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Abstract

Let k, λ and µ be positive integers. A decomposition of a multi-

graph λG into edge-disjoint subgraphs G1, . . . , Gk is said to be en-

closed by a decomposition of a multigraph µH into edge-disjoint sub-

graphs H1, . . . ,Hk if µ > λ and Gi is a subgraph of Hi, 1 ≤ i ≤ k.

In this paper we initiate the study of when a decomposition can be

enclosed by a decomposition that consists of spanning subgraphs.

A decomposition of a graph is a 2-factorization if each subgraph is

2-regular and is Hamiltonian if each subgraph is a Hamiltonian cycle.

Let n and m be positive integers. We give necessary and sufficient

conditions for enclosing a decomposition of λKn in a 2-factorization

of µKn+m whenever µ > λ and m ≥ n − 2. We also give necessary

and sufficient conditions for enclosing a decomposition of λKn in a

Hamiltonian decomposition of µKn+m whenever µ > λ and m ≥ n−1,

or µ > λ, n = 3 and m = 1, or µ = 2, λ = 1 and m = n− 2.

1 Introduction

In this paper, graphs are undirected and may contain multiple edges and
loops. Our chief object of study is the complete graph on n vertices in which
each edge has multiplicity λ. We denote this graph by λKn.

The set of vertices and edges of a graph G are denoted by V (G) and E(G)
respectively. An edge that joins a pair of vertices u and v is called a uv-edge.
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A decomposition of size k of a graphG is a collection {G1, . . . , Gk} of spanning
subgraphs of G such that E(G) =

⋃n

i=1E(Gi) and E(Gi) ∩ E(Gj) = ∅ if
i 6= j. A partial decomposition of a graph G is a decomposition of some
subgraph of G. A 2-factor of a graph G is a 2-regular spanning subgraph
of G. A 2-factorization of a graph G is a decomposition of G into 2-factors.
If, in addition, the 2-factors are connected, then the decomposition is called
a Hamiltonian decomposition and the 2-factors are Hamiltonian cycles. In
a path decomposition each subgraph in the decomposition is the union of
disjoint paths and cycles; it is strong if, in fact, none of the subgraphs contain
a cycle. Let us emphasize that although we consider each subgraph in a
decomposition of a graph G to span G, the subgraph can contain isolated
vertices (so in the case of path decompositions some of the paths might be
trivial and contain no edges).

Let k, λ and µ be positive integers. A decomposition {G1, . . . , Gk} of a
multigraph λG is said to be enclosed in a decomposition {H1, . . . , Hk} of µH
if µ > λ and Gi is a subgraph of Hi, 1 ≤ i ≤ k.

We state two enclosing problems. The first, on Hamiltonian decompo-
sitions, was posed by Bahmanian [5]. The second is the analogue for 2-
factorizations.

Problem 1. Let n, λ and µ be positive integers such that µ > λ, and let m be

a non-negative integer. Find necessary and sufficient conditions for enclosing

a decomposition of λKn in a Hamiltonian decomposition of µKn+m.

Problem 2. Let n, λ and µ be positive integers such that µ > λ, and let m be

a non-negative integer. Find necessary and sufficient conditions for enclosing

a decomposition of λKn in a 2-factorization of µKn+m.

The analogue of Problem 1 where µ = λ = 1 was solved by Hilton [10]
using the technique of amalgamations. Let us remark that such a problem,
where the number of vertices increases but the edge multiplicity does not,
are known as embedding problems; that is, the decomposition of the smaller
graph is said to be embedded in the decomposition of the larger graph. In the
situation where the decomposition sought consists of spanning subgraphs,
several other embedding problems have also been solved using amalgama-
tions; see, for example, [7, 10, 11, 15, 16]. We shall briefly use this technique
in Section 3.

We present two main theorems that provide extensive solutions to Prob-
lems 1 and 2 leaving open only some cases where m < n. For a decomposition
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A of a graphG, we denote by Si(A) the set of subgraphs in the decomposition
that contain exactly i edges, and, for u, v ∈ V (G), S1(u, v,A) denotes the
subset of S1(A) that contains subgraphs that each contain only a uv-edge.

Theorem 1.1. Let n, m, µ, λ and k be positive integers where

(i) µ > λ and m ≥ n− 1, or

(ii) λ = 1, µ = 2 and m = n− 2, or

(iii) µ > λ, n = 3 and m = 1.

Then a strong path decomposition A of λKn of size k can be enclosed in a

Hamiltonian decomposition of µKn+m if and only if

(M1) k =
µ(m+ n− 1)

2
,

(M2)

n−m
∑

i=0

(n−m− i)|Si(A)| ≤ (µ− λ)
n(n− 1)

2
, and

(M3) if (ii) or (iii) holds, then for each u, v ∈ V (Kn),

|S1(u, v,A)| ≤ (µ− λ)

(

n(n− 1)

2
− 1

)

− |S0(A)|.

Theorem 1.2. Let n, m, µ, λ and k be positive integers where µ > λ and

m ≥ n − 2. Then a path decomposition A of λKn of size k can be enclosed

in a 2-factorization of µKn+m if and only if

(N1) k =
µ(m+ n− 1)

2
,

(N2) the number of subgraphs in A that are 2-factors of λKn is at most
µ(m− 1)

2
, and

(N3)

n−m
∑

i=0

(n−m− i)|Si(A)| ≤ (µ− λ)
n(n− 1)

2
.
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To the best of our knowledge, our paper is the first to consider enclosing
problems where the subgraphs of the decompositions sought are spanning.
Past work has focused on decompositions in which each subgraph is isomor-
phic to a cycle of one fixed length [1, 4, 3, 8, 13, 14, 17, 18] or where each
subgraph is isomorphic to a cycle of one of a number of fixed lengths [2, 12].

In the rest of the paper we assemble the tools that will, finally, in Sec-
tion 5, be used to prove Theorems 1.1 and 1.2. In Section 2, we find necessary
and sufficient conditions for a decomposition of λKn to be enclosed by a de-
composition of µKn in which each subgraph contains at least some specified
number of edges, and then in Section 3 we formulate conditions for the exis-
tence of solutions to Problems 1 and 2 in terms of the number of edges that
each subgraph must contain if it is to be enclosed. In Section 4, two useful
lemmas are given which guarantee when it is possible to extend partial path
decompositions.

2 Extendibility

Let k be a positive integer. A k-edge-colouring of a graph G is a mapping
from E(G) to a set of k colours, and, for each colour, the set of edges assigned
that colour form a colour class. For each colour class, one can consider the
graph with vertex set V (G) and edge set equal to the colour class, and, in
fact, we shall abuse terminology and also refer to this graph as a colour class.
Thus an edge-colouring can be thought of as a decomposition of G where
the subgraphs of the decomposition are the colour classes. And similarly
when given a decomposition, we can refer to its subgraphs as colour classes
(as we shall do henceforth). At the price of giving two ways to define a
decomposition, the results and proofs in this paper can be expressed more
simply. Let us emphasise that

• our edge-colourings are not necessarily proper, and

• a colour class might contain no edges.

If A is a decomposition of a graph G of size k then its colour classes can
be denoted {A(1), . . . ,A(k)} or {G(1), . . . , G(k)} (it is convenient to have
this choice of notation as sometimes are focus will be on A, at other times
on G).

Let G be a graph, and let H be a supergraph of G. We write this as
G ⊆ H , and H \ G denotes the graph obtained from H by deleting all the
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edges of G. Let A be a path decomposition of G with k colour classes, and
let α be a positive integer. Then G is said to be α-extendible with respect
to (A, H) if there exists a graph F ⊆ H \G and a path decomposition A∗ of
G ∪ F such that

• the restriction of A∗ to G is A, and

• for 1 ≤ i ≤ k, the number of edges in A∗(i) is at least α.

If, in addition, A and A∗ are required to be strong path decompositions
then G is said to be strongly α-extendible with respect to (A, H).

Let n, λ and µ be positive integers such that µ > λ, and let A be a path
decomposition of λKn. Suppose that λKn is α-extendible with respect to
(A, µKn). We have that

α−1
∑

i=0

(α− i)|Si(A)| ≤ (µ− λ)
n(n− 1)

2
, (∗)

since the left hand side counts the number of edges that must be added to
the colour classes of A and the right hand side is the number of edges in
µKn \ λKn.

The following easy propositions state that, for α = 1, 2, (∗) is a sufficient
condition for λKn to be α-extendible with respect to (A, µKn).

Proposition 2.1. Let λ and µ be positive integers such that µ > λ, and

let A be a path decomposition of λKn. Then λKn is 1-extendible with respect

to (A, µKn) if and only if

|S0(A)| ≤ (µ− λ)
n(n− 1)

2
,

and if A is strong then λKn is, in addition, strongly 1-extendible.

Proof. This follows immediately from the fact that to each colour class in
S0(A) one can add a distinct edge from µKn \ λKn to obtain the needed
decomposition of µKn. �

Proposition 2.2. Let λ and µ be positive integers such that µ > λ, and

let A be a path decomposition of λKn. Then λKn is 2-extendible with respect

to (A, µKn) if and only if

2|S0(A)|+ |S1(A)| ≤ (µ− λ)
n(n− 1)

2
.
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Proof. This follows from the fact that we need to add, from the edges of
µKn \ λKn, two edges for each colour class of S0(A), and one edge for each
colour class of S1(A). �

Notice that Propositions 2.1 and 2.2 differ in that the latter contains no
statement about strong path decompositions. We cannot immediately adapt
Proposition 2.2 to say that if A is strong, then it is strongly 2-extendible as
this requires not just that there are enough edges but that they can be added
to the colour classes in such a way that cycles (of size two) are not created.
So we turn now to the problem of finding necessary and sufficient conditions
for a strong path decomposition A of λKn to be strongly 2-extendible with
respect to (A, µKn). Let us first introduce some notation and terminology.
For distinct u, v ∈ V (Kn), recall that S1(u, v,A) denotes the subset of colour
classes in S1(A) that contain an edge with endpoints u and v. As S1(A)
and each S1(u, v,A) is a set of colour classes that each contain a single edge,
we will think of each of them as just a set of edges. A 2-path is a pair of
edges that do not join the same pair of vertices (they might or might not
be adjacent); clearly in a strong path decomposition, any colour class with
exactly two edges is a 2-path. We say that S1(A) is addible with respect to
µKn if there exists an injection φ between S1(A) and the edges of µKn \λKn

such that the two edges e and φ(e) form a 2-path (that is, e and φ(e) do not
form a 2-cycle).

Lemma 2.1. Let λ, µ and n be positive integers such that µ > λ, and let A
be a path decomposition of λKn. Then S1(A) is addible with respect to µKn

if and only if

(A1) S1(A) ≤ (µ− λ)
n(n− 1)

2
, and

(A2) for each u, v ∈ V (Kn), S1(u, v,A) ≤ (µ− λ)

(

n(n− 1)

2
− 1

)

.

Proof. As the function φ required must be injective, the necessity of the
two conditions follows immediately from, respectively, the requirement that
|S1(A)| is at most the number of edges in µKn \ λKn, and the requirement
that each |S1(u, v,A)| is at most the number of edges in µKn \ λKn that are
not uv-edges.

To prove sufficiency we describe how to find a suitable function φ. In
order to carry out this task, we create a network N . It has vertex set {s} ∪
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{t} ∪X ∪ Y where s is a source, t is a sink, X = {x{u,v} : {u, v} ⊆ V (Kn)}
and Y = {y{u,v} : {u, v} ⊆ V (Kn)}. For simplicity, we will write xu,v and
yu,v without braces but we note that xu,v and xv,u are the same vertex. The
set of arcs of N contains the following:

• a start arc (s, xu,v) for each xu,v ∈ X ,

• an end arc (yu,v, t) for each yu,v ∈ Y , and

• an intermediate arc (xu,v, yw,z) if and only if {u, v} 6= {w, z}.

Each arc is assigned a capacity:

• each start arc (s, xu,v) has capacity |S1(u, v,A)|, and

• each intermediate and end arc has capacity µ− λ.

Let C be a cut that separates s from t. We shall show that C has
capacity at least |S1(A)|. If every vertex in Y is incident with at least one

arc in the cut, this follows from (A1), since |Y | = n(n−1)
2

and all arcs incident
with Y have capacity µ − λ. Otherwise we can suppose that C contains no
edges incident with yw,z for some w and z. As yw,z is adjacent to t and to
every vertex in X except xw,z, we must have that C contains (s, xu,v) for all
{u, v} 6= {w, z}, and the capacity of these arcs is |S1(A)| − |S1(w, z,A)|. So
if C also contains (s, xw,z), then we immediately have the total capacity of
C is at least |S1(A)|. If C does not contain (s, xw,z), it must contain, for all

{u, v} 6= {w, z}, either (xw,z, yu,v) or (yu,v, t). As there are n(n−1)
2

− 1 such
pairs {u, v} and all these arcs have capacity µ−λ we have, in this case, that
the capacity of C is at least

|S1(A)| − |S1(w, z,A)|+ (µ− λ)

(

n(n− 1)

2
− 1

)

,

which, by (A2), is at least |S1(A)|.
Thus, by the celebrated Max-Flow Min-Cut Theorem (see, for exam-

ple, [9]), there is a flow f in N of size |S1(A)| and, as the capacities are
integers, we can assume the flow along each arc has an integer value. It is
clear that each f(s, xu,v) must be |S1(u, v,A)| so the flow out of each xu,v
must also be |S1(u, v,A)|. Hence we can think of the flow out of xu,v be-
ing divided up into units that can be bijectively matched with the edges of
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|S1(u, v,A)|, and then for each e ∈ S1(u, v,A), if e is matched with a unit of
flow to yw,z, we let φ(e) be an edge from w to z. As there is no arc from xu,v
to yu,v, we have that e and φ(e) do not join the same pair of edges, and as
the flow into each yw,z is at most µ − λ (as that is the capacity of the only
outgoing arc), we have that there are at most µ − λ edges e for which φ(e)
is an edge from w to z so we can assume that φ is injective. �

We are now able to prove a result on when a decomposition of λKn is
strongly 2-extendible.

Proposition 2.3. Let λ and µ be positive integers such that µ > λ, and let

A be a strong path decomposition of λKn. Then λKn is strongly 2-extendible
with respect to (A, µKn) if and only if

(B1) 2|S0(A)|+ |S1(A)| ≤ (µ− λ)
n(n− 1)

2
, and

(B2) for each u, v ∈ V (Kn), |S0(A)|+|S1(u, v,A)| ≤ (µ−λ)

(

n(n− 1)

2
− 1

)

.

Proof. Necessity : Suppose that λKn is strongly 2-extendible with respect
to (A, µKn). Let A′ be the resulting partial strong path decomposition in
which each colour class contains at least two edges. Then (∗) implies that
(B1) holds. Moreover, note that each colour class of S1(u, v,A) must be
extended to a colour class of A′ with at least one more edge (that cannot
be a uv-edge), and each colour class of S0(A) must be extended to a colour
class of A′ with at least two edges (at most one of which is a uv-edge). Thus
(B2) follows as the right hand side counts the number of edges of µKn \λKn

that are not uv-edges.
Sufficiency : We must prove that λKn is strongly 2-extendible with respect

to A if (B1) and (B2) hold. So we need to show that we can add, from the
edges of µKn \ λKn,

• for each colour class of S0(A), a 2-path, and

• for each edge e ∈ S1(A), an edge e′ such that e and e′ form a 2-path.

In other words, we need to find two sets E0 and E1 using distinct edges of
µKn \ λKn such that

• E0 contains |S0(A)| 2-paths,
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• E1 contains |S1(A)| edges and there is a bijection φ : S1(A) → E1 such
that, for all e ∈ S1(A), e and φ(e) form a 2-path.

Notice that conditions (A1) and (A2) of Lemma 2.1 are satisfied as they are
weaker conditions than (B1) and (B2). Thus Lemma 2.1 implies S1(A) is
addible with respect to µKn and we can find E1 and φ as required. It only
remains to construct E0. We initially assume it is the empty set; then our
aim is to add 2-paths until |E0| = |S0(A)|. Possibly, while doing this we
will amend E1 and φ, but we will not reduce the size of E1, and will take
care to ensure that each pair e and φ(e) is always a 2-path. Let L be the
edges of µKn \ λKn in neither E0 nor E1 (so as we construct E0, L will
also be continually redefined as edges of L are used to enlarge E0 and E1 is
amended). For any pair of vertices u and v, let L(u, v) be the edges of L
between u and v.

First choose x, y ∈ V such that |L(x, y)| ≥ |L(u, v)| for any u, v ∈ V (Kn).
Let L′ = L\L(x, y). Add to E0 a maximal set of disjoint 2-paths using edges
of L′. If we are not done, then any unused edges of L′ must all join the same
pair u, v of vertices (else further 2-paths can be found). Next add to E0 as
many 2-paths as possible (or as needed) that use one uv-edge and one xy-
edge from L. By the initial choice of x and y, when no further such 2-paths
can be added, we have that L contains only xy-edges.

Let us show that if |L| < 2, then we are done. If we are not done then
the number of 2-paths in E0 is less than |S0(A)| so the number of edges used
in these 2-paths is at most 2(|S0(A)| − 1). The number of edges used in E1

is |S1(A)|. If |L| < 2, then all but at most one edge of µKn \λKn is in either
E0 or E1. Hence

(µ− λ)
n(n− 1)

2
− 1 ≤ 2|E0|+ |E1| ≤ 2(|S0(A)| − 1) + |S1(A)|,

contradicting (B1).
Let E1(x, y) be the edges of E1 that are not xy-edges. As long as we

need to add further 2-paths to E0, we do, if possible, one of the following
(remembering that L is a set of xy-edges of size at least 2):

• if there is a 2-path P in E0 that does not contain an xy-edge, then we
remove P from E0 and replace it with two 2-paths which each use an
edge of P and an xy-edge from L;

• if there is an edge e ∈ E1(x, y) and f = φ−1(e) is not an xy-edge, then
we remove e from E1 and replace it with an xy-edge e′ from L (and let
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φ(f) = e′), and also add to E0 a 2-path consisting of e and an xy-edge
from L.

Suppose that neither operation is possible and still |E0| < |S0(A)|. We
notice that every 2-path in E0 contains exactly one edge that is not an xy-
edge, and, for every edge e in E1(x, y), we have φ−1(e) ∈ S1(x, y,A). Thus,
as all the edges of µKn \ λKn that are not xy-edges belong to either E0 or
E1(x, y), we have

|S0(A)|+ |S1(x, y,A)| > |E0|+ |E1(x, y)| = (µ− λ)

(

n(n− 1)

2
− 1

)

.

This contradiction of (B2) completes the proof. �

3 Amalgamations and Detachments

In this section, we take a step towards the proofs of Theorems 1.1 and 1.2
by formulating, in Corollary 3.1, conditions for the existence of solutions
to Problems 1 and 2 in terms of the number of edges each colour class of
the decomposition to be enclosed must contain. We shall first need some
definitions and auxiliary results.

A graph H is an amalgamation of a graph G if there exists a surjection φ
from V (G) onto V (H) and a bijection ψ between E(G) and E(H) such that
e ∈ E(G) joins u and v if and only if ψ(e) ∈ E(H) joins φ(u) and φ(v).
The functions ψ and φ are called amalgamation functions. We say that G
is a detachment of H if H is an amalgamation of G; that is, if there exist
amalgamation functions ψ and φ as just defined. We say that a vertex
v ∈ V (H) splits into the set of vertices {u ∈ V (G) | φ(u) = v ∈ V (H)}. Let
σ : V (H) → N be a function. Then a σ-detachment of H is a detachment in
which each vertex v ∈ V (H) splits into σ(v) vertices of V (G). We note that
as there is a bijection between the edges sets of a graph and a detachment,
an edge-colouring of one naturally induces an edge-colouring of the other. If
a and b are real numbers, then we write a ≈ b to mean ⌊a⌋ ≤ b ≤ ⌈a⌉. For
a graph G, let ω(G) denote the number of connected components of G, let
mG(u, v) denote the number of edges joining vertices u and v in G, and let
ℓG(w) denote the number of loops incident with vertex w in G.

The next lemma is a simplified version of a theorem of Bahmanian and
Rodger [6].
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Lemma 3.1 ([6]). Let H be a k-edge-coloured graph and let σ : V (H) → N be

a function such that for each w ∈ V (H), σ(w) = 1 implies ℓH(w) = 0. Then
there exists a loopless σ-detachment G of H and an amalgamation function φ
from V (G) onto V (H) such that

(X1) dG(u) ≈ dH(w)/σ(w) for each w ∈ V (H) and each u ∈ φ−1(w);

(X2) dG(j)(u) ≈ dH(j)(w)/σ(w) for each w ∈ V (H), each u ∈ φ−1(w) and

each j ∈ {1, . . . , k};

(X3) mG(u, u
′) ≈ ℓH(w)/

(

σ(w)
2

)

for each w ∈ V (H) with σ(w) ≥ 2 and every

pair of distinct vertices u, u′ ∈ φ−1(w);

(X4) mG(u, v) ≈ mH(w, z)/(σ(w)σ(z)) for every pair of distinct vertices

w, z ∈ V (H), each u ∈ φ−1(w) and each v ∈ φ−1(z); and

(X5) for 1 ≤ j ≤ k, if dH(j)(w)/σ(w) is an even integer for each w ∈ V (H),
then ω(G(j)) = ω(H(j)).

Our next lemma is a complete multigraph analogue of [10, Theorem 2].
The argument is a straightforward adaptation of the proof of [10, Theorem 2]
— it merely suffices to apply Lemma 3.1 instead of [10, Theorem 1] and this
was observed by Bahmanian [5]. For the sake of completeness, we include
the proof.

Lemma 3.2. Let k, m, n, r and λ be non-negative integers. A path decom-

position A of λKn of size k in which r of the colour classes are cycle-free

can be embedded in a 2-factorization of λKn+m in which r of the 2-factors
are Hamiltonian cycles if and only if

(Y1) k = λ(n+m− 1)/2 is an integer, and

(Y2) for 1 ≤ i ≤ k, A(i) contains at most m disjoint paths.

Proof. Necessity : Suppose A can be embedded in a 2-factorization F of
λKn+m of size k. For each u ∈ V (λKn+m), we have

•
∑k

i=1 dF(i)(u) = λ(n+m− 1), and

• for 1 ≤ i ≤ k, dF(i)(u) = 2.
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So (Y1) holds. For 1 ≤ i ≤ k, the subgraph of F(i) induced by the vertices
of V (λKn) is A(i), a collection of paths. Each of the two endvertices of each
path is adjacent in F(i) to one of the vertices of V (λKm+n) \ V (λKn) and
each of these m vertices is adjacent to at most two of the endvertices. So
(Y2) holds.

Sufficiency : We prove that A can be embedded in a 2-factorization of
λKn+m in which r of the 2-factors are connected if (Y1) and (Y2) are satisfied.
We create a new graph H . It has vertex set V (λKn)∪ {v}, where v is a new
vertex and its edge set contains

• the edges of λKn,

• for each u ∈ V (λKn), λm edges joining v to u, and

• λ

(

m

2

)

loops on v.

Claim 1. There exists a k-edge-colouring B of H such that

A. the restriction of B to H − v is A,

B. for 1 ≤ i ≤ k, ω(B(i)) = 1 if and only if A(i) is cycle-free,

C. for u ∈ V (H) \ {v}, for 1 ≤ i ≤ k, dB(i)u = 2, and

D. 2m edges of each colour class are incident with v.

Before we prove the claim, we show that it implies the lemma. Let σ
be a function that maps V (H) to N such that σ(v) = m and, for each
u ∈ V (H) \ {v}, σ(u) = 1. Note that the degree of v is (counting each loop
twice)

λmn + 2λ

(

m

2

)

= λmn+ λm(m− 1)

= 2mk.

We apply Lemma 3.1 to find a loopless σ-detachment G of H and an
amalgamation function φ from V (G) onto V (H). By (X1), dG(u) = λ(m +
n− 1) for each u ∈ φ−1(v). By (X3), mG(u, u

′) = λ for each pair of distinct
vertices u, u′ ∈ φ−1(v). By (X4), mG(u, w) = λ for each u ∈ V (H) \ {v} and
each w ∈ φ−1(v). Therefore G = λKn+m. Combining Claim 1.A, Claim 1.C,
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Claim 1.D and (X2), we have that the k-edge-colouring of G yields a 2-
factorization B of λKn+m of size k such that A is embedded in B. Finally
Claim 1.B and (X5) imply that exactly r of the 2-factors in B are connected.
It only remains to prove Claim 1.

It may be assumed that Claim 1.A holds. Notice that, for each u ∈
V (H) \ {v}, for 1 ≤ i ≤ k, we have dA(i)(u) ≤ 2 and, by (Y1), dH(u) =
λ(m+n−1) = 2k. Thus we can colour the non-loop edges incident with v such
that two edges of each colour class are incident with u. So Claim 1.C holds.
Notice also from (Y2) that the number of edges between v and V (H) \ {v}
in a given colour class is even and is at most 2m (since for each path in A(i)
two of these edges are coloured i). Thus, since the degree of v is 2mk, the
loop edges incident with v can be coloured in such a way that 2m edges of
each colour class are incident with v. So Claim 1.D holds. As Claim 1.B is
clearly satisfied the proof is complete. �

Corollary 3.1. Let k, n, m, λ, and µ be positive integers such that µ > λ.
A path decomposition A of λKn of size k can be enclosed in a 2-factorization
F of µKn+m if and only if

(W1) k = µ(n+m− 1)/2 is an integer, and

(W2) A can be enclosed in a path decomposition B of µKn of size k in which,

for 1 ≤ i ≤ k, the number of edges in B(i) is at least n−m.

Moreover, if A is strong then, in addition, F is a Hamiltonian decomposition

and B is strong.

Proof. It suffices to show that, by Lemma 3.2 (with r = k if A is strong),
that conditions (Y2) and (W2) are equivalent. This follows from the fact
that, for 1 ≤ i ≤ k, B(i) contains at least n − m edges if and only if it
contains at most n− (n−m) = m disjoint paths. �

4 Extending Partial Path Decompositions

A partial decomposition of µKn is said to be strict if it is a decomposition of
a proper subgraph of µKn. In this section, we describe in Lemmas 4.1 and 4.2
conditions that guarantee when it is possible to extend a strict partial path
decomposition of µKn into a partial path decomposition that contains one
more edge.
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Lemma 4.1. Let k, n, λ and µ be positive integers such that µ > λ and

k ≥ µ(n − 1) − 1. Let A be a strong path decomposition of λKn of size k.
Suppose that A is enclosed in a strict partial strong path decomposition A′ of

µKn of size k. Then A can be enclosed in a partial strong path decomposition

A∗ of µKn of size k whose colour classes are the same size as those of A′

except for one that contains one more edge.

Proof. Let L be the set of edges of µKn \ λKn that are not in A′. Our aim
is to show that at least one edge e of L can be assigned a colour j in such
a way that the resulting decomposition is a strong path decomposition. We
say that the edge e and the colour j are compatible. We remark that before
finding e, we may first amend A, but will never reduce the number of edges
in a colour class.

For a vertex v, for 0 ≤ i ≤ 2, in A′ let C i
v denote the set of colours that

occur exactly i times on the edges incident with v.
Let e be an edge of L, and let its incident vertices be u and v. If there is

a colour j that belongs to C0
u ∩ (C0

v ∪C
1
v ) or C

1
v ∩ (C0

u ∪C
1
u) then e and j are

compatible and we are done. Otherwise, C0
u ⊆ C2

v and C0
v ⊆ C2

u hold.
In fact, we make the following stronger claim.

Claim 2. C0
u = C2

v , C
0
v = C2

u and C1
u = C1

v

The number f of edges incident with u that are not in L is at most µ(n−1)−1
(one less than its degree). Thus, since k ≥ f , for each pair of edges incident
with u that are coloured alike, there is a colour that does not occur on the
edges incident with u. Hence |C2

u| ≤ |C0
u|. Similarly, we find that |C2

v | ≤ |C0
v |.

If C0
v ( C2

u then |C2
v | ≤ |C0

v | < |C2
u| ≤ |C0

u|, a contradiction. Therefore
C0

u = C2
v and C0

v = C2
u implying C1

u = [k] \ (C0
u ∪C

2
u) = [k] \ (C2

v ∪C
0
v ) = C1

v .
The claim is proved.

Let e′ be a uv-edge in λKn and let a be the colour of e′ in A. Since
C2

u = C0
v , it follows that a ∈ C1

u. Hence A′(a) contains at least two disjoint
paths Q1, Q2 where Q1 is e′. Let w be an endpoint of Q2, and let e′′ be a
uw-edge of µKn \ λKn. If e

′′ ∈ L, then e′′ and a are clearly compatible. Else
the colour b 6= a of e′′ either belongs to C2

x = C0
y or to C1

x = C1
y . In either

case recolouring e′′ to a will give a strong path decomposition in which e and
b are compatible. This completes the proof. �

Lemma 4.2. Let k, n, m and µ be positive integers such that m ≥ n − 2,
n ≥ 4 if m = n− 2, and k ≥ µ(n+m− 1)/2. Let A be a strict partial path

decomposition of µKn of size k containing at most µ(m − 1)/2 2-factors.
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Then a single edge can be added to one of the colour classes of A to give

a partial path decomposition A′ of µKn of size k that also contains at most

µ(m− 1)/2 2-factors.

Proof. Let e = uv be an edge of µKn \A. To prove the lemma we will show
that we can choose a colour j to assign to e to obtain another partial path
decomposition A′, and that if the number of 2-factors in A is µ(m − 1)/2,
this assignment does not create an additional 2-factor.

Suppose that the number of 2-factors in A is less than µ(m− 1)/2. Then
it is enough to find a colour that appears on no more than one edge incident
with u or v (it is possible that colouring e with j will create a 2-cycle and
that this will complete a further 2-factor). Vertices u and v are joined by µ
edges, and they are each joined to the other n−2 vertices by µ edges. Hence
the total number of coloured edges incident with u or v is, recalling that e
is not coloured, at most µ(2n− 3)− 1. So the total number of colours that
appear on at least two of these edges is at most

µ(2n− 3)

2
−

1

2
.

But, by the bounds on k and m, we have that

k ≥
µ(2n− 3)

2
,

and so there is at least one colour that is not used on two of the edges and
this colour can be assigned to e.

Suppose now that the number of 2-factors in A is µ(m − 1)/2. So we
need to find a colour to assign to e that does not complete a further 2-factor.
Then it is enough to find a colour that appears on at most one edge incident
with either u or v but not both. We define a partition of the 2-factors:

• F1 is the set of 2-factors that contain a 2-cycle consisting of two uv-
edges.

• F2 is the set of 2-factors that contain exactly one uv-edge.

• F3 is the set of 2-factors that do not contain a uv-edge.

So, from the set of edges incident with u or v, for 1 ≤ i ≤ 3, each 2-factor
of Fi contains i+ 1 edges. Note by assumption that

3
∑

i=1

|Fi| =
µ(m− 1)

2
. (1)

15



We also define a partition of some colour classes that are not 2-factors:

• Q1 is the subset of colour classes that are not 2-factors that contain a
uv-edge.

• Q2 is the subset of colour classes that are not 2-factors that do not
contain a uv-edge but contain at least two edges incident with u or v.

So, from the set of edges incident with u or v, for 1 ≤ i ≤ 2, each graph in
Qi contains at least i edges.

Let

k∗ = |F1|+ |F2|+ |F3|+ |Q1|+ |Q2|.

Note that a colour class not in F1, F2, F3, Q1, Q2 contains at most one edge
incident with u and v and this edge is not a uv-edge. Our aim is to show
that there is at least one such class; that is, that k∗ < k.

Considering the µ− 1 uv-edges distinct from e, we have

2|F1|+ |F2|+ |Q1| ≤ µ− 1. (2)

Considering all edges incident with u or v gives us

2|F1|+ 3|F2|+ 4|F3|+ |Q1|+ 2|Q2| ≤ µ(2n− 3)− 1

2k∗ + |F2|+ 2|F3| − |Q1| ≤ µ(2n− 3)− 1,

and adding (2) gives us

2k∗ + 2|F1|+ 2|F2|+ 2|F3| ≤ µ(2n− 2)− 2.

From (1), we obtain

2k∗ + µ(m− 1) ≤ µ(2n− 2)− 2.

So

2k∗ ≤ µ((2n− 2)− (m− 1))− 2 < 2k.

Therefore k∗ < k and there is a colour class that is in none of F1, F2, F3 nor
Q1, Q2 and the proof is complete. �
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5 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Necessity: Suppose a strong path decomposi-
tion A of λKn of size k can be enclosed in a Hamiltonian decomposition of
µKn+m. It may be assumed, by Corollary 3.1, that conditions (W1) and (W2)
hold. Thus (W2) implies λKn is strongly (n−m)-extendible with respect to
(A, µKn). Thus the necessity of (M2) and (M3) follows from Propositions 2.1
and 2.3. Finally (W1) implies (M1) holds.

Sufficiency : To prove sufficiency it remains to show, by Corollary 3.1, that
conditions (M1)–(M3) imply conditions (W1) and (W2). Trivially (W1) is
implied by (M1). By Propositions 2.1 and 2.3 and (M2) and (M3), λKn is
strongly (n−m)-extendible with respect to (A, µKn). Let A′ be the resulting
partial strong path decomposition in which each colour class contains at least
n − m edges. Since k ≥ µ(n − 1) − 1 whenever (i), (ii) or (iii) holds, we
can repeatedly apply Lemma 4.1 starting from A′ to obtain a strong path
decomposition in which each colour class contains at least n −m edges. So
(W2) is satisfied and the proof is complete. �

Proof of Theorem 1.2. Necessity : Suppose a path decomposition A of λKn

of size k can be enclosed in a 2-factorization of µKn+m. It may be assumed,
by Corollary 3.1, that conditions (W1) and (W2) hold. Thus (W2) implies
λKn is (n −m)-extendible with respect to (A, µKn). The necessity of (N3)
then follows from Propositions 2.1 and 2.2. Also (W1) trivially implies (N1)
holds. To prove the necessity of (N2), we argue by contradiction. Suppose

that the number of 2-factors inA is µ(m−1)+2
2

. Since λKn is (n−m)-extendible
with respect to (A, µKn), the colour classes that are not 2-factors of λKn

must each contain at least n−m edges in µKn and so their number cannot
exceed 1

n−m
of the number of edges of µKn not used by the 2-factors. Notice

that the latter is equal to

µ

(

n(n− 1)

2

)

− n

(

µ(m− 1) + 2

2

)

= (n−m)
µn

2
− n

while the former is equal to

k −
µ(m− 1) + 2

2
=

µn− 2

2

>
(

(n−m)
µn

2
− n

)

/(n−m)
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for m ≥ n− 2. This contradiction proves that (N2) holds.
Sufficiency : To prove sufficiency it remains to show, by Corollary 3.1,

that conditions (N1)-(N3) imply conditions (W1) and (W2). Trivially (W1)
is implied by (N1). Propositions 2.1 and 2.2 and (N3) imply that λKn is
(n−m)-extendible with respect to (A, µKn). Let A′ be the resulting partial
path decomposition in which each colour class contains at least n−m edges.
If n = 3 and m = 1 then A′ is the required path decomposition since 2k = 3µ
is the number of edges in µK3. In all other cases, (N2) allows us to repeatedly
apply Lemma 4.2 starting from A′ to obtain a path decomposition in which
each colour class contains at least n−m edges. So (W2) is satisfied and the
proof is complete. �
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