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Abstract
For the development of a mathematical theory which can be used to rigorously 
investigate physical properties of quasicrystals, it is necessary to understand 
regularity of patterns in special classes of aperiodic point sets in Euclidean 
space. In one dimension, prototypical mathematical models for quasicrystals 
are provided by Sturmian sequences and by point sets generated by substitution 
rules. Regularity properties of such sets are well understood, thanks mostly 
to well known results by Morse and Hedlund, and physicists have used this 
understanding to study one dimensional random Schrödinger operators and 
lattice gas models. A key fact which plays an important role in these problems 
is the existence of a subadditive ergodic theorem, which is guaranteed when 
the corresponding point set is linearly repetitive.

In this paper we extend the one-dimensional model to cut and project sets, 
which generalize Sturmian sequences in higher dimensions, and which are 
frequently used in mathematical and physical literature as models for higher 
dimensional quasicrystals. By using a combination of algebraic, geometric, 
and dynamical techniques, together with input from higher dimensional 
Diophantine approximation, we give a complete characterization of all 
linearly repetitive cut and project sets with cubical windows. We also prove 

A Haynes et al

A characterization of linearly repetitive cut and project sets

Printed in the UK

515

NONLE5

© 2018 IOP Publishing Ltd & London Mathematical Society

31

Nonlinearity

NON

10.1088/1361-6544/aa9528

Paper

2

515

539

Nonlinearity

London Mathematical Society

IOP

Original content from this work may be used under the terms of the Creative 
Commons Attribution 3.0 licence. Any further distribution of this work must maintain 
attribution to the author(s) and the title of the work, journal citation and DOI.

* Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges 
the support of the Osk. Huttunen foundation.

2018

1361-6544

1361-6544/18/020515+25$33.00  © 2018 IOP Publishing Ltd & London Mathematical Society  Printed in the UK

Nonlinearity 31 (2018) 515–539 https://doi.org/10.1088/1361-6544/aa9528

mailto:haynes@math.uh.edu
mailto:henna.koivusalo@univie.ac.at
mailto:james.j.walton@durham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/aa9528&domain=pdf&date_stamp=2018-01-10
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1361-6544/aa9528


516

that these are precisely the collection of such sets which satisfy subadditive 
ergodic theorems. The results are explicit enough to allow us to apply them 
to known classical models, and to construct linearly repetitive cut and project 
sets in all pairs of dimensions and codimensions in which they exist.

Keywords: linear repetitivity, mathematical quasicrystals, cech cohomology 
of tiling spaces, cut and project sets
Mathematics Subject Classification numbers: Primary 52C23; Secondary 
37A45

(Some figures may appear in colour only in the online journal)

1.  Introduction

A Delone set Y ⊆ Rd is linearly repetitive (LR) if there exists a constant C > 0 such that, for 
any r � 1, every patch of size r in Y occurs in every ball of diameter Cr in Rd. This concept 
was studied by F Durand (for the special case of subshifts) in [16, 17], and by Lagarias and 
Pleasants in [23], and it has since been explored by many authors (e.g. [1, 2, 10, 11, 14, 15]). 
It was shown in [23] that linear repetitivity guarantees the existence of strict uniform patch fre-
quencies, equivalently the associated dynamical system on the hull of the point set is strictly 
ergodic (minimal and uniquely ergodic). Having strict uniform patch frequencies means that 
every patch occurs across the Delone set with some well-defined positive frequency. The fact 
that the Dirac comb of a Delone set in Rd is a translation bounded measure, together with the 
existence of strict uniform patch frequencies, implies the existence of a unique autocorrela-
tion measure which is also a translation bounded measure (and hence a tempered distribution). 
This in turn implies that the associated diffraction measure (the Fourier transform of the auto-
correlation) is a positive, translation bounded measure. For this reason, aperiodic LR Delone 
sets are a common source of examples of mathematical models for quasicrystals, and they are 
sometimes referred to as ‘perfectly ordered quasicrystals’ [23].

In the direction of potential physical applications, several authors have studied the random 
Schrödinger operator and lattice gas models on one dimensional quasicrystals, as modeled 
either by LR Sturmian sequences or point sets constructed using primitive substitution rules 
[7, 21, 32]. For both of these applications it is necessary to establish the validity of a uniform 
subadditive ergodic theorem. In the case of point sets constructed using primitive substitu-
tions (in fact, in any dimension), such theorems were established by Geerse and Hof in [18]. 
For LR Sturmian sequences they were established by Lenz in [25]. The results of our paper 
are relevant in this context because of the fact, proved by Damanik and Lenz in [15], that 
linear repetitivity implies the existence of a uniform subadditive ergodic theorem. In the one-
dimensional setting, it was shown by Lenz [24] that validity of a subadditive ergodic theorem 
for a minimal subshift is equivalent to ‘uniform positivity of weights’ (PQ) (defined here in 
section 2.5) which, through the results of [11], is easily seen for subshifts to be equivalent to 
LR. In fact, one part of our main theorem below (theorem 1.1) shows that, for a natural class 
of cut and project sets which are higher dimensional generalizations Sturmian sequences, LR 
is equivalent to the existence of a subadditive ergodic theorem. The characterization which we 
provide in theorem 1.1 thus opens the door for the study of physical properties of a rich col-
lection of higher dimensional point sets, a project which is the focus of our current research 
on this topic.
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In [23, problem 8.3], motivated by many of the connections which we have described, 
Lagarias and Pleasants asked for a characterization of LR cut and project sets. For 2 to 1 cut 
and project sets with appropriately chosen windows, such a characterization can be obtained 
using classical results of Morse and Hedlund [26, 27]. Morse and Hedlund showed that there 
is a natural bijective correspondence between repetitive Sturmian words and return times, to 
specially chosen intervals, of orbits of irrational rotations on R/Z. The latter are precisely 
given by 2 to 1 cut and project sets. Under this correspondence, a Sturmian word will be LR 
if and only if the irrational rotation which describes it is determined by a badly approxima-
ble real number (i.e. a real number whose continued fraction partial quotients are uniformly 
bounded). The proof of this fact relies on ideas from Diophantine approximation that are 
closely connected to the theory of continued fractions. In fact the theory is so robust that, in 
the special case of Sturmian sequences, one can even derive an exact formula for the repetitiv-
ity function (see [3, theorem 11] and [27, p 2]).

For higher dimensional cut and project sets we immediately encounter serious difficulties 
with generalizing the above mentioned results. One problem is that the underlying dynami-
cal systems which are used for pattern recognition in these sets are, in general, higher rank 
actions on higher dimensional tori which are more complicated to understand. Another is that 
there is no known algorithm which can do for higher dimensional cut and project sets what 
the simple continued fraction algorithm does for Sturmian sequences. Nevertheless, by using 
a combination of algebraic, geometric, and dynamical tools, together with input from the 
higher dimensional theory of Diophantine approximation, we are able to obtain the following 
theorem, which can be seen as a generalization of the classification of Morse and Hedlund, to 
arbitrary dimensions.

Theorem 1.1.  Let Y be any k to d cubical cut and project set, whose physical space is 
determined by a collection {Li}k−d

i=1  of linear forms on d variables. Then the following are 
equivalent:

	(1)	Y is linearly repetitive; 
	(2)	Y satisfies a subadditive ergodic theorem; 
	(3)	{Li}k−d

i=1  satisfies both (LR1) and (LR2):

	(LR1) �the sum of the ranks of the kernels of the maps Li : Zd → R/Z defined by 
Li(n) = Li(n) mod 1 is equal to d(k − d − 1); 

	(LR2) Each Li is relatively badly approximable.

In the statement of this theorem, a cubical cut and project set is one which is aperiodic, 
regular and totally irrational, and which is defined using a strip in Rk whose intersection with 
{0}d × Rk−d is the unit cube {0}d × [0, 1]k−d . A collection of k − d  linear forms {Li}k−d

i=1  in d 
variables defines a subspace of Rk, called the physical space, which along with the choice of 
window naturally determines a collection of associated cut and project sets. Precise definitions 
of these terms are given in section 2.2.

After proving theorem 1.1 we will explore the relationship between cubical cut and project 
sets and canonical cut and project sets (formed with a window which is the projection of the 
unit cube in Rk to the internal space). It will turn out that in many cases which are commonly 
cited in the literature, the results we state for cubical cut and project sets also apply to canoni-
cal ones. However, what is possibly more interesting is that there are examples of LR cubical 
cut and project sets which are no longer LR when their windows are replaced by canonical 
ones.

A Haynes et alNonlinearity 31 (2018) 515
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We give examples later in the paper which seem to indicate that there are two potential 
sources for this type of behavior. The first is geometric, and arises in the situation when at 
least two of the linear forms defining the physical space have co-kernels with different ranks. 
The second (which can occur even in the absence of the geometric situation just described) is 
Diophantine, and is related to the fact that any number can be written as a product of two badly 
approximable numbers (this follows from continued fraction Cantor set arguments, see [19]). 
The complete statements of our results about canonical cut and project sets can be found in 
section 4, but we summarize what has just been mentioned in the following theorem.

Theorem 1.2.  If Y is a cubical cut and project set which is not LR, then the cut and project 
set formed from the same data as Y, but with the canonical window in place of the cubical one, 
is also not LR. However, the converse of this statement is not true, in general.

It should be pointed out that most of the canonical cut and project sets of specific inter-
est in the literature arise from subspaces defined by linear forms with coefficients in a fixed 
algebraic number field. In such a case the Diophantine behavior alluded to at the end of the 
paragraph before theorem 1.2 cannot occur. To illustrate this point, in section 6 we will briefly 
explain how to prove that Penrose and Ammann–Beenker tilings are LR. This in itself is not a 
new result, and in fact it is fairly obvious from descriptions of these tilings using substitution 
rules. What is new is that our proof uses only their descriptions as cut and project sets.

Let us now return to discuss the content of theorem 1.1. In the statement of the theorem, 
condition (LR1) is necessary and sufficient for Y to have minimal patch complexity. For com-
parison, in [22, section 5] it was shown that minimal patch complexity is a necessary and suf-
ficient condition for the Čech cohomology (with rational coefficients) of the associated tiling 
space to be finitely generated. Many of the calculations in the first part of our proof share a 
common thread with those that arise in the calculation of the cohomology groups. This point 
of view eventually leads us to equations (3.3)–(3.6), which form the crux of our argument, 
allowing us to move directly in our proof to a position where we can apply condition (LR2). It 
should be pointed out that, without the group theoretic arguments that give us the rigid struc-
ture imposed by these equations, the proof would fall apart.

Condition (LR2) is a Diophantine condition, which places a strong restriction on how well 
the subspace defining Y can be approximated by rationals. A linear form is relatively badly 
approximable if it is badly approximable when restricted to rational subspaces complemen-
tary to its kernel. In the next section we will explain this in more detail and prove that it is 
a well-defined property. Note that in the special case when k − d = 1, condition (LR1) is 
automatically satisfied, and condition (LR2) requires the linear form defining Y to be badly 
approximable in the usual sense. This observation, together with proposition 4.2, immediately 
implies the following complete characterization of both cubical and canonical cut and project 
sets in codimension one.

Corollary 1.3.  A k to k − 1 cubical or canonical cut and project set defined by a linear form 
L is linearly repetitive if and only if L is badly approximable.

2.  Definitions and preliminary results

2.1.  Summary of notation

For sets A and B, the notation A × B denotes the Cartesian product. If A and B are subsets of 
the same Abelian group, then A + B denotes the collection of all elements of the form a + b 
with a ∈ A and b ∈ B. If A and B are any two Abelian groups then A ⊕ B denotes their direct 
sum. We write A � B to mean that A is a subgroup of B.
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For x ∈ R, {x} denotes the fractional part of x and ‖x‖ denotes the distance from x to the 
nearest integer. For x ∈ Rm, we set |x| = max{|x1|, . . . , |xm|} and ‖x‖ = max{‖x1‖, . . . , ‖xm‖}. 
We use the symbols �,� and � for the standard Vinogradov and asymptotic notation. That 
is, for real-valued functions f , g, typically defined here on N or R>0, we write f � g to mean 
that f (x) � Cg(x) for some C > 0 and sufficiently large x, f � g if g � f  and f � g if both 
f � g and f � g.

2.2.  Cut and project sets

A cut and project scheme consists of the following:

	 •	the total space Rk; 
	 •	the physical space E ⊆ Rk , a d-dimensional proper subspace of Rk; 
	 •	the internal space Fπ ⊆ Rk , a subspace complementary to E in Rk; 
	 •	the window Wπ ⊆ Fπ.

Write π for the projection from the total space onto E with respect to the decomposition 
Rk = E + Fπ. The strip is given by S = E +Wπ. For each s ∈ Rk/Zk, we define the cut and 
project set Ys ⊆ E  by

Ys = π(S ∩ (Zk + s)).

In this situation we refer to Ys as a k to d cut and project set.
We adopt the conventional assumption that π|Zk is injective. For y ∈ Y  we write ỹ for the 

unique point in S ∩ Zk with π(ỹ) = y. We also assume in much of what follows that E is a 
totally irrational subspace of Rk, which means that the canonical projection of E into Rk/Zk is 
dense. This assumption guarantees that the natural linear Rd action of E on Rk/Zk is uniquely 
ergodic.

For the problem of studying linear repetitivity, the s in the definition of Ys plays only a 
minor role. If we restrict our attention to points s for which Zk + s does not intersect the 
boundary of S  (these are called regular points and the corresponding sets Ys are called regular 
cut and project sets) then, as long as E is totally irrational, the sets of finite patches in Ys do 
not depend on the choice of s. In particular, the property of being LR does not depend on the 
choice of s, as long as s is taken to be a regular point. On the other hand, for points s which 
are not regular, the cut and project set Ys may contain ‘additional’ patches coming from points 
on the boundary, which will make it non-repetitive, and therefore not LR. For this reason, we 
will always assume that s is taken to be a regular point, and we will simplify our notation by 
writing Y instead of Ys.

As a point of reference, when allowing E to vary, we also make use of the fixed subspace 
Fρ = {0}d × Rk−d ⊆ Rk, and we define ρ : Rk → E  and ρ∗ : Rk → Fρ to be the projections 
onto E and Fρ  with respect to the decomposition Rk = E + Fρ (assuming, with little loss 
of generality, that Rk does in fact decompose in this way). Our notational use of π and ρ is 
intended to be suggestive of the fact that Fπ is the subspace which gives the projection defin-
ing Y (hence the letter π), while Fρ  is the subspace with which we reference E (hence the letter 
ρ). We write W = S ∩ Fρ, and for convenience we also refer to this set as the window defining 
Y. This slight ambiguity should not cause any confusion in the arguments below. See figure 1 
for a pictorial description of the various elements in the definition of Y.

As already mentioned, in much of this paper we will focus our attention on the situation 
where W  is taken to be a cubical window, given by

A Haynes et alNonlinearity 31 (2018) 515
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W =

{
k∑

i=d+1

tiei : 0 � ti � 1

}
.� (2.1)

In section 4 we will also consider the case when W  is taken to be a canonical window, which 
is defined to be the image under ρ∗ of the unit cube in Rk.

For any cut and project set, the collection of points x ∈ E with the property that Y + x = Y , 
forms a group, called the group of periods of Y. We say that Y is aperiodic if the group of peri-
ods is {0}. Finally, as mentioned in the introduction, we say that Y is a cubical (resp. canoni-
cal) cut and project set if it is regular, totally irrational, and aperiodic, and if W  is a cubical 
(resp. canonical) window.

Without loss of generality, by permuting the standard basis vectors if necessary, we will 
assume that E can be written as

E = {(x, L(x)) : x ∈ Rd},

where L : Rd → Rk−d  is a linear function. For each 1 � i � k − d , we define the linear form 
Li : Rd → R by

Li(x) = L(x)i =

d∑
j=1

αijxj,

and we use the points {αij} ∈ Rd(k−d) to parametrize the choice of E.
Our proof of theorem 1.1 gives an explicit correspondence between the collection of k to d 

LR cubical cut and project sets, and the Cartesian product of the following two sets:

		 (S1)	�The set of all (k − d)-tuples (L1, . . . , Lk−d), where each Li is a badly approximable 
linear form in mi � 1 variables, with the integers mi satisfying m1 + · · ·+ mk−d = d, 
and

		 (S2)	The set of all d × d integer matrices with non-zero determinant.

Figure 1.  Definition of the cut and project set. In the figure k = 2, d = 1 and s = 0.

A Haynes et alNonlinearity 31 (2018) 515
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The fact that the set (S1) is empty when d < k/2 implies that, for this range of k and d values, 
there are no LR cubical (or canonical) cut and project sets. On the other hand, for d � k/2, 
there are uncountably many, as implied by the following corollary to theorem 1.1.

Corollary 2.1.  For d < k/2, there are no LR cubical cut and project sets. For d � k/2, 
the collection of {αij} ∈ Rd(k−d) which define LR cubical cut and project sets is a set with 
Lebesgue measure 0 and Hausdorff dimension d. Furthermore, these statements also apply to 
canonical cut and project sets.

This corollary will be proved in section 5. We will also show in section 6 how to exhibit 
specific examples of LR cut and project sets, for any choice of d � k/2.

2.3.  Results from diophantine approximation

Let L : Rd → Rk−d  be a linear map given by a matrix with entries {αij} ∈ Rd(k−d). For any 
N ∈ N, there exists an n ∈ Zd with |n| � N  and

‖L(n)‖ �
1

Nd/(k−d) .� (2.2)

This is a multidimensional analogue of Dirichlet’s theorem, which follows from a straightfor-
ward application of the pigeonhole principle. We are interested in having an inhomogeneous 
version of this result, requiring the values taken by ‖L(n)− γ‖ to be small, for all choices of 
γ ∈ Rk−d . For this we will use the following ‘transference theorem,’ a proof of which can be 
found in [13, chapter V, section 4].

Theorem 2.2 [13, chapter V, theorem VIII].  Given a linear map L as above, the following 
statements are equivalent:

	(T1)	 There exists a constant C1 > 0 such that

‖L(n)‖ �
C1

|n|d/(k−d) ,

		 for all n ∈ Zd \ {0}.
	(T2)	 There exists a constant C2 > 0 such that, for all γ ∈ Rk−d, the inequalities

‖L(n)− γ‖ �
C2

Nd/(k−d) , |n| � N,

		 are soluble, for all N � 1, with n ∈ Zd.

Next, with a view towards applying this theorem, let Bd,k−d  denote the collection of num-
bers α ∈ Rd(k−d) with the property that there exists a constant C = C(α) > 0 such that, for all 
nonzero integer vectors n ∈ Zd,

‖L(n)‖ �
C

|n|d/(k−d) .

The Khintchine–Groshev theorem (see [8] for a detailed statement and proof) implies that the 
Lebesgue measure of Bd,k−d  is 0. However in terms of Hausdorff dimension these sets are 
large. It is a classical result of Jarnik that dimB1,1 = 1, and this was extended by Wolfgang 
Schmidt, who showed in [31, theorem 2] that, for any choices of 1 � d < k,

dimBd,k−d = d(k − d).

A Haynes et alNonlinearity 31 (2018) 515
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Finally, we introduce the definition of relatively badly approximable linear forms. As men-
tioned in the introduction, these are linear forms that are badly approximable when restricted 
to rational subspaces complementary to their kernels. To be precise, suppose that L : Rd → R 
is a single linear form in d variables, and define L : Zd → R/Z by L(n) = L(n) mod 1. Let 
S � Zd be the kernel of L, and write r = rk(S) and m = d − r . We say that L is relatively 
badly approximable if there exists a constant C > 0 and a group Λ � Zd of rank m, with 
Λ ∩ S = {0} and

‖L(λ)‖ �
C

|λ|m
for all λ ∈ Λ \ {0}.

Now suppose that L is relatively badly approximable and let Λ be a group satisfying the condi-
tion in the definition. Let F ⊆ Zd  be a complete set of coset representatives for Zd/(Λ + S). 
We have the following lemma.

Lemma 2.3.  Suppose that L is relatively badly approximable, with Λ and F as above. Then 
there exists a constant C′ > 0 such that, for any λ ∈ Λ and f ∈ F, with L(λ+ f ) �= 0, we 
have that

‖L(λ+ f )‖ �
C′

1 + |λ|m
.

Proof.  Any element of F has finite order in Zd/(Λ + S). Therefore, for each f ∈ F there is 
a positive integer uf, and elements λf ∈ Λ and sf ∈ S, for which

f =
λf + sf

uf
.

If L(λ+ f ) �= 0 then either λ+ f = sf /uf �= 0, or λ+ u−1
f λf �= 0. The first case only pertains 

to finitely many possibilities, and in the second case we have that

‖L(λ+ f )‖ � u−1
f · ‖L(ufλ+ λf + sf )‖

= u−1
f · ‖L(ufλ+ λf )‖

�
C

uf |ufλ+ λf |m
.

Therefore, replacing C by an appropriate constant C′ > 0, and using the fact that F is finite, 
finishes the proof.� □ 

We can also deduce that if L is relatively badly approximable, then the group Λ in the 
definition may be replaced by any group Λ′ � Zd  which is complementary to S. This is the 
content of the following lemma.

Lemma 2.4.  Suppose that L is relatively badly approximable. Then, for any group Λ′ � Zd  
of rank m, with Λ′ ∩ S = {0}, there exists a constant C′ > 0 such that

‖L(λ′)‖ �
C′

|λ′|m
for all λ′ ∈ Λ′ \ {0}.

Proof.  Let Λ be the group in the definition of relatively badly approximable. Choose a basis 
v1, . . . , vm for Λ′ , and for each 1 � j � m write

A Haynes et alNonlinearity 31 (2018) 515
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vj =
λj + sj

uj
,

with λj ∈ Λ, sj ∈ S, and uj ∈ N.
Each λ′ ∈ Λ′ can be written in the form

λ′ =

m∑
j=1

ajvj,

with integers a1, . . . , am, and we have that

‖L (λ′)‖ � (u1 · · · um)
−1

∥∥∥∥∥∥
L




m∑
j=1

bjλj



∥∥∥∥∥∥

,

with bj = aju1 · · · um/uj ∈ Z for each j. If the integers aj are not identically 0 then, since 
Λ′ ∩ S = {0}, it follows that

λ :=
m∑

j=1

bjλj �= 0.

Using the relatively badly approximable hypothesis gives that

‖L(λ′)‖ �
C

u1 · · · um · |λ|m
.

Finally since |λ| � |λ′|, we have that

C
u1 · · · um · |λ|m

�
C′

|λ′|m
,

for some constant C′ > 0.� □ 

2.4.  Patterns in cut and project sets

Let Fρ, ρ, ρ∗, and ỹ be defined as in section 2.2. Assume that we are given a bounded convex 
set Ω ⊆ E which contains a neighborhood of 0 in E. Then, for each r � 0, define the patch of 
size r at y, by

P(y, r) := {y′ ∈ Y : ρ(ỹ′ − ỹ) ∈ rΩ}.

In other words, P(y, r) consists of the projections (under π) to Y of all points of S  whose first 
d coordinates are in a certain neighborhood of the first d coordinates of ỹ.

We remark that there are several different definitions of ‘patches of size r’ in the litera-
ture. For example, from the point of view of Y being contained in E, it is more natural to 
define a patch of size r at y to be the collection of points of Y which lie within distance r 
of y. In [20] we considered this definition of patch (what we called there type 1 patches), 
together with the definition that we have given above (type 2 patches). In fact, the two defi-
nitions of patches agree except possibly on a constant neighborhood of their boundaries  

A Haynes et alNonlinearity 31 (2018) 515
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(see [20, equation (4.1)]). Therefore if Y is LR for one definition of ‘patch of size r’, it will be 
LR for the other, and similarly for other reasonable definitions.

For y1, y2 ∈ Y , we say that P(y1, r) and P(y2, r) are equivalent if

P(y1, r) = P(y2, r) + y1 − y2.

This defines an equivalence relation on the collection of patches of size r. We denote the 
equivalence class of the patch of size r at y by P(y, r).

As indicated in the introduction, a cut and project set Y is linearly repetitive (LR) if there 
is a C > 0 such that, for every r > 0, every ball of size Cr in E contains a representative from 
every equivalence class of patches of size r. There are two technical points which will ease our 
discussion below. First of all, since the points of Y are relatively dense, in the above definition 
we are free to restrict our attention, without loss of generality (by increasing C if necessary), 
to balls of size Cr centered at points of Y. Secondly, the property of being LR does not depend 
on the choice of Ω used to define the patches. This follows from the fact that, if Ω′ ⊆ E is any 
other bounded convex set which contains a neighborhood of 0, then there are dilations of Ω′ 
which contain, and which are contained in, Ω.

Let W = S ∩ Fρ. There is a natural action of Zk on Fρ , given by

n · w = ρ∗(n) + w = w + (0, n2 − L(n1)),

for n = (n1, n2) ∈ Zk = Zd × Zk−d and w ∈ Fρ. For each r � 0 we define the r-singular 
points of W  by

sing(r) := W ∩
(
(−ρ−1(rΩ) ∩ Zk) · ∂W

)
,

and the r-regular points by

reg(r) := W \ sing(r).

The following result follows from the proof of [20, lemma 3.2] (see also [22]).

Lemma 2.5.  Suppose that W  is a parallelotope generated by integer vectors. For every 
equivalence class P = P(y, r), there is a unique connected component U of reg(r) with the 
property that, for any y′ ∈ Y ,

P(y′, r) = P(y, r) if and only if ρ∗(ỹ′) ∈ U.

For each equivalence class P = P(y, r) we define ξP , the frequency of P , by

ξP := lim
R→∞

#{y′ ∈ Y : |y′| � R, P(y′, r) = P(y, r)}
#{y′ ∈ Y : |y′| � R}

.

It is not difficult to show that, in our setup, the limit defining ξP  always exists. Lemma 2.5, 
combined with the Birkhoff Ergodic theorem, proves that, for totally irrational E, the frequen-
cies of equivalence classes of patches are given by the volumes of connected components of 
reg(r).

Lemma 2.6.  If E is totally irrational then for any r > 0 and any equivalence class 
P = P(y, r), the frequency ξP  is equal to the volume of the connected component U in the 
statement of lemma 2.5.

This lemma is the full content of [20, lemma 3.2] (this idea is also implicit in [9]).

A Haynes et alNonlinearity 31 (2018) 515



525

2.5.  Subadditive ergodic theorems and (PQ)

As discussed in the introduction, it is often of relevance to understand when a Delone set has 
sufficient regularity to satisfy a subadditive ergodic theorem. We shall not define this notion 
here (we refer the reader to the references in the introduction), and instead will work the con-
dition positivity of quasiweights, shown in [11] to be equivalent to validity of a subadditive 
ergodic theorem for repetitive Delone sets.

Let P  be an equivalence class of patches of size r > 0 and B be a bounded subset of E. 
Write #′

PB for the maximum number of disjoint patches of size r in B which are in the equiva-
lence class P , and define

ν′(P) = rd · lim inf
|C|→∞

#′
PC
|C|

,

where C runs over all cubes in E. We say that Y satisfies condition (PQ) if

inf
P

ν′(P) > 0,

where the infimum is taken over all equivalence classes of patches, for all r > 0.
So the condition (PQ) is essentially a condition on the densities of r-patches within the 

pattern. A condition called ‘(U)’ is introduced in [11] which ensures some regularity in the 
spacing between occurrences of patches. It is shown in [11, theorem 2], that LR is equivalent 
to the conditions (PQ) and (U) both being satisfied. One consequence of our results is that, for 
cubical cut and project sets, condition (U) can be omitted from this criteria. In other words, 
for cubical cut and project sets, condition (PQ) by itself is a necessary and sufficient condition 
for LR. Results of this type for analogous problems in symbolic dynamics were previously 
discovered by other authors (see in particular Lenz [24]), and they appear to have been antici-
pated to hold in greater generality (see [11, remark 5]).

3.  Proof of theorem 1.1

We assume that W  is given by (2.1) and we identify W  with a subset of Rk−d , in the obvious 
way. Recall that if Y is LR with respect to one convex patch shape Ω, then it is LR with respect 
to all convex patch shapes. The precise shape Ω which we will use will be specified later in the 
proof, but until then everything we say will apply to any fixed choice of such a shape.

For r > 0 let c(r) denote the number of equivalence classes of patches of size r. If Y is LR 
or satisfies (PQ) then clearly there exists a constant C > 0 such that c(r) is bounded above by 
Crd, for all r > 0. For the first part of the proof of theorem 1.1 we will show that condition 
(LR1) is necessary and sufficient for a bound of this type to hold.

For each 1 � i � k − d , let Si � Zd  denote the kernel of the map Li, and let ri be the rank 
of Si. Furthermore, for each subset I ⊆ {1, . . . , k − d} let

SI =
⋂
i∈I

Si,

and let rI be the rank of SI. For convenience, set S∅ = Zd  and r∅ = d . For any pair 
I, J ⊆ {1, . . . , k − d}, the sum set SI + SJ is a subgroup of Zd , and it therefore has rank at 
most d. On the other hand we have that

rk(SI + SJ) = rk(SI) + rk(SJ)− rk(SI ∩ SJ),

which gives the inequality
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rI + rJ � d + rI∪J .� (3.1)

As one application of this inequality we see immediately that

r1 + r2 + · · ·+ rk−d � d + r12 + r3 + · · ·+ rk−d

� 2d + r123 + r4 + · · ·+ rk−d

...

� d(k − d − 1) + r12...(k−d)

= d(k − d − 1).

�

(3.2)

The last equality here uses the assumption that Y is aperiodic.
From lemma 2.5, we know that c(r) is equal to the number of connected components of 

reg(r). Let the map C : Zd(k−d) → W  be defined by

C(n(1), . . . , n(k−d)) = ({L1(n(1))}, . . . , {Lk−d(n(k−d))}),

for n(1), . . . , n(k−d) ∈ Zd. Identify Zd  with the set Z = Zk ∩ 〈e1, . . . , ed〉R, and for each r > 0 
let Zr ⊆ Zd  be defined by

Zr = −ρ−1(rΩ) ∩ Z .

Since our window W  is a fundamental domain for the integer lattice in Fρ , there is a one to 
one correspondence between points of Y and elements of Z . This correspondence is given 
explicitly by mapping a point y ∈ Y  to the vector in Z  given by the first d coordinates of ỹ. 
Also, notice that if n ∈ Zk  and −n · 0 ∈ W , then it follows that

−n · 0 = ({L1(n1, . . . , nd)}, . . . , {Lk−d(n1, . . . , nd)}).

These observations together imply that the collection of all vertices of connected components 
of reg(r) is precisely the set C(Zk−d

r ), which in turn implies that

c(r) � |C(Zk−d
r )|.

The values of the function C define a natural Zd(k−d) action on W . Therefore we may regard 
the set C(Zd(k−d)) as a group, isomorphic to

Zd(k−d)/ker(C) ∼= Zd/S1 ⊕ · · · ⊕ Zd/Sk−d.

If (LR1) holds then we have that

rk(C(Zd(k−d))) = d(k − d)−
k−d∑
i=1

ri = d,

and from this it follows that

|C(Zk−d
r )| � rd.

On the other hand, if (LR1) does not hold then by (3.2) we have that

rk(C(Zd(k−d))) > d,

which implies that

|C(Zk−d
r )| � rd+1.
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We conclude that c(r) � rd if and only if condition (LR1) holds, so (LR1) is a necessary 
condition for LR or (PQ).

Next we assume that (LR1) holds and we prove that, under this assumption, condition 
(LR2) is necessary and sufficient in order for Y to be LR. First of all, suppose that I and J were 
disjoint, nonempty subsets of {1, . . . , k − d} for which

rI + rJ < d + rI∪J .

Then, by the same argument used in (3.2), we would have that

k−d∑
i=1

ri � d(k − d − 3) + r(I∪J)c + rI + rJ < d(k − d − 1).

This clearly contradicts (LR1). Therefore if (LR1) holds then, by (3.1), we have that

rI + rJ = d + rI∪J ,

whenever I and J are disjoint and nonempty.
For each 1 � i � k − d , define Ji = {1, . . . , k − d} \ {i}, and let Λi = SJi . Write mi = rJi 

for the rank of Λi. Then, by what was established in the previous paragraph, we have that

mi + ri = d.

If n is any nonzero vector in Λi, then n is in Sj for all j �= i. Since Y is aperiodic, this means 
that n �∈ Si , which gives that

rk(Λi + Si) = mi + ri − rk(Λi ∩ Si) = d.

Furthermore, for any j �= i, the fact that Λj ⊆ Si implies that Λj ∩ Λi = {0}, so

rk(Λ1 + · · ·+ Λk−d) =

k−d∑
i=1

rk(Λi) =

k−d∑
i=1

(d − ri) = d.

For each i, let Fi ⊆ Zd  be a complete set of coset representatives for Zd/(Λi + Si). Also, write 
Λ = Λ1 + · · ·+ Λk−d , and let F ⊆ Zd  be a complete set of representatives for Zd/Λ. What we 
have shown so far implies that all of the sets F1, . . . , Fk−d, and F are finite.

Again thinking of Zd  as being identified with the set Z , let

Zr,Λ = Zr ∩ Λ, Zr,Λi = Zr ∩ Λi, and Zr,Si = Zr ∩ Si.

For each i, choose a basis {v(i)
j }mi

j=1 for Λi, and define

Ω′
i =




mi∑
j=1

tiv
(i)
j : −1/2 � ti < 1/2


 ,

and

Ω′ = Ω′
1 + · · ·+Ω′

k−d,

so that Ω′ is a fundamental domain for Rd/Λ. We now specify Ω to be the subset of points in 
E whose first d coordinates lie in Ω′. In other words,

Ω = E ∩ ρ−1(Ω′).

Notice that every n ∈ Λ has a unique representation of the form
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n =

k−d∑
i=1

mi∑
j=1

aijv
(i)
j , aij ∈ Z.

Using this representation, we have that

L(n) = C((n(i))mi
i=1),

where, for each i, the vector n(i) ∈ Zd  is given by

n(i) =

mi∑
j=1

aijv
(i)
j .

This gives a one to one correspondence between elements of L(Λ) and elements of the set

C(Λ1 × · · · × Λk−d) = L1(Λ1)× · · · × Lk−d(Λk−d).

We will combine this observation with the facts that

L(Zd) = L(Λ + F)

and

C(Zd(k−d)) = C((Λ1 + F1)× · · · × (Λk−d + Fk−d)),

in order to study the spacings between points of the sets L(Zr) and C(Zk−d
r ).

First of all, it is clear that

L(Zr) ⊇ L1(Zr,Λ1)× · · · × Lk−d(Zr,Λk−d),� (3.3)

and that

C(Zk−d
r ) ⊇ L1(Zr,Λ1)× · · · × Lk−d(Zr,Λk−d).� (3.4)

Since all of the sets F1, . . . , Fk−d, and F are finite, there is a constant κ > 0 with the prop-
erty that, for all sufficiently large r,

Zr ⊆ Zr+κ,Λ + F, and
Zr ⊆ Zr+κ,Λi + Zr+κ,Si + Fi,

for each 1 � i � k − d . For the second inclusion here we are using the definition of Ω and the 
fact that Λj ⊆ Si for all j �= i. These inclusions imply that

L(Zr) ⊆ L(Zr+κ,Λ) + L(F)
⊆ L1(Zr+κ,Λ1 + F)× · · · × Lk−d(Zr+κ,Λk−d + F),

� (3.5)

and that

C(Zk−d
r ) ⊆ C

(
(Zr+κ,Λ1 + F1)× · · · × (Zr+κ,Λk−d + Fk−d)

)

= L1(Zr+κ,Λ1 + F1)× · · · × Lk−d(Zr+κ,Λk−d + Fk−d).
� (3.6)

Now we are positioned to make our final arguments.
Suppose first of all that (LR2) holds. Let U be any connected component of reg(r). Then 

U is a (k − d)-dimensional box, with faces parallel to the coordinate hyperplanes, and with 
vertices in the set C(Zk−d

r ). Therefore we can write U in the form

U = {x ∈ W : �i < xi < ri},� (3.7)
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where for each i, the values of �i  and ri are elements of the set Li(Zr). By equation (3.6), 
together with lemma 2.3, there is a constant c1 > 0 such that, for every i,

ri − �i �
c1

rmi
.

Next we will show that there is a constant c2 > 0 such that, for all sufficiently large r, the 
orbit of every point in Fρ/Zk−d under the action of Zc2r  intersects every connected component 
of reg(r). Then lemma 2.5 will imply that Y is LR. To show that there is such a constant c2, 
we use (3.3) and theorem 2.2. Each one of the linear forms Li is a badly approximable linear 
form in mi variables, when restricted to Λi. Therefore, by (T2) of theorem 2.2, there is a con-
stant η > 0 with the property that, for all sufficiently large r and for each i, the collection of 
points Li(Zc2r,Λi) is η/(c2rmi)-dense in R/Z. Choosing c2 > 3c1/η  completes the proof of this 
part of the theorem, verifying that (LR1) and (LR2) together imply linear repetitivity. By the 
results of [11], we also have that condition (PQ) is satisfied and thus that the cut and project 
set satisfies a subadditive ergodic theorem.

For the final part, suppose that (LR1) holds and (LR2) does not. Then one of the linear 
forms Li is not relatively badly approximable, and we assume without loss of generality that it 
is L1. Let ε > 0 be arbitrary. By (3.4) and our hypothesis on L1, we can choose r large enough 
so that there is a connected component U of reg(r), given as in (3.7), with

r1 − �1 <
ε

rm1
.

By a simple counting argument, we may also choose U so that its other sides have lengths

ri − �i �
C
rmi

.

for some constant C > 0 depending only on the ranks of the kernels of the Li. Thus U has 
volume at most ε/rd and so its corresponding patch of size r, by lemma 2.6, has only this 
frequency. Since ε > 0 was arbitrary, clearly neither linear repetitivity nor condition (PQ) is 
satisfied.

4.  Canonical cut and project sets

In this section  we turn our attention to canonical cut and project sets. In order to gain a 
broader perspective on our results, we will use the notion of local derivability for point sets, 
first introduced in [6]. Suppose that Y1 and Y2 are two cut and project sets formed from a 
common physical space E, and suppose (without loss of generality for the purposes of all of 
our results) that Y1 and Y2 are both uniformly discrete and relatively dense. We say that Y1 is 
locally derivable from Y2 if there exists a constant c > 0 with the property that, for all x ∈ E 
and for all sufficiently large r, the equivalence class of the patch of size r centered at x in Y2 
uniquely determines the patch of size r − c centered at x in Y1. There is a minor technical issue 
here, that x may not belong to Y1 or Y2. However, since Y1 and Y2 are relatively dense, this can 
be rectified by requiring that x be moved, when necessary in the definition above, to a nearby 
point of the relevant cut and project set. Finally, we say that Y1 and Y2 are mutually locally 
derivable (MLD) if each set is locally derivable from the other.

The argument in [6, appendix] (see also [4] and [5, remark 7.6]) provides us with the fol-
lowing characterization of MLD cut and project sets Y1 and Y2 as above.
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Lemma 4.1.  Let Y1 and Y2 be regular, totally irrational, aperiodic k to d cut and project 
sets, constructed with the same physical and internal spaces and with windows W1 and W2, 
respectively. Then Y1 is locally derivable from Y2 if and only if W1 is a finite union of sets each 
of which is a finite intersection of translates of W2 (or of the closure of its complement), with 
translations taken from ρ∗(Zk).

From this lemma we may deduce the following result relating cubical and canonical cut 
and project sets.

Proposition 4.2.  Let Y1 be a cubical cut and project set, and let Y2 be the cut and project 
set formed from the same data as Y1, but with the canonical window. Then Y1 is locally deriv-
able from Y2. Furthermore, Y2 is locally derivable from Y1 if and only if, for each 1 � i � d, 
the point ρ∗(ei) lies on a line of the form Rej, for some d + 1 � j � k .

Proof.  Let us temporarily write C for the canonical window and continue using W  for the 
cubical window. We may write

C =

{
k∑

i=1

xie∗i : xi ∈ [0, 1]

}
� (4.1)

where the e∗i = ρ∗(ei) are the projections to Fρ  of the k standard basis vectors of Rk. We claim 
that

W =
⋂
v∈V

C − v,

where V is the set of projected vertices of the unit-hypercube contained in the first d coordinate 
directions, that is

V =

{
ρ∗(

d∑
i=1

εiei) : εi ∈ {0, 1}

}
.

Notice that e∗j = ej for j ∈ {d + 1, . . . , k}, so an element x ∈ W can be written (uniquely) 

as x =
∑k

j=d+1 xje∗j  where the xj ∈ [0, 1]. So clearly from (4.1) we have that x + v ∈ C  for 

Figure 2.  In the figure  k = 3, d = 1 and e∗1 ∈ Re2. The canonical window C is a 
rectangle.
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any v ∈ V  and hence W ⊆
⋂
C − v. For the opposite inclusion, suppose that x ∈

⋂
C − v.  

For j ∈ {d + 1, . . . , k}, consider the set Pj of e∗i  with 1 � i � d and strictly positive coordinate 
in the direction ej, and analogously the set Nj of the e∗i  with strictly negative coordinate in the 
direction ej. Then the maximum value of any y ∈ C in the ej direction is attained by ej + pj, 
where pj =

∑
v∈Pj

v; the minimum is attained by nj =
∑

v∈Nj
v (if an empty sum occurs then 

consider it as zero). Since pj ∈ V  we have that x + pj ∈ C and so has magnitude at most that 
of ej + pj in the j direction. It follows that x has magnitude at most 1 in the ej direction and, by 
an analogous argument considering x + nj, has magnitude at least 0 in the ej direction. Repeat-
ing this argument for each coordinate direction of Fρ  we see that x ∈ W, proving the inclusion ⋂

C − v ⊆ W . By lemma 4.1, since V ⊆ ρ∗(Zk), we have that Y1 is locally derivable from Y2.
For the second statement, suppose firstly that for each 1 � i � d the points e∗i  lie on a line 

Rej for d + 1 � j � k . Then it is not hard to see that C is a box with coordinates aligned with 
the standard basis vectors of Fρ , see figure 2. Take a coordinate direction ej with d + 1 � j � k . 
Then the points of C have their jth coordinate in an interval [lj, uj], where lj, uj ∈ ρ∗(Zk). So 
C ∩ (Cc − lj − ej) ∩ (Cc − uj) is still a coordinate aligned box but now has jth coordinate rang-
ing in [0, 1]. Here, Cc denotes the closure of the complement of C in Fρ . Repeating for each 
coordinate direction and applying lemma 4.1, we see that Y2 is locally derivable from Y1.

Finally, suppose that for some 1 � i � d we have that e∗i /∈ Rej for any d + 1 � j � k . 
Notice that the boundaries of C and W  are each contained in a finite set of translates of a finite 
collection of hyperplanes. The same is true under taking finite unions of finite intersections of 
translates of the windows, or closures of their complements, and applying such an operation 
cannot add new hyperplanes to the collection (they can be removed though, as is typical for 
the local derivation from the canonical to the cubical window). So we need only find a hyper-
plane necessary to define the boundary of C which is not needed for W . By assumption, e∗i  is 
non-zero in at least two of the standard coordinate directions for Fρ . Define a set S of vectors 
consisting of e∗i  and k − d − 2 other of the vectors e∗j = ej, with d + 1 � j � k , chosen so that 
every coordinate direction of Fρ  has non-zero entry in at least one element of S. Then the hy-
perplane H spanned by the vectors of S is a (k − d − 1)-dimensional hyperplane which is not 
in the collection of hyperplanes defining the boundary of W . Indeed by our choice of vectors 
in S, we may choose a point of H with non-zero entry in each coordinate direction, whereas the 
hyperplanes defining the boundary of W  are all orthogonal to one such coordinate direction. 
Moreover, H is necessary to define the boundary of C. To see this, assign to H an orientation 
(i.e. a choice of orthonormal vector) and consider the sum p of vectors e∗n, with 1 � n � k , 
which lie strictly above H. Then there is a face

F =

{
p +

∑
vi∈S

λivi : λi ∈ [0, 1]

}

contained in the boundary of C , see figure 3. Indeed, it obviously follows from (4.1) that 
F ⊆ C , and no element of C  lies above p + H or else there would be a vector e∗n missing in 
the definition of p, so in fact F is a subset of the boundary of C . It follows that the hyperplane 
H is necessary to define the boundary of C , and so Y2 cannot be locally derivable from Y1 by 
lemma 4.1.� □

If a Delone set Y1 is locally derivable from Y2, and if Y2 is LR, then it follows directly from 
the definitions that Y1 is also LR. Therefore, proposition 4.2 implies the first part of theorem 
1.2, that if a cubical cut and project set is not LR, then neither is the corresponding canonical 
cut and project set.
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For the second part of theorem 1.2, we observe that the same arguments applied to the 
cubical window above could equally have been applied to analogues of the cubical window 
but chosen in different reference spaces. More precisely, consider a collection ρ′ of k − d  
coordinate directions ej of Rk and the corresponding ‘reference space’ Fρ′ spanned by them, 
along with window Wρ′ ⊆ Fρ′ given by

Wρ′ =




∑
ej∈ρ′

tiei : 0 � ti � 1


 .

By a permutation of the basis vectors, this is identical to our standard cubical setting, and 
so we may directly apply theorem 1.1 to see whether or not cut and project sets Y ′ defined by 
E and Wρ′ are LR or not. Similarly, we may deduce from proposition 4.2 that Y ′ is still locally 
derivable from the canonical cut and project set Y2. Hence, to finish the proof of theorem 1.2, 
we need only find a cubical cut and project set which is LR with respect to the standard refer-
ence space but is not with respect to another. The existence of such cut and project schemes is 
proved by the following example:

Example 4.3.  Suppose that α1,α2, and β are positive real numbers with (α1,α2) ∈ B2,1, 
β ∈ B1,1 and {1,α1,α2,β−1} rationally independent. Let E be the three dimensional subspace 
of R5 defined by

E = {(x,α1x1 + α2x2 + x3,βx3) : x ∈ R3}.

We claim that the standard cubical cut and project sets defined by E are LR, but those defined 
by cubical windows in the reference space Fρ′ with ρ′ = {e3, e5} are not LR, from which it 
follows that the canonical cut and projects associated to E are also not LR.

Firstly, it is easily checked that E is totally irrational and that the cubical cut and project 
sets defined using E are aperiodic. The linear forms defining E are

L1(x1, x2, x3) = x1α1 + x2α2 + x3; L2(x1, x2, x3) = x3β.

Figure 3.  In the figure k = 3, d = 1 and e∗1 /∈ Re1 ∪ Re2. The canonical window C is a 
hexagon with a slanted face F.
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In the notation of the proof of theorem 1.1, the kernels of the linear forms L1 and L2 have 
ranks r1 = 1 and r2 = 2. Therefore theorem 1.1 allows us to conclude that any cubical cut and 
project set formed using E is LR.

To see that replacing the standard cubical window with the cubical window in Fρ′ results 
in non-LR cut and project sets, first note that it is essentially equivalent to make a change 
of basis and consider the resulting setup in the original setting of theorem 1.1. We make the 
change of basis which sends e3 to e5, and vice versa, leaving all other basis vectors fixed. 
Then E is transformed to the new subspace E′ spanned by (1, 0, 0,α1, 0), (0, 1, 0,α2, 0) and 
(0, 0,β, 1, 1). With some simple linear manipulations of these vectors, it is easily seen that E′ 
is the graph of the linear forms

L′
1(x1, x2, x3) = x1α1 + x2α2 + x3β

−1; L′
2(x1, x2, x3) = β−1x3.

By assumption, L′
1(n) /∈ Z for all n ∈ Z3 and so L′

1 has trivial kernel. As before, L′
2 has kernel 

of rank 2. So the sum of the ranks of the kernels is now only 2, not 3 as required by (LR1). 
Hence the cubical cut and project sets defined by E′, or equivalently by E and window Wρ′, 
are not LR.

In looser but more geometric terms, this example works as follows. The canonical window 
in Fρ  is a hexagon, with two opposite sides coordinate aligned with e4, two aligned with e5 
and a final two ‘diagonal’ ones, translates of an arc from 0 to (1,β). In defining the accept-
ance domains for the canonical window, new vertical cuts are added by varying just the first 
two coordinates of L1, since L1(0, 0, 1) = 1. New horizontal cuts arise from varying the third 
coordinate of L2. However, in the canonical window, whilst asymptotically r horizontal cuts 
are made in defining acceptance domains for r-patches as before, around r3 diagonal cuts are 
made, making the complexity too high for the canonical cut and project sets to be LR. This 
is recognised by passing to suitable cubical cut and project scheme where the counterparts 
of these horizontal and diagonal cuts are also made in defining the acceptance domains for 
r-patches.

The approach above yields examples of LR cubical cut and project sets whose corre
sponding canonical ones are not LR. However, in this approach examples are manufactured 
so that, whilst the cubical cut and project sets in the standard direction Fρ  are LR, there is 
reparametrization of the scheme so that the resulting cubical cut and project sets are no longer 
LR. This naturally leads us to the following:

Problem 4.4.  Is it true that a canonical cut and project set will be LR if and only if all of the 
cubical cut and project sets obtained from taking different parametrizations of E, with respect 
to different orderings of the standard basis vectors, are also LR? 

At the moment we do not know the answer to this question. However, if the answer is yes, 
it means that theorem 1.1 gives a complete characterization of all canonical as well as cubi-
cal cut and project sets. Even if the answer is no, the condition we have established—that a 
canonical cut and project set can only be LR if each of linear forms defining E satisfies (LR1) 
and (LR2) for every parametrization—is highly restrictive. We leave this as an open problem 
for future research.

Interestingly, it appears that there could be a different type of behavior which can cause 
canonical cut and project sets to fail to be LR, demonstrated in the proof below. This behavior 
is related to Diophantine approximation, and occurs because of the fact that two subspaces 
defined by relatively badly approximable linear forms can still intersect in a subspace which 
is not definable using relatively badly approximable forms. A one dimensional realization of 
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this fact is the famous theorem of Marshall Hall [19, theorem 3.2], which implies that every 
non-zero real number can be written as a product of two badly approximable numbers. This 
provides the basis for the following example with k = 4 and d = 2, the smallest possible 
choices of k and d for which ‘cubical LR but canonical not’ can occur.

Lemma 4.5.  Suppose that α and β are positive badly approximable real numbers with the 
property that

inf
n∈N

n ·
{

5αβ
2

n
}

= 0.� (4.2)

If E is the two dimensional subspace of R4 defined by

E = {(x,−(2/5)x1 − αx2,−β(x1 + (5/2)x2)) : x ∈ R2},

then every cubical cut and project set defined using E is LR, but no canonical cut and project 
sets defined using E are LR.

Proof.  First of all we remark that, by a general version of Khintchine’s theorem (see [30, 
theorem 1]), almost every real number γ has the property that

inf
n∈N

n{nγ} = 0.

For such a γ, it follows from Hall’s theorem that there are badly approximable α and β satisfy-
ing 5αβ/2 = γ , and therefore (assuming γ > 0) the hypotheses of the lemma.

It is easy to see that E is totally irrational and that cubical and canonical cut and project sets 
formed using E will be aperiodic. By theorem 1.1, cubical cut and project sets formed using 
E will be LR.

The canonical window in Fρ  is an octagon which includes, on its boundary, the line seg-
ment from e4 to (2/5)e3 + (1 + β)e4. Each integer n ∈ Z4 acts on this line segment, moving 
it to a line segment which we denote by �n. The initial point of �n is the point

((2/5)n1 + αn2 + n3,βn1 + (5β/2)n2 + 1 + n4)

in the e3e4-plane. For any choice of n2, n3, and n4, there is a unique choice of n1 with the prop-
erty that �n intersects the line e3 + Re4, and it is clear that |n1| is bounded above by a constant 
(depending at most on α and β) times the maximum of |n2|, |n3|, and |n4|. The intersection 
point just described is e3 + ye4, where y = y(n2, n3, n4) is given by

y =
−5αβ

2
n2 + 1 + n4 +

5β
2
(1 + n2 − n3).

Since (4.2) is satisfied, for any ε > 0 there is a number r > 1 and integers n2 and n4 with 
|n2|, |n4| � r, such that

∣∣∣∣
5αβ

2
n2 − (1 + n4) + 1

∣∣∣∣ <
ε

r
.

For such a choice of n2 and n4, and with n1 selected as above, we take n3 = 1 + n2. Then 
the line segment �n, together with the lines e4 + Re3 and e3 + Re4, bound a triangle of area 
� εr−2. Such a triangle bounds an acceptance domain for a patch of radius � r of the canoni-
cal cut and project set, using analogous arguments to the proof of lemma 2.5 (see also [22]). 
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Since this means that the frequency of such a patch is � εr−2 and ε can be taken arbitrarily 
small, the resulting cut and project set cannot be LR.� □ 

5.  Hausdorff dimension results

In this section we will prove corollary 2.1. Our proof of theorem 1.1 demonstrates how, to 
each LR cubical cut and project set, we may associate a subgroup Λ � Zd of finite index, with 
decomposition

Λ = Λ1 + · · ·+ Λk−d,

so that each Li is badly approximable, when viewed as a linear form in mi variables, restricted 
to Λi. The first part of corollary 2.1 clearly follows from the fact that the integers mi � 1 have 
sum equal to d.

In the other direction, suppose that d � k − d. If we start with k − d  positive integers mi, 
with sum equal to d, and a collection of badly approximable linear forms Li : Rmi → R then, 
thinking of

Rd = Rm1 + · · ·+ Rmk−d ,

any cubical cut and project set arising from the subspace

E = {(x, L1(x), . . . , Lk−d(x)) : x ∈ Rd}

is LR, by the proof of theorem 1.1. It follows that the collection of {αij} ∈ Rd(k−d) which 
define LR cubical cut and project sets is a countable union (over all allowable choices of Λi 
above) of sets of Lebesgue measure 0 and Hausdorff dimension at most

dimBm1,1 + · · ·+ dimBmk−d ,1 = m1 + · · ·+ mk−d = d.

Since the cubical cut and project sets corresponding to Λi = Zmi are all LR, the Hausdorff 
dimension of this set is equal to d.

The part of corollary 2.1 about canonical cut and project sets follows from the same argu-
ments just given, together with proposition 4.2.

6.  Examples

6.1.  Explicit examples for all d � k − d

For d � k/2 it is easy to give examples of subspaces E satisfying the hypotheses of theorem 
1.1. Write d = m1 + · · ·+ mk−d , with positive integers mi, and for each i let Ki be an alge-
braic number field, of degree mi + 1 over Q. Suppose that the numbers 1,αi1, . . . ,αimi form a 
Q-basis for Ki, and define Li : Rmi → R to be the linear form with coefficients αi1, . . . ,αimi. 
Then, using the decomposition Rd = Rm1 + · · ·+ Rmk−d, let

E = {(x, L1(x), . . . , Lk−d(x)) : x ∈ Rd}.

The collection of points

{(L1(n), . . . , Lk−d(n)) : n ∈ Zd}

is dense in Rk−d/Zk−d, and it follows from this that the subspace E is totally irrational. The 
intersection of the kernels of the corresponding maps Li is {0}, so any cubical cut and proj-
ect set formed from E will be aperiodic. Condition (LR1) of theorem 1.1 is clearly satisfied. 
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Furthermore, by a result of Perron [28], each of the linear forms Li is badly approximable. 
Therefore (LR2) is also satisfied, and any cubical cut and project set formed from E is LR. 
Furthermore, the hypotheses in the second part of proposition 4.2 are also satisfied, so any 
canonical cut and project set formed using E is also LR.

6.2.  Ammann–Beenker tilings

There are many situations in practice where one would like to deal with specific examples of 
cut and project sets arising from canonical windows. Our main theorem, as stated, does not 
appear to apply in this important setting. However, we would like to indicate how the ideas 
in the proof can be easily adapted to prove that many common examples of canonical cut 
and project sets in the literature are also LR. In very heuristic terms, in order for our proof 
of theorem 1.1 to carry through, two observations are important: Firstly, that the connected 
components of reg(r) are large, and secondly, that the collection of points L(Zr) is dense, 
relative to how large the connected components are. After these two key properties have been 
established, it is possible to appeal to the proof of [20, lemma 3.1] and deduce LR. We will 
revisit these key ideas below, where we sketch how they can be applied to Ammann–Beenker 
and Penrose tilings.

In this subsection we will consider the cut and project set which gives rise to the Ammann–
Beenker tiling, which is one of the simplest non-trivial examples that illustrates the types of 
issues which can arise. In the next subsection we consider a 5 to 2 cut and project set corre
sponding to a Penrose tiling, with the purpose of demonstrating the changes needed in order 
to accommodate a non-totally irrational physical space. The fact that both of these point sets 
are LR is not a new result, but our purpose is to indicate how our machinery (which applies 
in many situations in which previously used techniques do not) can be used to prove this, in a 
setting which is hopefully familiar to the reader. For illustrations of these sets and the window 
which defines Ammann–Beenker tiling see [5, figures 6.41 and 6.44] and [22, figure 4].

Collections of vertices of Ammann–Beenker tilings can be obtained as canonical cut and 
project sets, using the two dimensional subspace E of R2 defined by

E = {(x, L1(x), L2(x)) : x ∈ R2},

with

L1(x) =

√
2

2
(x1 + x2) and L2(x) =

√
2

2
(x1 − x2).

Although we cannot directly appeal to either theorem 1.1 or proposition 4.2, we will explain 
how the machinery we have developed can be used to easily show that these sets are LR. The 
canonical window W  in Fρ  is the regular octagon with vertices at

(
1 +

√
2

2
± 1 +

√
2

2
,

1
2
± 1

2

)
and

(
1 +

√
2

2
± 1

2
,

1
2
± 1 +

√
2

2

)
.

By the proof of [20, lemma 3.1], every patch of size r corresponds (in the sense of the state-
ment of lemma 2.5) to a finite collection of connected components of reg(r). Therefore to 
demonstrate that a canonical cut and project set formed using E is LR, it is enough to show 
that the there is a constant C > 0 with the property that, for all sufficiently large r, the orbit of 
any regular point w ∈ Fρ, under the action of the collection of integers

ρ−1(CrΩ) ∩ Zk,
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intersects every connected component of reg(r).
We claim that every connected component of reg(r) contains a square with side length 

� r−1. This follows from elementary considerations, by writing down the equations of the 
line segments that form the boundary of W , considering the action of

−ρ−1(rΩ) ∩ Zk

on these line segments, and then computing all possible intersection points. Since all of our 
algebraic operations take place in the field Q(

√
2), it is not difficult to show that every con-

nected component of reg(r) must contain a right isosceles triangle of side length � r−1. The 
claim about squares follows immediately.

Finally, the linear forms L1 and L2 are relatively badly approximable, and the sum of the 
ranks of L1 and L2 is equal to 2. Therefore our study of the orbits of points towards the end 
of the proof of theorem 1.1 applies as before, allowing us to conclude that the Cr-orbit of any 
regular point in Fρ  intersects every connected component of reg(r).

6.3.  Penrose tilings

This example is similar to the previous one, but it also gives an indication of how to apply our 
techniques in cases when the physical space is not totally irrational. Let ζ = exp(2πi/5) and 
let Y be a canonical cut and project set defined using the two dimensional subspace E of R5 
generated by the vectors

(1, Re(ζ), Re(ζ2), Re(ζ3), Re(ζ4))

and

(0, Im(ζ), Im(ζ2), Im(ζ3), Im(ζ4)).

Well known results of de Bruijn [12] and Robinson [29] show that the set Y is the image under 
a linear transformation of the collection of vertices of a Penrose tiling, and in fact that all 
Penrose tilings can be obtained in a similar way from cut and project sets. The fact that Y is 
LR can be deduced directly from the definition of the Penrose tiling as a primitive substitu-
tion. However, as in the previous example, we will indicate how to prove this starting from the 
definition of Y as a cut and project set.

The subspace E is contained in the rational subspace orthogonal to (1, 1, 1, 1, 1). In this 
case theorem 1.1 does not apply directly, but the proof in section 3 is still robust enough to 
allow us to draw the desired conclusions. Set

α1 = cos(2π/5),α2 = cos(4π/5),β1 = sin(2π/5), andβ2 = sin(4π/5),

so that

E = {(x, xα1 + yβ1, xα2 + yβ2, xα2 − yβ2, xα1 − yβ1) : x, y ∈ R}.

After making the change of variables x1 = x  and x2 = xα1 + yβ1, we can write E as

E = {(x, L1(x), L2(x), L3(x)) : x = (x1, x2) ∈ R2}.

The functions Li are linear forms which (using the fact that 4α2
1 + 2α1 − 1 = 0) are given by

L1(x) = −x1 + 2α1x2,
L2(x) = −2α1x1 − 2α1x2, and
L3(x) = 2α1x1 − x2.

A Haynes et alNonlinearity 31 (2018) 515



538

Write Li : Z2 → R/Z for the restriction of Li to Z2, modulo 1, and notice that L1 + L2 + L3 = 0. 
This means that the orbit of 0 under the natural Z2-action of E on Fρ/Z3 is contained in the 
two dimensional rational subtorus with equation  x + y + z = 0. The kernels of the forms Li 
are all rank 1 subgroups of Z2, and it follows that the number of connected components of 
reg(r) which intersect the rational subtorus is � r2.

Since the forms are linearly dependent, we can understand the orbit of a point in Fρ/Z3 
under the Z2-action by considering only the values of L1 and L3. In other words, we can 
consider the projection of the problem onto the e1e3-plane. Consider the intersection of a 
connected component of reg(r) with the subspace x + y + z = 0. This is a two dimensional 
region, bounded by the intersections of the subspace with translates (by the Z5 action) of the 
hyperplanes forming the boundary of the canonical window. Computing the vertices of the 
region is an operation which takes place in Q(

√
5). As in the previous example, this leads to 

the conclusion that the intersection of any connected component of reg(r) with the subspace 
x + y + z = 0, when projected to the e1e3-plane, contains a square of side length � r−1. The 
remainder of the proof follows exactly as before, allowing us to conclude that Y is LR.
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