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Abstract. For the development of a mathematical theory which can be used to
rigorously investigate physical properties of quasicrystals, it is necessary to under-
stand regularity of patterns in special classes of aperiodic point sets in Euclidean
space. In one dimension, prototypical mathematical models for quasicrystals are
provided by Sturmian sequences and by point sets generated by substitution rules.
Regularity properties of such sets are well understood, thanks mostly to well known
results by Morse and Hedlund, and physicists have used this understanding to study
one dimensional random Schrödinger operators and lattice gas models. A key fact
which plays an important role in these problems is the existence of a subadditive
ergodic theorem, which is guaranteed when the corresponding point set is linearly
repetitive.

In this paper we extend the one dimensional model to cut and project sets, which
generalize Sturmian sequences in higher dimensions, and which are frequently used
in mathematical and physical literature as models for higher dimensional quasicrys-
tals. By using a combination of algebraic, geometric, and dynamical techniques,
together with input from higher dimensional Diophantine approximation, we give a
complete characterization of all linearly repetitive cut and project sets with cubical
windows. We also prove that these are precisely the collection of such sets which
satisfy subadditive ergodic theorems. The results are explicit enough to allow us
to apply them to known classical models, and to construct linearly repetitive cut
and project sets in all pairs of dimensions and codimensions in which they exist.

1. Introduction

A Delone set Y ⊆ Rd is linearly repetitive (LR) if there exists a constant
C > 0 such that, for any r ≥ 1, every patch of size r in Y occurs in every ball of
diameter Cr in Rd. This concept was studied by F. Durand (for the special case
of subshifts) in [18, 19], and by Lagarias and Pleasants in [25], and it has since
been explored by many authors (e.g. [1, 2, 10, 11, 15, 17]). It was shown in [25]
that linear repetitivity guarantees the existence of strict uniform patch frequencies,
equivalently the associated dynamical system on the hull of the point set is strictly
ergodic (minimal and uniquely ergodic). Having strict uniform patch frequencies
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orems, Čech cohomology of tiling spaces, cut and project sets.
Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540.
HK also gratefully acknowledges the support of Osk. Huttunen foundation.

1



2 HAYNES, KOIVUSALO, WALTON

means that every patch occurs across the Delone set with some well-defined positive
frequency. The fact that the Dirac comb of a Delone set in Rd is a translation
bounded measure, together with the existence of strict uniform patch frequencies,
implies the existence of a unique autocorrelation measure which is also a translation
bounded measure (and hence a tempered distribution). This in turn implies that
the associated diffraction measure (the Fourier transform of the autocorrelation) is
a positive, translation bounded measure. For this reason, aperiodic LR Delone sets
are a common source of examples of mathematical models for quasicrystals, and they
are sometimes referred to as ‘perfectly ordered quasicrystals’ [25].

In the direction of potential physical applications, several authors have studied
the random Schrödinger operator and lattice gas models on one dimensional qua-
sicrystals, as modeled either by LR Sturmian sequences or point sets constructed
using primitive substitution rules [7, 23, 34]. For both of these applications it is
necessary to establish the validity of a uniform subadditive ergodic theorem. In the
case of point sets constructed using primitive substitutions (in fact, in any dimen-
sion), such theorems were established by Geerse and Hof in [20]. For LR Sturmian
sequences they were established by Lenz in [27]. The results of our paper are relevant
in this context because of the fact, proved by Damanik and Lenz in [17], that linear
repetitivity implies the existence of a uniform subadditive ergodic theorem. In the
one-dimensional setting, it was shown by Lenz [26] that validity of a subadditive er-
godic theorem for a minimal subshift is equivalent to ‘uniform positivity of weights’
(PQ) (defined here in Subsection 2.5) which, through the results of [11], is easily seen
for subshifts to be equivalent to LR. In fact, one part of our main theorem below
(Theorem 1.1) shows that, for a natural class of cut and project sets which are higher
dimensional generalizations Sturmian sequences, LR is equivalent to the existence of
a subadditive ergodic theorem. The characterization which we provide in Theorem
1.1 thus opens the door for the study of physical properties of a rich collection of
higher dimensional point sets, a project which is the focus of our current research on
this topic.

In [25, Problem 8.3], motivated by many of the connections which we have de-
scribed, Lagarias and Pleasants asked for a characterization of LR cut and project
sets. For 2 to 1 cut and project sets with appropriately chosen windows, such a char-
acterization can be obtained using classical results of Morse and Hedlund [28, 29].
Morse and Hedlund showed that there is a natural bijective correspondence between
repetitive Sturmian words and return times, to specially chosen intervals, of orbits
of irrational rotations on R/Z. The latter are precisely given by 2 to 1 cut and
project sets. Under this correspondence, a Sturmian word will be LR if and only if
the irrational rotation which describes it is determined by a badly approximable real
number (i.e. a real number whose continued fraction partial quotients are uniformly
bounded). The proof of this fact relies on ideas from Diophantine approximation
that are closely connected to the theory of continued fractions. In fact the theory
is so robust that, in the special case of Sturmian sequences, one can even derive an
exact formula for the repetitivity function (see [3, Theorem 11] and [29, p.2]).
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For higher dimensional cut and project sets we immediately encounter serious dif-
ficulties with generalizing the above mentioned results. One problem is that the
underlying dynamical systems which are used for pattern recognition in these sets
are, in general, higher rank actions on higher dimensional tori which are more com-
plicated to understand. Another is that there is no known algorithm which can
do for higher dimensional cut and project sets what the simple continued fraction
algorithm does for Sturmian sequences. Nevertheless, by using a combination of
algebraic, geometric, and dynamical tools, together with input from the higher di-
mensional theory of Diophantine approximation, we are able to obtain the following
theorem, which can be seen as a generalization of the classification of Morse and
Hedlund, to arbitrary dimensions.

Theorem 1.1. Let Y be any k to d cubical cut and project set, whose physical
space is determined by a collection {Li}k−di=1 of linear forms on d variables. Then the
following are equivalent:

(1) Y is linearly repetitive;

(2) Y satisfies a subadditive ergodic theorem;

(3) {Li}k−di=1 satisfies both (LR1) and (LR2):

(LR1) the sum of the ranks of the kernels of the maps Li : Zd → R/Z defined
by Li(n) = Li(n) mod 1 is equal to d(k − d− 1);

(LR2) Each Li is relatively badly approximable.

In the statement of this theorem, a cubical cut and project set is one which
is aperiodic, regular and totally irrational, and which is defined using a strip in Rk

whose intersection with {0}d×Rk−d is the unit cube {0}d× [0, 1]k−d. A collection of
k−d linear forms {Li}k−di=1 in d variables defines a subspace of Rk, called the physical
space, which along with the choice of window naturally determines a collection of
associated cut and project sets. Precise definitions of these terms are given in Section
2.2.

After proving Theorem 1.1 we will explore the relationship between cubical cut
and project sets and canonical cut and project sets (formed with a window which
is the projection of the unit cube in Rk to the internal space). It will turn out that
in many cases which are commonly cited in the literature, the results we state for
cubical cut and project sets also apply to canonical ones. However, what is possibly
more interesting is that there are examples of LR cubical cut and project sets which
are no longer LR when their windows are replaced by canonical ones.

We give examples later in the paper which seem to indicate that there are two
potential sources for this type of behavior. The first is geometric, and arises in the
situation when at least two of the linear forms defining the physical space have co-
kernels with different ranks. The second (which can occur even in the absence of the
geometric situation just described) is Diophantine, and is related to the fact that any
number can be written as a product of two badly approximable numbers (this follows
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from continued fraction Cantor set arguments, see [21]). The complete statements
of our results about canonical cut and project sets can be found in Section 4, but we
summarize what has just been mentioned in the following theorem.

Theorem 1.2. If Y is a cubical cut and project set which is not LR, then the cut
and project set formed from the same data as Y , but with the canonical window in
place of the cubical one, is also not LR. However, the converse of this statement is
not true, in general.

It should be pointed out that most of the canonical cut and project sets of specific
interest in the literature arise from subspaces defined by linear forms with coefficients
in a fixed algebraic number field. In such a case the Diophantine behavior alluded
to at the end of the paragraph before Theorem 1.2 cannot occur. To illustrate this
point, in Section 6 we will briefly explain how to prove that Penrose and Ammann–
Beenker tilings are LR. This in itself is not a new result, and in fact it is fairly
obvious from descriptions of these tilings using substitution rules. What is new is
that our proof uses only their descriptions as cut and project sets.

Let us now return to discuss the content of Theorem 1.1. In the statement of the
theorem, condition (LR1) is necessary and sufficient for Y to have minimal patch
complexity. For comparison, in [24, Section 5] it was shown that minimal patch
complexity is a necessary and sufficient condition for the Čech cohomology (with
rational coefficients) of the associated tiling space to be finitely generated. Many
of the calculations in the first part of our proof share a common thread with those
that arise in the calculation of the cohomology groups. This point of view eventually
leads us to equations (3.3)–(3.6), which form the crux of our argument, allowing us
to move directly in our proof to a position where we can apply condition (LR2). It
should be pointed out that, without the group theoretic arguments that give us the
rigid structure imposed by these equations, the proof would fall apart.

Condition (LR2) is a Diophantine condition, which places a strong restriction on
how well the subspace defining Y can be approximated by rationals. A linear form
is relatively badly approximable if it is badly approximable when restricted to
rational subspaces complementary to its kernel. In the next section we will explain
this in more detail and prove that it is a well-defined property. Note that in the
special case when k−d = 1, condition (LR1) is automatically satisfied, and condition
(LR2) requires the linear form defining Y to be badly approximable in the usual
sense. This observation, together with Proposition 4.2, immediately implies the
following complete characterization of both cubical and canonical cut and project
sets in codimension one.

Corollary 1.3. A k to k − 1 cubical or canonical cut and project set defined by a
linear form L is linearly repetitive if and only if L is badly approximable.
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2. Definitions and preliminary results

2.1. Summary of notation. For sets A and B, the notation A × B denotes the
Cartesian product. If A and B are subsets of the same Abelian group, then A + B
denotes the collection of all elements of the form a + b with a ∈ A and b ∈ B. If A
and B are any two Abelian groups then A ⊕ B denotes their direct sum. We write
A 6 B to mean that A is a subgroup of B.

For x ∈ R, {x} denotes the fractional part of x and ‖x‖ denotes the distance
from x to the nearest integer. For x ∈ Rm, we set |x| = max{|x1|, . . . , |xm|} and
‖x‖ = max{‖x1‖, . . . , ‖xm‖}. We use the symbols �, � and � for the standard
Vinogradov and asymptotic notation. That is, for real-valued functions f, g, typically
defined here on N or R>0, we write f � g to mean that f(x) ≤ Cg(x) for some C > 0
and sufficiently large x, f � g if g � f and f � g if both f � g and f � g.

2.2. Cut and project sets. A cut and project scheme consists of the following:

• the total space Rk;
• the physical space E ⊆ Rk, a d-dimensional proper subspace of Rk;
• the internal space Fπ ⊆ Rk, a subspace complementary to E in Rk;
• the window Wπ ⊆ Fπ.

Write π for the projection from the total space onto E with respect to the decom-
position Rk = E + Fπ. The strip is given by S = E +Wπ. For each s ∈ Rk/Zk, we
define the cut and project set Ys ⊆ E by

Ys = π(S ∩ (Zk + s)).

In this situation we refer to Ys as a k to d cut and project set.

We adopt the conventional assumption that π|Zk is injective. For y ∈ Y we write
ỹ for the unique point in S ∩ Zk with π(ỹ) = y. We also assume in much of what
follows that E is a totally irrational subspace of Rk, which means that the canonical
projection of E into Rk/Zk is dense. This assumption guarantees that the natural
linear Rd action of E on Rk/Zk is uniquely ergodic.

For the problem of studying linear repetitivity, the s in the definition of Ys plays
only a minor role. If we restrict our attention to points s for which Zk + s does not
intersect the boundary of S (these are called regular points and the corresponding
sets Ys are called regular cut and project sets) then, as long as E is totally irrational,
the sets of finite patches in Ys do not depend on the choice of s. In particular, the
property of being LR does not depend on the choice of s, as long as s is taken to be
a regular point. On the other hand, for points s which are not regular, the cut and
project set Ys may contain ‘additional’ patches coming from points on the boundary,
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which will make it non-repetitive, and therefore not LR. For this reason, we will
always assume that s is taken to be a regular point, and we will simplify our notation
by writing Y instead of Ys.

As a point of reference, when allowing E to vary, we also make use of the fixed
subspace Fρ = {0}d × Rk−d ⊆ Rk, and we define ρ : Rk → E and ρ∗ : Rk → Fρ to
be the projections onto E and Fρ with respect to the decomposition Rk = E + Fρ
(assuming, with little loss of generality, that Rk does in fact decompose in this way).
Our notational use of π and ρ is intended to be suggestive of the fact that Fπ is the
subspace which gives the projection defining Y (hence the letter π), while Fρ is the
subspace with which we reference E (hence the letter ρ). We write W = S ∩ Fρ,
and for convenience we also refer to this set as the window defining Y . This slight
ambiguity should not cause any confusion in the arguments below. See Figure 1 for
a pictorial description of the various elements in the definition of Y .

Y

E

Fπ

W

S

π

Fρ

Figure 1. Definition of the cut and project set. In the figure k = 2,
d = 1 and s = 0.

As already mentioned, in much of this paper we will focus our attention on the
situation where W is taken to be a cubical window, given by

W =

{
k∑

i=d+1

tiei : 0 ≤ ti ≤ 1

}
. (2.1)

In Section 4 we will also consider the case when W is taken to be a canonical
window, which is defined to be the image under ρ∗ of the unit cube in Rk.

For any cut and project set, the collection of points x ∈ E with the property that
Y + x = Y , forms a group, called the group of periods of Y . We say that Y is
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aperiodic if the group of periods is {0}. Finally, as mentioned in the introduction,
we say that Y is a cubical (resp. canonical) cut and project set if it is regular,
totally irrational, and aperiodic, and if W is a cubical (resp. canonical) window.

Without loss of generality, by permuting the standard basis vectors if necessary,
we will assume that E can be written as

E = {(x, L(x)) : x ∈ Rd},
where L : Rd → Rk−d is a linear function. For each 1 ≤ i ≤ k − d, we define the
linear form Li : Rd → R by

Li(x) = L(x)i =
d∑
j=1

αijxj,

and we use the points {αij} ∈ Rd(k−d) to parametrize the choice of E.

Our proof of Theorem 1.1 gives an explicit correspondence between the collection
of k to d LR cubical cut and project sets, and the Cartesian product of the following
two sets:

(S1) The set of all (k − d)-tuples (L1, . . . , Lk−d), where each Li is a badly ap-
proximable linear form in mi ≥ 1 variables, with the integers mi satisfying
m1 + · · ·+mk−d = d, and

(S2) The set of all d× d integer matrices with non-zero determinant.

The fact that the set (S1) is empty when d < k/2 implies that, for this range of k
and d values, there are no LR cubical (or canonical) cut and project sets. On the
other hand, for d ≥ k/2, there are uncountably many, as implied by the following
corollary to Theorem 1.1.

Corollary 2.1. For d < k/2, there are no LR cubical cut and project sets. For
d ≥ k/2, the collection of {αij} ∈ Rd(k−d) which define LR cubical cut and project
sets is a set with Lebesgue measure 0 and Hausdorff dimension d. Furthermore, these
statements also apply to canonical cut and project sets.

This corollary will be proved in Section 5. We will also show in Section 6 how to
exhibit specific examples of LR cut and project sets, for any choice of d ≥ k/2.

2.3. Results from Diophantine approximation. Let L : Rd → Rk−d be a linear
map given by a matrix with entries {αij} ∈ Rd(k−d). For any N ∈ N, there exists an
n ∈ Zd with |n| ≤ N and

‖L(n)‖ ≤ 1

Nd/(k−d)
. (2.2)

This is a multidimensional analogue of Dirichlet’s Theorem, which follows from a
straightforward application of the pigeonhole principle. We are interested in having
an inhomogeneous version of this result, requiring the values taken by ‖L(n)− γ‖ to
be small, for all choices of γ ∈ Rk−d. For this we will use the following ‘transference
theorem,’ a proof of which can be found in [14, Chapter V, Section 4].
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Theorem 2.2. [14, Chapter V, Theorem VIII]. Given a linear map L as above, the
following statements are equivalent:

(T1) There exists a constant C1 > 0 such that

‖L(n)‖ ≥ C1

|n|d/(k−d)
,

for all n ∈ Zd \ {0}.

(T2) There exists a constant C2 > 0 such that, for all γ ∈ Rk−d, the inequalities

‖L(n)− γ‖ ≤ C2

Nd/(k−d)
, |n| ≤ N,

are soluble, for all N ≥ 1, with n ∈ Zd.

Next, with a view towards applying this theorem, let Bd,k−d denote the collection
of numbers α ∈ Rd(k−d) with the property that there exists a constant C = C(α) > 0
such that, for all nonzero integer vectors n ∈ Zd,

‖L(n)‖ ≥ C

|n|d/(k−d)
.

The Khintchine–Groshev Theorem (see [8] for a detailed statement and proof) implies
that the Lebesgue measure of Bd,k−d is 0. However in terms of Hausdorff dimension
these sets are large. It is a classical result of Jarnik that dimB1,1 = 1, and this was
extended by Wolfgang Schmidt, who showed in [33, Theorem 2] that, for any choices
of 1 ≤ d < k,

dimBd,k−d = d(k − d).

Finally, we introduce the definition of relatively badly approximable linear forms.
As mentioned in the introduction, these are linear forms that are badly approximable
when restricted to rational subspaces complementary to their kernels. To be precise,
suppose that L : Rd → R is a single linear form in d variables, and define L : Zd →
R/Z by L(n) = L(n) mod 1. Let S 6 Zd be the kernel of L, and write r = rk(S)
and m = d− r. We say that L is relatively badly approximable if there exists a
constant C > 0 and a group Λ 6 Zd of rank m, with Λ ∩ S = {0} and

‖L(λ)‖ ≥ C

|λ|m
for all λ ∈ Λ \ {0}.

Now suppose that L is relatively badly approximable and let Λ be a group satisfying
the condition in the definition. Let F ⊆ Zd be a complete set of coset representatives
for Zd/(Λ + S). We have the following lemma.

Lemma 2.3. Suppose that L is relatively badly approximable, with Λ and F as
above. Then there exists a constant C ′ > 0 such that, for any λ ∈ Λ and f ∈ F ,
with L(λ+ f) 6= 0, we have that

‖L(λ+ f)‖ ≥ C ′

1 + |λ|m
.
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Proof. Any element of F has finite order in Zd/(Λ + S). Therefore, for each f ∈ F
there is a positive integer uf , and elements λf ∈ Λ and sf ∈ S, for which

f =
λf + sf
uf

.

If L(λ+ f) 6= 0 then either λ+ f = sf/uf 6= 0, or λ+u−1
f λf 6= 0. The first case only

pertains to finitely many possibilities, and in the second case we have that

‖L(λ+ f)‖ ≥ u−1
f · ‖L(ufλ+ λf + sf )‖

= u−1
f · ‖L(ufλ+ λf )‖

≥ C

uf |ufλ+ λf |m
.

Therefore, replacing C by an appropriate constant C ′ > 0, and using the fact that
F is finite, finishes the proof. �

We can also deduce that if L is relatively badly approximable, then the group Λ
in the definition may be replaced by any group Λ′ 6 Zd which is complementary to
S. This is the content of the following lemma.

Lemma 2.4. Suppose that L is relatively badly approximable. Then, for any group
Λ′ 6 Zd of rank m, with Λ′ ∩ S = {0}, there exists a constant C ′ > 0 such that

‖L(λ′)‖ ≥ C ′

|λ′|m
for all λ′ ∈ Λ′ \ {0}.

Proof. Let Λ be the group in the definition of relatively badly approximable. Choose
a basis v1, . . . , vm for Λ′, and for each 1 ≤ j ≤ m write

vj =
λj + sj
uj

,

with λj ∈ Λ, sj ∈ S, and uj ∈ N.

Each λ′ ∈ Λ′ can be written in the form

λ′ =
m∑
j=1

ajvj,

with integers a1, . . . , am, and we have that

‖L (λ′)‖ ≥ (u1 · · ·um)−1

∥∥∥∥∥L
(

m∑
j=1

bjλj

)∥∥∥∥∥ ,
with bj = aju1 · · ·um/uj ∈ Z for each j. If the integers aj are not identically 0 then,
since Λ′ ∩ S = {0}, it follows that

λ :=
m∑
j=1

bjλj 6= 0.
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Using the relatively badly approximable hypothesis gives that

‖L(λ′)‖ ≥ C

u1 · · ·um · |λ|m
.

Finally since |λ| � |λ′|, we have that

C

u1 · · ·um · |λ|m
≥ C ′

|λ′|m
,

for some constant C ′ > 0. �

2.4. Patterns in cut and project sets. Let Fρ, ρ, ρ
∗, and ỹ be defined as in Section

2.2. Assume that we are given a bounded convex set Ω ⊆ E which contains a
neighborhood of 0 in E. Then, for each r ≥ 0, define the patch of size r at y, by

P (y, r) := {y′ ∈ Y : ρ(ỹ′ − ỹ) ∈ rΩ}.
In other words, P (y, r) consists of the projections (under π) to Y of all points of S
whose first d coordinates are in a certain neighborhood of the first d coordinates of
ỹ.

We remark that there are several different definitions of ‘patches of size r’ in the
literature. For example, from the point of view of Y being contained in E, it is more
natural to define a patch of size r at y to be the collection of points of Y which lie
within distance r of y. In [22] we considered this definition of patch (what we called
there type 1 patches), together with the definition that we have given above (type 2
patches). In fact, the two definitions of patches agree except possibly on a constant
neighborhood of their boundaries (see [22, Equation (4.1)]). Therefore if Y is LR for
one definition of ‘patch of size r’, it will be LR for the other, and similarly for other
reasonable definitions.

For y1, y2 ∈ Y , we say that P (y1, r) and P (y2, r) are equivalent if

P (y1, r) = P (y2, r) + y1 − y2.

This defines an equivalence relation on the collection of patches of size r. We denote
the equivalence class of the patch of size r at y by P(y, r).

As indicated in the introduction, a cut and project set Y is linearly repetitive
(LR) if there is a C > 0 such that, for every r > 0, every ball of size Cr in E
contains a representative from every equivalence class of patches of size r. There
are two technical points which will ease our discussion below. First of all, since the
points of Y are relatively dense, in the above definition we are free to restrict our
attention, without loss of generality (by increasing C if necessary), to balls of size
Cr centered at points of Y . Secondly, the property of being LR does not depend on
the choice of Ω used to define the patches. This follows from the fact that, if Ω′ ⊆ E
is any other bounded convex set which contains a neighborhood of 0, then there are
dilations of Ω′ which contain, and which are contained in, Ω.

Let W = S ∩ Fρ. There is a natural action of Zk on Fρ, given by

n · w = ρ∗(n) + w = w + (0, n2 − L(n1)),
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for n = (n1, n2) ∈ Zk = Zd × Zk−d and w ∈ Fρ. For each r ≥ 0 we define the
r-singular points of W by

sing(r) :=W ∩
(
(−ρ−1(rΩ) ∩ Zk) · ∂W

)
,

and the r-regular points by

reg(r) :=W \ sing(r).

The following result follows from the proof of [22, Lemma 3.2] (see also [24]).

Lemma 2.5. Suppose that W is a parallelotope generated by integer vectors. For
every equivalence class P = P(y, r), there is a unique connected component U of
reg(r) with the property that, for any y′ ∈ Y ,

P(y′, r) = P(y, r) if and only if ρ∗(ỹ′) ∈ U.

For each equivalence class P = P(y, r) we define ξP , the frequency of P , by

ξP := lim
R→∞

#{y′ ∈ Y : |y′| ≤ R, P(y′, r) = P(y, r)}
#{y′ ∈ Y : |y′| ≤ R}

.

It is not difficult to show that, in our setup, the limit defining ξP always exists.
Lemma 2.5, combined with the Birkhoff Ergodic Theorem, proves that, for totally
irrational E, the frequencies of equivalence classes of patches are given by the volumes
of connected components of reg(r).

Lemma 2.6. If E is totally irrational then for any r > 0 and any equivalence class
P = P(y, r), the frequency ξP is equal to the volume of the connected component U
in the statement of Lemma 2.5.

This lemma is the full content of [22, Lemma 3.2] (this idea is also implicit in [9]).

2.5. Subadditive ergodic theorems and (PQ). As discussed in the introduction,
it is often of relevance to understand when a Delone set has sufficient regularity to
satisfy a subadditive ergodic theorem. We shall not define this notion here (we refer
the reader to the references in the introduction), and instead will work the condition
positivity of quasiweights, shown in [11] to be equivalent to validity of a subadditive
ergodic theorem for repetitive Delone sets.

Let P be an equivalence class of patches of size r > 0 and B be a bounded subset
of E. Write #′PB for the maximum number of disjoint patches of size r in B which
are in the equivalence class P , and define

ν ′(P) = rd · lim inf
|C|→∞

#′PC

|C|
,

where C runs over all cubes in E. We say that Y satisfies condition (PQ) if

inf
P
ν ′(P) > 0,

where the infimum is taken over all equivalence classes of patches, for all r > 0.
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So the condition (PQ) is essentially a condition on the densities of r-patches within
the pattern. A condition called “(U)” is introduced in [11] which ensures some
regularity in the spacing between occurrences of patches. It is shown in [11, Theorem
2], that LR is equivalent to the conditions (PQ) and (U) both being satisfied. One
consequence of our results is that, for cubical cut and project sets, condition (U)
can be omitted from this criteria. In other words, for cubical cut and project sets,
condition (PQ) by itself is a necessary and sufficient condition for LR. Results of
this type for analogous problems in symbolic dynamics were previously discovered by
other authors (see in particular Lenz [26]), and they appear to have been anticipated
to hold in greater generality (see [11, Remark 5]).

3. Proof of Theorem 1.1

We assume that W is given by (2.1) and we identify W with a subset of Rk−d, in
the obvious way. Recall that if Y is LR with respect to one convex patch shape Ω,
then it is LR with respect to all convex patch shapes. The precise shape Ω which
we will use will be specified later in the proof, but until then everything we say will
apply to any fixed choice of such a shape.

For r > 0 let c(r) denote the number of equivalence classes of patches of size r. If
Y is LR or satisfies (PQ) then clearly there exists a constant C > 0 such that c(r)
is bounded above by Crd, for all r > 0. For the first part of the proof of Theorem
1.1 we will show that condition (LR1) is necessary and sufficient for a bound of this
type to hold.

For each 1 ≤ i ≤ k− d, let Si 6 Zd denote the kernel of the map Li, and let ri be
the rank of Si. Furthermore, for each subset I ⊆ {1, . . . , k − d} let

SI =
⋂
i∈I

Si,

and let rI be the rank of SI . For convenience, set S∅ = Zd and r∅ = d. For any pair
I, J ⊆ {1, . . . , k − d}, the sum set SI + SJ is a subgroup of Zd, and it therefore has
rank at most d. On the other hand we have that

rk(SI + SJ) = rk(SI) + rk(SJ)− rk(SI ∩ SJ),

which gives the inequality

rI + rJ ≤ d+ rI∪J . (3.1)

As one application of this inequality we see immediately that

r1 + r2 + · · ·+ rk−d ≤ d+ r12 + r3 + · · ·+ rk−d

≤ 2d+ r123 + r4 + · · ·+ rk−d
...

≤ d(k − d− 1) + r12...(k−d)

= d(k − d− 1). (3.2)
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The last equality here uses the assumption that Y is aperiodic.

From Lemma 2.5, we know that c(r) is equal to the number of connected compo-
nents of reg(r). Let the map C : Zd(k−d) →W be defined by

C(n(1), . . . , n(k−d)) = ({L1(n(1))}, . . . , {Lk−d(n(k−d))}),

for n(1), . . . , n(k−d) ∈ Zd. Identify Zd with the set Z = Zk∩〈e1, . . . , ed〉R, and for each
r > 0 let Zr ⊆ Zd be defined by

Zr = −ρ−1(rΩ) ∩ Z.

Since our windowW is a fundamental domain for the integer lattice in Fρ, there is a
one to one correspondence between points of Y and elements of Z. This correspon-
dence is given explicitly by mapping a point y ∈ Y to the vector in Z given by the
first d coordinates of ỹ. Also, notice that if n ∈ Zk and −n · 0 ∈ W , then it follows
that

−n · 0 = ({L1(n1, . . . , nd)}, . . . , {Lk−d(n1, . . . , nd)}).
These observations together imply that the collection of all vertices of connected
components of reg(r) is precisely the set C(Zk−dr ), which in turn implies that

c(r) � |C(Zk−dr )|.

The values of the function C define a natural Zd(k−d) action on W . Therefore we
may regard the set C(Zd(k−d)) as a group, isomorphic to

Zd(k−d)/ker(C) ∼= Zd/S1 ⊕ · · · ⊕ Zd/Sk−d.

If (LR1) holds then we have that

rk(C(Zd(k−d))) = d(k − d)−
k−d∑
i=1

ri = d,

and from this it follows that

|C(Zk−dr )| � rd.

On the other hand, if (LR1) does not hold then by (3.2) we have that

rk(C(Zd(k−d))) > d,

which implies that

|C(Zk−dr )| � rd+1.

We conclude that c(r) � rd if and only if condition (LR1) holds, so (LR1) is a
necessary condition for LR or (PQ).

Next we assume that (LR1) holds and we prove that, under this assumption,
condition (LR2) is necessary and sufficient in order for Y to be LR. First of all,
suppose that I and J were disjoint, nonempty subsets of {1, . . . , k − d} for which

rI + rJ < d+ rI∪J .
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Then, by the same argument used in (3.2), we would have that

k−d∑
i=1

ri ≤ d(k − d− 3) + r(I∪J)c + rI + rJ < d(k − d− 1).

This clearly contradicts (LR1). Therefore if (LR1) holds then, by (3.1), we have that

rI + rJ = d+ rI∪J ,

whenever I and J are disjoint and nonempty.

For each 1 ≤ i ≤ k − d, define Ji = {1, . . . , k − d} \ {i}, and let Λi = SJi .
Write mi = rJi for the rank of Λi. Then, by what was established in the previous
paragraph, we have that

mi + ri = d.

If n is any nonzero vector in Λi, then n is in Sj for all j 6= i. Since Y is aperiodic,
this means that n 6∈ Si, which gives that

rk(Λi + Si) = mi + ri − rk(Λi ∩ Si) = d.

Furthermore, for any j 6= i, the fact that Λj ⊆ Si implies that Λj ∩ Λi = {0}, so

rk(Λ1 + · · ·+ Λk−d) =
k−d∑
i=1

rk(Λi) =
k−d∑
i=1

(d− ri) = d.

For each i, let Fi ⊆ Zd be a complete set of coset representatives for Zd/(Λi + Si).
Also, write Λ = Λ1 + · · ·+ Λk−d, and let F ⊆ Zd be a complete set of representatives
for Zd/Λ. What we have shown so far implies that all of the sets F1, . . . , Fk−d, and
F are finite.

Again thinking of Zd as being identified with the set Z, let

Zr,Λ = Zr ∩ Λ, Zr,Λi
= Zr ∩ Λi, and Zr,Si

= Zr ∩ Si.

For each i, choose a basis {v(i)
j }

mi
j=1 for Λi, and define

Ω′i =

{
mi∑
j=1

tiv
(i)
j : −1/2 ≤ ti < 1/2

}
,

and

Ω′ = Ω′1 + · · ·+ Ω′k−d,

so that Ω′ is a fundamental domain for Rd/Λ. We now specify Ω to be the subset of
points in E whose first d coordinates lie in Ω′. In other words,

Ω = E ∩ ρ−1(Ω′).

Notice that every n ∈ Λ has a unique representation of the form

n =
k−d∑
i=1

mi∑
j=1

aijv
(i)
j , aij ∈ Z.
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Using this representation, we have that

L(n) = C((n(i))mi
i=1),

where, for each i, the vector n(i) ∈ Zd is given by

n(i) =

mi∑
j=1

aijv
(i)
j .

This gives a one to one correspondence between elements of L(Λ) and elements of
the set

C(Λ1 × · · · × Λk−d) = L1(Λ1)× · · · × Lk−d(Λk−d).

We will combine this observation with the facts that

L(Zd) = L(Λ + F )

and

C(Zd(k−d)) = C((Λ1 + F1)× · · · × (Λk−d + Fk−d)),

in order to study the spacings between points of the sets L(Zr) and C(Zk−dr ).

First of all, it is clear that

L(Zr) ⊇ L1(Zr,Λ1)× · · · × Lk−d(Zr,Λk−d
), (3.3)

and that

C(Zk−dr ) ⊇ L1(Zr,Λ1)× · · · × Lk−d(Zr,Λk−d
). (3.4)

Since all of the sets F1, . . . , Fk−d, and F are finite, there is a constant κ > 0 with
the property that, for all sufficiently large r,

Zr ⊆ Zr+κ,Λ + F, and

Zr ⊆ Zr+κ,Λi
+ Zr+κ,Si

+ Fi,

for each 1 ≤ i ≤ k − d. For the second inclusion here we are using the definition of
Ω and the fact that Λj ⊆ Si for all j 6= i. These inclusions imply that

L(Zr) ⊆ L(Zr+κ,Λ) + L(F )

⊆ L1(Zr+κ,Λ1 + F )× · · · × Lk−d(Zr+κ,Λk−d
+ F ), (3.5)

and that

C(Zk−dr ) ⊆ C
(
(Zr+κ,Λ1 + F1)× · · · × (Zr+κ,Λk−d

+ Fk−d)
)

= L1(Zr+κ,Λ1 + F1)× · · · × Lk−d(Zr+κ,Λk−d
+ Fk−d). (3.6)

Now we are positioned to make our final arguments.

Suppose first of all that (LR2) holds. Let U be any connected component of
reg(r). Then U is a (k − d)-dimensional box, with faces parallel to the coordinate
hyperplanes, and with vertices in the set C(Zk−dr ). Therefore we can write U in the
form

U = {x ∈ W : `i < xi < ri}, (3.7)



16 HAYNES, KOIVUSALO, WALTON

where for each i, the values of `i and ri are elements of the set Li(Zr). By equation
(3.6), together with Lemma 2.3, there is a constant c1 > 0 such that, for every i,

ri − `i ≥
c1

rmi
.

Next we will show that there is a constant c2 > 0 such that, for all sufficiently
large r, the orbit of every point in Fρ/Zk−d under the action of Zc2r intersects every
connected component of reg(r). Then Lemma 2.5 will imply that Y is LR. To show
that there is such a constant c2, we use (3.3) and Theorem 2.2. Each one of the
linear forms Li is a badly approximable linear form in mi variables, when restricted
to Λi. Therefore, by (T2) of Theorem 2.2, there is a constant η > 0 with the property
that, for all sufficiently large r and for each i, the collection of points Li(Zc2r,Λi

) is
η/(c2r

mi)-dense in R/Z. Choosing c2 > 3c1/η completes the proof of this part of the
theorem, verifying that (LR1) and (LR2) together imply linear repetitivity. By the
results of [11], we also have that condition (PQ) is satisfied and thus that the cut
and project set satisfies a subadditive ergodic theorem.

For the final part, suppose that (LR1) holds and (LR2) does not. Then one of the
linear forms Li is not relatively badly approximable, and we assume without loss of
generality that it is L1. Let ε > 0 be arbitrary. By (3.4) and our hypothesis on L1,
we can choose r large enough so that there is a connected component U of reg(r),
given as in (3.7), with

r1 − `1 <
ε

rm1
.

By a simple counting argument, we may also choose U so that its other sides have
lengths

ri − `i ≤
C

rmi
.

for some constant C > 0 depending only on the ranks of the kernels of the Li. Thus
U has volume at most ε/rd and so its corresponding patch of size r, by Lemma 2.6,
has only this frequency. Since ε > 0 was arbitrary, clearly neither linear repetitivity
nor condition (PQ) is satisfied.

4. Canonical cut and project sets

In this section we turn our attention to canonical cut and project sets. In order to
gain a broader perspective on our results, we will use the notion of local derivability
for point sets, first introduced in [6]. Suppose that Y1 and Y2 are two cut and project
sets formed from a common physical space E, and suppose (without loss of generality
for the purposes of all of our results) that Y1 and Y2 are both uniformly discrete and
relatively dense. We say that Y1 is locally derivable from Y2 if there exists a
constant c > 0 with the property that, for all x ∈ E and for all sufficiently large r,
the equivalence class of the patch of size r centered at x in Y2 uniquely determines
the patch of size r − c centered at x in Y1. There is a minor technical issue here,
that x may not belong to Y1 or Y2. However, since Y1 and Y2 are relatively dense,
this can be rectified by requiring that x be moved, when necessary in the definition
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above, to a nearby point of the relevant cut and project set. Finally, we say that
Y1 and Y2 are mutually locally derivable (MLD) if each set is locally derivable
from the other.

The argument in [6, Appendix] (see also [4] and [5, Remark 7.6]) provides us with
the following characterization of MLD cut and project sets Y1 and Y2 as above.

Lemma 4.1. Let Y1 and Y2 be regular, totally irrational, aperiodic k to d cut and
project sets, constructed with the same physical and internal spaces and with windows
W1 and W2, respectively. Then Y1 is locally derivable from Y2 if and only if W1 is
a finite union of sets each of which is a finite intersection of translates of W2 (or of
the closure of its complement), with translations taken from ρ∗(Zk).

From this lemma we may deduce the following result relating cubical and canonical
cut and project sets.

Proposition 4.2. Let Y1 be a cubical cut and project set, and let Y2 be the cut and
project set formed from the same data as Y1, but with the canonical window. Then
Y1 is locally derivable from Y2. Furthermore, Y2 is locally derivable from Y1 if and
only if, for each 1 ≤ i ≤ d, the point ρ∗(ei) lies on a line of the form Rej, for some
d+ 1 ≤ j ≤ k.

Proof. Let us temporarily write C for the canonical window and continue using W
for the cubical window. We may write

C =

{
k∑
i=1

xie
∗
i : xi ∈ [0, 1]

}
(4.1)

where the e∗i = ρ∗(ei) are the projections to Fρ of the k standard basis vectors of Rk.
We claim that

W =
⋂
v∈V

C − v,

where V is the set of projected vertices of the unit-hypercube contained in the first
d coordinate directions, that is

V =

{
ρ∗(

d∑
i=1

εiei) : εi ∈ {0, 1}

}
.

Notice that e∗j = ej for j ∈ {d + 1, . . . , k}, so an element x ∈ W can be written

(uniquely) as x =
∑k

j=d+1 xje
∗
j where the xj ∈ [0, 1]. So clearly from (4.1) we have

that x + v ∈ C for any v ∈ V and hence W ⊆
⋂
C − v. For the opposite inclusion,

suppose that x ∈
⋂
C − v. For j ∈ {d + 1, . . . , k}, consider the set Pj of e∗i with

1 ≤ i ≤ d and strictly positive coordinate in the direction ej, and analogously the set
Nj of the e∗i with strictly negative coordinate in the direction ej. Then the maximum
value of any y ∈ C in the ej direction is attained by ej + pj, where pj =

∑
v∈Pj

v;

the minimum is attained by nj =
∑

v∈Nj
v (if an empty sum occurs then consider

it as zero). Since pj ∈ V we have that x + pj ∈ C and so has magnitude at most
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that of ej + pj in the j direction. It follows that x has magnitude at most 1 in the
ej direction and, by an analogous argument considering x + nj, has magnitude at
least 0 in the ej direction. Repeating this argument for each coordinate direction of
Fρ we see that x ∈ W , proving the inclusion

⋂
C − v ⊆ W . By Lemma 4.1, since

V ⊆ ρ∗(Zk), we have that Y1 is locally derivable from Y2.

W

C

e∗1

e3

e2

Figure 2. In the figure k = 3, d = 1 and e∗1 ∈ Re2. The canonical
window C is a rectangle.

For the second statement, suppose firstly that for each 1 ≤ i ≤ d the points e∗i
lie on a line Rej for d + 1 ≤ j ≤ k. Then it is not hard to see that C is a box
with coordinates aligned with the standard basis vectors of Fρ, see Figure 2. Take
a coordinate direction ej with d + 1 ≤ j ≤ k. Then the points of C have their jth
coordinate in an interval [lj, uj], where lj, uj ∈ ρ∗(Zk). So C∩ (Cc− lj−ej)∩ (Cc−uj)
is still a coordinate aligned box but now has jth coordinate ranging in [0, 1]. Here,
Cc denotes the closure of the complement of C in Fρ. Repeating for each coordinate
direction and applying Lemma 4.1, we see that Y2 is locally derivable from Y1.

C

W

e∗2

e∗3

e∗1

face F

C

W

e∗2

e∗3

e∗1

face F

Figure 3. In the figure k = 3, d = 1 and e∗1 /∈ Re1 ∪ Re2. The
canonical window C is a hexagon with a slanted face F.
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Finally, suppose that for some 1 ≤ i ≤ d we have that e∗i /∈ Rej for any d + 1 ≤
j ≤ k. Notice that the boundaries of C and W are each contained in a finite set
of translates of a finite collection of hyperplanes. The same is true under taking
finite unions of finite intersections of translates of the windows, or closures of their
complements, and applying such an operation cannot add new hyperplanes to the
collection (they can be removed though, as is typical for the local derivation from the
canonical to the cubical window). So we need only find a hyperplane necessary to
define the boundary of C which is not needed for W . By assumption, e∗i is non-zero
in at least two of the standard coordinate directions for Fρ. Define a set S of vectors
consisting of e∗i and k−d−2 other of the vectors e∗j = ej, with d+1 ≤ j ≤ k, chosen
so that every coordinate direction of Fρ has non-zero entry in at least one element of
S. Then the hyperplane H spanned by the vectors of S is a (k− d− 1)-dimensional
hyperplane which is not in the collection of hyperplanes defining the boundary of
W . Indeed by our choice of vectors in S, we may choose a point of H with non-zero
entry in each coordinate direction, whereas the hyperplanes defining the boundary
of W are all orthogonal to one such coordinate direction. Moreover, H is necessary
to define the boundary of C. To see this, assign to H an orientation (i.e., a choice of
orthonormal vector) and consider the sum p of vectors e∗n, with 1 ≤ n ≤ k, which lie
strictly above H. Then there is a face

F =

{
p+

∑
vi∈S

λivi : λi ∈ [0, 1]

}
contained in the boundary of C, see Figure 3. Indeed, it obviously follows from (4.1)
that F ⊆ C, and no element of C lies above p + H or else there would be a vector
e∗n missing in the definition of p, so in fact F is a subset of the boundary of C. It
follows that the hyperplane H is necessary to define the boundary of C, and so Y2

cannot be locally derivable from Y1 by Lemma 4.1. �

If a Delone set Y1 is locally derivable from Y2, and if Y2 is LR, then it follows
directly from the definitions that Y1 is also LR. Therefore, Proposition 4.2 implies
the first part of Theorem 1.2, that if a cubical cut and project set is not LR, then
neither is the corresponding canonical cut and project set.

For the second part of Theorem 1.2, we observe that the same arguments applied
to the cubical window above could equally have been applied to analogues of the
cubical window but chosen in different reference spaces. More precisely, consider a
collection ρ′ of k− d coordinate directions ej of Rk and the corresponding ‘reference
space’ Fρ′ spanned by them, along with window Wρ′ ⊆ Fρ′ given by

Wρ′ =

∑
ej∈ρ′

tiei : 0 ≤ ti ≤ 1

 .

By a permutation of the basis vectors, this is identical to our standard cubical
setting, and so we may directly apply Theorem 1.1 to see whether or not cut and
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project sets Y ′ defined by E and Wρ′ are LR or not. Similarly, we may deduce from
Proposition 4.2 that Y ′ is still locally derivable from the canonical cut and project
set Y2. Hence, to finish the proof of Theorem 1.2, we need only find a cubical cut
and project set which is LR with respect to the standard reference space but is not
with respect to another. The existence of such cut and project schemes is proved by
the following example:

Example 4.3. Suppose that α1, α2, and β are positive real numbers with (α1, α2) ∈
B2,1, β ∈ B1,1 and {1, α1, α2, β

−1} rationally independent. Let E be the three dimen-
sional subspace of R5 defined by

E = {(x, α1x1 + α2x2 + x3, βx3) : x ∈ R3}.
We claim that the standard cubical cut and project sets defined by E are LR, but
those defined by cubical windows in the reference space Fρ′ with ρ′ = {e3, e5} are
not LR, from which it follows that the canonical cut and projects associated to E
are also not LR.

Firstly, it is easily checked that E is totally irrational and that the cubical cut and
project sets defined using E are aperiodic. The linear forms defining E are

L1(x1, x2, x3) = x1α1 + x2α2 + x3; L2(x1, x2, x3) = x3β.

In the notation of the proof of Theorem 1.1, the kernels of the linear forms L1 and
L2 have ranks r1 = 1 and r2 = 2. Therefore Theorem 1.1 allows us to conclude that
any cubical cut and project set formed using E is LR.

To see that replacing the standard cubical window with the cubical window in Fρ′
results in non-LR cut and project sets, first note that it is essentially equivalent to
make a change of basis and consider the resulting setup in the original setting of
Theorem 1.1. We make the change of basis which sends e3 to e5, and vice versa,
leaving all other basis vectors fixed. Then E is transformed to the new subspace E ′

spanned by (1, 0, 0, α1, 0), (0, 1, 0, α2, 0) and (0, 0, β, 1, 1). With some simple linear
manipulations of these vectors, it is easily seen that E ′ is the graph of the linear
forms

L′1(x1, x2, x3) = x1α1 + x2α2 + x3β
−1; L′2(x1, x2, x3) = β−1x3.

By assumption, L′1(n) /∈ Z for all n ∈ Z3 and so L′1 has trivial kernel. As before,
L′2 has kernel of rank 2. So the sum of the ranks of the kernels is now only 2, not
3 as required by (LR1). Hence the cubical cut and project sets defined by E ′, or
equivalently by E and window Wρ′ , are not LR.

In looser but more geometric terms, this example works as follows. The canoni-
cal window in Fρ is a hexagon, with two opposite sides coordinate aligned with e4,
two aligned with e5 and a final two ‘diagonal’ ones, translates of an arc from 0 to
(1, β). In defining the acceptance domains for the canonical window, new vertical
cuts are added by varying just the first two coordinates of L1, since L1(0, 0, 1) = 1.
New horizontal cuts arise from varying the third coordinate of L2. However, in the
canonical window, whilst asymptotically r horizontal cuts are made in defining ac-
ceptance domains for r-patches as before, around r3 diagonal cuts are made, making
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the complexity too high for the canonical cut and project sets to be LR. This is
recognised by passing to suitable cubical cut and project scheme where the counter-
parts of these horizontal and diagonal cuts are also made in defining the acceptance
domains for r-patches.

The approach above yields examples of LR cubical cut and project sets whose
corresponding canonical ones are not LR. However, in this approach examples are
manufactured so that, whilst the cubical cut and project sets in the standard direc-
tion Fρ are LR, there is reparametrization of the scheme so that the resulting cubical
cut and project sets are no longer LR. This naturally leads us to the following:

Problem 4.4. Is it true that a canonical cut and project set will be LR if and only if
all of the cubical cut and project sets obtained from taking different parametrizations
of E, with respect to different orderings of the standard basis vectors, are also LR?

At the moment we do not know the answer to this question. However, if the answer
is yes, it means that Theorem 1.1 gives a complete characterization of all canonical
as well as cubical cut and project sets. Even if the answer is no, the condition
we have established—that a canonical cut and project set can only be LR if each
of linear forms defining E satisfies (LR1) and (LR2) for every parametrization—is
highly restrictive. We leave this as an open problem for future research.

Interestingly, it appears that there could be a different type of behavior which
can cause canonical cut and project sets to fail to be LR, demonstrated in the proof
below. This behavior is related to Diophantine approximation, and occurs because of
the fact that two subspaces defined by relatively badly approximable linear forms can
still intersect in a subspace which is not definable using relatively badly approximable
forms. A one dimensional realization of this fact is the famous theorem of Marshall
Hall [21, Theorem 3.2], which implies that every non-zero real number can be written
as a product of two badly approximable numbers. This provides the basis for the
following example with k = 4 and d = 2, the smallest possible choices of k and d for
which ‘cubical LR but canonical not’ can occur.

Lemma 4.5. Suppose that α and β are positive badly approximable real numbers
with the property that

inf
n∈N

n ·
{

5αβ

2
n

}
= 0. (4.2)

If E is the two dimensional subspace of R4 defined by

E = {(x,−(2/5)x1 − αx2,−β(x1 + (5/2)x2)) : x ∈ R2},
then every cubical cut and project set defined using E is LR, but no canonical cut
and project sets defined using E are LR.

Proof. First of all we remark that, by a general version of Khintchine’s Theorem (see
[32, Theorem 1]), almost every real number γ has the property that

inf
n∈N

n{nγ} = 0.
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For such a γ, it follows from Hall’s Theorem that there are badly approximable α
and β satisfying 5αβ/2 = γ, and therefore (assuming γ > 0) the hypotheses of the
lemma.

It is easy to see that E is totally irrational and that cubical and canonical cut
and project sets formed using E will be aperiodic. By Theorem 1.1, cubical cut and
project sets formed using E will be LR.

The canonical window in Fρ is an octagon which includes, on its boundary, the
line segment from e4 to (2/5)e3 + (1 + β)e4. Each integer n ∈ Z4 acts on this line
segment, moving it to a line segment which we denote by `n. The initial point of `n
is the point

((2/5)n1 + αn2 + n3, βn1 + (5β/2)n2 + 1 + n4)

in the e3e4-plane. For any choice of n2, n3, and n4, there is a unique choice of n1 with
the property that `n intersects the line e3 + Re4, and it is clear that |n1| is bounded
above by a constant (depending at most on α and β) times the maximum of |n2|, |n3|,
and |n4|. The intersection point just described is e3 + ye4, where y = y(n2, n3, n4) is
given by

y =
−5αβ

2
n2 + 1 + n4 +

5β

2
(1 + n2 − n3).

Since (4.2) is satisfied, for any ε > 0 there is a number r > 1 and integers n2 and n4

with |n2|, |n4| ≤ r, such that∣∣∣∣5αβ2
n2 − (1 + n4) + 1

∣∣∣∣ < ε

r
.

For such a choice of n2 and n4, and with n1 selected as above, we take n3 = 1 + n2.
Then the line segment `n, together with the lines e4 + Re3 and e3 + Re4, bound a
triangle of area � εr−2. Such a triangle bounds an acceptance domain for a patch
of radius� r of the canonical cut and project set, using analogous arguments to the
proof of Lemma 2.5 (see also [24]). Since this means that the frequency of such a
patch is � εr−2 and ε can be taken arbitrarily small, the resulting cut and project
set cannot be LR. �

5. Hausdorff dimension results

In this section we will prove Corollary 2.1. Our proof of Theorem 1.1 demonstrates
how, to each LR cubical cut and project set, we may associate a subgroup Λ 6 Zd
of finite index, with decomposition

Λ = Λ1 + · · ·+ Λk−d,

so that each Li is badly approximable, when viewed as a linear form in mi variables,
restricted to Λi. The first part of Corollary 2.1 clearly follows from the fact that the
integers mi ≥ 1 have sum equal to d.
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In the other direction, suppose that d ≥ k − d. If we start with k − d positive
integers mi, with sum equal to d, and a collection of badly approximable linear forms
Li : Rmi → R then, thinking of

Rd = Rm1 + · · ·+ Rmk−d ,

any cubical cut and project set arising from the subspace

E = {(x, L1(x), . . . , Lk−d(x)) : x ∈ Rd}
is LR, by the proof of Theorem 1.1. It follows that the collection of {αij} ∈ Rd(k−d)

which define LR cubical cut and project sets is a countable union (over all allowable
choices of Λi above) of sets of Lebesgue measure 0 and Hausdorff dimension at most

dimBm1,1 + · · ·+ dimBmk−d,1 = m1 + · · ·+mk−d = d.

Since the cubical cut and project sets corresponding to Λi = Zmi are all LR, the
Hausdorff dimension of this set is equal to d.

The part of Corollary 2.1 about canonical cut and project sets follows from the
same arguments just given, together with Proposition 4.2.

6. Examples

6.1. Explicit examples for all d ≥ k− d. For d ≥ k/2 it is easy to give examples
of subspaces E satisfying the hypotheses of Theorem 1.1. Write d = m1 + · · ·+mk−d,
with positive integers mi, and for each i let Ki be an algebraic number field, of degree
mi + 1 over Q. Suppose that the numbers 1, αi1, . . . , αimi

form a Q-basis for Ki, and
define Li : Rmi → R to be the linear form with coefficients αi1, . . . , αimi

. Then, using
the decomposition Rd = Rm1 + · · ·+ Rmk−d , let

E = {(x, L1(x), . . . , Lk−d(x)) : x ∈ Rd}.
The collection of points

{(L1(n), . . . , Lk−d(n)) : n ∈ Zd}
is dense in Rk−d/Zk−d, and it follows from this that the subspace E is totally irra-
tional. The intersection of the kernels of the corresponding maps Li is {0}, so any
cubical cut and project set formed from E will be aperiodic. Condition (LR1) of
Theorem 1.1 is clearly satisfied. Furthermore, by a result of Perron [30], each of the
linear forms Li is badly approximable. Therefore (LR2) is also satisfied, and any
cubical cut and project set formed from E is LR. Furthermore, the hypotheses in
the second part of Proposition 4.2 are also satisfied, so any canonical cut and project
set formed using E is also LR.

6.2. Ammann–Beenker tilings. There are many situations in practice where one
would like to deal with specific examples of cut and project sets arising from canonical
windows. Our main theorem, as stated, does not appear to apply in this important
setting. However, we would like to indicate how the ideas in the proof can be easily
adapted to prove that many common examples of canonical cut and project sets in
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the literature are also LR. In very heuristic terms, in order for our proof of Theorem
1.1 to carry through, two observations are important: Firstly, that the connected
components of reg(r) are large, and secondly, that the collection of points L(Zr)
is dense, relative to how large the connected components are. After these two key
properties have been established, it is possible to appeal to the proof of [22, Lemma
3.1] and deduce LR. We will revisit these key ideas below, where we sketch how they
can be applied to Ammann–Beenker and Penrose tilings.

In this subsection we will consider the cut and project set which gives rise to
the Ammann-Beenker tiling, which is one of the simplest non-trivial examples that
illustrates the types of issues which can arise. In the next subsection we consider
a 5 to 2 cut and project set corresponding to a Penrose tiling, with the purpose of
demonstrating the changes needed in order to accommodate a non-totally irrational
physical space. The fact that both of these point sets are LR is not a new result,
but our purpose is to indicate how our machinery (which applies in many situations
in which previously used techniques do not) can be used to prove this, in a setting
which is hopefully familiar to the reader. For illustrations of these sets and the
window which defines Ammann–Beenker tiling see [5, Figure 6.41 and 6.44] and [24,
Figure 4].

Collections of vertices of Ammann–Beenker tilings can be obtained as canonical
cut and project sets, using the two dimensional subspace E of R2 defined by

E = {(x, L1(x), L2(x)) : x ∈ R2},

with

L1(x) =

√
2

2
(x1 + x2) and L2(x) =

√
2

2
(x1 − x2).

Although we cannot directly appeal to either Theorem 1.1 or Proposition 4.2, we will
explain how the machinery we have developed can be used to easily show that these
sets are LR. The canonical window W in Fρ is the regular octagon with vertices at(

1 +
√

2

2
± 1 +

√
2

2
,

1

2
± 1

2

)
and

(
1 +
√

2

2
± 1

2
,

1

2
± 1 +

√
2

2

)
.

By the proof of [22, Lemma 3.1], every patch of size r corresponds (in the sense of
the statement of Lemma 2.5) to a finite collection of connected components of reg(r).
Therefore to demonstrate that a canonical cut and project set formed using E is LR,
it is enough to show that the there is a constant C > 0 with the property that, for
all sufficiently large r, the orbit of any regular point w ∈ Fρ, under the action of the
collection of integers

ρ−1(CrΩ) ∩ Zk,
intersects every connected component of reg(r).

We claim that every connected component of reg(r) contains a square with side
length � r−1. This follows from elementary considerations, by writing down the
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equations of the line segments that form the boundary of W , considering the action
of

−ρ−1(rΩ) ∩ Zk

on these line segments, and then computing all possible intersection points. Since all
of our algebraic operations take place in the field Q(

√
2), it is not difficult to show

that every connected component of reg(r) must contain a right isosceles triangle of
side length � r−1. The claim about squares follows immediately.

Finally, the linear forms L1 and L2 are relatively badly approximable, and the
sum of the ranks of L1 and L2 is equal to 2. Therefore our study of the orbits of
points towards the end of the proof of Theorem 1.1 applies as before, allowing us
to conclude that the Cr-orbit of any regular point in Fρ intersects every connected
component of reg(r).

6.3. Penrose tilings. This example is similar to the previous one, but it also gives
an indication of how to apply our techniques in cases when the physical space is not
totally irrational. Let ζ = exp(2πi/5) and let Y be a canonical cut and project set
defined using the two dimensional subspace E of R5 generated by the vectors

(1,Re(ζ),Re(ζ2),Re(ζ3),Re(ζ4))

and
(0, Im(ζ), Im(ζ2), Im(ζ3), Im(ζ4)).

Well known results of de Bruijn [12] and Robinson [31] show that the set Y is the
image under a linear transformation of the collection of vertices of a Penrose tiling,
and in fact that all Penrose tilings can be obtained in a similar way from cut and
project sets. The fact that Y is LR can be deduced directly from the definition of
the Penrose tiling as a primitive substitution. However, as in the previous example,
we will indicate how to prove this starting from the definition of Y as a cut and
project set.

The subspace E is contained in the rational subspace orthogonal to (1, 1, 1, 1, 1).
In this case Theorem 1.1 does not apply directly, but the proof in Section 3 is still
robust enough to allow us to draw the desired conclusions. Set

α1 = cos(2π/5), α2 = cos(4π/5), β1 = sin(2π/5), and β2 = sin(4π/5),

so that

E = {(x, xα1 + yβ1, xα2 + yβ2, xα2 − yβ2, xα1 − yβ1) : x, y ∈ R}.
After making the change of variables x1 = x and x2 = xα1 + yβ1, we can write E as

E = {(x, L1(x), L2(x), L3(x)) : x = (x1, x2) ∈ R2}.
The functions Li are linear forms which (using the fact that 4α2

1 + 2α1 − 1 = 0) are
given by

L1(x) = −x1 + 2α1x2,

L2(x) = −2α1x1 − 2α1x2, and
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L3(x) = 2α1x1 − x2.

Write Li : Z2 → R/Z for the restriction of Li to Z2, modulo 1, and notice that
L1 + L2 + L3 = 0. This means that the orbit of 0 under the natural Z2-action of
E on Fρ/Z3 is contained in the two dimensional rational subtorus with equation
x + y + z = 0. The kernels of the forms Li are all rank 1 subgroups of Z2, and
it follows that the number of connected components of reg(r) which intersect the
rational subtorus is � r2.

Since the forms are linearly dependent, we can understand the orbit of a point
in Fρ/Z3 under the Z2-action by considering only the values of L1 and L3. In
other words, we can consider the projection of the problem onto the e1e3-plane.
Consider the intersection of a connected component of reg(r) with the subspace
x + y + z = 0. This is a two dimensional region, bounded by the intersections
of the subspace with translates (by the Z5 action) of the hyperplanes forming the
boundary of the canonical window. Computing the vertices of the region is an
operation which takes place in Q(

√
5). As in the previous example, this leads to

the conclusion that the intersection of any connected component of reg(r) with the
subspace x + y + z = 0, when projected to the e1e3-plane, contains a square of side
length � r−1. The remainder of the proof follows exactly as before, allowing us to
conclude that Y is LR.
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