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1 Introduction

The precision study of the top pair production threshold is among the main motivations

for the construction of a high-energy e+e− collider [1]. About 100 fb−1 of integrated lu-

minosity spread over ten center-of-mass energies distributed around
√
s ≈ 345 GeV can

provide a measurement of the top-quark MS mass with an experimental uncertainty of

about 50 MeV [2–4]. This must be compared to the ultimate precision possible at the

LHC, which is constrained to O(1 GeV) due to the limited understanding of the relation

between the MS mass and the mass parameter in the calculation and simulation of the fi-

nal state from which the top mass is directly reconstructed. There has been some progress

in the quantification of this relation when the mass is reconstructed from two-jettiness in

e+e− collisions in the boosted top regime [5], but the extension of this approach to hadron

collider processes requires the consideration of additional effects [6]. In addition, the top

width, the strong coupling constant and the top Yukawa coupling can be extracted from

the threshold scan to varying degree of accuracy.

The threshold region is defined as the kinematic regime where the top quarks have

a small three-velocity v = (
√
s/mt − 2)1/2 of the order of the strong coupling constant

αs. Thus, the top quarks are non-relativistic and are subject to the colour Coulomb

interaction, that would facilitate the formation of toponium bound states if the top quarks

were stable. The sizeable top decay width caused by the electroweak interaction also

prevents hadronization. Therefore, the top threshold dynamics is governed by the colour

Coulomb interaction, which must be treated non-perturbatively, while the strong coupling

αs � 1 is still small. This interplay between the strong Coulomb attraction and the large

top decay width has first been realized in [7, 8].

A significant effort has since been invested into providing high-precision predictions

for top pair production near threshold. The major focus has naturally been the strong in-

teraction effects, which have now been computed to next-to-next-to-next-to-leading order

(NNNLO) accuracy [9] in an expansion where αs � 1 and v � 1, but αs/v = O(1). The

effective field theory formalism and ingredients that underlie this calculation are summa-

rized in [10], to which we refer for more details on the QCD aspects of the calculation.1

The NNNLO QCD result has finally settled the issue of the poor convergence of the per-

turbative expansion up to NNLO [23]. The NNNLO corrections are well behaved and the

remaining scale uncertainty of the QCD result is at the level of ±3%. Similarly, it has

1See [11–22] for the computation of specific NNNLO ingredients.
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been observed that the RG-improved prediction at the (almost) next-to-next-to-leading

logarithmic order [24] stabilizes the scale uncertainty at the level of ±5%.

In the present work we are concerned with electroweak effects and non-resonant pro-

duction of the observable final state bb̄W+W− + X of the decayed top anti-top pair. An

analysis of various electroweak effects [25] has demonstrated that they are as large as 10%.

Thus, the full NNLO non-resonant and electroweak contributions must be included to sal-

vage the precision of the prediction. Even more importantly, as will be discussed below,

they are required to obtain a well-defined result, since the pure QCD cross section by itself

contains divergences proportional to the top-quark decay width [15], which are cancelled

only once the non-resonant production is included [26, 27].

The main result of this work is the NNLO calculation of all electroweak and non-

resonant effects. We also provide an implementation of initial-state radiation in a scheme

consistent with Coulomb resummation and the inclusion of O(α) electromagnetic correc-

tions, following a similar treatment as for the W+W− threshold [28, 29]. To define the

precise meaning of “NNLO” for electroweak effects, we note that they introduce the elec-

tromagnetic (αem), SU(2) electroweak (αEW) and top-quark Yukawa (λt) coupling. For the

purpose of power counting we do not distinguish between αem and αEW and count

αEW ∼ αt ≡
λ2
t

4π
∼ α2

s ∼ v2, (1.1)

that is, an electroweak coupling counts as two powers of the strong coupling, which is

consistent with counting Γt ∼ mtαEW ∼ mtv
2, which is always adopted in the pure QCD

calculation. The pure QCD calculation up to NNNLO then accounts for all terms in the

total cross section σ of the form

σQCD only ∼ α2
EWv

∞∑
k=0

(
αs
v

)k
×


1 LO

αs, v NLO

α2
s, αsv, v

2 NNLO

α3
s, α

2
sv, αsv

2, v3 NNNLO

, (1.2)

where the global factor α2
EWv accounts for the phase-space suppression of the cross section

near the threshold and the electroweak production in e+e− collisions. The electromagnetic,

electroweak, Yukawa and non-resonant terms are of the parametric form

σ ∼ α2
EWv

∞∑
k=0

(
αs
v

)k
×



αem

v
NLO(αem

v

)2
,
αem

v
× {αs, v}, αEW,

√
αEWαt, αt NNLO(αem

v

)3
,
(αem

v

)2
× {αs, v},

αem

v
× {α2

s, αsv, v
2,
√
αEWαt},

αt ×
{αem

v
, αs, v

}
, . . . NNNLO

+α2
EW ×


αEW NLO

αEWαs NNLO

. . . NNNLO

, (1.3)
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where the first line refers to resonant and the second to non-resonant production. We note

the absence of phase-space suppression and Coulomb resummation for the non-resonant

part. The non-resonant contribution is known at NLO [26], but only partial results are

available at NNLO [27, 30, 31]. On the resonant side, the (αem/v)k terms arise from the

QED Coulomb potential.2 These as well as all Yukawa coupling effects have already been

included up to NNNLO in [25]. This result together with the NLO non-resonant and the

NNNLO QCD calculation has been made available in the QQbar threshold code [32]. The

NNLO non-resonant and the remaining NNLO electroweak contributions are computed

in this work, thus elevating the precision at the top-pair threshold to complete NNNLO

QCD+Yukawa and NNLO EW+non-resonant. The ellipses in (1.3) denote third-order

electroweak and non-resonant terms that remain unknown.

The outline of the paper is as follows. In section 2 we describe how the calculation

is split into resonant and non-resonant contributions, such that no double-counting occurs

and the divergences are cancelled consistently. We also discuss the implementation of an

invariant mass cut. For the practical calculation we split the total cross section into three

separately finite parts, which are computed, each within its own computational scheme, in

sections 3, 4 and 5, respectively. Section 6 describes a consistency check we performed for

our results and the comparison with some previous results. In section 7 we analyze the

importance of the various contributions for the threshold scan including initial-state radi-

ation. We conclude in section 8. Several appendices collect technical results, in particular

the implementation of the new results into the QQbar threshold code.

2 Setup of the computation

2.1 Resonant and non-resonant separation in unstable particle EFT

Precision calculations of top pair production near threshold are most conveniently done

in potential non-relativistic effective field theory (PNREFT) [33, 34], which describes the

dynamics of slowly moving particles with three-momentum mtv coupled to ultrasoft radi-

ation/massless particles with energy mtv
2 after hard and soft effects have been integrated

out. The computation contains uncancelled divergences proportional to the top-quark

width, which start at NNLO in dimensional regularization.

The top-pair production cross section is thus an ill-defined quantity. Instead one

must consider the final state of the decay products bb̄W+W− + X. The narrow-width

approximation is not applicable since the top width is not small compared to the top kinetic

energy E =
√
s−2mt ∼ mtv

2.3 The above final state can also be produced non-resonantly,

i.e. without an intermediate non-relativistic top pair. The resonant and non-resonant

production mechanisms cannot be distinguished physically and must be summed. Only

the sum is well-defined and finite-width divergences must cancel [15]. This cancellation has

2We do not distinguish αem and αEW in the other terms.
3We assume |Vtb|2 = 1. Despite the W -boson lifetime being of similar size as the top lifetime, the W

decay width can be dropped (expanded out) in the propagators, because the W bosons are always hard.

Thus, it is justified to treat the W bosons as stable particles.

– 3 –
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already been demonstrated up to NNLO [27], and will be reproduced in the computation

of the full NNLO correction in this paper.

To account for the non-resonant production mechanism, one must embed the effective

theory framework for the QCD result [10] into Unstable Particle Effective Theory [35, 36].

The complete NNLO cross section can be written as the sum of a resonant and a non-

resonant contribution

σNNLO(s) = σNNLO
res (s) + σNNLO

non-res(s). (2.1)

The resonant contribution has the form

σNNLO
res (s) ∼ Im

[∑
k,l

C(k)C(l)

∫
d4x 〈e−e+|T[iO(k)†(0) iO(l)(x)]|e−e+〉

]
. (2.2)

It is understood that the imaginary part refers only to discontinuities of the forward am-

plitude that correspond to a bb̄W+W−X final state.4 The production operators O(l) anni-

hilate the incoming e+e− states and produce a nearly on-shell top and anti-top quark with

small relative velocity. The matrix element is evaluated within PNREFT, appropriately

generalized from QCD to account for electroweak effects and top decay. In addition one

must consider the interactions of the energetic initial-state electrons. The C(l) are the hard

matching coefficients of the production operators. They also receive electroweak corrections

and furthermore acquire an imaginary part from diagrams involving cuts corresponding to

t̄bW+ and tb̄W− final states. The imaginary part arises, for example, from the interfer-

ence of the process e+e− → WW ∗, where the off-shell W decays to t̄b with the process

e+e− → tt̄, where the on-shell t decays to Wb. In unstable particle theory this contribution

appears in the resonant term, since the separation into resonant and non-resonant is done

strictly on the basis of the virtuality of the top propagators, which in this example is small

for both t and t̄.

The non-resonant part takes the form

σNNLO
non-res(s) ∼

∑
k

Im
[
C

(k)
4e

]
〈e−e+|iO(k)

4e (0)|e−e+〉 . (2.3)

It originates from cuts over hard propagators that correspond to the physical final state

bb̄W+W−X. Hard cuts over the tt̄ final state are not possible kinematically near threshold.

Thus, the leading corrections are from t̄bW+ and tb̄W− cuts and are of the order α3
EW,

which constitutes a NLO contribution to the cross section σLO ∼ α2
EWv. The non-resonant

term arises from expanding the full-theory diagrams in E. Since both E and αEW count as

two orders in the expansion, the NNLO contribution is given by the QCD O(αs) corrections

to the process e+e− → t̄bW+ + tb̄W−, computed directly at the threshold
√
s = 2mt, while

actual bb̄W+W− cuts as well as electroweak and E/mt corrections are of the order α4
EW

and only contribute at NNNLO. The construction implies that the poles of internal top

propagators in the non-resonant contribution are not regulated by a finite-width prescrip-

tion, since any width terms would have to be expanded out. This leads to singularities at

4This includes cutting nearly on-shell top lines in the effective theory, since the effective top propagator

contains the top width and the top is assumed to decay exclusively into bW+X.
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Figure 1. NLO non-resonant diagrams. Symmetric diagrams and diagrams with tW−b̄ cuts are

not displayed.

phase-space boundaries (pb + pW+)2 → m2
t , which must be regulated dimensionally. The

1/ε poles cancel exactly the finite-width divergences that appear in the resonant contribu-

tion. The computation of the QCD correction to the process e+e− → t̄bW+ + tb̄W− with

this specific prescription, required for consistency with the resonant PNREFT calculation

in dimensional regularization, is the major result of the present work.

2.2 Organization of the computation

We now discuss the structure of the phase-space endpoint divergences in more detail. The

clarification of their diagrammatic origin allows us to divide the sum of resonant and

non-resonant NNLO contributions into several separately divergence-free parts, and this

separation determines the organization of the actual calculation. The cross sections of the

processes e+e− → t̄W+b and e+e− → tW−b̄ are equal by CP symmetry, hence we shall

only consider the final state t̄W+b below and multiply the result by two in the end.

In unitary gauge the NLO non-resonant contribution is given by the diagrams shown in

figure 1 [26]. At NNLO real and virtual gluon corrections must be considered. While this

appears to be a standard NLO QCD correction computation to a 2 → 3 process, existing

– 5 –
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automation tools can nevertheless not be employed due to the endpoint divergences, which

are present in addition to the usual UV and IR singularities.

To illustrate this issue, we consider the phase-space integral of a virtual diagram such

as hix below, where the integrand fix is a Lorentz scalar, i.e. it only depends on scalar

products of its arguments. This allows us to define∫ 1

y
dt gix(t) ≡

∫
dLIPSe+e−→t̄W+b fix(pe+ , pe− , pt̄, pW+ , pb) θ

(
(pW+ + pb)

2 − ym2
t

)
=
m2
t

2π

1∫
y

dt

∫
dLIPSe+e−→tt̄

∫
dLIPSt→W+b fix(pe+ , pe− , pt̄, pW+ , pb), (2.4)

where

dLIPSi1...in→f1...fm = δ(d)

(
n∑
i=1

pii −
m∑
i=1

pfi

)
m∏
i=1

dd−1pfi
(2π)d−12p0

fi

(2.5)

is the d-dimensional Lorentz-invariant phase space for the process i1(pi1) . . . in(pin) →
f1(pf1) . . . fm(pfm) and t ≡ (pW+ + pb)

2/m2
t . The Heaviside function accounts for the

optional cut on the invariant mass of the top quark as will be discussed in section 2.3.

Since the bottom quark mass can be safely neglected for this calculation, for the total cross

section y = m2
W /m

2
t . The real corrections can be brought into the same form as (2.4) with

the variable t∗ ≡ (pW+ + pb + pg)
2/m2

t instead of t.

The endpoint divergences originate from the region t→ 1, where the integrand becomes

singular due to negative powers of (1− t) = (m2
t − (pW+ + pb)

2)/m2
t , which stem from top-

quark propagators becoming resonant. In [27] the leading terms in an expansion around t =

1 of the integrands gix(t) were obtained using the expansion by regions approach [37, 38].

The remaining t-integration for the expanded result is trivial,∫ 1

y
dt (1− t)−a−bε =

(1− y)1−a−bε

1− a− bε . (2.6)

The divergent integrals with a ≥ 1 are regulated dimensionally by the bε in the exponent,

which is inherited from the d − 1 dimensional phase-space integral. At NNLO endpoint-

divergent integrals with a = 1, 3/2, 2 are present, but only those with a = 1 manifest as

1/ε poles. This is related to the well-known property of dimensional regularization, that it

renders some power-like divergent integrals finite for ε→ 0.

It is obvious from (2.6) that the integrands gix(t) must not be expanded in ε, because

it would spoil the dimensional regularization of the endpoint divergences. This implies

that the loop integrals in the virtual corrections cannot be expanded in ε, since even the

tree-level phase-space integration is divergent. Expressions for scalar one-loop integrals in

general d dimensions with up to four external legs were obtained recently [39], but a simpler

strategy is to take the results for the endpoint divergent terms from [27] as subtractions to

the complete integrand. The integrals (2.4) are decomposed as follows:

∫ 1

y
dt gix(t) =

1∫
y

dt

[
gix(t)−

∑
a=1, 3

2
,2

∑
b

ĝ
(a,b)
ix

(1− t)a+bε

]
+
∑

a=1, 3
2
,2

∑
b

ĝ
(a,b)
ix (1− y)1−a−bε

1− a− bε , (2.7)

– 6 –
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Figure 2. Gluon corrections to the tree-level diagram h1. This set of endpoint divergent diagrams

is UV and IR finite and will be denoted as the squared contribution. Symmetric diagrams and

diagrams with tW−b̄(g) cuts are not displayed.

where the required coefficients ĝ
(a,b)
ix of the series expansion in (1 − t) are available up

to order O(ε0) from [27]. This renders the t-integration on the right-hand side finite and

allows us to expand the subtracted expression in the square bracket in ε. Thus, the integral

can be performed numerically. Additionally, we require the O(ε) contributions to ĝ
(1,b)
ix ,

because the coefficients with a = 1 are multiplied with a 1/ε pole in (2.7).

In total the NNLO non-resonant correction requires the evaluation of the order of

100 diagrams obtained by attaching one gluon to the diagrams in figure 1 in all possible

ways. Fortunately only about 15% of those contain endpoint divergences. They have been

identified in [27] and are shown in figures 2 and 3. They are computed manually by applying

the subtractions (2.7). The remaining large number of finite diagrams is computed in an

automated fashion using suitably edited MadGraph code. This latter contribution will be

referred to as the automated part σaut.
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Figure 3. Additional endpoint singular diagrams for the NNLO non-resonant part. This set of

endpoint divergent diagrams also contains UV divergences and will be denoted as the interference

contribution. Symmetric diagrams and diagrams with tW−b̄ cuts are not displayed.
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Figure 4. The middle panel shows the diagrams accounting for the bare absorptive contribution

to the matching coefficients C(k). The lower panel sketches the respective contribution to the

cross section, where the ladder exchanges of gluons cause the Coulomb singularities (αs/v)k and

are, therefore, of the same order. Only the diagram with a single gluon exchange contains a 1/ε

pole, which implies a scheme dependence of the finite part. We obtain the same diagrams (up to

symmetry) as in figure 3 by restoring the full theory graphs in place of the effective operators, i.e. by

replacing C
(i)
Abs,bare times the insertion of O(i) with the diagrams in the upper panel and replacing

C
(i)
0 times the insertion of the insertion of O(i)† with s-channel photon and Z boson exchange. There

is no double counting, because the two contributions account for different momentum regions. When

both are summed, the 1/ε pole and the scheme dependence cancel, see section 4.2.

The endpoint divergent diagrams are divided into two parts. The first is given by

the QCD corrections to the diagram h1, shown in figure 2, and is denoted as the squared

contribution σsq. It is UV and IR finite, because it includes the complete virtual, real

and counterterm contributions to h1. The remaining endpoint divergent diagrams, shown

in figure 3, are referred to as the interference contribution σint. In addition to the end-

point divergences, the interference part contains UV divergences, which are cancelled by

– 8 –
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endpoint-finite counterterm contributions contained in the automated part. We disentangle

the two types of divergences by performing the subtraction (2.7) and obtain

σint = σ
(EP div)
int + σ

(EP fin)
int , (2.8)

where

σ
(EP div)
int ∼

4∑
i=2

ĝ
(1,2)
ia

(1− y)−2ε

−2ε
(2.9)

is endpoint-divergent but UV-finite, and

σ
(EP fin)
int ∼

4∑
i=2

∫ 1

y
dt

[
gia(t)−

ĝ
(1,2)
ia

(1− t)1+2ε

]
(2.10)

is endpoint-finite but UV-divergent. In total, this allows us to split the non-resonant

contribution into the following parts

σNNLO
non-res = σsq + σ

(EP div)
int +

[
σ

(EP fin)
int + σaut

]
. (2.11)

Only the first two terms contain endpoint divergences. The third term, enclosed in square

brackets, is finite. The endpoint divergences cancel with the resonant contribution. Specif-

ically, the endpoint divergence σ
(EP div)
int of the interference contribution is compensated by

σ
C

(k)
Abs,bare

from the bare absorptive parts C
(k)
Abs,bare of the hard matching coefficients C(k)

appearing in (2.2). The C
(k)
Abs,bare are given by the diagrams in the upper and middle panel

of figure 4, which have a direct correspondence to the diagrams hia in figure 3. Following

this observation we split the resonant contribution into two parts,

σNNLO
res = σ

C
(k)
Abs,bare

+ σres, rest, (2.12)

where the remainder σres, rest contains various contributions described in detail in section 3.

Here, we only point out that σres, rest cancels the endpoint divergence of the squared con-

tribution. Thus, we can now split the cross section into three separately finite parts

σNNLO =
[
σsq + σres, rest

]
︸ ︷︷ ︸

(I)

+

[
σ

(EP div)
int + σ

C
(k)
Abs,bare

]
︸ ︷︷ ︸

(II)

+
[
σ

(EP fin)
int + σaut

]
︸ ︷︷ ︸

(III)

. (2.13)

The finiteness allows us to evaluate each of the parts (I), (II) and (III) in a different

computational scheme. They will be computed in sections 3, 4 and 5, respectively. An

overview over the divergences that appear in the individual parts (I), (II) and (III) is given

in table 1. The computations are performed in the top-quark mass pole scheme. The results

are then converted to an IR renormalon-free mass scheme for the numerical evaluations

performed in section 7. The bottom-quark mass is neglected in all contributions except

σaut, where the default value mb = 4.7 GeV of MadGraph is used unless indicated otherwise.
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UV finite IR finite EP finite

(I) X X X

σsq X X –

σ
(h1a,...,h1g)
sq X – –

σ
(g1,...,g6)
sq X – ?

σres, rest X X –

σQCD X X –

σP-wave X X –

σH X X X

σδVQED
X X X

σΓ X X –

σ
C

(k)
EW

X X X

σ
C

(k)
Abs,Zt

X X –

σconv
IS X X X

(II) X X X

σ
(EP div)
int X X –

σ
C

(k)
Abs,bare

X X –

(III) X X X

σ
(EP fin)
int – X X

σaut – X X

Table 1. Overview over the divergences that appear in the various contributions to the cross

section. The contributions σ
(h1a,...,h1g)
sq and σ

(g1,...,g6)
sq correspond to the virtual plus counterterm

and real contributions to σsq, respectively. With ? we indicate contributions that are endpoint

divergent by power counting, but finite in dimensional regularization. The contributions that make

up σres, rest are defined in section 3.

2.3 Implementation of a “top invariant mass cut”

The main result of this work is the non-resonant NNLO correction to the full cross section

σ(e+e− → bb̄W+W−X), but we also present results with loose cuts on the invariant mass

of the top and anti-top quark

(mt −∆Mt)
2 ≤ p2

t,t̄ ≤ (mt + ∆Mt)
2, (2.14)

where pt (pt̄) denotes the momentum of the (anti-) top quark. The implementation of cuts

in the effective field theory framework has been discussed in [29] and depends on the scaling

of the cut parameter ∆Mt with respect to the power counting parameters of the EFT. The

cut is termed “loose” when ∆Mt � Γt. Thus, a loose cut never affects the resonant

contribution to the cross section, where the off-shellness of the tops is parametrically of

order mtΓt.
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Since the physical final state is bb̄W+W−X without reference to whether it was pro-

duced through an intermediate top or anti-top, it is necessary to define what is meant

by the (anti-) top momentum. An invariant mass cut of the form (2.14) was already im-

plemented in the NLO non-resonant calculation [26], but since at this order the partonic

final state is always bb̄W+W−, one simply defines pt = pW+ + pb, pt̄ = pW− + pb̄. At

NNLO the final state may contain an additional gluon and a definition of the observable

is required at the hadronic and the partonic level. Any sensible definition of an observable

called “top momentum” should be equal up to an amount of order Γt to the momentum

of the top quark in the hypothetical limit that the top quark were a stable particle. It

should also lend itself to simple, infrared-finite theoretical computations. On the other

hand, the assignment of top momentum to the final state of a non-resonantly produced

bb̄W+W−X event is rather arbitrary and a matter of definition subject to the previous two

requirements. Because non-resonant production is a sub-leading effect, different definitions

differ only by small amounts.

In the following we describe an algorithm that satisfies these requirements. The algo-

rithm is most likely not optimal and serves only as a proof of concept. In the first step we

cluster any hadronic or partonic event into the objects W+, W−, b-jet, b̄-jet and other jets.

For the purpose of this discussion energetic leptons and photons are also among the “other

jets”. We require that the event contains exactly one W+, one W− and at least one b-

and one b̄-jet.5 Any jet algorithm can be used to define these objects. In a second step we

group the above pre-defined objects into exactly two clusters. The momenta of these two

clusters define the (anti-) top momentum. This fulfills the above-mentioned requirement,

since close to threshold in an event with a resonant top and anti-top, the momentum of

any other particle can be at most of order Γt.

To implement the second step, assume that the event contains N other jets and let

S = {pJi, i = 1 . . . N} be the set of jet momenta. A partitioning of S consists of two

disjoint sets A, Ā such that A ∪ Ā = S. The momentum of the “top cluster” and the

“anti-top” cluster for a given partitioning are defined as

ptA = pW+ + pb +
∑
i∈A

pJi, pt̄Ā = pW− + pb̄ +
∑
i∈Ā

pJi. (2.15)

If there is more than one b-jet (b̄-jet) in the event, pb (pb̄) refers to the most energetic b-jet

(b̄-jet), and the remaining ones are considered to be part of the set S. We then define pt
and pt̄ by the value of ptA and pt̄Ā, respectively, of the partitioning A, which minimizes

the product

χ ≡
∣∣(p2

tA −m2
t )(p

2
t̄Ā −m2

t )
∣∣ . (2.16)

An event passes the cut (2.14), if the so-defined top momenta satisfy the inequality (2.14).

5We assume here that the charges of the W bosons and bottom jets have been reconstructed. In practice,

this will be inefficient although a Monte Carlo study for the top forward-backward asymmetry at the ILC

concluded that the discrimination between bottom and anti-bottom jets can be achieved with a purity

of 80% at about 60% efficiency [40]. We also do not discuss the non-trivial combinatorial problem of

reconstructing the W bosons from their hadronic decay in the presence of additional jets, since in the logic

of our discussion the W bosons are considered as stable particles.
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We now apply this definition to the partonic NNLO calculation. The partonic final

states are tt̄ only at LO, tt̄ and tW−b̄, t̄W+b at NLO, and at NNLO the previous and

tW−b̄g, t̄W+bg. Here t (t̄) means a final state that can originate from on-shell (anti-) top

decay at the given order, with invariant mass within m2
t by an amount of order mtΓt. Con-

sider first the tt̄ final state. One might think that the t (t̄) decay products are automatically

clustered into the correct parent pt (pt̄) and hence the event always passes the loose cut as

desired. However, this is not always true, since an energetic gluon from top decay may be

radiated collinear to the b̄ from anti-top decay, in which case the jet algorithm merges it

into the b̄-jet rather than the b-jet. In this case the loose-cut condition (2.14) might not be

satisfied, and the event is missed even though both tops were produced resonantly.6 Since

our calculation does not include the kinematics of resonant top decay, we cannot correct

it for this misassignment. However, the probability for such a misassignment is at most

of order
αs(mt)

π
× πR2

4π
≈ 0.1%, (2.17)

where R is the half-opening angle of the b̄-jet. The first factor represents the suppression

of energetic, large-angle gluon radiation and the second the jet area on the unit sphere.

The numerical estimate is obtained for R ≈ 0.3. We can therefore safely neglect this error.

Next we consider the non-resonant final state tW−b̄. (With obvious modifications the

following discussion applies to the CP-conjugate final state.) To NNLO accuracy, on-shell

top decay must be taken in NLO, and may contain an additional gluon. Whenever there

is no gluon or the gluon is merged with the b- or b̄-jet, the set of partitionings is empty

and the definition of pt and pt̄ is the sum of the appropriate W and b-jet momenta. The

loose cut is passed except when the gluon is misassigned to the b̄-jet as above, but in this

case the probability for this to occur is even further suppressed due to the suppression of

non-resonant production in the first place. If, on the other hand, the jet algorithm returns

an additional (gluon) jet, there are two partitionings, one where the gluon jet momentum is

(correctly) added to the top decay, i.e. to pW+ +pb, and the other, where it is not. The first,

correct, possibility will almost always minimize χ in (2.16) and then satisfy the loose-cut

condition, whenever the invariant mass of the non-resonant W−b̄ pair is larger than ym2
t ,

where y ≡ (mt − ∆Mt)
2/m2

t . Hence, imposing the cut yields a single Heaviside function

θ((pW− +pb̄)
2−ym2

t ) in the phase-space integral, as in (2.4). The other partitioning where

the additional gluon jet is incorrectly combined with the non-resonant W−b̄ to form the

anti-top momentum can minimize χ only if the invariant mass of the W−, b̄-jet and gluon

jet accidentally adds up to m2
t within an amount mtΓt. This possibility is suppressed by the

NNLO probability for the process to happen in the first place times the small phase-space

fraction where the kinematic requirements for misassignment are satisfied, and hence can

be neglected at NNLO.

Finally we discuss the tW−b̄g final state, which appears at NNLO in the non-resonant

part. At NNLO, it is sufficient to consider the resonant top quark decay in the tree

approximation. Hence, the discussion of the W+W−bb̄g final state from above can be

6If the gluon is not energetic but ultrasoft with momentum of order Γt, the misassignment is irrelevant

and the loose-cut condition remains satisfied.
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repeated, except that now the partitioning that minimizes χ with overwhelming probability

is the correct combination of the gluon jet momentum with the non-resonant W−b̄ pair.

Hence, up to a negligible error, the loose cut (2.14) is implemented in the real-emission

phase-space of the NNLO non-resonant contribution as the Heaviside function θ((pW− +

pb̄ + pg)
2 − ym2

t ).

We have not implemented other cuts, but it is in principle straightforward to do so as

long as they are loose. A general cut is a function c(pi) of the external momenta, which

evaluates to one if the event passes the cut and to zero otherwise. We define the comple-

mentary cut as c̄(pi) = 1−c(pi). Assuming that c(pi) is loose, the complementary-cut cross

section σ(c̄) is purely non-resonant and free of endpoint divergences. It can therefore be

computed with automated NLO parton level event generators such as MadGraph [41]. The

non-resonant contribution with the original cut is then given by subtracting σ(c̄) from the

total W+W−bb̄X cross section, where the cancellation of divergences between the resonant

and non-resonant parts has already been taken care of. This approach will also be exploited

in section 6.1 to perform a powerful check of our computation.

A generalization to arbitrary cuts would affect the resonant contributions and is beyond

the scope of this work. Recently, first results of an implementation of the fully differential

cross section with NLL accuracy near threshold matched to the NLO fixed order result have

been presented [42], but the generalization of this method to NNLO accuracy as discussed

here is not straightforward.

3 Part (I)

The scheme for part (I) as defined in (2.13) is fixed by the existing QCD results for σNNLO
res .

The resonant QCD cross section factorizes into a leptonic tensor L and the correlation

function of two top-quark currents, Π(q2). The former is evaluated in four dimensions; the

latter completely in d dimensions in the naive dimensional regularization scheme (NDR).

The squared contribution contained in part (I) factorizes into the same leptonic tensor L

and a hadronic tensor H, and the same conventions must be applied. We compute this part

in section 3.2. The electroweak NNLO corrections to the resonant part must also abide by

this scheme (except for σ
C

(k)
Abs,bare

contained in part (II)), and we consider them first.

3.1 Resonant electroweak effects

Electroweak corrections to the resonant cross section are computed in the non-relativistic

EFT framework extended from QCD to the full Standard Model. We consider them to

NNLO in the counting scheme (1.1).

For ease of reference and to set up notation, we briefly recapitulate the well-known

expressions for the LO cross section [32]

σLO = σLO
res = σ0

24πNc

s

[
C

(v)2

0 + C
(a)2

0

]
Im [G0(E + iΓ)] , (3.1)

where σ0 = 4πα2/(3s) is the high-energy limit of the photon-mediated muon pair produc-

tion cross section at leading order, E =
√
s − 2mt and Γ is the on-shell top-quark width
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as defined below. At LO the top pair is produced via s-channel exchange of a photon or Z

boson. The couplings of the fermions to the Z boson are given by

vZf ≡ vf =
T f3 − 2efs

2
w

2swcw
, aZf ≡ af =

T f3
2swcw

, (3.2)

where T f3 is the third component of the weak isospin of fermion f , ef is the fermion electric

charge measured in units of the positron charge, and sw and cw are the sine and cosine of

the Weinberg angle, respectively. The S- and P-wave production operators are given by7

O(v) =
4πα

s
ēc2Wc2γkW

†
c1ec1 ψ

†σkχ, (3.3)

O(a) =
4πα

s
ēc2Wc2γkγ

5W †c1ec1 ψ
†σkχ, (3.4)

O(v)
P-wave =

4πα

s
ēc2Wc2γkW

†
c1ec1 ψ

†
[
σk, (−i)σ ·D

]
2mt

χ, (3.5)

O(a)
P-wave =

4πα

s
ēc2Wc2γkγ

5W †c1ec1 ψ
†
[
σk, (−i)σ ·D

]
2mt

χ (3.6)

with leading-order matching coefficients

C
(v)
0 = eeet + vevt

s

s−m2
Z

, C
(a)
0 = −aevt

s

s−m2
Z

, (3.7)

C
(v)
0,P-wave = −veat

s

s−m2
Z

, C
(a)
0,P-wave = aeat

s

s−m2
Z

. (3.8)

Here ψ (χ) is the non-relativistic top (anti-top) field and eci denotes the effective field (as

defined in soft-collinear effective theory (SCET)) of an energetic electron moving in the

light-like direction nµi . In the present context, the directions n1 and n2 are set by the

electron and positron beams, respectively. The collinear electromagnetic Wilson lines

Wci(x) = P exp

ie 0∫
−∞

dt n̄i ·Aci(x+ n̄it)

 (3.9)

have been introduced to make the operators invariant under collinear gauge transformations

in SCET, as well as the light-like vectors n̄i with ni · n̄i = 2. The factor of 4πα/s has been

absorbed into the operators to render the coefficients dimensionless and of order one. The

P-wave production operators and their Wilson coefficients will be required below. Note

that because the cross section is constructed as an expansion in E, the energy-dependence

of the s-channel photon and Z boson propagators could be expanded around s = 4m2
t ,

in which case the short-distance matching coefficients would be truly energy-independent.

However, we apply a convention where we keep the full s-dependence in the s-channel

propagators, which therefore appears in (3.3) to (3.8).

The renormalization scheme for the electroweak parameters adopted here is the

(mW ,mZ , α(mZ)) scheme. The Weinberg angle is then given by c2
w = m2

W /m
2
Z (s2

w =

7Note γk = −γk and k is summed from 1 to 3.
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1− c2
w). The electromagnetic coupling αem from now on is denoted by α, where α refers to

the scale dependent electromagnetic coupling α(µα) defined through the photon vacuum

polarization, which interpolates between the fine-structure constant α0 = α(0) and the

input parameter α(mZ).

In (3.1) G0(E+ iΓ) denotes the non-relativistic zero-distance Coulomb Green function

in dimensional regularization [43, 44],

G0(E) =
m2
tαsCF
4π

[
1

4ε
+ Lλ +

1

2
− 1

2λ
− ψ̂(1− λ) +O(ε)

]
, (3.10)

which describes the propagation of the top-anti-top pair at LO in the non-relativistic EFT.

It is expressed through the variable

λ =
αsCF

2
√
−E/m

(3.11)

and ψ̂(x) = γE + ψ(x), where ψ is the logarithmic derivative of the gamma function.

Furthermore, the logarithm Lλ = ln(λµ/(mtαsCF )) = −1
2 ln(−4mE/µ2) appears.8

After separating σ
C

(k)
Abs,bare

from the NNLO resonant contributions as explained

around (2.12), the remaining parts are

σres, rest = σQCD + σP-wave + σH + σδVQED
+ σΓ + σ

C
(k)
EW

+ σ
C

(k)
Abs,Zt

+ σconv
IS . (3.12)

The pure QCD S-wave contribution σQCD has been obtained in the formalism employed

here in [34]. Top-pair production in a P-wave state σP-wave was computed in [22]. Higgs

contributions σH that only involve the top Yukawa coupling have been computed already

up to NNNLO [25, 45]; similarly the effect σδVQED
of the LO QED Coulomb potential

δVQED = −4παe2
t /q

2 [25]. At NNLO, top decay introduces additional contributions to

the bilinear part of the PNREFT Lagrangian, which contribute σΓ to the resonant cross

section (section 3.1.1). While there are no electroweak contributions to the non-relativistic

potential at NNLO (section 3.1.2), there are electroweak corrections to the hard matching

coefficients C(k). The contribution σ
C

(k)
EW

from the real part of the hard matching coefficients

is given in section 3.1.4. Contrary to the QCD case the electroweak hard matching coeffi-

cients contain an imaginary part from cuts over all possible final states. The t̄W+b (tW−b̄)

cuts contribute to the e+e− → bb̄W+W− cross section [46]. The imaginary part is split

into a bare contribution σ
C

(k)
Abs,bare

(section 4.1) and a contribution from field renormaliza-

tion σ
C

(k)
Abs,Zt

(section 3.1.3), because the two parts are treated in different schemes. Partial

results for the mixed-QCD-electroweak corrections to the hard matching coefficients C(k)

are available [45, 47], but they only contribute at NNNLO and will not be considered here.

Finally, we consider effects from initial-state radiation (ISR), σconv
IS (section 3.1.5).

8When the 1/ε pole is related to a finite-width divergence, we set µ = µw and write G
(w)
0 (E) and L

(w)
λ

to distinguish the finite-width scale-dependence of the resonant contribution from the µr scale-dependence

due to the strong coupling, cf. [14, 22].
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3.1.1 Finite-width corrections to the NNLO Green function, σΓ

Additional terms appear in the PNREFT Lagrangian due to the instability of the top quark

and its coupling to photons. The coupling of the top quarks to ultrasoft photons must be

multipole expanded in the spatial component, just like the interactions with the ultrasoft

gluons. Only the leading term

L(γ)
us = ψ†

[
eteA

(γ)
0 (t,0) + . . .

]
ψ + χ†

[
eteA

(γ)
0 (t,0) + . . .

]
χ, (3.13)

is relevant at NNLO. However, its contribution vanishes, because the multipole-expanded

field can only resolve the net electric charge of the top anti-top pair, which is zero. In

analogy to QCD, the couplings in the Lagrangian (3.13) can be removed by a field trans-

formation involving an ultrasoft Wilson line (cf. [48]). The generalization of the bilinear

part of the PNREFT Lagrangian is [35, 36]

Lbilinear = ψ†
[
i∂0 +

∂2

2mt
− ∆

2
+

(∂2 −mt∆)2

8m3
t

+ . . .

]
ψ

+χ†
[
i∂0 − ∂2

2mt
+

∆

2
− (∂2 −mt∆)2

8m3
t

+ . . .

]
χ, (3.14)

where ψ(χ) is the non-relativistic top (anti-top) field and ∆ is a hard matching coefficient.

It can be determined by matching the top propagator in the effective theory to the full

theory. In the pole mass scheme we obtain

∆ = −iΓ, (3.15)

where Γ is the pole width of the top quark defined through the gauge-invariant position of

the pole of the top propagator

M2
? = m2 − imΓ (3.16)

in the complex p2 plane. We note that with this convention (3.14) contains the term

−Γ2/(8mt)(ψ
†ψ − χ†χ), which has the form of a mass shift. It can be absorbed into the

definition of the pole scheme by adding −Γ2/4 to the right hand side of (3.16), which

completes the square and defines a different convention used e.g. in [49]. Electroweak

corrections to the top-pair production cross section near threshold have also been considered

in [50]. The absence of the Γ2 correction to the Green function in [50] implies that this

different convention is also adopted there. Thus, one must be careful to account for this

difference in the definition of the top pole mass when comparing their results to ours.

The term (iΓ/2)(ψ†ψ − χ†χ) in (3.14) belongs to the LO Lagrangian and must be

treated non-perturbatively. It leads to the replacement E → E + iΓ, which defines the

QCD contribution, and makes the argument of the Green function in (3.1) complex. The

two remaining terms in (3.14) that contain the width are of NNLO and can be treated

perturbatively. Only two simple single insertions are required. We denote the correction to

the Green function G0(E) from the terms (X/2)(ψ†ψ − χ†χ) and (X/2)(ψ†∂2ψ − χ†∂2χ)
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by δXG(E) and δX∂2G(E), respectively. They are given by

δXG(E) = XG′0(E) =
X

mα2
sC

2
F

m2αsCF
4π

[
λ+ 2λ2 + 2λ3ψ1(1− λ)

]
, (3.17)

δX∂2G(E) = −mXm2αsCF
4π

[
− 3

4λ
+

1

2ε
+

1

2
+ 2L

(w)
λ − 2ψ̂(1− λ)

+
λ

2
ψ1(1− λ)

]
, (3.18)

where ψ1(x) = ψ′(x) is the first derivative of the polygamma function. The corresponding

NNLO contribution to the Green function is

δ2,ΓG(E) = δXG(E)|
X=− Γ2

4mt

+ δX∂2G(E)|X= iΓ

2m2
t

. (3.19)

In the implementation of the cross section in the QQbar threshold code [32] the top

width is treated as a parameter. This implies that higher-order corrections to the tree-

level width Γ0 are also treated non-perturbatively through the replacement E → E +

iΓ. A subtlety arises at electroweak NNLO when this result is combined with the non-

resonant contribution, which is computed in dimensional regularization. The pole part of

the NNLO non-resonant contribution is proportional to Γ0 with a finite part that follows

from expanding diagrams up to O(ε0). For consistency, the tree-level contribution to the

width in (3.14) must be treated as a d-dimensional hard matching coefficient. Hence the

O(ε) terms in the d-dimensional tree-level expression of the top width contribute finite

terms to the resonant part from their multiplication with the finite-width 1/ε poles. These

finite parts are not included when Γ is treated as a four-dimensional numerical parameter,

and must be added separately.9

The LO pole width, which is required in d dimensions, is given by

Γ
(d)
0 =

mtα

16s2
w

(1− xW )2(1 + 2(1− ε)xW )

xW

√
π

2Γ(3/2− ε)

(
4µ2

we
γE

m2
t (1− xW )2

)ε
, (3.20)

where xW = m2
W /m

2
t and µw denotes the scale related to the finite-width divergences as

discussed in [14, 22]. The contribution from the O(ε) terms of (3.20), which multiply the

finite-width divergence contained in (3.19) and the one in the pure QCD result, to be added

to the cross section is

δΓε/εσ = σ0
mtΓ0αsCFNc

s

[
2(1 + xW )

1 + 2xW
+ ln

µ2
w

m2
t

− 2 ln(1− xW )

]
×
[
C

(v)2

0 + C
(a)2

0 + C
(v)2

0,P-wave + C
(a)2

0,P-wave

]
, (3.21)

where Γ0 is the ε→ 0 limit of (3.20). On the whole, we obtain

σΓ = σ0
24πNc

s

[
C

(v)2

0 + C
(a)2

0

]
Im [δ2,ΓG(E + iΓ)] + δΓε/εσ. (3.22)

9QCD corrections to the width, however, are only needed in four dimensions where they are known up

to NNLO [51, 52].
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In the numerical evaluation we resum the perturbative corrections to the would-be

toponium bound-state poles. Due to the instability of the top quarks, we are dealing with

a non-Hermitian Lagrangian, cf. (3.14). The implications have been discussed in [53]. The

positions of the would-be toponium poles are the complex eigenvalues

En = En −
iΓn
2

(3.23)

of the non-Hermitian Hamiltonian, where En is the bound-state energy assuming stable

top quarks and Γn = 2Γ+δΓn is the total inclusive width of the bound state. In accordance

with the earlier discussion, the top-quark width Γ is treated as a parameter. The corrections

δΓn describe the effects of time dilatation on the top decays due to the residual movement

of the top quarks and the annihilation of the would-be toponium state through strong (e.g.

tt̄→ ggg) or electroweak (e.g. tt̄→ l+l−) interactions.

The eigenstates of a non-Hermitian operator do not form an orthogonal basis of the

Hilbert space [53]. This implies, that the completeness relation must be modified. We

consider the sets of right and left eigenstates10

H |n〉 = En |n〉 , H† |m̃〉 = Ẽn |m̃〉 (3.24)

with Ẽn = E∗n. Assuming that the Hamiltonian transforms as

THT−1 = H† (3.25)

under time reversal, and that the eigenvalues are non-degenerate, the eigenstates can be

normalized such that they form a bi-orthogonal set [53]

〈m̃ |n〉 = δmn, (3.26)

which implies that the completeness relation takes the form

1 =
∑
n

|n〉 〈ñ| . (3.27)

The property (3.25) implies that the state |ñ〉 is exponentially growing at the same rate as

|n〉 is decaying, which facilitates the normalization (3.26). After applying (3.27) the Green

function takes the following form near the poles

G(E)
E→En=

ψn(0)ψ∗ñ(0)

En − E
+ regular, (3.28)

which generalizes the expression for the QCD result [14]. The pole position and residue

of (3.28) have the following perturbative expansion

En =

∞∑
k=0

E(k)
n , (3.29)

ψn(0)ψ∗ñ(0) =
∣∣∣ψ(0)
n (0)

∣∣∣2(1 +

∞∑
k=1

F (k)
n

)
, (3.30)

10We do not distinguish between bound states and continuum states, since this is irrelevant for the

discussion.
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with the LO expressions

E(0)
n = E(0)

n − iΓ = −mtα
2
sC

2
F

4n2
− iΓ, (3.31)

|ψ(0)
n (0)|2 =

1

π

(
mtαsCF

2n

)3

, (3.32)

and E(k)
n = E

(k)
n − iδΓ(k)

n /2. At LO we have made use of the relation ψ
(0)
ñ (x) = ψ

(0)
n (x).

This holds, because the non-Hermitian part of the LO Hamiltonian

(H0 −H†0)/2 = −iΓ (3.33)

is proportional to the identity operator and thus only affects the eigenvalues E(0)
n but not

the eigenstates |n〉(0).

The results for the non-relativistic Green function in perturbation theory do not take

the form (3.28), but contain higher-order poles

G(E)
E→E(0)

n=
|ψ(0)
n (0)|2

E(0)
n − E

[
1 +

(
F (1)
n − E(1)

n

E(0)
n − E

)

+

(
F (2)
n − E

(2)
n + F

(1)
n E(1)

n

E(0)
n − E

+
E(1) 2
n

(E(0)
n − E)2

)
+ . . .

]
+ regular. (3.34)

This allows us to read off the NNLO correction to the bound state parameters from the

contribution (3.19) to the Green function

δΓE
(2)
n =

Γ2

4mt
, (3.35)

δΓΓ(2)
n = −Γα2

sC
2
F

4n2
, (3.36)

δΓF
(2)
n = − 3iΓ

2mt
. (3.37)

As discussed above, the Γ2 term in (3.14) has the form of a mass shift and therefore leads

to an n-independent correction (3.35) to the position of the pole, while it does not affect

the residue. The iΓ∂2 term in (3.14) accounts for time dilatation, which reduces the total

width of the would-be toponium resonance by (3.36). Since it is non-Hermitian, it also

makes the residues complex due to (3.37).

The corrections to the bound states from QCD effects as well as the QED Coulomb

and Higgs potentials can be found in [14] and [25], respectively. Using this input we can

resum the higher-order poles in the expanded Green function by the replacement

G(E)→ G(E) +
∑
n

[
ψn(0)ψ∗ñ(0)

En − E
−
(
ψn(0)ψ∗ñ(0)

En − E

∣∣∣∣
expanded

)]
, (3.38)

where the expanded term has the form (3.34). In the actual implementation [32] we apply

the pole resummation procedure to G(E) alone in the electroweak contributions, but to

the entire current correlation function of vector and axial vector currents in the pure QCD

contributions.
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(Zt − 1)OS
EW

t

Z

t
+

t

γ

t
+

t

b
W

t
+

qqqq

= 0
q → 0

(Zt − 1)OS
QCD

+

qq

= 0
q → 0

Figure 5. Cancellation of the electroweak gtt̄ vertex correction and the QCD γtt̄ vertex correction

in the on-shell scheme. The vector current itself is conserved and therefore not renormalized.

+ ++

Figure 6. Contributions to the 1/q2 potential at order αsα.

3.1.2 Mixed QCD-electroweak NNLO corrections in PNREFT

In addition to the kinetic terms (3.14) the PNREFT Lagrangian contains potential inter-

actions. We now show that there are no mixed QCD-electroweak corrections at NNLO.

The construction of PNREFT proceeds by first integrating out fluctuations at the hard

scale, which yields NREFT, and then integrating out fluctuations at the soft scale. In

the first step, one must consider electroweak corrections to the hard matching coefficients

of the QCD vertex, and vice versa. The relevant diagrams are shown in figure 5. The

loop momenta in figure 5 are hard, while the momenta of the external particles can be

either soft, potential or ultrasoft and must be expanded out of the loop integral. Therefore

the vertices are effectively evaluated at zero external momentum, and the corresponding

contribution is exactly cancelled by the on-shell external field renormalization factor.

The potentials are determined in the matching procedure between NREFT and PN-

REFT. The diagrams that contribute to the 1/q2 potential at order αsα are shown in

figure 6, where the momenta of the external top quarks are potential and the loop mo-

mentum is soft. The contributions of the first and second diagram are identical, and are

exactly opposite to those of the third and fourth diagram, which implies that the sum of

the diagrams in figure 6 vanishes. We have not drawn the four diagrams that involve soft

vertex corrections to the tree-level potentials, because these corrections are scaleless and

vanish in dimensional regularization. Last, but not least there are no contributions from

insertions of the one-loop corrections to the hard matching coefficients in the tree-level

potential, because these coefficients vanish as argued above. We conclude that no mixed

QCD-electroweak potentials appear at NNLO.

– 20 –



J
H
E
P
0
2
(
2
0
1
8
)
1
2
5

Z +
γ, Z

Figure 7. Contributions to the 1/m2
t potential at order αEW.

Furthermore, we demonstrate that the potential does not receive any pure electroweak

NNLO corrections from the exchange of Z bosons. We count the mass of the Z bosons as

hard and therefore have to integrate out the Z boson in the hard matching to NREFT.

This implies, that all interactions that are mediated by the Z boson in the full theory

become local in PNREFT. The Z-boson exchange potential corresponds to the full-theory

diagrams shown in figure 7 and is proportional to αEW/m
2
t in momentum space. Thus, it

is suppressed by (αEW/αs)× (q2/m2
t ) ∼ v3 compared to the LO colour Coulomb potential

and only contributes at NNNLO.

Finally, we comment on the so-called ‘jet-jet’ interactions that were considered in [54].

These are corrections involving gluon emission from the final-state bottom quarks and it

was demonstrated in [54] that they vanish at NLO. In their calculation, the authors of [54]

first consider the subgraph Iµ, which corresponds to the cut to the right of the gluon of

the third diagram in figure 5. Their result for Iµ scales as
√
αs Γ0/|k|, where k is the gluon

three-momentum, which is either potential or ultrasoft in their case. They then show

by explicit computation that all NLO corrections that involve the subgraph Iµ and/or

its CP conjugate Jµ vanish. In our approach, where loop integrals are strictly expanded

according to the scaling of the momentum regions, the only non-vanishing contribution

to the subgraph Iµ comes from the region of hard loop momentum, where no inverse

powers of |k| can appear because the external momenta are expanded out. Therefore, the

absence of any ‘jet-jet’ interactions at NLO is a matter of simple power counting, which

implies that corrections can first appear at the relative order αEW, i.e. at NNLO. We have

already proven that there are also no ‘jet-jet’ interactions at NNLO by demonstrating that

electroweak corrections to the QCD vertex in figure 5 vanish.

3.1.3 Absorptive part from field renormalization, σ
C

(k)
Abs,Zt

The hard matching coefficients C(k) become complex at NNLO due to bW+ loop correc-

tions. The imaginary part contributes to the finite-width divergence of the resonant cross

section σres, rest in (3.12) and, thus, it has to be determined in d dimensions in accordance

with the scheme used to evaluate the other components of part (I). The bare absorptive

contribution to C(k) on the other hand, is contained in part (II) and therefore has to be

computed in a different scheme. Since the two parts are treated using different conventions,

we find it convenient to separate them in notation. The matching coefficients up to NNLO

are expanded as

C(k) = C
(k)
0

[
1+ c(1)

v

(αs
4π

)
+ c(2)

v

(αs
4π

)2
+
y2
t

2
c

(2)
vH +. . .

]
+
(
C

(k)
EW + iC

(k)
Abs

) α

4π
+ . . . , (3.39)

C
(k)
Abs = C

(k)
Abs,Zt

+ C
(k)
Abs,bare. (3.40)
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The real part of the electroweak corrections, C
(k)
EW, does not yield a finite-width divergence

at NNLO. Thus, it is not necessary to split it as well. The absorptive part (3.40) of the hard

matching coefficient is available in four dimensions [46]. We have repeated the calculation

of the individual contributions in the schemes described above. In four dimensions we

reproduce the result of [46],

C
(v,a)
Abs =

4m2
t

α2

(
CbW,abs

V,A

)
from [46]

+O(ε), (3.41)

where the normalization factor is necessary because the definition of the hard matching

coefficients in [46] differs from (3.39).

The bare part C
(k)
Abs,bare will be given in section 4.1. From the field renormalization,

we obtain

C
(v)
Abs,Zt

=
πΓ

(d)
0

mtαs2
w(4c2

w − xW )(1− xW )(1 + 2xW (1− ε))
×
[
(1 + 4ees

2
w)(2− ε+ xW (2− 5ε+ 2ε2) + 2x2

W (1− ε)2)

−2s2
wet(1 + ee(4− xW ))(3− 2ε)(1 + xW (1− 2ε) + 2x2

W (1− ε))
]
, (3.42)

C
(a)
Abs,Zt

=
−πΓ

(d)
0

mtαs2
w(4c2

w − xW )(1− xW )(1 + 2xW (1− ε))
[
2− ε+ xW (2− 5ε+ 2ε2)

+2x2
W (1− ε)2 − 2ets

2
w(3− 2ε)(1 + xW (1− 2ε) + 2x2

W (1− ε))
]
. (3.43)

The contribution to the NNLO cross section is given by

σ
C

(k)
Abs,Zt

= σ0
12αNc

s

[
C

(v)
0 C

(v)
Abs,Zt

+ C
(a)
0 C

(a)
Abs,Zt

]
Re
[
G

(w)
0 (E + iΓ)

]
, (3.44)

where the finite terms from the multiplication of the 1/ε divergence in the real part of the

Green function (3.10) with the O(ε) parts of (3.42) and (3.43) are included.

3.1.4 Electroweak contributions to the hard matching coefficient, σ
C

(k)
EW

The real part of the electroweak contributions to the NNLO matching coefficients C(k) has

been computed in [55–57]. Pure QED corrections have been neglected there. Therefore,

we split

C
(k)
EW = C

(k)
QED + C

(k)
WZ. (3.45)

The hard QED vertex correction to the γe+e− and Ze+e− vertices contains divergences that

cancel among initial-state radiation (ISR) contributions (see section 3.1.5). We therefore

assign it to σconv
IS to render both, σ

C
(k)
EW

and σconv
IS , separately finite. There is no contribution

from the box diagram involving two photons, since only its interference with the production

of the top pair through the vector component of the s-channel γ or Z boson is of NNLO and

the correlator of three vector currents vanishes [58]. The box diagram with a photon and

Z boson is considered to be a non-QED correction to the photon-exchange contribution
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and is therefore already part of C
(k)
WZ. Thus, the only pure QED effects are the hard photon

vertex correction to the γtt̄ and Ztt̄ currents and the photon self energy, which yield

C
(v)
QED = −8e2

tC
(v)
0 − 4π eeet

α s
ΠAA

R (s, µ2
α),

C
(a)
QED = −8e2

tC
(a)
0 . (3.46)

As in [59], the renormalized photon self-energy ΠAA
R (s, µ2

α) is defined in the scheme of [60],

and will be discussed below. The non-QED contributions are

C
(v)
WZ =

4m2
t

α2
0

Cew
V (ν = 1)− C(v)

0

4π

α

y2
t

2
c

(2)
vH +

π eeet
α0m2

t

ΠAA
R (4m2

t , 0),

C
(a)
WZ =

4m2
t

α2
0

Cew
A (ν = 1)− C(a)

0

4π

α

y2
t

2
c

(2)
vH , (3.47)

where Cew
V,A(ν = 1) is given in [57], α0 is the fine-structure constant and ΠAA

R (4m2
t , 0)

coincides with the expression for ΠAA
R from [57]. The subtraction terms are present be-

cause Higgs effects which only involve the top Yukawa coupling have already been included

separately as part of σH in [25] and the photon self-energy is contained in the QED con-

tribution (3.46). Corrections that involve Higgs couplings to gauge bosons or Goldstone

bosons remain in (3.47).

We note that the photon self-energy terms in (3.46) and (3.47) differ, because we use

a renormalization scheme which is different from [55–57]. The matching coefficients given

in [55–57] are expressed in terms of the fine-structure constant α0. This scheme suffers

from a large spurious dependence on the light fermion masses, that cancels explicitly with

the self-energy corrections to the matching coefficients when the fine-structure constant

is expressed in terms of a less infrared-dependent definition of the electroweak coupling

constant. Therefore, we write the cross section in terms of the running on-shell coupling

α ≡ α(µα) from [60]. In this scheme the renormalized photon self-energy takes the form

ΠAA
R (s, µ2

α) = ΠAA(s)− s

µ2
α

ΠAA(µ2
α)

∣∣∣∣
α0→α

, (3.48)

where the bare self energy ΠAA is taken from [55]. The explicit factor 1/µ2
α appears,

because [55] defines the photon vacuum polarization ΠAA(s) as a dimensionful quantity

and does not imply a power-dependence of the cross section on the scale µα. In the limits

µα → 0 and s → 4m2
t the scheme of [60] converges to the scheme of [55–57], i.e. α → α0

and ΠAA(µ2
α)/µ2

α → Π′,AA(0), and the self-energy terms in (3.46) and (3.47) coincide with

each other and with the respective expression in [57].

The cross section receives the contribution

σ
C

(k)
EW

= σ0
12αNc

s

[
C

(v)
0 C

(v)
EW + C

(a)
0 C

(a)
EW

]
Im [G0(E + iΓ)] , (3.49)

from the electroweak corrections to the hard matching coefficients of the production

operators.
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3.1.5 Initial-state radiation, σconvIS

In this section we take into account effects from QED initial-state radiation. As such we

count all corrections that involve an additional photon attached only to the external e±

states relative to the LO cross section. ISR was already considered in the 1980s [8] at

the leading logarithmic order, i.e. summing corrections of the form (α ln(s/m2
e))

k to all

orders, whereas later works concentrated on the ‘partonic’ tt̄ cross section. We extend the

treatment of ISR to NNLO+LL accuracy below. The non-resonant part is only affected

by QED radiation at NNNLO and will not be considered. With the exception of the

effects from the hard momentum region, all contributions are universal and our treatment

closely follows the one for W pair production near threshold in [28, 29]. In fact, the

equations in this section can often be obtained directly from those in [29] by substituting

c
(1,fin)
p,LR → −4 + π2/12, and by adapting the different tree-level process.11

When the electron mass is neglected the ISR contribution involves the hard, k ∼ mt,

and ultrasoft, k ∼ mtv
2, momentum regions, and in addition two hard-collinear momentum

regions, n̄i · k ∼ mt, ni · k ∼ mtv
2, ki⊥ ∼ mtv (i = 1, 2) familiar from SCET, where ni, n̄i

are pairs of light-like vectors with ni · n̄i = 2 defined by the electron (i = 1) and positron

(i = 2) momentum. Real collinear emission is kinematically forbidden in the resonant part,

because it carries away a hard momentum fraction, which pushes the top pair off-shell.

Virtual collinear corrections are scaleless. Hence, the hard-collinear regions vanish [28],

and we are left with the hard and ultrasoft contributions. We evaluate these separately. A

hard photon cannot be exchanged between the incoming and outgoing electrons, since this

would also push the top pair off-shell. Thus the only correction from the hard region is the

QED γ/Zee vertex correction which contributes to the hard matching coefficients C(v,a).

We find

C
(v,a)
γ/Zee = Re

[
C

(v,a)
0

α

4π

(
µ2

−4m2
t − i0

)ε(
− 2

ε2
− 3

ε
− 8 +

π2

6

)]
(3.50)

= −C(v,a)
0

α

4π

(
2

ε2
+

1

ε

(
3 + 2 ln

µ2

4m2
t

)
+ ln2 µ2

4m2
t

+ 3 ln
µ2

4m2
t

+ 8− 7π2

6

)
.

As it should be, this agrees with the QCD analogue of the hard matching coefficient of the

vector current to SCET, first obtained in this context in [61] in DIS kinematics. We only

kept the real part, because the imaginary part comes from cuts that do not correspond to

the final state bb̄W+W−. The correction to the cross section from hard ISR is

σ
(H)
IS = σ0

48πNc

s
[C

(v)
0 C

(v)
γ/Zee + C

(a)
0 C

(a)
γ/Zee] Im [G0(E + iΓ)] . (3.51)

The contributions from the ultrasoft momentum region are shown in figure 8. Virtual

ultrasoft corrections are scaleless. The diagram with the photon attached to incoming

and outgoing electron vanishes, because it is proportional to the square of the light-like

direction n1 of the electron beam. No ultrasoft corrections that couple to the collinear and

non-relativistic sector occur at NNLO, because the leading ultrasoft photon coupling to

11Compared to our results the expressions in [28, 29] contain an extra factor (1−ε) from the d-dimensional

spin sum over the initial state which we treat in d = 4 dimensions as described at the beginning of section 3.
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e−

e+ e+

e−

G0(E − k0)

k

e−

e+ e+

e−

G0(E − k0)

k

Figure 8. Ultrasoft photon corrections to the resonant cross section. The symmetric diagrams,

obtained by the interchange of electrons and positrons, are not shown.

the final state vanishes, as discussed in section 3.1.1. Thus, the contribution to the cross

section from the ultrasoft region is due to the right diagram in figure 8 and reads

σ
(US)
IS = σ0

24πNc

s

[
C

(v)2

0 + C
(a)2

0

] α
4π

−8
√
π

εΓ(1/2− ε)
(
µ2eγE

)ε
Im

 ∞∫
0

dk
G0(E + iΓ− k)

k1+2ε

 .
(3.52)

When the small electron mass is neglected, the photon radiation corrections are given

by the sum of (3.51) and (3.52). We observe that the 1/ε2 pole cancels, but a collinear

divergence remains, because the cross section is not infrared safe for me = 0. Subtracting

this divergence defines a scheme-dependent ‘partonic’ cross section.

The divergence is regularized by the non-zero electron mass, which in turn yields large

logarithms ln(s/m2
e). They can be resummed into an electron distribution function ΓLL

ee (x),

which describes the probability of finding an electron with momentum xp in the “parent

electron” with momentum p. The cross section with resummed ISR from the electron and

positron is given by

σISR(s) =

1∫
0

dx1

1∫
0

dx2 ΓLL
ee (x1)ΓLL

ee (x2)σconv(x1x2s). (3.53)

Expressions for the structure function at leading-logarithmic (LL) accuracy can be found

in [62–65], where LL implies that all terms of the form αn lnn(s/m2
e) are summed to all

orders. The resummation of the next-to-leading logarithms (NLL) αn+1 lnn(s/m2
e) is cru-

cial for the precision program at a future lepton collider, but the structure functions are

presently unknown at this order.

At LO, the ‘partonic’ cross section σconv(s) is given by (3.1). At higher orders it

depends on the scheme used to regularize and subtract the collinear divergence. The scheme

dependence cancels in the convolution with the structure functions. This implies that we

have to adapt the results (3.51) and (3.52), which correspond to a minimal subtraction

scheme, to the conventional scheme in which the structure functions ΓLL
ee (x) are defined.

This procedure has been described in detail in [28, 29]. First, we need to convert the

dimensional regulator of the collinear divergences to a finite electron mass regulator. Then,

the O(α) terms that appear in the convolution of the structure functions with the LO cross
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section have to be subtracted from the fixed order NNLO partonic cross section to avoid

double counting.

The first point is accomplished by noting that the presence of the additional scale

me � mtv
2 introduces the additional momentum regions

hard-collinear: n̄i · k ∼ mt, ni · k ∼
m2
e

mt
, ki⊥ ∼ me,

soft-collinear: n̄i · k ∼ mtv
2, ni · k ∼

m2
ev

2

mt
, ki⊥ ∼ mev

2,

(3.54)

with k2 ∼ m2
e and k2 ∼ m2

ev
4, respectively. The soft-collinear region contributes in the

diagrams shown in figure 8. As before, the left diagram vanishes, and one finds

σ
(SC)
IS = σ0

24πNc

s

[
C

(v)2

0 + C
(a)2

0

] α
4π

8Γ(ε)

(
m2
t

m2
e

)ε (
µ2eγE

)ε
Im

 ∞∫
0

dk
G0(E + iΓ− k)

k1+2ε

 .
(3.55)

The hard-collinear contribution comes from γ/Zee vertex correction diagram and gives

σ
(HC)
IS = σ0

24πNc

s

[
C

(v)2

0 + C
(a)2

0

]
Im [G0(E + iΓ)]

× α

4π

[
4

ε2
+

1

ε

(
6 + 4 ln

µ2

m2
e

)
+ 2 ln2 µ

2

m2
e

+ 6 ln
µ2

m2
e

+
π2

3
+ 12

]
. (3.56)

The collinear 1/ε poles cancel in the sum of the hard and hard-collinear, and ultrasoft

and soft-collinear contributions, separately. The collinear sensitivity is instead expressed

through the large logarithms ln(4m2
t /m

2
e). The remaining singularities cancel in the sum

over all regions. To make the cancellation explicit, one can expand the factor 1/k1+2ε in

the distribution sense:

µ2ε

k1+2ε
= −(a/µ)−2ε

2ε
δ(k) +

1

[k]a+

+O(ε), (3.57)

where a > 0 is arbitrary and we have introduced the modified plus-distribution

∞∫
0

dk
f(k)

[k]a+

=

∞∫
0

dk
f(k)− f(0)θ(a− k)

k
. (3.58)

We obtain

σIS = σ
(H)
IS + σ

(HC)
IS + σ

(US)
IS + σ

(SC)
IS

= σ0
24πNc

s

[
C

(v)2

0 + C
(a)2

0

] α
4π

{
8 ln

(
4m2

t

m2
e

) ∞∫
0

dk
Im [G0(E + iΓ− k)]

[k]a+

+

[
4π2

3
− 4 + 6 ln

(
4m2

t

m2
e

)
+ 4 ln

(
a2

m2
t

)
ln

(
4m2

t

m2
e

)]
Im [G0(E + iΓ)]

}
, (3.59)
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which is finite, such that the four-dimensional expression (3.10) for the LO Green function

can be used. The a-dependence cancels.

We determine the subtraction terms by expanding the convolution of the LO cross

section with the structure function in the coupling constant. We take the expression for

the electron structure function from [65] with β ≡ βexp = βS = βH = 2(α/π)(ln(s/m2
e)−1),

given by

ΓLL
ee (x) =

exp
(
(3

8 − 1
2 γE)β

)
Γ(1 + 1

2 β)

β

2
(1− x)β/2−1 − 1

4
β (1 + x)

− 1

42 2!
β2

[
1 + 3x2

1− x ln(x) + 4(1 + x) ln(1− x) + 5 + x

]
− 1

43 3!
β3

{
(1 + x)

[
6 Li2(x) + 12 ln2(1− x)− 3π2

]
+

1

1− x

[
3

2
(1 + 8x+ 3x2) ln(x) + 6 (x+ 5) (1− x) ln(1− x)

+12 (1 + x2) ln(x) ln(1− x)− 1

2
(1 + 7x2) ln2(x)

+
1

4
(39− 24x− 15x2)

]}
. (3.60)

The perturbative expansion of the structure function can be written as

ΓLL
ee (x) = δ(1− x) + ΓLL(1)

ee (x) +O(α2). (3.61)

For the determination of the subtraction term only the limit x→ 1 is important,

ΓLL(1)
ee (x)

x→1−→ α

4π

[
ln

(
s

m2
e

)
− 1
]{ 4

[1− x]+
+ 3δ(1− x)

}
. (3.62)

The O(α) term in the convolution of the leading order partonic cross section with the

structure functions is

2

1∫
0

dxΓLL(1)
ee (x)σLO(xs) = σ0

24πNc

s

[
C

(v)2

0 + C
(a)2

0

]
α

4π

[
ln

(
4m2

t

m2
e

)
− 1
]

(3.63)

×
{

6 Im [G0(E + iΓ)] + 8

mt∫
0

dk
Im [G0(E + iΓ− k)]

[k]+

}
,

where in σLO(xs) the non-relativistic Green function was evaluated at
√
xs − 2mt = E −

mt(1− x) + . . . and we have substituted k = mt(1− x). We also set a = mt and neglected

the difference between s and 4m2
t in the argument of the logarithm. The initial-state QED

correction to the partonic cross section in the conventional scheme for the electron structure

function is given by (3.59) with (3.63) subtracted, resulting in

σconv
IS (s) = σ0

24πNc

s

[
C

(v)2

0 + C
(a)2

0

] α
4π

×
{

8

mt∫
0

dk
Im [G0(E + iΓ− k)]

[k]+
+

(
4π2

3
+ 2

)
Im [G0(E + iΓ)]

}
, (3.64)
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The imaginary part of the Green function is neglected for E < −mt outside the non-

relativistic regime. The photon radiation contribution (3.64) to the cross section in this

scheme is finite and free of large logarithms of the electron mass.

3.2 The squared contribution

In this section we discuss the calculation of the squared contribution σsq in (2.13), which

is given by the diagrams in figure 2. The computer programs Package-X [66], Feyn-

Calc [67, 68] and LoopTools [69] have been employed for certain steps of the computation.

The result for the scalar four-point integral in the diagram h1b was taken from [70]. The

individual diagram contributions to the hadronic tensor H are evaluated in d dimensions

and written in the form (2.7). The numerical t (or t∗) integral contains all terms with

positive integer or half-integer powers of (1−y). With the exception of h1b, the subtracted

integrands were all obtained in analytical form. The integrand for h1b contains an addi-

tional numerical angular integral. The expressions for the integrands are rather lengthy

and will not be given explicitly. The numerical integrals are plagued by integrable singu-

larities involving 1/
√

1− t and ln(1 − t) terms, that cause numerical instabilities in the

evaluation of some diagrams. As a remedy, we computed additional terms in the expansion

in (1− t) analytically and used them as further subtractions.

The contributions corresponding to the second term on the right-hand side of (2.7)

are given by the sum of the respective expressions in [27] and terms from the O(ε) con-

tributions to ĝ
(1,b)
ix . The latter encapsulate the dependence of the squared contribution

on the computational scheme and are therefore specified below. In the notation of [27],

we obtain12

H1a =H1a|from [27] +NH

[
192(2 + 2xW + 5x2

W ) ln 1−xW
2 − 623− 239xW − 1154x2

W

144(1− xW )(1 + 2xW )
vLt v

R
t

−2 + 3xW − (1 + 2xW ) ln 1−xW
2

2 + 4xW
vLt a

R
t +

11 + 16xW − 6(1 + 2xW ) ln 1−xW
2

18 + 36xW
aLt a

R
t

]
+H

(EP fin)
1a ,

H1b =H1b|from [27] +NH

[
1− 2xW + 15x2

W − 3
(
1 + xW + 2x2

W

)
ln 1−xW

2

2(1− xW )(1 + 2xW )
vLt v

R
t

−17−28xW − 6(1−2xW ) ln 1−xW
2

18(1 + 2xW )
vLt a

R
t +

5− 4xW − 6(1− 2xW ) ln 1−xW
2

18(1 + 2xW )
aLt v

R
t

]
+H

(EP fin)
1b , (3.65)

where H
(EP fin)
1x is the contribution from the first term on the right-hand side of (2.7). The

prefactor is defined as

NH = mtΓ0Nc
αsCF

4π
. (3.66)

12Note that in the expressions from [27] quoted below and in section 4.2, µ in [27] must be interpreted

as µw and x in [27] must be identified with xW .
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The other diagrams in figure 2 do not contain 1/ε poles from the endpoint divergence and,

therefore, no terms of this type are present, i.e. H1x = H1x|from [27] +H
(EP fin)
1x .

The contribution of an individual diagram hix, gi to the non-resonant part is

σix = −8π2α2ns
∑

L,R=γ,Z

vLe v
R
e + aLe a

R
e

(4m2
t −m2

L)(4m2
t −m2

R)
Re (Hix) , (3.67)

where ns is a symmetry factor, that is either two for diagrams which are symmetric with

respect to the cut, or four for diagrams which are not symmetric with respect to the

cut. The photon couplings are vγf = −ef and aγf = 0, where ef is the fermion charge

measured in units of the positron charge, and couplings of the fermions to Z bosons are

given by (3.2). The photon mass obviously vanishes, mγ = 0. In (3.67), O(ε) terms in the

leptonic tensor have been discarded, as discussed at the beginning of this section. We have

checked explicitly that IR and UV divergences cancel in the sum over the diagrams in the

squared contribution.

4 Part (II)

It would be a natural choice to use the same scheme for part (II), given by (see (2.13))

σ
(EP div)
int + σ

C
(k)
Abs,bare

, (4.1)

as for part (I). We can however simplify the computation of this part by performing the

Dirac algebra and one of the loop integrations in four dimensions. The details of this

scheme and the computation of σ
C

(k)
Abs,bare

and σ
(EP div)
int are shown in section 4.1 and 4.2,

respectively.

4.1 Absorptive contribution to the matching coefficient

The bare absorptive part of the matching coefficients C
(k)
Abs,bare is given by the diagrams

shown in the second row of figure 4. We define the scheme as follows: the coefficients

C
(k)
Abs,bare are calculated in four dimensions, but the loop integrations in the third row of

figure 4, i.e. the ones related to the non-relativistic Green function, are performed in d

dimensions. The Dirac algebra is completely treated in four dimensions. We describe in

section 4.2 how the interference contribution must be treated to achieve consistency with

this scheme.

Our results for C
(k)
Abs,bare in four dimensions are

C
(v)
Abs,bare = − π

24s4
wxW

(
1− x2

W

)
(4c2

w − xW )

[
(1− xW )

(
5 + 44xW + 28x2

W − 4x3
W − x4

W

)
−(1− xW )s2

w

[
ee(1− xW )2

(
et(4− 21xW − 3x2

W + 2x3
W )− 4 + 4xW − 4x2

W

)
+et(1− xW )2(1− 5xW − 2x2

W ) + 4 + 48xW + 36x2
W + 8x3

W

]
−12xW (1 + xW )(4c2

w − xW ) arctanh(1− xW )
]
, (4.2)
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C
(a)
Abs,bare =

π

24s4
wxW

(
1− x2

W

)
(4c2

w − xW )

[
(1− xW )

(
5 + 44xW + 28x2

W − 4x3
W − x4

W

)
−(1− xW )s2

w

[
et(1− xW )2(1− 5xW − 2x2

W ) + 4 + 48xW + 36x2
W + 8x3

W

]
−12xW (1 + xW )(4c2

w − xW ) arctanh(1− xW )
]
. (4.3)

The contribution to the cross section is given by

σ
C

(k)
Abs,bare

= σ0
12αNc

s

[
C

(v)
0 C

(v)
Abs,bare + C

(a)
0 C

(a)
Abs,bare

]
Re

[
3

3− 2ε
G

(w)
0 (E + iΓ)

]
. (4.4)

We recall that at LO the Dirac structure of the top anti-top pair becomes trivial in the non-

relativistic regime and only yields a prefactor 3− 2ε. By introducing the factor 3/(3− 2ε)

in front of the Green function in (4.4), we adapted the expression to the scheme described

above, which involves four-dimensional Dirac algebra. The contribution (4.4) is not affected

by loose cuts.

4.2 Endpoint divergence of the interference contribution

The endpoint-divergent part of the interference contribution has been computed in [27].

The expression (2.9) also contains an endpoint-finite term from the O(ε) terms in ĝ
(1,2)
ia

multiplying the 1/ε pole. This term carries the dependence on the computational scheme

and must, therefore, be treated in the same scheme as the contribution (4.4). We evaluate

it using the expansion by regions approach described in [27]. For each of the diagrams

in figure 3, we treat the loop contained in the corresponding diagram in figure 4, i.e. the

right loop in h2a and the left loop in h3a and h4a, in four dimensions. The Dirac algebra

is also done in four dimensions, but the remaining loop integrations are performed in d

dimensions. In the notation of [27] we obtain

H
(EP div)
2a = H2a|from [27] +NH

1− 5xW − 2x2
W

36(1 + xW )(1 + 2xW )

(
8− 3 ln

µ2
w

4m2
t

)
vLt (vRb + aRb ), (4.5)

H
(EP div)
3a = H3a|from [27] +NH

2 + 5xW − 2x2
W

36xW (1 + 2xW )

(
−8 + 3 ln

µ2
w

4m2
t

)
ILWWv

R
t (4.6)

with ILWW = 1 for diagram h3a with a photon attached to the WW vertex, and −cw/sw
for the WWZ vertex. The endpoint divergent contributions of h2a and h3a follow from

equation (3.67) with ns = 4. The contribution of h4a is given by

σ
(EP div)
4a = ns ∆σ4a|from [27] + nsNH

π2α2

s2
w

1

s

(
etee
s

+
vt(ve + ae)

s−M2
Z

)(
−2 + ln

µ2
w

4m2
t

)

×
(1− xW )

(
1− 2xW − 23x2

W

)
+ 12x2

W ln
(

2
xW
− 1
)

3xW (1− xW )3(1 + 2xW )
. (4.7)

with symmetry factor ns = 4.

To verify that the treatment of the scheme is consistent we computed the finite sum

of the contributions from the diagrams h2a and h3a and the contributions from the corre-

sponding diagrams in C
(k)
Abs,bare also in the scheme of part (I) and found perfect agreement
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with the results presented above. Applying the scheme of part (II) simplifies the compu-

tation, especially for h4a, since it avoids the more complicated integration of the left loop

in h4a in d dimensions.

5 Part (III)

The part (III) σ
(EP fin)
int + σaut contains the automated part σaut, which is evaluated with

MadGraph. The automated part is UV divergent and therefore scheme dependent. The

divergence and the corresponding scheme dependence cancel with the endpoint-finite part

σ
(EP fin)
int of the interference contribution. We first describe the implementation of the

automated part in MadGraph in section 5.1. This fixes the scheme in which σ
(EP fin)
int is

computed in section 5.2.

5.1 The automated part

We first recall some aspects of MadGraph, which are relevant to our definition of the com-

putational scheme.

1. The subtraction of IR singularities is performed automatically using the FKS

method [71, 72]. The IR singularities in the real corrections are subtracted before the

phase-space integration and the subtraction terms are then integrated over the phase

space of the real emission and added to the virtual corrections, where they cancel the

IR singularities that arise in the loop integrals. The phase-space integration is then

always done in four dimensions.

2. In the virtual corrections, MadGraph uses rational R2 terms [73] to absorb the (−2ε)-

dimensional parts of the numerators. For a given diagram with amplitude C the

decomposition takes the form

C ≡
∫
dd l̄

N̄(l̄)∏
i D̄i

=

∫
dd l̄

N(l)∏
i D̄i

+R2, (5.1)

where Di = (l̄+ pi)
2 −m2

i , quantities with a bar are (4− 2ε)-dimensional and quan-

tities without are 4-dimensional. The non-R2 term can be written as a sum over

4-dimensional coefficients multiplying d-dimensional tensor integrals. The (−2ε)-

dimensional parts related to the implementation of the ’t Hooft-Veltman scheme [74]

in MadGraph are all contained in the R2 terms.

3. The amplitudes for the non-R2 terms, the R2 terms, the UV counterterms and the

FKS subtraction terms are written as separate lists, each of them containing the

coefficient of the 1/ε2 pole, the 1/ε pole and the finite part. Afterwards, only four-

dimensional operations are performed, i.e. the multiplication with the conjugated

four-dimensional born amplitude and the four-dimensional phase-space integration.
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Given the way that σaut is defined, we never have to modify the construction of an amplitude

Ai, but we have to remove certain contributions AiA∗j in the squared amplitude |A|2 =∑
i,j AiA∗j . All the contributions associated with the diagrams in figure 2 have to be

removed, i.e. also the R2 parts, the UV counterterms and the FKS subtraction terms.

There is however an ambiguity in the subtraction of the contributions in figure 3, which

determines the scheme in which σ
(EP fin)
int must be computed. We choose to only subtract

the non-R2 terms of hia with i = 2, 3, 4. Following the discussion of the items 1 and 2

above, this implies that σ
(EP fin)
int has to be computed by using dimensional regularization

for the tensor integrals. All other steps in the computation of σ
(EP fin)
int are then performed

in four dimensions.

In the following, we describe the steps we performed in MadGraph to obtain the au-

tomated part in the scheme defined above. It is obvious that this cannot be achieved by

modifying the process generation, because the automated part does not correspond to a

squared amplitude. We therefore first generate the full process e+e− → t̄W+b including

QCD corrections. By not invoking the complex mass scheme, we make sure that the self-

energy insertions are treated perturbatively. Hence, the cross section diverges rapidly for

center-of-mass energies approaching
√
s = 2mt from below. We remove the contribution

from the endpoint divergent born diagram h1, the diagrams shown in figures 2 and the

non-R2 terms from figure 3 by editing the code generated by MadGraph.

Finally, we have to deactivate some checks inside the code, that are invalidated by the

modifications. MadGraph checks if the 1/ε2 and 1/ε poles vanish for a number of phase

space points. Here, this is not the case because the automated part is UV divergent. We

have addressed this issue with in two ways — by deactivating the check or by performing

a minimal subtraction of the UV divergence — and found agreement of both approaches.

The minimal subtraction was also used to verify the cancellation of the UV divergence

with the endpoint-finite part of the interference contribution σ
(EP fin)
int . Furthermore, due

to the subtractions, the tree-level cross section and the real corrections are no longer the

squared absolute value of an amplitude and, thus, no longer positive for all phase-space

points. The positivity of these expressions is not necessary to make the code run properly,

but is only used as an internal check [75]. Therefore, we can safely switch it off. The code

can now be evaluated directly at the threshold
√
s = 2mt. The contribution σaut is given

by the difference of fixed-order runs at NLO and LO, multiplied by a factor two to account

for the tb̄W− contributions. Further details on the implementation and modifications in

MadGraph are provided in appendix B. The evaluation of the automated part in the code

QQbar Threshold relies on a precomputed grid as described in appendix A.5. Since the

contribution σaut is rather small, we do not aim for more precision than about 10% in the

automated part. The resulting error of the cross section is less than one per mille. To

reach this target precision we set up MadGraph to generate an integration grid from four

iterations with 15000 points per integration channel and perform the actual integration

using six iterations with 100000 points for each point of the QQbar Threshold grid. More

precise results are possible at the cost of a considerably increased computing time for the

generation of the grid.
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5.2 Endpoint-finite part of the interference contribution

We recall that the endpoint-finite part of the interference contribution has the form (2.10).

As detailed in section 5.1 it must be evaluated by taking only the tensor integrals of the

virtual loop in d dimensions and then performing all other steps in the computation strictly

in four dimensions. Within this scheme, we have determined the endpoint subtracted

integrands for the diagrams h2a, h3a analytically and for h4a as a one-dimensional angular

integral. We refrain from giving the lengthy results for the integrands. As described in

section 3.2 we use additional terms in the expansion of the amplitudes in 1−t as subtractions

to deal with integrable divergences that appear in the limit t→ 1 of the t-integration. The

result for σ
(EP fin)
int is given by applying the same prefactors and symmetry factors as for

the endpoint divergent part of the interference contribution σ
(EP div)
int in section 4.2.

6 Checks and implementation

6.1 Consistency checks

Having performed the computation of the non-resonant part in the presence of the invari-

ant mass cut (2.14), denoted by c∆Mt(pi), allows us to perform a very powerful numerical

consistency check. The non-resonant cross section σnon-res(c̄∆Mt) in the presence of the

complementary cut c̄∆Mt(pi) = 1 − c∆Mt(pi) is finite. Therefore, we can evaluate it using

unedited MadGraph code. On the other hand, it can be obtained from our result by taking

the difference σnon-res − σnon-res(c∆Mt). The comparison for various values of the cut ∆Mt

numerically tests the whole non-resonant result in (2.11), with the exception of the contri-

butions from the O(ε) parts of the ĝ
(1,b)
ix terms in (2.7), which originate from the t(∗) → 1

region and are independent of the value of the cut, i.e. are not present in σnon-res(c̄∆Mt).

The result of our check is shown in figure 9. Here, we have rearranged the contributions

as follows,

σcheck(c̄∆Mt) ≡ σh1(c̄∆Mt) + σsq(c̄∆Mt) + σint(c̄∆Mt) (6.1)

= σnon-res(c̄∆Mt)− [σaut(c̄∆Mt)− σh1(c̄∆Mt)] , (6.2)

where σh1(c̄∆Mt) is the contribution to the non-resonant part from the diagram h1 at NLO

(figure 1) in the presence of the complementary cut. The line in figure 9 shows our semi-

analytical result for σcheck(c̄∆Mt) obtained by means of (6.1). The points show the same

quantity determined by evaluating (6.2) using MadGraph. The contribution from diagram

h1 is included in σcheck(c̄∆Mt), because our edited MadGraph code, described in section 5.1,

corresponds to the combination σaut(c̄∆Mt)−σh1(c̄∆Mt) that appears in (6.2). We performed

the same check for the individual contributions from the diagrams hia with i = 2, 3, 4. In

particular, this provides very welcome reassurance that the scheme dependence within

part (III) has been treated consistently. Within estimated numerical errors we find good

agreement, if the bottom-quark mass mb is neglected, as is done in our calculation.

– 33 –



J
H
E
P
0
2
(
2
0
1
8
)
1
2
5

●

●

●

●

●

●

●

■

■

■

■

■

■

■

● mb = 4.7 GeV

■ mb = 0.1 GeV

10-4

0.001

0.010

0.100

1

σ
c
h

e
c
k
(c

Δ
M

t
)
[p

b
]

●

●
● ● ● ● ●■

■ ■ ■ ■ ■ ■

● mb = 4.7 GeV

■ mb = 0.1 GeV

100 110 120 130 140 150 160 170

0.92

0.96

1.00

1.04

mt - ΔMt

R
a

ti
o

Figure 9. Consistency check for various values for the complementary cut p2
t ≤ (mt−∆Mt)

2. The

line in the upper panel is our semi-analytical result (6.1) for σcheck(c̄∆Mt
) in pb, given by the sum

of the contributions from the tree-level diagram h1, the squared and the interference contributions.

The points give the same quantity (6.2) obtained from the difference of MadGraph runs with the

unedited and edited code. The lower panel shows the same results normalized to (6.1). The

MadGraph results have been obtained for the default value of the bottom-quark mass mb = 4.7 GeV

and a negligible value mb = 0.1 GeV. The error bars in the lower plot are obtained by adding the

standard deviation of ten runs of the unedited MadGraph code and the standard deviation of ten

runs of the edited MadGraph code in quadrature, while the estimated uncertainty of an individual

run is ignored. The increase of the relative uncertainty for large values of ∆Mt is related to large

cancellations between the results of the edited and unedited code. For this check, we have used the

default values of MadGraph, mt = 173 GeV, µ = mZ , αs(mZ) = 0.118 and α = 1/132.507.

6.2 Implementation in QQbar Threshold

All of the aforementioned NNLO corrections have been implemented in the new version

2 of the public code QQbar threshold [32]. A summary of the code changes and some

code examples for the new functions are provided in appendix A. QQbar threshold can

be downloaded from https://www.hepforge.org/downloads/qqbarthreshold/. An updated

online manual is available under https://qqbarthreshold.hepforge.org/.
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6.3 Comparison to other approaches

While a complete calculation of NNLO electroweak and non-resonant contributions to

the top-pair threshold as reported here has never been done before, NNLO non-resonant

corrections have been evaluated in certain approximations in [50] and [31]. We briefly

comment on these approximations and their limitations here.

6.3.1 Comparison to [50]

The leading NNLO non-resonant contributions for the case of “not-too-loose” cuts satisfy-

ing Γt � ∆Mt � mt were determined in [50] within the so-called phase-space match-

ing (PSM) approach. This result captures the first terms in the expansion in Λ/mt

(Λ2 ≡ 2mt∆Mt−∆M2
t ) of the full non-resonant result, namely the terms of order m2

t /Λ
2,

mt/Λ and (mt/Λ)0 log Λ. The latter correspond to the endpoint-divergent terms computed

in [27], which give the approximate result labelled “aNNLO” in figure 14 below. Because

of the “not-too-loose” cut condition, the PSM approach does not allow the calculation of

the bb̄W+W−X total cross section near the top anti-top threshold.

The agreement between the PSM result and the full non-resonant computation of the

non-analytic terms in the expansion in the invariant-mass cut parameter Λ/mt can be un-

derstood as a consequence of the cancellation of singularities between adjacent regions of

loop momentum [27]. The Λ/mt non-resonant terms are obtained in the PSM approach

by computing the ultraviolet behaviour of the resonant amplitude where the cut on the

invariant mass of the top and anti-top quark has been implemented. Therefore Λ effec-

tively acts as a regulator of the ultraviolet singular behaviour of the resonant part of the

amplitude, that is obtained assuming on-shell top quarks, when the latter is further taken

into the off-shell limit, i.e. for |pt| � Γt. On the other hand, the endpoint-divergent terms

are obtained from the non-resonant part of the amplitude, that assumes off-shell tops with

|p2
t −m2

t | � Γt, upon going to the (infrared) on-shell limit within a distance regulated by

Λ. The fact that both expansions provide the same divergent terms in Λ/mt is thus a con-

sequence of the cancellation of the dependence on the cut-off Λ that separates the resonant

and non-resonant regions. For the limitations on the PSM result to provide higher-order

terms in the Λ/mt expansion we refer the reader to [27].

6.3.2 Comparison to [31]

Another approach, introduced in [31], aims at the computation of the non-resonant con-

tribution to the total cross section in an expansion in ρ1/2, where ρ = 1 − mW /mt is

treated as a small parameter. Even though ρ is not small in reality, one may hope that

with sufficiently many terms in the expansion, a good approximation might be obtained.

Indeed, the exact NLO non-resonant result from [26] was reproduced by combining a deep

expansion with Padé approximants.

Our concern here is the computation of the first two terms in the ρ1/2 expansion of the

NNLO non-resonant contribution. In the present notation, the first term in the expansion
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given in [31] reads explicitly

σ
(1),nr

[31]
= σ0

24πNc

s

[
C

(v)2

0 + C
(a)2

0

] mtΓ0

ρ

αsCF
4π

{
2 ln
|E + iΓ|
mtρ

+ 4 ln 2 + 1 +O (
√
ρ )

}
.

(6.3)

It is immediately clear from this expression that the meaning of “non-resonant” is different

from ours, in which case the non-resonant contribution is analytic in energy and has a 1/ε

pole. It appears that [31] does not distinguish between what we call non-resonant and

absorptive matching coefficient contribution to the resonant part and directly constructs

the expansion of the diagram in ρ1/2, such that (6.3) gives the sum of all contributions at

order O(αs/ρ).

It is instructive to construct the O(αs/ρ) terms from the results in [30] and in the

present paper. We find that they arise only from

σsq + σ
C

(k)
Abs,Zt

(6.4)

in part (I) and specifically from diagrams h1a and h1b in σsq. Each of the two terms contains

a 1/ε pole, which cancels in the sum. This holds separately for the two diagrams h1a and

h1b plus their corresponding resonant counterparts13 that contribute to σ
C

(k)
Abs,Zt

. We note

that the leading term (6.3) from [31] originates only from diagram h1a. Our result for this

diagram including its resonant counterpart indeed agrees with the above except for the

constant term +1 (see (C.4), (C.5) in appendix C). However, as was already mentioned

in [27, 30], contrary to the statement made in [31] there is a non-vanishing contribution

from h1b at the same order. We computed the O(αs/ρ) from this diagram explicitly, and

find that the complete O(αs/ρ) contribution to the total cross section reads

σO(αs/ρ) = σ0
24πNc

s

[
C

(v)2

0 + C
(a)2

0

] mtΓ0

ρ

αsCF
4π

{
ln
|E + iΓ|
mt

+ 4 ln 2

}
. (6.5)

Note the absence of a logarithmic dependence on ρ in the sum of all contributions

(see (C.4)–(C.7) for the individual results). This can be traced to the cancellation of

1/ε divergences and the scaling of the leading momentum regions that contribute to the

1/ρ enhanced term. Furthermore, the coefficient of ln |E + iΓ| differs by a factor of two,

which is related to the contribution of the diagram h1b as described in appendix C. We

therefore disagree with the NNLO non-resonant result given in [31] already from the leading

term in the ρ1/2 expansion.

The authors of [31] did not actually attempt the calculation of diagram h1b but referred

to [54] to claim that it must not contribute. However, as already discussed in section 3.1.2,

the purported vanishing of h1b, called “jet-jet” contribution in [54], refers to a different

order in the non-relativistic expansion, namely NLO, and is reflected in the present frame-

work as the non-renormalization of the coupling of the top quark to a potential gluon and

13The resonant counterparts of h1a and h1b correspond to the same diagrams but taking the loop momenta

in the top anti-top loops in the potential region, and keeping only the NNLO term of the self-energy insertion

in h1a.
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the Coulomb potential by electroweak effects. Moreover, when the ρ1/2 expansion is con-

structed from momentum regions, the leading 1/ρ term arises from a momentum region

that was missed in [31]. Further details on the comparison and diagram h1b can be found

in appendix C.

7 Discussion of results

Recent experimental studies [2, 3] concluded that the statistical uncertainties of the top

threshold scan at a future e+e− collider can be very small in realistic running scenarios.

Thus, when discussing the impact of the electroweak and non-resonant corrections in this

section, we focus on the theoretical uncertainties. An experimental analysis based on the

theory prediction available in QQbar threshold [32] is in progress [4] and will combine

statistical and systematic experimental errors with theory uncertainties.

To avoid the IR renormalon ambiguities, we exclusively employ the PS shift (PSS)

mass scheme defined in [14, 32, 59]. For the numerical evaluation we adopt the input

values

mPS
t = 171.5 GeV, αs(mZ) = 0.1184, α(mZ) = 1/128.944

mH = 125 GeV, mZ = 91.1876 GeV, mW = 80.385 GeV, (7.1)

Γt = 1.33 GeV, µr = 80 GeV, µw = 350 GeV,

where mPS
t is the top-quark PS mass [76] and the running electroweak coupling is taken

from [60], see the discussion in section 3.1.4.

7.1 Size of the electroweak effects

We define a reference QCD prediction by adding the small P-wave contribution [22] to the

S-wave result of [9]. The result is shown by the grey hatched band labelled “QCD” in

figure 10, which is spanned by variation of the renormalization scale µr between 50 GeV

and 350 GeV. Figure 10 also shows the net effect of all the corrections discussed above,

excluding ISR, which will be considered below. These non-QCD effects slightly increase

the height of the peak and move it towards smaller center-of-mass energies. Above the

peak the cross section is slightly decreased by about 3.0 − 3.6%. Overall, the effect of

the non-QCD corrections is to make the resonance more pronounced. The largest effect

is observed below the peak, where the absorptive parts of the matching coefficients and

the non-resonant contribution dominate the non-QCD corrections. Here, the bands cease

to overlap at around
√
s = 341.8 GeV. The size of the uncertainty band is somewhat

increased and now reaches up to ±5.2% directly below the peak, where the uncertainty

estimate for the QCD result is ±3.8%. In the remaining regions it is about ±3%. The

increase of the scale uncertainty is mainly due to the Higgs potential insertion as was

already observed in [25].

The size of the individual contributions is shown in figure 11. We have already discussed

the Higgs, QED Coulomb and NLO non-resonant corrections in [25], but briefly recapitulate

the results here to give a complete overview over the non-QCD correction up to NNLO.
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Figure 10. The cross section in pure QCD (grey hatched band) and including the electroweak

and non-resonant corrections (red hatched band). The bands represent the uncertainty from scale

variation. The upper panel shows the cross section in pb and the lower panel shows the results

normalized to the full one for the central scale µr = 80 GeV.

In the top-panel we show the relative effect of the Higgs contribution σH at NNLO and

NNNLO. At NNLO there is an almost constant relative shift, because only the hard-

matching coefficient c
(2)
vH is present. At NNNLO, there is also a contribution from the local

Higgs potential, which modifies the position of the peak. Due to the attractive nature

of the potential, the binding energy is increased and the peak is shifted to the left. At

the same time the Higgs corrections increase the cross section by 3 − 8%, depending on

the value of
√
s, and make the peak more pronounced. The comparison of the dashed

and solid curves demonstrates that the inclusion of the NNNLO corrections is important

for correctly capturing the energy dependence of the Higgs effects, which is crucial for a

reliable measurement of the top Yukawa coupling.
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Figure 11. Relative corrections to the cross section by adding Higgs (top), electroweak (middle)

and non-resonant (bottom) effects cumulatively.

The remaining electroweak contributions to the ‘partonic’ resonant cross section,

σδVQED
, σΓ, σ

C
(k)
EW

, σ
C

(k)
Abs,bare+Zt

, are shown in the middle panel. The dashed line cor-

responds to the correction from the QED Coulomb potential only. It is attractive and

therefore leads to an increase of the cross section by 2−8% and a shift of the peak towards

smaller center-of-mass energy. The solid line shows the full correction. The width contri-

bution σΓ decreases the cross section by 0 − 1.5% depending on the energy. Including the
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real part of the electroweak matching coefficient leads to an almost constant relative shift

of about −3.3%. The absorptive part of the matching coefficient multiplies the real part

of the non-relativistic Green function, which has a broad peak, roughly centered around

the point where the imaginary part has its maximal slope, on top of a smooth background.

Thus, the absolute contribution has only a mild energy dependence and is of the order of

−3% near and above the peak. However, it becomes even more important below the peak,

where the cross section is small and modified by up to −15%.

The lower panel illustrates the behaviour of the non-resonant contribution to the total

cross section. Its absolute size is nearly energy-independent. Thus, the shape of the curves

is given by the “inverse” of the resonant cross section. At NLO, the effect is of the order

−(3−4)% near and above the peak and reaches up to −22% for low center-of-mass energies,

where the resonant cross section becomes small. The NNLO corrections compensate about

40% of the NLO result. This is in contrast to the findings of [27, 30], where an enhancement

of the negative non-resonant correction from an approximate NNLO result was observed.

The apparent discrepancy is entirely explained by the very different choice made in [27, 30]

for the finite-width scale (µw = 30 GeV) compared to the present (µw = 350 GeV). The

dependence of the full result on µw is very mild as discussed below and, thus, mainly the

size of the individual contributions is affected — most notably the non-resonant correction

and the one from the absorptive part of the hard matching coefficients.

We recall that the bands in figure 10 only include the variation of the renormalization

scale between 50 GeV and 350 GeV, while the scale µw = 350 GeV is kept fixed. The

dependence on the scale µw cancels exactly between all contributions of a given order. We

show the µw dependence of the resonant cross section and the full cross section in figure 12.

For the resonant-only cross section, it is mild near and above the peak, but is significantly

larger than the renormalization scale dependence below the peak. The sensitivity to µw
is greatly reduced for the full cross section, where the variation between 20 and 700 GeV

considered in the plots only yields a ±(0.2−0.3)% effect near and above the peak and only

a mild ±1.8% below the peak. The remaining µw dependence is of NNNLO, where the

full QCD corrections, but only a few electroweak effects are included and therefore no full

cancellation is achieved.

The central value µw = 350 GeV for the finite-width scale is chosen near the hard scale

to make the corresponding logarithms in the non-resonant part small. The logarithms of

µw are introduced by the separation into different momentum regions and are therefore

spurious in nature. Explicitly, some of the ‘large’ logarithms ln v contained in the full cross

section are split as follows

σfull ⊃ ln v = ln
µw
mt︸ ︷︷ ︸

⊂σnon-res

+ ln
mtv

µw︸ ︷︷ ︸
⊂σres

, (7.2)

where the first logarithm to the right of the equality sign is part of the non-resonant con-

tribution and the second one of the resonant. Choosing µw ∼ mt captures the ‘large’

logarithms present at NNNLO in the resonant part and renders the logarithms contained

in the non-resonant part small. While the NNNLO resonant contributions are already
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Figure 12. Dependence of the resonant-only and full cross section on the scale µw normalized

to the one at µw = 350 GeV for
√
s = 340 GeV (top panel),

√
s = 344 GeV (middle panel) and√

s = 348 GeV (bottom panel).

partially known, the NNNLO non-resonant corrections are beyond the present computa-

tional limits. Thus our scale choice minimizes the uncertainty from the missing NNNLO

contributions.14

14The same argument motivated the different choice made in [27, 30], since in these papers the NNLO

resonant electroweak contribution was not available.
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Figure 13. The resonant plus NLO non-resonant (grey hatched band) and full cross section (red

hatched band) are shown for µr = 80 GeV. The bands are the envelope of the values obtained by

varying µw between 20 and 700 GeV. The results have been normalized to the full cross section for

the central scale µw = 350 GeV.

Variation of the scale µw can be used to estimate the size of the missing NNNLO non-

resonant corrections. The corresponding bands for the resonant plus NLO non-resonant

and full cross section are shown in figure 13, where we have varied µw between 20 and

700 GeV. We observe that the inner (red) band is entirely contained in the outer (grey)

one and much narrower. Thus, the chosen range of the finite-width scale variation provides

a reasonable estimate of the NNLO non-resonant correction. However, an estimate of the

missing NNNLO non-resonant correction based on the width of the “full” (red) band in

figure 13 is potentially less reliable, because the leading NNNLO terms might not cause

any µw dependence. This would be similar to the situation at NLO, where the leading non-

resonant effect arises, yet there is no µw dependence of the resonant contribution at this

order at all, since the divergence from factorizing resonant and non-resonant contributions

is purely linear.

We discussed the possibility of imposing loose cuts, which affect only the non-resonant

part of the cross section, in section 2.3. The dependence on the cut defined in (2.14) is

shown in figure 14, where the dotted and solid lines denote the NLO and NNLO non-

resonant contribution. Very loose cuts with ∆Mt ≥ 30 GeV have only a mild influence

on the cross section. Tighter cuts ∆Mt = (30, 20, 10, 5) GeV reduce the cross section by

(0.007, 0.014, 0.037, 0.084) pb. We observe that for ∆Mt around 4 GeV the NNLO non-

resonant contribution becomes as large as the NLO one. Here, the assumption that the

cut is loose is no longer appropriate and our description breaks down. The dashed line

in figure 14 shows the approximate NNLO result [27], which includes only the endpoint-

divergent terms as ∆Mt → 0, for comparison. It describes the dependence on the cut

very well, since the endpoint-divergent terms are most sensitive to it, but it is shifted by

-0.004 pb for the full cross section and up to -0.013 pb including invariant mass cuts. In the

absence of any cuts the exact result corresponds to a 46% correction with respect to the
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Figure 14. The dependence of the non-resonant contribution to the cross section on the invariant

mass cut (2.14). The dotted line shows the result at NLO and the dashed line the NNLO correction

(without the NLO terms). The sum of both is drawn as a solid line. The red dot-dashed line

denotes the approximate NNLO result (without the NLO terms) from [27]. The full cross section

corresponds to ∆Mt = mt −mW .
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Figure 15. The effect of initial-state QED radiation on the cross section. The dotted curve

shows the full result without ISR. The solid band (with ISR) is the envelope of results obtained by

convoluting the full ‘partonic’ cross section with the structure functions with different systematics

(see text). The dashed line (with ISR0) is obtained by convoluting only the leading order ‘partonic’

cross section with the structure functions and adding the full ‘partonic’ corrections on top.

approximate NNLO result. We note, however, that for the scale choice of [27] and in the

range of loose, but not too loose cuts Γt � ∆Mt � mt the approximation is much better.

We finally discuss the effects of initial-state QED radiation, which have so far only

been taken into account in the experimental studies. Figure 15 shows the partonic cross

section σconv and its convolution with the electron structure functions. The QED con-

tribution σconv
IS to the partonic cross section from (3.64) is a small effect of the order
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−(0.6 − 1.3)%. The convolution, however, reduces the cross section by 28 − 44%. The

black band is spanned by four different implementations of the convolution (3.53) of the

full NNNLO QCD plus NNLO EW cross section with the structure functions. This in-

volves an extrapolation of the cross section for energy values outside of the range of the

grids available in QQbar Threshold[32]. We either use the shape of the LO cross section

below
√
s = 328 GeV, rescaled to match the full result at

√
s = 328 GeV, or an alterna-

tive implementation that interpolates linearly between σ(
√
s = 320 GeV) = 0 pb and our

result at
√
s = 328 GeV. Numerically, we find a small difference of 0.1% near and above

the peak, which goes up to 0.8% at
√
s = 340 GeV.15 For both extrapolations we con-

sider the convolution (3.53) with the structure functions as defined in (3.60) and a purely

LL approximation where we set β = (2α/π) ln(s/m2
e) in the structure function and ac-

cordingly modify the non-logarithmic ISR contribution (3.64) for the different subtraction

term (3.63). The difference is formally a NLL effect and provides a rough estimate of the

overall size of NLL ISR corrections. It amounts to about 1.4% above the peak and reaches

up to 2.1% in the region where the slope is large.

For comparison we furthermore show as the dashed line the expression

σISR0(s) = σconv(s)− σLO(s) +

1∫
0

dx1

1∫
0

dx2 ΓLL
ee (x1)ΓLL

ee (x2)σLO(x1x2s), (7.3)

where the ISR resummation is only applied to the LO cross section. Since the LL resum-

mation modifies a NkLO correction by order one, the difference between ISR and ISR0 is

formally a NLO effect. This emphasizes that it is mandatory to perform the convolution

with the full partonic result.

We see, as it is of course expected, that ISR is a huge effect, reducing the cross section

by 28−44%. It also leads to a significant modification of the shape. The peak is shifted by

almost 200 MeV to the right and smeared out considerably. Its height is reduced by about

40%. This emphasizes the need for a full NLL treatment of ISR and a proper analysis

of the convergence and remaining uncertainty, which is of universal importance for high-

energy e+e− collider processes, but beyond the scope of this work. We further note that at

the level of NNLO electroweak accuracy the partonic cross section depends on the scheme

employed for the electron structure function, and a phenomenological convolution as often

applied in experimental studies in an unspecified scheme is no longer adequate.

7.2 Sensitivity to Standard Model parameters

Since the non-QCD effects computed in this paper cause substantial corrections to the

cross section we provide an update of the discussion in [9, 25] of the sensitivity of the

top threshold scan to Standard Model parameters. Figures 16, 17 and 18 estimate the

sensitivity by comparing the effects of parameter variations to the scale uncertainty in

terms of the relative variation to a reference cross section.
15While the grid could technically be extended to smaller values of

√
s, the PNREFT and unstable-

particle EFT breaks down far below the threshold. Improving the accuracy in this region would require

matching the EFT description to the fixed-order calculation of the full non-resonant process as discussed

for a single-particle resonance in [35, 36].
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Figure 16. The cross section for the input values (7.1) up to variations of the top mass (top panel)

and top width (bottom panel) is shown in comparison the uncertainty band from scale variation

(cf. figure 10). The prediction is normalized to the full cross section.

All electroweak and non-resonant effects discussed in this paper are included in the

figures, in particular also the ISR corrections. There are small quantitative differences

with respect to [9, 25], such as a small reduction of the height of the peaks present in the

top-mass variation curves near 344.5 GeV, but the essence of the results and the associated

conclusions remain unchanged. It is especially noteworthy that the huge ISR correction

discussed above does not degrade the sensitivity. Since the bulk of the ISR correction is

produced by the convolution with the luminosity function, we expect that the additional

convolution of the cross section with the collider-specific beam function will not dilute the

sensitivity to the parameters, either.

From figures 16 and 17 we expect the threshold scan to be sensitive to variations of

about ±40 MeV for the top-quark PS mass, ±60 MeV for the top-quark width, +20
−25 % for the
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Figure 17. The upper (lower) panel show the effects of variations of the Yukawa coupling (strong

coupling) on the cross section. The Yukawa coupling is parametrized as yt = κt y
SM
t , where ySM

t =√
2mt/v is the Standard Model value. The predictions are normalized to the full cross section and

the uncertainty band is the same as in figure 16.

top-quark Yukawa coupling and ±0.0015 for the strong coupling constant αs(mZ), when

only a single parameter is varied at a time. These numbers are obtained from comparing the

width of the band for the parameter variation with the one from the theoretical uncertainty,

and requiring that the former is larger than the latter for a sufficient range in energy. This

leaves open the question of how well the corrections from the simultaneous variation of

several parameters can be disentangled from their energy dependence, which particularly

concerns the Yukawa and the strong coupling, where variations lead to similar effects as

seen in figure 17 for the energy dependence and in figure 18 for the position and height

of the peak in the cross section. This needs to be addressed within realistic simulations,

which include experimental uncertainties as well.
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Figure 18. The effect of a variation of the Yukawa coupling (strong coupling) on the position

and height of the peak is indicated by the red (green) line and points. The black cross represents

the theoretical uncertainty with the default input parameters. The outer error bar is obtained

by adding the uncertainties from the renormalization scale and variation of αs(mZ) by ±0.001 in

quadrature, while the inner bar shows only the latter contribution.

8 Conclusions

The recent advance in the QCD calculation of the top anti-top threshold [9] has motivated

the consideration of non-QCD effects of potentially similar size to the third-order QCD

correction. While Higgs/top-Yukawa coupling effects up to the third order were already

obtained in [25], the present work completed the calculation of NNLO electroweak correc-

tions and in particular the NNLO non-resonant contribution to the e+e− → bb̄W+W−X

process near the top-pair production threshold. This elevates the theoretical prediction to

NNNLO QCD plus NNLO electroweak accuracy, including for the first time initial-state

radiation in a scheme consistent with one-loop QED corrections. The new effects are in-

deed non-negligible compared to the ±3% accuracy estimated for the pure QCD calculation

and are therefore essential for accurate top and Standard Model parameter determinations

from the threshold. They have been implemented in the new version 2 of the public code

QQbar threshold [32].

Despite the level of sophistication already achieved, further improvement could be

considered or might be necessary, such as the combination of the NNLL summation of

logarithms of E/mt in the QCD part [24] with the NNNLO fixed-order calculation [9], the

inclusion of already known NNNLO electroweak corrections (see [45, 47]) or the one-loop

correction to the Higgs potential (a N4LO effect) together with the terms required to make

these additions factorization-scheme independent. To cancel the finite-width µw scale de-

pendence of the NNNLO QCD result completely, the non-resonant part is needed to the

same accuracy, which appears prohibitive at present. Finally, a consistent implementation

of QED initial-state radiation with next-to-leading logarithmic accuracy seems to be a gen-

eral prerequisite for accurate predictions of scattering at a future high-energy e+e− collider.
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A Implementation in QQbar threshold

The new NNLO corrections have been implemented in the new version 2 of the public code

QQbar threshold. In the following, we summarize the changes and give code examples

for new functions. QQbar threshold can be downloaded from

https://www.hepforge.org/downloads/qqbarthreshold/

An updated online manual is available under https://qqbarthreshold.hepforge.org/.

A.1 Non-resonant corrections

By default, the ttbar xsection function now includes the NNLO non-resonant contribution

to the cross section. The NLO and NNLO corrections can be controlled individually with

the contributions option. For example,

const double a NLO = 1 . 0 ;

const double a NNLO = 0 . 0 ;

opt i ons opt ;

opt . c o n t r i b u t i o n s . nonresonant = {{a NLO , a NNLO}} ;

t t b a r x s e c t i o n ( s q r t s , {mu, mu w} , {mt , width } , order , opt ) ;

will calculate the cross section with the NLO non-resonant correction multiplied by a NLO

and the NNLO correction multiplied by a NNLO. The equivalent Mathematica code is

aNLO = 1 . 0 ;

aNNLO = 0 . 0 ;

TTbarXSection [

sq r t s , {mu, muw} , {mt , width } , order ,

Contr ibut ions −> ExceptContr ibut ions [ nonresonant −> {aNLO, aNNLO} ]

]

As before, the complete nonresonant contribution can be disabled by setting the option

resonant only to true ( ResonantOnly −> True in Mathematica).
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A.2 Initial-state radiation

Initial-state radiation requires the computationally expensive convolution with structure

functions. Therefore, this correction is not included automatically.

After defining the luminosity function

L(x) =

∫ 1

y

dy

y
ΓLL
ee (y)ΓLL

ee (x/y) (A.1)

with the electron structure functions Γee from (3.53) the cross section after initial-state

radiation is given by

σISR(s) =

∫ 1

0
dxL(x)σconv(xs) . (A.2)

Here, σconv is the partonic cross section including the non-logarithmic initial-state radiation

correction σconv
IS (see (3.64)). The non-logarithmic correction can be included with the

option setting

opt ions opt ;

opt . ISR const = true ;

in C++ and ISRConst −> True in Mathematica. The default setting for this option is

false. It should be set to true if (and only if) the logarithmically enhanced component of

the initial-state radiation is also included via convolution with the luminosity function.

In principle, the convolution integral in (A.2) covers the whole energy range from zero

to the nominal center-of-mass energy. However, our prediction for the cross section is only

valid in the vicinity of the threshold. Sufficiently below the threshold the actual cross

section becomes negligible. This implies that we can introduce a lower cut-off xmin in the

integral (cf. section 7.1). In the following we choose xmin = (330 GeV)2/s.

A further, purely numerical problem arises from the integrable divergence of the lu-

minosity function for x → 1. In order to eliminate this divergence, we can change the

integration variable to t = (1− x)β and write the cross section as

σISR(s) =

∫ tmax

0
dt L̄(t)σconv

(
x(t) s

)
, L̄(t) =

(1− x)1−βL(x)

β
, x(t) = 1− t

1
β , (A.3)

with the modified luminosity function L̄(t) and a cut-off tmax = (1− xmin)β . The function

β = −2α(µα)/π[log(m2
e/s) + 1] is available in QQbar threshold as ISR log(sqrt s , alpha)

in C++ and ISRLog in Mathematica.

Finally, version 2 of QQbar threshold provides an integrate function in the header

integrate.hpp, which can be used to compute the convolution integral as shown below.

The following C++ code prints the cross section σ = 0.591736 pb after initial state

radiation for a center-of-mass energy of
√
s = 344 GeV, including all known perturbative

corrections:
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#include <iostream>

#include <cmath>

#include ” QQbar threshold / l o a d g r i d . hpp”

#include ” QQbar threshold / x s e c t i o n . hpp”

#include ” QQbar threshold / s t r u c t u r e f u n c t i o n . hpp”

#include ” QQbar threshold / i n t e g r a t e . hpp”

#include ” QQbar threshold / cons tant s . hpp”

int main ( ){
namespace QQt = QQbar threshold ;

QQt : : l o a d g r i d (QQt : : g r i d d i r e c t o r y ( ) + ” t t b a r g r i d . t sv ” ) ;

constexpr double s q r t s = 3 4 4 . ;

constexpr double mu = 8 0 . ;

constexpr double mu width = 3 5 0 . ;

constexpr double mt PS = 1 7 1 . 5 ;

constexpr double width = 1 . 3 3 ;

QQt : : opt ions opt = QQt : : t op opt i on s ( ) ;

opt . ISR const = true ;

const double beta = QQt : : ISR log ( s q r t s , QQt : : alpha mZ ) ;

const auto in tegrand = [= ] ( double t ){
const double x = 1 − std : : pow( t , 1/ beta ) ;

const double L = QQt : : m o d i f i e d l u m i n o s i t y f u n c t i o n ( t , beta ) ;

const double sigma = QQt : : t t b a r x s e c t i o n (

std : : s q r t ( x )∗ s q r t s , {mu, mu width } , {mt PS , width } , QQt : : N3LO,

opt

) ;

return L∗ sigma ;

} ;

constexpr double x min = 330 .∗330 . / ( s q r t s ∗ s q r t s ) ;

const double t max = std : : pow(1 − x min , beta ) ;

s td : : cout << QQt : : i n t e g r a t e ( integrand , 0 , t max ) << ’ \n ’ ;

}

The corresponding Mathematica code is

Needs [ ”QQbarThreshold ‘ ” ] ;

LoadGrid [ Gr idDirectory <> ” t t b a r g r i d . t sv ” ] ;

s q r t s = 3 4 4 . ;

mu = 8 0 . ;

muWidth = 3 5 0 . ;

mtPS = 1 7 1 . 5 ;

width = 1 . 3 3 ;

order = ”N3LO” ;

beta = ISRLog [ sq r t s , alphamZ ] ;

– 50 –



J
H
E
P
0
2
(
2
0
1
8
)
1
2
5

xmin = (330 . / s q r t s ) ˆ 2 ;

tmax = (1−xmin )ˆ beta ;

Print [

NIntegrate [

Modif iedLuminosityFunction [ t , beta ] ∗
TTbarXSection [

Sqrt [1− t ˆ(1/ beta ) ] ∗ sq r t s , {mu, muWidth} , {mtPS , width } , order ,

ISRConst −> True

] ,

{ t , 0 , tmax}
]

] ;

Numerically, the structure function under the replacement β → 2β is very close to the lumi-

nosity function. The same holds for the modified versions of both functions. Indeed, substi-

tuting modified luminosity function(t , beta) with modified structure function(t , 2∗beta)

in the example changes the result for the cross section to σ = 0.59169 pb, i.e. by less than

10−4. This observation can be used to somewhat accelerate the computation of the convo-

lution at the cost of accuracy.

A.3 Width corrections

Among the resonant NNLO electroweak corrections listed in (3.12), only σconv
IS and σΓ

are not already available in version 1 of QQbar threshold. In version 2, the correction

σΓ proportional to the top-quark width is included by default in the prediction for the

cross section. Its components (cf. (3.19), (3.22)) can be controlled individually with the

new contributions options v width kinetic (eq. (3.18)), v width2 (eq. (3.17)), and width ep

(eq. (3.21)). The respective Mathematica contribution names are vwidthkinetic, vwidth2,

and widthep.

To incorporate the width corrections to the quarkonium energy levels from (3.35)

the function ttbar energy level (n, mu, {m, width}, order, opts) can now take both

the mass and width as arguments. Similarly, the ttbar residue function can

now take both arguments. In this way, this function includes the width correc-

tions to the wave functions from (3.37). The corresponding Mathematica functions

TTbarEnergyLevel and TTbarResidue are similarly extended. Finally, the toponium

width including the corrections in (3.36) can be computed with the new function

ttbar width(n, mu, {m, width}, order, opts) (TTbarWidth in Mathematica).16

A.4 Note on backwards compatibility

Disabling the new corrections in version 2 via the contributions option will produce results

that are similar, but not identical to version 1 of the code. There are two causes for the

difference.

16This new function should not be confused with the older top width function, which calculates the width

of the top quark itself as opposed to the width of a toponium bound state.
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First, as detailed in sections 3.1.3 and 4.1, the calculational scheme for the NNLO

electroweak corrections to the resonant cross section has been changed. Consequently, pre-

dictions for the cross section at or beyond NNLO that include electroweak corrections will

differ between the two versions, even if all new corrections are disabled. The numerical

differences are typically less than 1%, but can amount to almost 10% for a small renormal-

ization scale and far below the threshold, where the cross section is already very small and

the (new and old) NNLO electroweak corrections are sizeable.

Second, in contrast to the original code, version 2 now captures the full dependence

on the scale µw. The numerical effect of this change is of the order of a few per mille for

low energies and significantly less than one per mille in the peak region.

A.5 Calculation of the non-resonant correction

The dynamic numeric evaluation of the NNLO non-resonant corrections is computation-

ally prohibitively expensive. Hence, QQbar threshold internally uses interpolation of a

precomputed grid. For reference purposes, a copy NNLO nonresonant grid.tsv of this

internal grid is provided in the directory given by the function grid directory in C++

and the variable GridDirectory in Mathematica. The coordinates of the grids are given by

xW = m2
W /m

2
t , accounting for variations of the top-quark mass, and yw = (1−y)/(1−xW ),

which covers changes in the invariant mass cut discussed in section 2.3. The remaining

two grid entries Σautomated(xW , yw) and Σmanual(xW , yw) parametrize the automated and

the manual part of the non-resonant cross section for µw = mt. To obtain their contri-

bution to the cross section, these entries have to be multiplied by a factor of αs(µr)σ0Γt.

The complete NNLO correction to the non-resonant cross section for arbitrary µw is then

given by

σNNLO
non-res = αs(µr)σ0Γt

(
Σautomated + Σmanual + Σlog log

m2
t

µ2
w

)
− δΓ1

Γ0
σNLO

non-res , (A.4)

where the coefficient of the logarithm reads

Σlog =
3NcCFmt

s

[
C

(v)
0

2
+C

(a)
0

2
+C

(v)2

0,P-wave +C
(a)2

0,P-wave +
3α(µα)mt

4πΓt
(C

(v)
0 C

(v)
Abs +C

(a)
0 C

(a)
Abs)

]
.

(A.5)

As mentioned before, the dependence on µw has to cancel exactly against the dependence

in the resonant cross section. Like in the resonant part, we therefore do not expand out the

energy dependence of the s-channel propagators in Σlog. The last term in (A.4) is required

because we have expressed the non-resonant cross section in terms of the all-order width

Γt. The NLO non-resonant part is proportional to Γt and therefore implicitly contains the

NNLO correction (δΓ1/Γ0)σNLO
non-res, where δΓ1 is the NLO QCD correction to the top-quark

width. The same contribution appears in the NNLO calculation of the non-resonant part

and we must include the last term in (A.4) to subtract this double counting.

Note that highly unphysical top-quark masses, i.e. xW < 0.15 or xW > 0.3 and ex-

tremely tight invariant mass cuts yw < 0.01 are not supported. Furthermore, the default

values are assumed for the remaining Standard Model parameters, such as the values of

mW and mZ .
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Our code for producing the NNLO non-resonant grid depends on a number of soft-

ware packages, including MadGraph5 aMC@NLO [41], FastJet [77], and Cuba [78]. In or-

der to facilitate reproducing our results without having to install all dependencies, we

provide an image that can be executed using the Docker virtualisation software. Af-

ter installing Docker and downloading the image nnlo nonres grid entry.tar.gz from

https://www.hepforge.org/downloads/qqbarthreshold/, it can be imported with

docker load − i n n l o n o n r e s g r i d e n t r y . ta r . gz

and run with

docker run − i t amaier / n n l o n o n r e s g r i d e n t r y <xw> <yw>

with xw and yw replaced by the respective values for the parameters introduced above.

The last line of the output corresponds to a grid entry in the same format as in the

reference grid.

For convenience we provide a Mathematica interface to the calculation of the NNLO

non-resonant grid entries. After importing the Docker image as described above and load-

ing the QQbarGridCalc Mathematica package distributed with QQbar threshold, a grid

entry can be computed with

QQbarCalcNNLONonresonantGridEntry [ xw , yw , Verbose −> True ]

which returns a list {Σautomated,Σmanual}. Setting the Verbose option to False will sup-

press intermediate output.

Especially for large values yw ∼ 1 the calculation of the automated contribution can

fail, in which case a slight change in the input parameters may help. In practice, this is

not a severe problem as the automated contribution becomes essentially constant in this

region. The precision of the automated calculation is not very high, and the values obtained

can easily deviate from the ones in the reference grid by around 10%. Since the NNLO

non-resonant contribution itself is not very large and typically dominated by the manual

and logarithmic contributions, this translates to an error of at most one per mille in the

final cross section. One way to reduce this error further would be to calculate the grid

entries several times and average over the results.

In principle it is possible to compute an entirely new grid with the Docker container.

In practice it is computationally much more efficient to calculate Σautomated in the absence

of an invariant mass cut, i.e. for yw = 1, and derive the entries for all other values of yw
exploiting complementary cuts as discussed in section 2.3. The entry for some yw with

0 < yw < 1 is then given by Σautomated = Σautomated

∣∣
yw=1

− Σautomated, where the phase

space integral in Σautomated is restricted to the complementary region 0 ≤ t ≤ 1−(1−xW )×
yw. In this way, the numerically problematic endpoint region t→ 1 is only computed once

for each value of xW .
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B Implementation of the subtractions in MadGraph

We briefly describe the implementation of the subtractions of the diagram h1 in figure 1

and all the diagrams in figures 2 and 3 in MadGraph5 aMC@NLO 2.5.0.beta2. The MG5 aMC

code for the computation of the process e+e− → tb̄W− at NLO in QCD is created in the

directory TBWsubtractions by entering the commands

MG5 aMC>generate e+ e− > t b˜ w− [QCD]

MG5 aMC>output TBWsubtractions

in the MadGraph5 prompt. First, we subtract the diagram h1 from the code in the di-

rectory ∼/SubProcesses/P0 epem wmtbx/.17 To this end, we identify the corresponding

diagram numbers in MadGraph as 3 and 4 using born.ps. The subtraction is achieved

by removing the terms proportional to AMP(I)∗DCONJG(AMP(J)) with I ,J= 3, 4 in the

squared matrix element. This affects the function BORN in born.f and BORN HEL in

born hel.f. We note that one should avoid first adding and then subtracting the terms

to avoid numerical instabilities since these contributions are divergent at threshold.

To subtract the real corrections gi in figure 2 we remove the respective terms in the

squared real amplitude given by the function MATRIX 1 in matrix 1.f where the corre-

sponding set of I ,J values can be determined from matrix 1.ps. To maintain separate IR

finiteness of the real and virtual contributions we also have to edit the FKS subtraction

terms in the files b sf 001.f, b sf 002.f, and b sf 003.f accordingly. This is done by

removing the terms containing the product of the tree-level amplitudes 3 and 4 in the

functions B SF 00i.

In the folder ∼/SubProcesses/P0 epem wmtbx/V0 epem wmtbx for the virtual correc-

tions we first apply the usual subtractions for the squared tree-level amplitude to the

function MATRIX in born matrix.f. The interference of a given one-loop diagram

with the tree-level diagrams is evaluated by the function CREATE LOOP COEFS in

polynomial.f. We create a copy called CREATE LOOP COEFS h1bcd and which is

modified by removing the interference with the tree-level diagrams 3 and 4. This al-

lows us to remove the diagrams h1b, h1c, h1d and hia with i = 1, . . . , 4 by modifying the

calls to CREATE LOOP COEFS in coef construction 1.f for the loop diagrams corre-

sponding to the left-hand sides of the cuts. We either add the suffix h1bcd or comment

out the calls. Again the relevant diagram numbers in MadGraph can be identified from

the graphical representation loop matrix.ps. The same changes are applied to the mul-

tiple precision version of the virtual corrections given in mp compute loop coefs.f and

mp coef construction 1.f.

Last but not least one needs to modify the counterterms given in loop matrix.f. The

identification of the Madgraph IDs of the counterterm diagrams is more complicated since

they are not drawn but must be inferred from the code. The counterterm amplitudes

AMPL(K,I), where the first index K= 1, 2, 3 denotes the finite part, the 1/ε pole and

the 1/ε2 pole, are defined in helas calls ampb 1.f and helas calls uvct 1.f. The

17Here and in the following ∼/ refers to the code directory.
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first file contains R2-terms and mass renormalization counterterms which are attributed

to the loop diagrams in the same order in which they appear in loop matrix.ps. The

second file contains the multiplicative wave function renormalization counterterms for the

tree-level diagram. To subtract the diagrams h1e, h1f , h1g and the R2 contributions of

the remaining diagrams in the squared contribution we remove the terms proportional to

AMPL(K,I)∗DCONJG(AMP(J)) with I= 11, 12, 16–23, 28–31 and J= 3, 4 in the function

SLOOPMATRIX in loop matrix.f.

In addition we can implement the minimal subtraction of the UV divergences in hia
with i = 2, . . . , 4 by modifying the interference of the divergent part of the wave function

renormalization of the tree-level diagrams 3 and 4 with the other tree-level diagrams. Ex-

plicitly, we multiply AMPL(2,I) with I= 29, 31 in the subroutine HELAS CALLS UVCT 1

in helas calls uvct 1.f with a factor 2/3. As discussed in section 5.1 the R2-terms and

finite parts of the wave function renormalization contributions for the interference contribu-

tion are not modified. Alternatively, one can simply deactivate the check for UV finiteness

which yields the same results.

Following the discussion in section 5.1 we have to deactivate an internal MadGraph

consistency check for the positivity of the squared real amplitude to make the modified

code run without producing error messages. This is done by removing the code block

i f ( wgt . l t . 0 . d0 ) then

. . .

endif

in ∼/SubProcesses/fks singular.f. Older MadGraph versions also require modifications

in the file ∼/SubProcesses/P0 epem wmtbx/BinothLHA.f to allow for negative values of

the squared Born amplitude.

Our modified version of the MadGraph code is shipped with the grid generation routines

in the new version of QQbar Threshold. We have checked our procedure by applying similar

modifications to the process e+e− → t̄bW+ generated with the older MadGraph version

2.4.3. Furthermore, we have verified that an analogous set of changes correctly removes

the Z-boson exchange contribution to the process e+e− → tt̄ at NLO by comparing the

results to the ones obtained by excluding the Z-boson exchange already in the process

generation.

C Further details on the comparison to [31]

We extend in this appendix the discussion about the discrepancy with the result for the

cross section at leading order in the ρ1/2 expansion of [31] and its connection to diagram

h1b. First we explain why the cancellation of finite-width and endpoint divergences requires

a non-vanishing contribution from diagram h1b at leading order. A similar argument was

already put forward in [27, 30]. Then we show that the leading-order term in h1b comes from

a loop-momentum region which is not among those considered to construct the unstable

top EFT formulated in [31].
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p p

h

p p

h

= 1

Figure 19. Three-loop cut diagrams generating the NNLO resonant corrections related to the

top-quark instability. The top anti-top loops are potential, whereas the bW top-quark self-energy is

hard. The symmetric cut diagrams are not displayed. In the second line we display the terms that

yield σ
C

(k)
Abs,Zt

, and the dots stand for other resonant contributions at NNLO and higher orders.

The NNLO resonant corrections related to h1a and h1b are given by the diagrams

displayed in figure 19, where the loop-momenta in the top anti-top loops are expanded

according to the potential (p) scaling, while the loop momentum in the bW loop is hard

(h). It should be understood that in the diagram with the self-energy insertion in the

propagator one has to consider only the NNLO piece (the cut self-energy in the on-shell

limit gives the top-quark width, which is a LO contribution since p2 − m2
t ∼ Γ in the

potential region; such terms are already accounted for by the replacement E → E + iΓ

in the non-relativistic propagator). The diagram with the cut self-energy contributes to

σΓ (3.22) and σ
C

(k)
Abs,Zt

(3.44), once the symmetric diagrams are considered. In particular,

the latter arises from field renormalization due the absorptive part of the electroweak

one-loop self-energy. We have isolated that contribution in the second line of figure 19,

and split it such that one half of it can be attributed to field renormalization of the top

quark leaving the production vertex, and the other half to the renormalization of the

top-quark field entering the tt̄g vertex. The latter contribution is exactly cancelled by

the electroweak correction to the Coulomb potential (third diagram in the second line

of figure 19), because upon expanding out the external (potential) momenta from the

self-energy and vertex loops, these diagrams are equivalent to the renormalized vertex in

the on-shell scheme for zero transfered momentum (see figure 5). Therefore, the resonant

counterpart of h1b is equal to minus one half of the diagram with the field renormalization of

the top quark leaving the production vertex, which is proportional to the coefficient C
(k)
Abs,Zt

written in (3.44). It can be easily checked that C
(k)
Abs,Zt

behaves as Γ0/(1−xW ) ' Γ0/ρ, and

that the contribution to the cross section σ
C

(k)
Abs,Zt

contains a αs/ε divergence from the real

part of the Green function. Therefore both resonant diagrams in the first line of figure 19

contain αs/ε × Γ0/ρ divergences, that are cancelled with endpoint divergences from the

corresponding non-resonant diagrams h1a and h1b as was shown by explicit computation
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q

Figure 20. Forward-scattering diagram whose imaginary part is related to cut diagrams h1b.

in [30]. In [31] only the non-resonant diagram analogue to h1a is considered, while it is

argued that the analogue to h1b must vanish quoting results from [54]. As already explained

in section 6.3, the results from the latter refer to the vanishing of resonant contributions

related to the top-quark instability at NLO, while the contribution under discussion here

is of NNLO.

The dominant terms in the ρ expansion can also be obtained upon application of the

method of regions [37, 38]. Let us consider the forward scattering diagram in figure 20,

whose imaginary part corresponds to the sum of cut diagrams h1b and g5 (plus left-right

symmetric ones), since no other cuts are kinematically possible. The authors of [31] discuss

the contributions from the regions that are obtained by replacing v → ρ1/2 in the hard,

soft, potential and ultrasoft region. However, for the case of the diagram in figure 20,

which is related to h1b discussed above, it can be shown that the leading order contribution

comes from an additional region with parametrically smaller virtuality or order ρ2m2
t , that

was not considered in [31]. With the momentum assignment of figure 20, it corresponds to

k0
i ∼ mtρ

2, ki ∼ mtρ and l ∼ mtρ. We obtain for the relevant scalar integrals in this region:

I[η] =

∫
ddk1

iπd/2

∫
ddk2

iπd/2

∫
ddl

iπd/2
1

[2mtk0
1 − k2

1][−2mtk0
1 − k2

1][2mtk0
2 − k2

2][−2mtk0
2 − k2

2]

× 1

[2mtl0 + 2ρm2
t ][(l

0)2 − (l− k1)2][(l0)2 − (l− k2)2][−(k1 − k2)2]η

= (−1)η
π(2ρ)1−2η−6ε

2m2+2η+6ε
t

e6iπε Γ
(

1
2 + ε

)
Γ
(

1
2 − ε

)
Γ (η + 2ε)2 Γ (1− η − 2ε)

Γ (2− 2ε) Γ (2η + 4ε)

×Γ (1− η − 3ε) Γ (−1 + 2η + 6ε) . (C.1)

The relevant cases are η = 0, 1,

I[0] = [real]− iπ3ρ

m2
t

(4eγEρ2m2
t )
−3ε

[
1

ε
+ 8 + . . .

]
, (C.2)

I[1] = [real]− iπ3

4ρm4
t

(4eγEρ2m2
t )
−3ε

[
1

ε
− 2 + . . .

]
. (C.3)

Both scalar integrals produce a contribution of order Γ0 × αs/ρ to the cross section18 and

18A factor α/s2
w × ρ2 ∝ Γ0/mt, where the ρ2 term arises from the bottom propagators, appears in the
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the imaginary part contains a 1/ε divergence, which are the properties that are needed to

cancel the finite-width divergence at the leading order in the ρ expansion discussed above.

We also note that a non-vanishing contribution from the region k0
i ∼ mtρ

2, ki ∼ mtρ and

l ∼ mtρ, is consistent with the findings of [30], which identified that the leading-order term

in ρ of diagram h1b originates from the region in the t-integration (1− t) ∼ (1−xW )2 ' ρ2,

where (1− t) ∼ k2
2/m

2
t adopting the momentum assignment of figure 20.

For completeness, we finally provide results for the individual contributions to the

cross section from diagrams h1a and h1b and their resonant counterparts at the leading

order in ρ:

σ
O(αs/ρ)
h1a,res = N

[
−1

ε
− 7

3
+ 2 ln 2− ln

(
µ2
w

m2
tρ

2

)
− 2 ln

(
µ2
w

4mt|E + iΓ|

)]
, (C.4)

σ
O(αs/ρ)
h1a,non-res = N

[
1

ε
+

7

3
− 2 ln 2 + 2 ln

(
µ2
w

m2
tρ

2

)
+ ln

(
µ2
w

m2
t

)]
, (C.5)

σ
O(αs/ρ)
h1b,res = −1

2
σ
O(αs/ρ)
h1a,res , (C.6)

σ
O(αs/ρ)
h1b,non-res = N

[
− 1

2ε
− 7

6
+ 3 ln 2− 3

2
ln

(
µ2
w

m2
tρ

2

)]
, (C.7)

with

N = σ0
24πNc

s

[
C

(v)2

0 + C
(a)2

0

] mtΓ0

ρ

αsCF
4π

. (C.8)

The sum of the non-resonant contributions σ
O(αs/ρ)
h1a,non-res and σ

O(αs/ρ)
h1b,non-res agrees with the result

given in [30] if one takes into account that the leptonic tensor was treated in d dimen-

sions there, which introduces a factor (1 − ε) compared to the d = 4 result used in the

present work.19

Open Access. This article is distributed under the terms of the Creative Commons
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