic structure tend to be correlated. 
 



Music perception in historical audiences 101 

Table 2. Examples of the melodic representations for the first phrase of Giovanni Maria Nanino’s 
Artifex mirus (canto voice). Note that the Krumhansl-Schmuckler key finding algorithm returns 
the key of A minor for the whole of Artifex mirus. 

 

 
Onset time 0 4 5 7 11 13 15 17 18 19 21 

Duration 3 1 2 4 2 2 2 1 1 2 2 

Pitch C#5 C#5 C#5 D5 F5 E5 E5 E5 D5 E5 E5 

Pitch class C# C# C# D F E E E D E E 

MIDI note number 73 73 73 74 77 76 76 76 74 76 76 

MIDI number mod 12 1 1 1 2 5 4 4 4 2 4 4 

Chromatic Scale degree 

(relative to A) 

4 4 4 5 8 7 7 7 5 7 7 

Pitch interval NA 0 0 +1 +3 -1 0 0 -2 +2 0 

It would also be possible to consider simultaneous harmonic intervals (chords) in the 
polyphonic compositions or implied tonality in monophonic music. However, this 
could be problematic in a historical context if the representation is founded on 
assumptions of functional harmony (Rohrmeier, 2011). Such issues could be 
circumvented if the vertical sonorities are merely described by a descriptive labelling 
such as Allan Forte’s set-theoretical system (Forte, 1973). 

Finally, to compare multiple works in terms of their pitch or interval content, it is 
prudent to attempt to align them to the same approximate tonal centre, so that 
meaningful comparisons can be carried out. Naturally, concepts of tonality may not 
apply in the same way to all music corpora, across historical periods, but at the broadest 
level most musical cultures using discrete pitches rely on hierarchical organisation of 
pitch classes (Stevens, 2004). For this reason, we prefer to use (chromatic) scale 
degrees by making the pitch classes relative to a tonal centre. Since the key-signature 
cannot be used to infer the tonal centre, we adopt a perceptual solution and transpose 
each work using the Krumhansl-Schmuckler key-finding algorithm (Krumhansl, 1990), 
which compares the pitch class distribution of the work to the 24 possible key profiles 
(Krumhansl & Kessler, 1982) and chooses the one with the highest correlation. 

3.3.4. Representing polyphony 
 A limitation of the system described above is that it only applies to melody, where the 
sequence of notes making up the context for prediction is unambiguous. Although 
research has extended multiple viewpoint frameworks to homophony especially in 

Canto

Ar ti- fex- mi rus- es, æ ter- ne- De- us,-

c& ˙# ™ œ ˙# ˙ ˙ ˙ ˙ ˙ œ œ ˙ ˙ Œ Œ
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voiced music (Conklin, 2002), the problem of representing polyphonic music of 
arbitrary complexity in an appropriate way for statistical modelling remains unsolved 
to date. Although this is not problematic for some musical styles (e.g., plainchant), any 
complete representational system must handle the complexities of true polyphony. In 
particular, one has to address the question of streaming (Bregman, 1990): one cannot 
always assume that all voices fuse together into a single stream of harmonic movement. 
We can identify three broad approaches for applying statistical models to early 
polyphony: 

1. treat each voice independently;  
2. assume a single homophonic harmonic movement;  
3. identify points at which different streams segregate and integrate perceptually 

prior to modelling.  

The first approach, in which each part is represented individually as a separate monody, 
could be useful, for example, in making comparisons between different voices. A 
variant of this approach would be to attempt to identify the melodic line likely to be 
perceived, either by taking the highest voice or using some automated procedure such 
as the skyline algorithm (Uitdenbogerd & Zobel, 1998). The second approach involves 
developing a representation scheme for harmonic movement within the multiple 
viewpoint framework. Some progress towards this goal has already been made 
(Conklin, 2002; Whorley et al., 2010). However, neither of these approaches is capable 
of capturing relevant structural relations between the voices in music such as 
counterpoint (from the Renaissance onwards). The final approach, therefore, is the most 
complex, since it effectively involves building a cognitive model of stream segregation 
prior to analysis. A model capable of combining both horizontal and vertical constraints 
will be better able to capture voice-leading constraints in counterpoint, for instance. 
(See Huron, 2001, for an analysis of voice-leading principles in terms of experimentally 
established perceptual principles.) Nonetheless, it is worth noting as a goal to strive 
towards. In the meantime, the pertinent question is: to what extent can useful progress 
be made using the first two options?  

3.3.5. The present representation 
In the present approach, we focus on melody to demonstrate the basic principles of the 
approach. We represent melodies in terms of sequences of chromatic scale degrees 
(relative to a tonic, see Table 2) and sequences of pitch intervals (representing the 
difference in semitones from the previous pitch in the melody, see Table 2) which have 
been used in previous work (e.g., Hansen & Pearce, 2014; Pearce et al., 2010). For scale 
degree representations, pitch-classes are represented relative to the tonal centre 
indicated by a key-estimation algorithm (Krumhansl, 1990). In computing the tonal 
centre, if there are several melodic lines in the excerpt, we aggregate the counts across 
the voices by adding up the distributions across the voices and divide them according 
to the total number of events. Although both pitch representations (scale degree and 
pitch interval) are simple, there is much evidence to suggest that interval 
representations are important in the perception of musical structure (Dowling & 
Bartlett, 1981; Müllensiefen & Frieler, 2007). We represent intervals across rests 
(effectively ignoring rests), on the assumption that listeners perceive melodic intervals 
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across rests (although this may not be true for the longest rests in the corpora, the effects 
should be relatively small). 

Scale degree or pitch interval frequencies can be computed in a way that incorporates 
the transitions between sequential events. When we go beyond the zeroth-order 
statistics (unigrams) – which are merely the frequency counts of either scale degrees or 
intervals – higher-order representations reflect the transitions between the tones and 
intervals (1st-order statistics or bigrams), sequences of three tones/intervals (2nd-order 
statistics or trigrams), up to sequences of five tones/intervals (4th-order statistics or 5-
grams). These higher-order models typically reveal the structural particularities of 
specific musical styles to a greater extent than the general patterns usually evident in 
zeroth-order statistics. Moreover, listeners have been shown to be sensitive to such 
patterns in music and the higher-order statistical information is something that listeners 
with appropriate stylistic knowledge can utilise in predicting musical continuations 
(Eerola et al., 2009). 

 

Figure 1. A schematic diagram of the analysis and comparison process. 

Higher-order global measures of note and interval transitions might be good candidates 
for representing the long-term knowledge of a particular style. For instance, the 5-
grams for these collections tend to highlight more structurally specific aspects of 
melodic structures such as the typically descending scalar interval motifs in the Early 
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Renaissance collection (the most prevalent of these being -2 -1 -2 -2 2 and its close 
alternatives, expressed in semitones) compared to prominent motifs based on note 
repetitions in popular music (0 0 0 0 0 and 0 0 0 0 2 being the two most common 5-
grams in the pop songs) or repetitions with descending minor thirds in the Native 
American collection (-3 0 0 0 0 and 0 -3 0 0 0). However, the higher the order of the n-
gram, the more structurally specific and exclusive the information represented, which 
can impact negatively on generalisation to music not appearing in its training set. 

We can explore the utility of the different representations and specificities of the global 
measures by comparing their similarities to each other. In order words, we want to 
assess whether the LTM representations we construct are distinct enough to simulate 
enculturated listeners from different places at different points in time. Figure Error! 
Reference source not found. shows each of the steps involved in the overall process 
of comparison (key estimation, computing unigram, trigram and 5-gram frequency 
counts for scale degrees and intervals, aggregating across the collections and then 
comparing the resulting distributions). In aggregating across collections we simply 
summed and normalised the distributions of the individual works of each collection. To 
effectively compare the different distributions to each other, we need a measure that is 
especially sensitive to small variations between the distributions. One such measure is 
Mutual Information that captures the mutual dependence of the two distributions 
(MacKay, 2003): 

 

(4) 

Mutual Information ranges from 0 (indicating complete independence) to 
min(H(X),H(Y)) (indicating complete redundancy between X and Y).  We use a 
normalised version, (H(X, Y) – I(X; Y)) / H(X, Y) that varies between 0 and 1 and can 
be used as a distance measure. Other related information-theoretic measures exist (e.g., 
Kullback-Liebler or Jensen-Shannon divergence) which can be examined in future 
research.  

3.4. Selecting the Model Parameters 
 
In many cases, it makes sense to use a combination of short and long-term models both 
because this improves prediction performance (Pearce, 2005) but also because it makes 
for a more plausible model of human perception, combining short-term learning of local 
structure in the current listening episode with schematic implicit knowledge learned 
over a longer period of experience with music. In general, BOTH+ is the most flexible 
model and tends to yield the best prediction performance (Pearce, 2005). The LTM+ 
configuration often achieves comparable performance to BOTH+ but does not allow us 
to delineate and separately examine the short- and long-term influences on 
expectations. 

In the present work we limit ourselves to simple LTMs trained on different stylistic 
collections of music. Since we are interested in relationships between collections of 
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Figure 1: A schematic diagram of the analysis and comparison process.

being -2 -1 -2 -2 2 and its close alternatives, expressed in semitones) compared to prominent mo-
tifs based on note repetitions in popular music (0 0 0 0 0 and 0 0 0 0 2 being the two most common
5-grams in pop music collection) or repetitions with descending minor thirds in Native American
collection (-3 0 0 0 0 and 0 -3 0 0 0). However, the higher the order of the n-gram, the more
structurally specific and exclusive the information represented, which can impact negatively on
generalisation to music not appearing in its training set.

We can explore the utility of the di↵erent representations and specificities of the global measures
by comparing their similarities to each other. In order words, we want to demonstrate that the
LTM representations we choose are distinct enough to be of utility if used to simulate enculturated
listeners from di↵erent places at di↵erent points in time. The process of comparison is shown in
1, where the complete steps of the process (key estimation, frequency counts for pitch-classes and
intervals, including the higher order derivaties of these (unigram, trigram and 5-gram in this case)
are given. To e↵ectively compare the di↵erent distributions to each other, we need a measure that
is especially sensitive to small variations between the distributions. One such measure is Mutual
Information that captures the mutual dependence of the two distributions (MacKay, 2003):

I(X;Y ) =
X

x2X

X

y2Y
p(x, y) log

p(x, y)

p(x)p(y)
. (4)

A host of other measures also exist (e.g., Kullback-Liebler or Jensen-Shannon divergence)
but here we prefer to use mutual information since it utilizes information-theoretic principles,
particularly entropy, to quantity the relationship between the distributions, which have in general
been found to be successful in capturing expectancies in music (Hansen et al., 2013; Pearce, 2005,
see above).

Selecting the Model Parameters

In many cases, it makes sense to use a combination of short and long-term models both because
this improves prediction performance (Pearce, 2005) but also because it makes for a more plau-
sible model of human perception, combining short-term learning of local structure in the current
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music, rather than within individual compositions, the STM is less relevant to our 
enquiry. Because these collections are static, we prefer the LTM to the LTM+. 

We are now ready to train models on the selected corpora to simulate different listeners. 

4. Results 

For our illustrative examples, we use several LTMs trained on the music of a given 
period to simulate a listener from the time and location of the stylistic tradition. By 
comparing models trained on different historical corpora, we can start to examine the 
model parameters required to simulate adequately an historical listener enculturated in 
a given musical tradition. We will first look at the specificity of the simulations at the 
level of entire collections, then examine relationships amongst the musical pieces in 
the collections, and finally we apply the models to a specific excerpt from the Coppini 
collection. We remind the reader that these examples are intended to illustrate the 
approach and provide a springboard for further discussion and development rather than 
provide definitive results. 

4.1. How specific are the long-term models?  
 
If we look at the basic representations presented above, a question arises about how 
much statistical structure is shared or distinct between different corpora? For instance, 
simple zeroth-order (unigram) models of pitch class and pitch interval in folk music 
spanning different continents are to a large degree indistinguishable (Huron, 2001). 
Such broad characterisations are assumed to reflect basic organisation principles that 
are related to human production and perceptual systems. Small intervals, for instance, 
are favoured due to constraints of tessitura and vocal range (von Hippel, 2000) and the 
organisation of frequencies into discrete pitches that are organised hierarchically across 
the octave is another heuristic facilitating memory (Kessler et al., 1984). For this 
reason, it is likely that such simple summaries are not particularly good long-term 
models of stylistically-specific structures in musical traditions. To demonstrate this, 
Figure Error! Reference source not found. displays the interval distributions 
(unigram) of all 7 collections selected here. This not only illustrates how small intervals 
dominate but how small the differences are, from casual visual inspection, between 
many of the distributions (in particular Essen folk songs, Pop songs and Schubert & 
Foster songs are indistinguishable). The Coppini collection and Native American 
collection stand out in this comparison by their frequent note repetitions. 

To explore the utility of different representations (basic and derived) and specificity of 
the higher-order n-grams, we calculated the similarity between the Coppini collection 
and the comparative LTMs (aggregated n-grams of other collections), using both scale 
degree and pitch interval representations with a range of model orders (unigram, 
trigram, 5-gram) according to the process illustrated in Figure 1. We define similarity 
using mutual information, which reflects the mutual dependence of the two 
distributions. This exercise, provided in Table 3, underscores the assumption that low-
order statistics (unigrams, even trigrams here) are unable to bring out specific 
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differences between the LTMs since most of the collections yield a range of highly 
similar values to Coppini collection (for unigrams based on intervals, all are between 
.59 and .80).  

 

Figure 2. Interval distributions across the collections. Horizontal axis refers to the interval size 
and direction in semitones (from descending octave, -P8, to unison, P1, at the middle, to the 
ascending octave, +P8). 

In contrast, the higher-order statistics (5-grams) display a rudimentary form of stylistic 
sensitivity in showing that the Early Renaissance collection has the closest relationship 
to the Coppini collection (interval-based 5-grams, 0.80) whereas the other collections 
show decreasing similarity (from .70 to .59). These results are useful in determining 
how to choose LTMs that are specific enough to represent musical knowledge specific 
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to a particular style of music. Although these simple models trained on limited numbers 
of musical examples are far from perfect simulations of the knowledge possessed by an 
enculturated listener, they do at least allow us to analytically assess the implications of 
building LTMs from different corpora to simulate listeners with different cultural and 
historical sensitivities.  

Table 3. Similarity of each collection to the Coppini collection. 

 Similarity with the Coppini collection 

 Scale degree Pitch interval 

Collection unigram trigram 5-gram unigram trigram 5-gram 

Early Renaissance collection 0.89 0.72 0.67 0.59 0.73 0.80 

Bach Chorales 0.67 0.91 0.58 0.80 0.68 0.70 

Schubert & Foster songs 0.55 0.60 0.74 0.75 0.76 0.76 

Essen collection 0.61 0.60 0.76 0.73 0.78 0.66 

Pop songs 0.66 0.77 0.64 0.72 0.74 0.68 

Native American songs 0.82 0.60 0.71 0.60 0.50 0.59 

Next we present an analysis at a more detailed level, examining differences between 
individual compositions rather than collections. 

4.2. How consistent are the long-term models? 
  
As well as looking at the collections as a whole, represented as averaged n-grams, we 
are also interested in how individual works relate to other pieces both within and 
between collections. There are numerous techniques within the field of machine 
learning for conducting such an analysis, particularly if we want to know which features 
set the collections apart. Instead of such a discriminative analysis, here we aim to 
examine the individuality or distinctiveness of compositions from each collection. We 
will use one of the representations introduced above (trigrams based on pitch intervals, 
a useful compromise between structural specificity and statistical power) and take a 
sample of 100 items from each collection (except the Coppini collection and Schubert 
& Foster songs, which are present in their entirety). We calculate the similarity between 
all pairs of items (597 in total) and after converting these into pairwise distances, project 
them using Multi-Dimensional Scaling (MDS) into a low-dimensional spaceviii. The 
result is visualised in two-dimensions in Figure Error! Reference source not found.. 
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Figure 3. A projection of the similarities between the 100 examples from each collection based 
on the scale degree trigrams. The axes are simply the first and second dimensions extracted in 
the MDS projection of the original data (and have arbitrary units). Our simple interpretation of 
the axes (see text) is that the abscissa (Dim. 1) represents the richness of the interval palette while 
the ordinate (Dim. 2) represents a continuum from unisons to scalar sequences. 

The labels in Figure 3 indicate the central points for each collection in the projected 
space computed by the MDS, which reveals how Coppini and Early Renaissance 
collections, and Bach Chorales and Native American songs form fairly distinct clusters 
whereas Schubert & Foster songs, Essen folk songs, and Pop songs are diverse and 
scattered widely across the projection. Items close together in the projection are more 
similar in terms of the trigram pitch interval model. Even though this model was not 
the most discriminant in separating the other collections from the Coppini collection 
using mutual information (Table Error! Reference source not found.), interesting 
relationships between the higher-order interval structures can be interpreted from this 
visualisation. One simple interpretation is that the vertical axis represents a continuum 
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from unison to scalar sequences: Compositions situated in the upper part of the 
projection exhibit repeated interval combinations frequently and employ a wide variety 
of intervals whereas those at the other extreme (lower half) tend to draw from a more 
constrained set of intervals but less frequently rely on unisons. A simple interpretation 
of the horizontal axis would be to relate it to the richness of the interval palette: 
Compositions on the extreme left contain the most varied palette of three interval 
combinations whereas the examples on the right use a restricted palette of interval 
chains.  

If this interpretation is correct, it is perhaps not surprising that polyphonic works bear 
a close relationship to one another: the Early Renaissance collection and Bach Chorales 
partially overlap, and the items in the Coppini collection overlap with Bach Chorales. 
Native American songs seem to be most distinct from the other collections. 
Compositions from the remaining three collections are scattered across the projection, 
which reminds us that the collections do contain stylistically diverse material (e.g., 
characteristic differences between Schubert and Foster songs, the variety of genres 
represented in Pop songs, and the range of temporal and geographic cultures 
represented in the Essen collection). 

Although this visualisation is far from complete (e.g., it relies on a single pitch interval 
feature, we retain only two dimensions in the projection and so on), it does reflect the 
fact that the collections are not monolithic entities. Different features, models, 
similarity measures and projection techniques may result in different projections. 
Properly and rigorously developed, however, this approach can lead to interesting 
insights if used in conjunction with historical and stylistic information about the crucial 
structures within and between compositions. For example, non-traditional authorship 
attribution could be used to attribute unknown works to the stylistic signatures 
exhibited by a composer or a geographical group of composers (Dor & Reich, 2011; 
Jürgensen & Knopke, 2006). 

Next we will apply the stylistically close and distant LTM models to note-by-note 
expectations to investigate the experience of simulated listeners throughout listening to 
an individual composition. 

4.3. Application of two long-term models to selected examples 
 
Next we illustrate how the models representing different LTMs might act as a useful 
diagnostic tool in explaining what listeners exposed to these styles of music would 
expect as typical melodic movements. The first example comes from the Coppini 
collection, bars 1 to 13 from Giovanni Nanino's Artifex Mirus (the Canto voice). To 
contrast two LTMs, one closely associated with this repertoire, another less so, we take 
the Coppini collection (minus Artifex Mirus) as the style-appropriate LTM and the 
Essen collection as the unrelated one. Mutual information of the 3-grams based on 
intervals within each 4-note segment of the canto voice versus the respective LTM 
representation is calculated for both models to derive a prediction for each note. To 
illustrate the predictions between the LTMs, we have normalised the mutual 
information across the piece for both LTMs, which renders the segments comparable 
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(as they have the same scale) and easily interpretable (values above 0 suggest that the 
note is predictable from the LTM while value below 0 suggest that is unpredictable).  

Figure 4 illustrates how the first 9 bars of Artifex Mirus are more predictable in terms 
of the Coppini LTM (represented by black bars which tend to have positive values), 
presumably due to rules dictating species counterpoint in renaissance polyphony (e.g. 
favour small scale steps, avoid augmented/diminished intervals, skips larger than 
sixths, see Schubert, 1999). Also, the suspension in the cadential figure in bar 9 with 
musica ficta and passing notes seems to be particularly typical of the interval patterns 
in the Coppini LTM in comparison to the Essen LTM.  

 

Figure 4. Mutual Information between two long-term memory representations, Coppini (black) 
and Essen (white) for bars 1-13 from Nanino’s Artifex Mirum (Canto voice). 

This particular cadence pattern is similarly flagged as predictable in other works of the 
Coppini collection. For instance, Monteverdi's Pulchræ sunt genæ tuæ (Quinto voice, 
bars 93-95), shown in Figure 5, is another example of how the Coppini LTM can pick 
out the characteristic patterns of the style better than the Essen LTM.  

 

Figure 5. Prediction of two LTM models representing renaissance polyphony (Coppini – black 
bars) and folk songs (Essen collection – white bars) for Monteverdi’s Pulchræ sunt genæ tuæ 
(Quinto voice, bars 93-95). 
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To illustrate that the LTM models are specific to the styles they represent, let us apply 
them to an example from the Essen collection. Figure 6 visualises the model output for 
the tune Beschattet von der Pappel Weide (deut2579), where we see the opposite 
pattern to Figures 4 and 5. The locations containing multiple triadic leaps (the end of 
bar 1, bar 5 and beginning of the bar 6) are found to be better predicted by the Essen 
LTM, and again we assume this is due to different stylistic rules and conventions 
learned by these LTMs from the collections on which they were trained. 

 

Figure 6. Prediction of two LTM models representing renaissance polyphony (Coppini – black 
bars) and folk songs (Essen collection – white bars) for a German folktune from the Essen 
collection (Beschattet von der Pappel Weide, bars 1-6, deut2579). 

One could also use the models to analytically compare the rules of renaissance 
composition (avoid augmented/diminished intervals, sevenths, sixths down, large than 
octave intervals, tritones, etc.), for example, and other stylistic traditions, but the 
purpose of the present proposal is to use the corpus as a set of examples for implicit 
learning and cognitive modelling rather than style analysis per se. Nevertheless, corpus-
based analysis of this kind might also be used to explore stylistic devices such as nota 
cambiata patterns, or the so-called Landini cadences (see Fallows, 2015) 

The analysis offered is not without problems, however. We are acutely aware that the 
comparison of monophonic and polyphonic music is not entirely satisfactory since the 
voice-leading principles in polyphonic material often lead to large intervals in 
comparison with monophonic melody that has an accompaniment (pop music). Also, it 
is somewhat problematic that we are treating the five voices separately and aggregating 
the results since this probably masks the larger deviations within the individual voices.  

A potentially elegant way of handling the rules of counterpoint that constrain pitch in 
renaissance works is to extend the representation of statistical relationships between, as 
well as within, voices. Preliminary work by Conklin & Bergeron (2010) has 
demonstrated that this can be achieved within the multiple framework adopted here. In 
this multiple viewpoint scheme, probabilities of intervals to other voices at each onset 
would also be computed and used as an additional distribution in the comparisons. This 
would have an effect of delineating those harmonic and melodic combinations that are 
forbidden or rare from those that appear frequently (in particular contexts) in a 
renaissance corpus without the analyst coding these as fixed rules (Boenn et al., 2012). 
However, further features would be necessary to account for the principles of voice-
leading. For instance, duration and metrical position place constraints on permitted 
simultaneous or successive intervals in renaissance music. Constructing such multiple 
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viewpoint models is one way to build more accurate cognitive representations of 
contrapuntal structure than our present simple demonstration with monophonic 
melodies. Future work should further develop the multiple viewpoint approach for 
representing such multi-feature contrapuntal constraints. 

Finally, it must be kept in mind that we have only used models of long-term memory. 
The listener will also draw on short-term memory to follow the patterns unfolding and 
repeating (with variation) within a piece of music. By incorporating short-term memory 
in the models, most of the frequently repeated sequences of music will become less 
unpredictable to a computational model (and, presumably, to an enculturated listener). 
In our simple illustration, for the sake of simplicity, we assume that this short-term 
memory operates similarly across the models and hence the discrepancies produced by 
different long-term models would still be evident.  

Despite these significant caveats, the purpose of the example is to highlight how the 
computational models can be used to generate or evaluate hypotheses about how 
responses to musical passages, as they unfold in time, will vary systematically 
according to the musical enculturation of the listener. 

5. Conclusions 

Our goal was to develop a computational framework for developing simulations of 
historical listeners, allowing us to generate and test predictions about their responses to 
music. In this approach, a model of musical expectations which has been demonstrated 
to accurately account for the perception of present-day listeners is applied to the task 
of understanding the psychological processing of music by listeners at previous points 
in history. This involves training models on representative corpora of music to simulate 
a listener enculturated in the musical style represented by the corpus.  

We have identified the central methodological decisions that must be made when 
applying the framework and given a simple illustrative example of how it can be 
applied, covering three levels of detail. First, we examined differences between 
simulated long-term models trained on entire collections, finding that higher-order 
models and pitch interval representations are most discriminative of simulated listeners 
from different historical periods/locations. The 5-gram pitch interval models exhibited 
differences between the collections which roughly matched their cultural proximity to 
the Coppini collection of seventeenth-century madrigals. We then examined 
similarities between the responses of our simulated listeners to individual 
compositions, representing those similarity relationships in a 2-d projection. This 
analysis showed that the Coppini collection, Bach chorales, Early Renaissance 
collection and Native American songs clustered in different parts of the space, whereas 
the other collections were dispersed more evenly. This analysis, therefore, reveals 
information about individual compositions within a collection, which are lost when the 
collection is considered in aggregate. Finally, we examined note-by-note responses of 
our simulations throughout one madrigal in the Coppini collection. This analysis 
reveals parts of the piece where the simulation of a Pop listener diverges strongly from 
that of a simulated early Renaissance listener.  
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A more thorough analysis of particular passages from the Coppini collection could 
provide further insights into the behaviour of the models. Are the models sensitive to 
structures thought to be characteristic of a composer’s style in historical musicology? 
How are unexpected melodic events prepared and succeeded in terms of vertical 
sonorities and can these be represented by the models? For instance, it would be fruitful 
to add a model of dissonance to the approach, which could combine psychoacoustic 
aspects of music perception (Vassilakis & Kendall, 2008) and historical understanding 
of constraints on harmonic intervals in different cultures at different periods (Berger, 
2004). Finally, one could ask whether relationships between the lyrics and specific 
patterns of musical events might influence a listener.  

Besides being of interest in its own right, the approach might be useful in addressing 
issues in historical musicology and music cognition, such as pitch spelling and musica 
ficta (e.g., Knopke & Jürgensen, 2012; Meredith, 2006), authorship attribution (e.g., 
van Kranenburg, 2008), stylistic characterisation, development and influence (e.g., 
Cook, 2007; Volk & de Haas, 2013), and the development of tonal perception (e.g., 
Huron & Veltman, 2006). We have used relatively simple musical representations 
(scale degree and pitch interval) in our examples. Other representations of musical 
structure may be more appropriate; for example, octave equivalence is often not as 
strong in modal music as in tonal music, suggesting that absolute pitch representations 
might be useful. In addressing the challenges identified above, therefore, it will be 
necessary to use more sophisticated representations including: 

•! different pitch representations; 
•! both horizontal and vertical constraints in polyphonic music;  
•! correlations between pitch and rhythmic structure;  
•! relationships between music and text.  

The models we have used to exemplify the approach analyse a collection of music with 
a very broad brush. However, distinctions between styles often rest on specific rarely 
occurring details. It would be possible to capture such effects of rareness within and 
between the music of different historical periods using techniques such as TF/IDF (see 
e.g., Müllensiefen & Pendzich, 2009, for a musical application). However, it is worth 
bearing in mind that the goal is to simulate the perception of a listener, which is not 
necessarily the same as modelling musicological differences between historical 
corpora. 

We have sketched how the framework can be applied at a range of levels: examining 
whole collections, individual compositions and, finally, specific notes within those 
compositions. We did not pursue the interpretations of these analyses in great detail, 
because we believe this will benefit hugely from fruitful collaboration between music 
history and music cognition. Therefore, our analyses should be taken as illustrative 
examples of the approach rather than presentations of definitive results. 

Future research should extend this sketch in various ways: 

1. Can we be more specific - i.e., model the response of particular listeners to 
particular pieces of music? 
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2. Can we successfully model complex polyphonic music, requiring more 
sophisticated representations, including rhythmic patterns and harmonic 
movement? 

3. Is there benefit to using more sophisticated computational models, including 
short-term models, variable order bounds and multiple viewpoints? 

4. Perhaps most importantly, can we use the framework to tackle more complex 
real-world musicological challenges (conversely, the approach needs historical 
musicological data to test its predictions about historical listeners)? 

If it is possible to address some of these questions, the framework carries great potential 
for answering fundamental questions about the ways in which early music was 
perceived and understood by its original audiences. 
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