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Abstract

Numerous approaches are proposed in the literature for non-stationarity marginal extreme value inference, including
different model parameterisations with respect to covariate, and different inference schemes. The objective of this
article is to compare some of these procedures critically. We generate sample realisations from generalised Pareto
distributions, the parameters of which are smooth functions of a single smooth periodic covariate, specified to reflect
the characteristics of actual samples from the tail of the distribution of significant wave height with direction, con-
sidered in the literature in the recent past. We estimate extreme values models (a) using Constant, Fourier, B-spline
and Gaussian Process parameterisations for the functional forms of generalised Pareto shape and (adjusted) scale
with respect to covariate and (b) maximum likelihood and Bayesian inference procedures. We evaluate the relative
quality of inferences by estimating return value distributions for the response corresponding to a time period of 10×
the (assumed) period of the original sample, and compare estimated return values distributions with the truth using
Kullback-Leibler, Cramer-von Mises and Kolmogorov-Smirnov statistics. We find that Spline and Gaussian Process
parameterisations estimated by Markov chain Monte Carlo inference using the mMALA algorithm, perform equally
well in terms of quality of inference and computational efficiency, and generally perform better than alternatives in
those respects.

Keywords: extreme, covariate, non-stationary, smoothing, non-parametric, spline, Gaussian process, mMALA,
Kullback-Leibler

1. Introduction

Accurate estimates of the likely extreme environmental loading on an offshore facility are vital to enable a design that
ensures the facility is both structurally reliable and economic. This involves estimating the extreme value behaviour
of meteorological and oceanographic (metocean) variables that quantify the various environmental loading quantities,
primarily winds, wave, and currents. Examples of such parameters are significant wave height, mean wind speed
and mean current speed. These characterise the environment for a given short period of time within which the
environment is assumed to be stationary.

The long-term variability of these parameters is however non-stationary, in particular with respect to time, space
and direction. From a temporal point of view metocean parameters generally have a strong seasonal variation, with
an annual periodicity, and longer term variations due to decadal or semi-decadal climate variations. At any given
location, the variability of a particular parameter is also dependent on the direction; for example, wind forcing is
typically stronger from some directions than others, and fetch and water depth effects can strongly influence the
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resulting magnitude of the waves. Clearly these effects will vary with location: a more exposed location will be
associated with longer fetches, resulting in a more extreme wave climate.

When estimating the long-term variability of parameters, such as significant wave height, the non-stationary effects
associated with e.g. direction and season can be incorporated by treating direction and season as covariates. The
common practice is to perform extreme value analysis of hindcast data sets, which include many years of metocean
parameters, along with their associated covariates. Such data sets have all the information needed for input to
covariate analysis.

From a design perspective, the metocean engineer is often required to specify return values for directional sectors
such as octants centred on the cardinal and semi-cardinal directions. These directional return value estimates must
be consistent with the estimated omnidirectional return value. In a similar manner, return values may be required
corresponding to particular seasons or months of the year, consistent with an all-year return value. Clearly, therefore,
efficient and reliable inference for non-stationary extremes is of considerable practical interest, requiring estimation
of (a) the rate and (b) the size of rare events. This work addresses the latter of these objectives.

A non-stationary extreme value model is generally superior to the alternative “partitioning” method sometimes
used within the ocean engineering community. In the partitioning method, the sample is partitioned into subsets
corresponding to approximately constant values of covariate(s); independent extreme value analysis is then performed
on each subset. For example, in the current work we might choose to partition the sample into directional octants,
and then estimate (8 independent stationary) extreme value models for each of the octants. There are two main
reasons for favouring a non-stationarity model over the partitioning method. Firstly, the partitioning approach
incurs a loss in statistical efficiency of estimation, since parameter estimates for subsets with similar covariate values
are estimated independently of one another, even though physical insight would require parameter estimates to be
similar. This problem worsens as the number of covariates and covariate subsets increases, and the sample size per
subset decreases as a result. In the non-stationary model, we require that parameter estimates corresponding to similar
values of covariates be similar, and optimise the degree of similarity during inference. For this reason, parameter
uncertainty from the non-stationary model is generally smaller than from the partitioning approach. Secondly, the
partitioning approach assumes that, within each subset, the sub-sample for extreme value modelling is homogeneous
with respect to covariates. In general it is difficult to estimate what effect this assumption might have on parameter
and return value estimates (especially when large intervals of values of covariates are combined into a subset). In the
non-stationary model, we avoid the need to make this assumption.

Numerous articles have reported the essential features of extreme value analysis (e.g. Davison and Smith 1990)
and the importance of considering different aspects of covariate effects (e.g. Northrop et al. 2016). Carter and
Challenor (1981) considers estimation of annual maxima from monthly data, when the distribution functions of
monthly extremes are known. Coles and Walshaw (1994) describes directional modelling of extreme wind speeds
using a Fourier parameterisation. Scotto and Guedes-Soares (2000) models the long-term time series of significant
wave height with non-linear threshold models. Anderson et al. (2001) reports that estimates for 100-year significant
wave height from an extreme value model ignoring seasonality are considerably smaller than those obtained using
a number of different seasonal extreme value models. Chavez-Demoulin and Embrechts (2006) describes smooth
extreme value models in finance and insurance. Chavez-Demoulin and Davison (2005) provides a straight-forward
description of a nonhomogeneous Poisson model in which occurrence rates and extreme value properties are modelled
as functions of covariates. Cooley et al. (2006) uses a Bayesian hierarchical model to characterise extremes of lichen
growth. Renard et al. (2006) considers identification of changes in peaks over threshold using Bayesian inference.
Fawcett and Walshaw (2006) uses a hierarchical model to identify location and seasonal effects in marginal densities
of hourly maxima for wind speed. Mendez et al. (2008) considers seasonal non-stationarity in extremes of NOAA
buoy records. Randell et al. (2015a) discusses estimation for return values for significant wave height in the South
China Sea using a directional-seasonal extreme value model.

Randell et al. (2014) explores the directional characteristics of hindcast storm peak significant wave height with
direction for locations in the Gulf of Mexico, North-West Shelf of Australia, Northern North Sea, Southern North
Sea, South Atlantic Ocean, Alaska, South China Sea and West Africa. Figure 1 illustrates the essential features of
samples such as these. The rate and magnitude of occurrences of storm events vary considerably between locations,
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and with direction at each location. There are directional sectors with effectively no occurrences, there is evidence of
rapid changes in characteristics with direction and of local stationarity with direction. Any realistic model for such
samples needs to be non-stationary with respect to direction.

[Figure 1 about here.]

The objective of this article is to evaluate critically different procedures for estimating non-stationary extreme value
models. We quantify the extent to which extreme value analysis of samples of peaks over threshold exhibiting
clear non-stationarity with respect to covariates, such as those in Figure 1 or simulation case studies in Section 3
below, is influenced by a particular choice of model parameterisation or inference method. The 6 simulation case
studies introduced in Section 3 are constructed to reflect the general features of the samples in Figure 1, with the
advantage that the statistical characteristics of the case studies are known exactly, allowing objective evaluation
and comparison of competing methods of model parameterisation and inference. Our aim is that the results of this
study are generally informative about any application of non-stationary extreme value analysis. We generate sample
realisations from generalised Pareto distributions, the parameters of which are smooth functions of a single smooth
periodic covariate. Then we estimate extreme value models (a) using Constant, Fourier, B-spline and Gaussian
Process parameterisations for the functional forms of generalised Pareto parameters with respect to covariate and (b)
maximum likelihood and Bayesian inference procedures. We evaluate the relative quality of inferences by estimating
return value distributions for the response corresponding to a time period of 10× the (assumed) period of the original
sample, and compare estimated return values distributions with the truth using Kullback-Leibler (e.g. Perez-Cruz
2008), Cramer-von Mises (e.g. Anderson 1962) and Kolmogorov-Smirnov statistics. We cannot hope to compare all
possible parameterisations, but choose four parameterisations useful in our experience. Similarly, there are many
competing approaches for maximum likelihood and Bayesian inference, and general interest in understanding their
relative characteristics. For example, Smith and Naylor (1987) compares maximum likelihood and Bayesian inference
for the three-parameter Weibull distribution. In this work, we choose to compare frequentist penalised likelihood
maximisation (see Section 2.3) with two Markov chain Monte Carlo (MCMC) methods of different complexities. Non-
stationary model estimation is a growing field. There is a huge literature on still further possibilities for parametric
(e.g. Chebyshev, Legendre and other polynomial forms) and non-parametric (e.g. Gauss-Markov random fields and
radial basis functions) model parameterisations with respect to covariates. Moreover, in extreme value analysis,
pre-processing of a response to near stationarity (e.g. using a Box-Cox transformation) is preferred (e.g.

The outline of the paper is as follows. Section 2 outlines the different model parameterisations and inference schemes
under consideration. Section 3 describes underlying model forms used to generate samples for inference, outlines the
procedure for estimation of return value distributions and their comparison, and presents results of those comparisons.
Section 4 provides discussion and conclusions.

2. Estimating non-stationary extremes

Consider a random variable Y representing an environmental variable of interest such as significant wave height.
The characteristics of Y are dependent on covariates such as (wave) direction, season, location and fetch. In this
work we assume that a single periodic covariate θ (typically direction, or season) is sufficient to characterise the
non-stationarity of Y . That is, we assume that Y |θ has a stationary distribution. For exceedances Y − µ(θ) of some
high threshold µ(θ), extreme value theory suggest that the conditional distribution of Y − µ(θ) given that Y > µ(θ)
can be approximated by the generalised Pareto distribution

Pr (Y > y|Y > µ(θ)) =
1

σ(θ)

(
1 +

ξ(θ)

σ(θ)
(y − µ(θ))

)−1/ξ(θ)
.

For design purposes, return value distributions are typically estimated using peaks-over-threshold of significant wave
height. The characteristics of these peaks, each corresponding to a different storm event, vary typically with respect
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to wave direction. Conditional on wave direction, the peaks are reasonably assumed to be independent of one another.
To evaluate the relative performance of different approaches to non-stationary extreme value analysis, it is therefore
natural to use random simulation from generalised Pareto models with known directional characteristics.

2.1. Generalised Pareto model

We assume we observe a sample y = {y1, . . . , yN} of peaks over threshold drawn independently from a gener-
alised Pareto distribution, the parameters of which are functions of corresponding observed covariate values Θ =
{θ1, . . . , θN}. The sample likelihood is a product of generalised Pareto (GP) likelihoods for each of the observations

f (y|Θ, ξ, σ, µ) =

N∏
i=1

f (yi|ξ (θi) , σ (θi) , µ (θi) )

=
N∏
i=1

1

σ (θi)

(
1 + ξ (θi)

(yi − µ (θi) )

σ (θi)

)−1/ξ(θi)−1
where ξ (θ) and σ (θ) are the shape and scale parameters as functions of covariate. We do not attempt to estimate
the threshold function µ (θ) , assuming it is 0 for all covariate values. We also assume that the rate of occurrence
ρ (θ) of exceedances of µ varies with covariate, but that ρ (θ) is known (see Section 3.1). It is computationally
advantageous (e.g. Cox and Reid 1987, Chavez-Demoulin and Davison 2005) to transform variables from (ξ, σ) to
the asymptotically independent pair (ξ, ν), where ν (θ) = σ (θ) (1 + ξ (θ) ). Inference therefore amounts to estimating
the smooth functions ξ (θ) and ν (θ) , although we usually choose to illustrate the analysis in terms of ξ (θ) and
σ (θ) . In practical application, estimation of µ(θ) is itself generally also problematic (e.g. Scarrott and MacDonald
2012), particularly in the presence of non-stationarity (Northrop and Jonathan 2011), but as necessary for inference
as reliable estimation of ξ(θ) and σ(θ). We choose to focus on the latter in this work.

2.2. Covariate parameterisations

To accommodate non-stationarity, we parameterise ξ and ν as linear combinations of unknown parameters βξ and βν
respectively, where

ν (θ) = Bν (θ)βν , and ξ (θ) = Bξ (θ)βξ

and Bν (θ) and Bξ (θ) are row vectors of basis functions evaluated at θ. We consider four different forms of basis
function, corresponding to Constant (stationary), Fourier, Spline and Gaussian Process parameterisations for ξ (θ)
and ν (θ) , as described below.

Physical considerations suggest that we should expect GP model parameters to vary smoothly with covariate. In
general, the basis parameterisation introduced here permits estimation of functional forms for GP model parameters
which are too variable (or too rough) with respect to covariate. We therefore need a mechanism to restrict the
roughness of functional forms, such that their roughness is optimal given the evidence in the data. For each parame-
terisation, we therefore specify roughness matrices Qη (for η = ξ, ν) to regulate the roughness of η (θ) with respect
to θ during inference. This ensures that the elements of βη weight the individual basis functions in such a way that
the resulting estimate is optimally smooth in some sense. The form of the roughness penalty term Rη is 1

2ληβ
′
ηQηβη,

for some roughness coefficient λη. The penalty is incorporated directly within a penalised likelihood for maximum
likelihood inference, and within a prior distribution for βη in Bayesian inference, as described in Section 2.3.

Constant (stationary) parameterisation

In the Constant parameterisation, the values of ξ and ν do not vary with respect to θ. We therefore adopt a scalar basis
function which is constant across all values of covariate, so that Bν (θ) = Bξ (θ) = 1, and corresponding roughness
matrices Qν = Qξ = 1. We do not expect the return value distributions estimated under this parameterisation
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to fare well in general in our comparison, since samples are generated from non-stationary distributions. Quality
of fit is expected to be poor, at least in some intervals of covariate. However, many practitioners continue to use
stationary extreme value models, perhaps with high thresholds to mitigate non-stationarity, in applications; inclusion
of a stationary parameterisation provides a useful point of reference for comparison, therefore.

Spline parameterisation

Under a Spline parameterisation, the vector of basis functions for each of ν and ξ is made up of p local polynomial
B-spline functions with compact support, joined at a series of knots evenly spaced in the covariate domain (e.g. Eilers
and Marx 2010)

Bν (θ) = Bξ (θ) =
(
b1 (θ) · · · bp (θ)

)
.

We specify roughness matrices Qν = Qξ = DTD which penalise squared differences between adjacent elements of the
coefficient vectors, where

D =


−1 1 0 · · · 0
0 −1 1 0
...

. . .
...

0 0 0 · · · 1


is a (p − 1)× p difference matrix. In this work we set p to 50.

Fourier parameterisation

We use basis vectors composed of sine and cosine functions of np different periods

Bν (θ) = Bξ (θ) =
(
1 sin (θ) sin (2θ) · · · sin (npθ) cos (θ) · · · cos (npθ)

)
.

The roughness matrix is computed by imposing a condition on the squared second derivative of the resulting parameter
function. If we write

η(θ) =

np∑
k=1

(aηk cos (kθ) + bηk sin (kθ))

where η = ξ or ν, and aηk and bηk are the parameters from βη corresponding respectively to the sine and cosine
functions of period k. The roughness criterion (from Jonathan et al. 2013) becomes

Rη =

∫ 2π

0
(η′′(θ))2dθ =

np∑
k=1

k4(a2ηk + b2ηk)

such that the penalty matrix can be written in matrix form as

Qη = diag
(
0, 1, 24, . . . , k4, . . . , np

4, 1, 24, . . . , k4, . . . , np
4
)

for the p = 2np + 1 Fourier parameters (aη0, aη1, . . . , aηnp , bη1, . . . , bηnp). In this work, we set the value of np to 25 so
that p = 51.

Gaussian Process parameterisation

For a set of p nodes {θ̂1, θ̂2, . . . , θ̂p} on the covariate domain, we use a Gaussian Process parameterisation (Rasmussen
and Williams, 2006) , and relate each covariate input to a knot using the following basis vectors

Bν (θ) = Bξ (θ) =
(
I1 (θ) · · · Ip (θ)

)
where the indicator functions Ij (.) are defined as

Ij (θ) =

{
1 if |θ − θ̂j | < |θ − θ̂k| ∀k 6= j

0 otherwise .
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Roughness matrices Qη (where η = ν, ξ) are defined by the coefficient correlation matrix Vη via Qη = V −1η , and the
elements of Vη generated by a periodic squared exponential covariance function (MacKay, 1998)

Vηjk = exp

− 2

r2η
sin

(
θ̂j − θ̂k

2

)2


where rη are correlation lengths for each of the parameters, fixed to likely values by comparison with the covariate
functions used to generate the data; a value of rη for 0.6 was used throughout. V −1η penalises on the angular difference

between the jth and kth nodes, reducing in value from exp(0) at angular difference zero to exp(−2/r2η) at angular
difference 180◦. Estimating the Gaussian Process parameterisation on the partitioned covariate domain, as opposed
to fitting it to each of the data inputs, greatly reduces the number of parameters to estimate, and is physically
reasonable provided that p is sufficiently large. In this work, we use p = 50 equally-spaced nodes. Estimating a
parameter for each data point would have made the computational burden for the Gaussian Process parameterisation
significantly greater than that for any of the other parameterisations. For example, computations with roughness
matrix Qη (of dimension p × p on the partitioned covariate domain) are more efficient that those using the N × N
version of Qη (N ≈ 1000) defined per data input.

Model complexity

We assume it is known from physical considerations that the extremal characteristics of the environmental variable
of interest (e.g. significant wave height) vary smoothly with directional covariate. Specifically, we expect the form
for the tail of the distribution to be homogeneous within a narrow directional sector of width ≈ 10◦. This in turn
suggests a suitable minimum complexity for the non-stationary model parameterisations considered in this work. For
the Spline parameterisation, we set p = 50 corresponding to 50 spline basis functions equally spaced on [0, 360), with
a distance between peaks of adjacent spline basis functions of 7.2◦. We estimate the Gaussian Process on a regular
partition of the covariate domain into p = 50 bins; the distance between the centres of adjacent bins is again 7.2◦.
For the Fourier parameterisation, we use a Fourier order of np = 25 (and p = 51), such that half a wavelength of the
highest frequency Fourier component again corresponds to 7.2◦. In this way, we expect the directional resolution of
these three model parameterisations to be comparable. Similarly, the number p of basis coefficients to be estimated
in each of the three parameterisations is comparable. In this way, we hope to focus fairly in the analysis below on
the different inferential challenges presented by Spline, Fourier and Gaussian Process parameterisations and different
estimation schemes for problems of comparable complexity. The stationary Constant parameterisation is clearly less
complex (with p = 1), but a useful baseline for comparison: we expect inferences from the Constant parameterisation
to be relatively poor, and therefore make obvious the need to consider non-stationarity.

2.3. Inference procedures

We consider two methods for estimating parameters and return value distributions for the models and parame-
terisations described above, namely (a) maximum penalised likelihood estimation with bootstrapping to quantify
uncertainties, and (b) (two forms of) Bayesian inference using Markov Chain Monte Carlo (MCMC). These are
discussed below.

Maximum likelihood estimation

We use an iterative back-fitting optimisation (see Appendix) to minimise the penalised negative log likelihood
−L∗ (y|βξ , βν ;λξ , λν) with respect to βξ and βν for given roughness coefficients λξ and λν , where

−L∗ (y|βξ , βν ;λξ , λν) = −L (y|βξ , βν) +Rξ +Rν

= −L (y|βξ , βν) +
1

2
λξβ

′
ξQξβξ +

1

2
λνβ

′
νQνβν .

Here, −L (y|βξ , βν) is the negative log sample GP likelihood from Section 2.1 expressed as a function of ξ and
ν, and Rξ and Rν are additive roughness penalties. The values of λξ and λν are selected using cross-validation
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to maximise the predictive performance of the estimated model, and bootstrap resampling is used to quantify the
uncertainty of parameter estimates. The original sample is resampled with replacement a large number of times, and
inference repeated for each resample. We use the empirical distributions of parameter estimates and return values
over resamples as approximate uncertainty distributions.

We refer readers interested in further information on penalised likelihood methods to the work of Green and Silverman
(1994), Davison (2003), Ruppert et al. (2003), Eilers and Marx (2010), outlined in applications to metocean by
Jonathan and Ewans (2013).

Bayesian inference

From a Bayesian perspective, all of βξ , βν , λξ and λν are treated as parameters to be estimated. Their joint posterior
distribution given sample responses y and covariates Θ can be written

f (βξ , βν , λξ , λν |y,Θ) ∝ f (y|Θ, ξ, σ, µ) f (βν |λν) f (βξ |λξ) f (λν |aν , bν) f (λξ |aξ , bξ)

where f (y|Θ, ξ, σ, µ) is the sample GP likelihood from Section 2.1 and prior distributions f (βν |λν) , f (βξ |λξ) ,
f (λν |aν , bν) and f (λξ |aξ , bξ) are specified as follows. Parameter smoothness of GP shape and (modified) scale
functions is encoded by adopting Gaussian priors for their vectors βη of basis coefficients (for η = ξ, ν), expressed in
terms of parameter roughness Rη

f (βη|λη) ∝ λ1/2η exp

(
− λη

2
βTη Qηβη

)
.

The roughness coefficient λη can be seen, from a Bayesian perspective, as a parameter precision for βη. It is assigned
a Gamma prior distribution, which is conjugate with the prior Gaussian distribution for βη. The values of hyper-
parameters are set such that Gamma priors are relatively uninformative; aη and bη takes values of 10−3 throughout
this study for all parameterisations. The Bayesian inference can be illustrated by the directed acyclic graph show in
Figure 2.

[Figure 2 about here.]

Estimates for βξ , βν , λξ and λν are obtained by sampling the posterior distribution above using MCMC. We choose to
adopt a Metropolis-within-Gibbs framework (e.g. Gamerman and Lopes 2006), where each of the four parameters is
sampled in turn conditionally on the values of others. The full conditional distributions λξ |βξ and λν |βν of precision
parameters are Gamma by conjugacy, and are sampled exactly in a Gibbs step. Full conditional distributions for
coefficients βξ and βν are not available in closed form; a more general Metropolis-Hastings (MH) scheme must therefore
be used.

There are a number of potential alternative strategies regarding the MH step for βη (η = ξ, ν). We choose to
examine two possibilities: (a) a straightforward MH sampling of correlated Gaussian proposals for βη, and (b) the
mMALA algorithm of Girolami and Calderhead (2011), exploiting first- and second-derivative information from the
log posterior to propose candidate values for the full vector of coefficients in high-probability regions. Implementations
are described in the Appendix. Henceforth we refer to these two schemes as MH and mMALA respectively for brevity.
The MH approach is simple to implement, but is likely to generate MCMC chains which mix relatively poorly. The
mMALA scheme is expected to explore the posterior with considerably higher efficiency; however, its implementation
requires knowledge of likelihood derivatives.

Comparing uncertainties

Parameter uncertainty is estimated by bootstrap resampling for ML inference and by sampling from the posterior
distribution of parameters for Bayesian inference. These two approaches seek to estimate parameter uncertainty, but
in different ways. Since Bayesian priors are chosen to be relatively uninformative, we expect - at least naively - that
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inferences concerning parameter estimates and return value distributions from the two approaches will be similar,
but not the same. In general, the relationship between bootstrap uncertainty estimates and those from Bayesian
inference is complex, and an open topic in the literature (e.g. Fushiki et al. 2005). A thorough theoretical analysis of
this relationship in the current application is beyond the scope of the current work.

3. Evaluation of methods

This section describes evaluation of relative performance of different model parameterisations and inference schemes
introduced in Sections 2.2 and 2.3. We assess performance in terms of quality of estimation of distributions of return
values corresponding to long return periods, estimated under models for large numbers of replicate samples of data
from pre-specified underlying models.

We simulate 100 sample realisations, each of size 1000 from three different underlying models, described below and
referred to henceforth as Cases 1, 2 and 3, and further simulate 100 sample realisations of size 5000 from the same
triplet of underlying models, referring to these as Cases 4, 5 and 6 respectively. We next estimate extreme value
models for all sample realisations, model parameterisations and inference schemes. We assume that any sample
realisation (for any Case) corresponds to a period T years of observation. We then simulate 1000 replicates of return
period realisations, each replicate consisting of observations of directional extreme values corresponding to a return
period of 10×T , and estimate the distribution of the maximum observed (the 10T -year maximum return value) for all
model parameterisations and inference methods, by accumulation from the 1000 replicates. Return value simulations
under models estimated using Bayesian inference proceed by sampling a different vector of model parameter estimates
at random from the estimated joint posterior distribution of parameters and simulating the appropriate return period
of events from the corresponding distribution, for each of the 1000 replicates. For ML inference, for each replicate,
we sample the vector of model parameter estimates at random from a set of 100 parameter estimate vectors of
generated by the bootstrap analysis. Return value distributions are estimated omnidirectionally (that is, including
all directions) and for 8 directional octants centred on the cardinal and semi-cardinal directions (by considering
only those observations from the return period realisation with the appropriate directional characteristics). For each
sample realisation from Cases 4, 5 and 6, we estimate return value distributions for all parameterisations but for only
mMALA inference, since as will be discussed in Section 3.3 below, the computational effort associated with any of
mMALA, MH and MLE (with bootstrap resampling) for these Cases is large.

We quantify the quality of return value inference by comparing the empirical cumulative distribution function gener-
ated under the fitted model for each sample realisation with that from simulation under the known underlying Case.
We quantify the discrepancy between empirical distribution functions by estimating Kullback-Leibler, Cramer-von
Mises and Kolmogorov-Smirnov statistics. We visualise relative performance by plotting the empirical cumulative
distribution function of the test statistic over the 100 sample realisations, for each combination of Case, model param-
eterisation and inference method. We also compare performance in terms of prediction of the 37.5th percentile of the
10T -year return value distribution, since this is often used in metocean and coastal design applications; it corresponds
approximately to the location of the mode of a Weibull distribution with shape parameter ≈ 2. However, we are
not only interested in quality of inference, but also in computational efficiency. This is evaluated and illustrated in
Section 3.3.

To complete the full analysis described here, comprised of 100 random samples of each of 6 Cases, required running
3 dedicated workstations (exploiting each of 48 cores and 196GB RAM per workstation) for approximately 10 weeks.
All assessments of return value distributions, in terms of e.g. Kullback-Leibler divergence or a central percentile,
are therefore based on 100 independent estimates per Case. We note that the precision with which the median and
quartiles of the distribution of Kullback-Leibler divergence, or the distribution of a central percentile (or is bias), is
therefore considerably higher than that with which extreme quantiles are estimated.

In practical application to metocean design using a sample of measured or hindcast significant wave height data, for
example, it is critical to demonstrate that an iterative simulation algorithm such as MH or mMALA has produced
a chain which has itself converged to the stationary distribution, and whether that distribution has been adequately
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explored. This can be achieved, for example, by comparing inferences from multiple independent chains (e.g. Brooks
and Gelman 1998). This diagnosis is critical to such applications, and is the main evidence that MCMC inference is
valid. In the current work, visual inspection of trace plots was used to confirm that an adequate period of burn-in
had been specified for all combinations of parameterisation and inference scheme. However since the underlying true
models are known, we choose to use comparison with the truth as the basis to assess the relative performance of
different model parameterisations and inference schemes. The finding of this work is that mMALA as implemented
here behaves more reasonably as a default approach to inference (requiring less user intervention and fine tuning)
than MH. There is no doubt that chain convergence diagnostics would have indicated this also, and might also have
prompted refinement of the MH scheme in particular to improve its performance.

3.1. Case studies considered

First, we describe model Cases 1-6 used to generate sample realisations for extreme value modelling. For each Case,
potentially all of Poisson rate ρ of threshold exceedance, GP shape ξ and scale σ of exceedance size vary as a function
of covariate θ. The extreme value threshold µ is fixed at zero throughout.

Case 1. : For extreme value threshold µ (θ) = 0, we simulate 1000 observations with a uniform Poisson rate ρ (θ) =
1000/360 per degree covariate, and a low order Fourier parameterisation of GP shape ξ (θ) = sin (θ) + cos (2θ) + 2
and scale σ (θ) = −0.2 + (sin (θ − 30))/10.

Case 2. : For extreme value threshold µ (θ) = 0 and the same Fourier parameterisation of GP shape and scale as in
Case 1, a non-uniform Poisson rate ρ (θ) = max ( sin (θ) + 1.1, 0)×1000/cρ, where cρ =

∫ 360
0 max ( sin (θ) + 1.1, 0) dθ

is used to simulate 1000 observations.

Case 3. : For extreme value threshold µ (θ) = 0, the forms of each of ρ (θ) , ξ (θ) and σ (θ) are defined by mixtures
of between one and five Gaussian densities, as illustrated in Figure 3. Sample size is 1000.

Cases 4, 5 and 6. : These cases are identical to Cases 1, 2 and 3 respectively, except that Poisson rate ρ is increased
by a factor of five. Sample size is therefore 5000.

Figure 3 illustrates typical sample realisations of Cases 1, 2 and 3. Parameter variation of GP shape ξ and scale σ
with direction θ are identical in Cases 1 and 2. Poisson rate ρ is constant in Case 1 only. In Cases 2 and 3, ρ is
very small at θ ≈ 270◦ leading to a sparsity of corresponding observations. ξ is largest (but negative) at θ ≈ 120◦

for Cases 1 and 2, leading to larger observations here. For Case 3, ξ is largest (and positive) at θ ≈ 30◦ leading to
the heaviest tail in any of the Cases considered. Figure 4 shows parameter estimates for ξ and σ, corresponding to
the sample realisation of Case 2 shown in Figure 3, for different model parameterisations using mMALA inference.
Visual inspection suggests that estimates of similar quality are obtained using all of Spline, Fourier and Gaussian
Process parameterisations, but that the Constant parameterisation is poor. It is also apparent that identification of ξ
is more difficult than σ. Corresponding plots (not shown) for maximum likelihood and Metropolis-Hastings inference
show broadly similar characteristics, as do plots for other realisations of the same Case, and realisations of different
Cases. (Posterior) cumulative distribution functions of return values based on models for the sample realisations of
Case 2 illustrated in Figures 3 and 4, corresponding to a return period of ten times the period of the original sample,
are shown in Figure 5 for different model parameterisations and mMALA inference.

It can be seen omnidirectionally that the Constant parameterisation provides best agreement with the known return
value distribution, despite the fact that parameter estimates in Figure 4 do not reflect the directional non-stationarity
present. In Jonathan et al. (2008), it is demonstrated that a stationary extreme value model may produce good
estimates for omni-directional return value distributions in at least two situations. Firstly, when the extreme value
threshold is set sufficiently high that only observations from the most extreme interval of the covariate domain are
modelled, therefore threshold exceedances and estimated models will be effectively stationary. Secondly, it may be
that different bias effects introduced by the stationarity assumption compensate for each other in estimation of return
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values at a certain return levels. For example, with reference to the sample illustrated in Figure 4, the constant model
underestimates the value of GP shape in general, but does a relatively good job of identifying the maximum values
of shape and scale in directions around 120◦. The constant model does a very poor job for directions around 270◦.
The uncertainty in parameter estimates from the constant model is also lower since the number of parameters to
estimate is lower for that model. Reference to Figure 3 for Case 2 shows also that the rate of occurrence of threshold
exceedances is larger for directions where the constant model performs well. These characteristics are reflected in
the corresponding return value estimates in Figure 5. For directional octants, the constant model does relatively well
for directions around 120◦, but very poorly around 270◦. However, the omnidirectional estimate is dominated by
directions around 120◦. The relatively good performance of the directional model around 120◦, together with the large
rate of occurrence of events there and the relatively small parameter uncertainties for the constant model, result in
its providing good estimation (in this case) of the omnidirectional return value. This occurs despite the fact that the
directional bias of the constant model is greater than that of any of the non-stationary models. In general however, it
is not possible to know a priori how a constant model will perform in estimating the omnidirectional value. It is clear
however that its directional bias will be larger than that of an appropriate directional model. Reference to Figure 9
below, assuming that mMALA provides more satisfactory inference as implemented here, suggests that values of KL
divergence are somewhat larger and more variable for the constant model compared to the Spline or Gaussian process
parameterisations. Reference to Figure 10 shows that the Constant model does very poorly for certain directional
sectors. Omnidirectionally, and for 8 directional octant sectors, non-stationary model parameterisations perform
similarly. However, it is clear that the Constant parameterisation does particularly poorly for the western and north-
western sectors, for which the rate of occurrence of events is relatively low, and both ξ and σ are near their minimum
values. Figure 6 illustrates uncertainty (over all 100 sample realisations) in the cumulative distribution function of
return value for Case 2, corresponding to a return period of ten times the period of the original sample, using the
Spline parameterisation and mMALA inference. The median estimate for the return value distribution (over all 100
sample realisations of Case 2) is shown in solid grey, with corresponding point-wise 95% uncertainty band in dashed
grey. The true return value distribution is given in solid black. There is good agreement in all sectors. We explore
differences in inferences for return value distributions more fully in Section 3.2.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

3.2. Assessing quality of inference

The criteria used to compare distributions of return values are now described. Since, for comparison only, we
only have access to samples from distributions, where necessary we project empirical distributions onto a linear
grid using linear interpolation, and evaluate grid-based approximations to facilitate comparison. Then we compare
empirical return value distributions using each of the following three statistics. The Kolmogorov-Smirnov criterion
compares two distributions in terms of the maximum vertical distance between cumulative distribution functions,
as Dks (F0, F1) = supx |F1 (x) − F0 (x) | . The Cramer-von Mises criterion evaluates the average squared difference
of one distribution from a second, reference distribution, using Dcm (F0, F1) =

∫∞
−∞ (F1 (x) − F0 (x) )2 f0 (x) dx.

The Kullback-Leibler divergence compares distributions using the average ratio of logarithms of density functions

Dkl (F0, F1) =
∫∞
−∞ log

(
f0(x)
f1(x)

)
f0 (x) dx; in this work, we use the approximation of Perez-Cruz (2008). The general

characteristics of differences in return value inference due to model parameterisation and inference method were found
to be similar for each of the three statistics. Only comparisons using Kullback-Leibler (KL) divergence are therefore
reported here. We note that perfect agreement between f1 (x) and f0 (x) yields a minimum KL divergence of zero.
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For illustration, Figure 7 shows empirical cumulative distribution functions for the KL divergence between return value
distributions (corresponding to a return period of ten times that the original sample) estimated under the true model
and those estimated under models of sample realisations with different parameterisations and mMALA inference for
Case 2. The distributions of KL divergence from all non-stationary model parameterisations appear to be very similar,
as might be expected from consideration of figures similar to Figure 5. However, the Constant model yields the best
performance omnidirectionally in this case (since the corresponding distribution of KL divergence is shifted towards
zero). In stark contrast, the Constant model does particularly badly in the eastern, south-western, western and north-
western sectors. Figure 8 gives empirical cumulative distribution functions of the KL divergence between return value
distributions (corresponding to a return period of ten times that of the original sample) estimated under the true
return value distribution and those estimated under models of sample realisations with Spline parameterisations and
different inference procedures for the same Case. There appears to be little to choose between mMALA and MLE
inference methods for this Case, with MH somewhat poorer.

Figure 9 summarises the characteristics of distributions for KL divergence corresponding to the omnidirectional
return value distribution for all Cases, model parameterisations and inference methods considered in this work. In
general, we note that all non-stationary parameterisations perform well with mMALA inference. With MH inference,
performance is generally poorer, especially for Fourier parameterisation. MLE does better than MH. We note that
the Constant parameterisation generally performs well for the omnidirectional return value, but there is some erratic
behaviour, notably for Case 4. Figure 10 is the corresponding plot for the (generally sparsely populated) western
directional sector. The Spline and Fourier parameterisations with mMALA inference perform best. We note that
the Fourier parameterisation does less well using MH and MLE, and that the Constant parameterisation behaves
very erratically. We also note that, somewhat surprisingly, the Gaussian Process model performs considerably less
well than the Spline and Fourier parameterisations. We surmise that this is due to mean-reversion in the absence of
observations, compared with the other parameterisations which prefer interpolation to reduce parameter roughness.
We note that the Constant parameterisation also performs badly for Case 4.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

From a practitioner’s perspective, it is also interesting to quantify the performance of different model parameterisations
and inference methods in estimating some central value (e.g. the mean, median, of 37.5th percentile) of the distribution
of the return value. We choose the 37.5th percentile, since this percentile is near the mode of the distribution, and
commonly used in the met-ocean community.

Figure 11 illustrates this comparison in terms of a box-whisker plot. In each panel, the true value, estimated by
simulation under the true model, is shown as a black disc. The distribution of estimates from 100 different sample
realisations of each Case is summarised by the median (white disc with black central dot), the interquartile range
(grey rectangular box) and the (2.5%, 97.5%) interval (grey line).

The performance of non-stationary parameterisations with mMALA is good, with the possible exception of Case 3
(and Case 6); yet MH inference tends to produce greater bias and variability in estimates of the 37.5th percentile. We
may surmise that this difference may be due to the fact that mMALA exploits knowledge of likelihood gradient and
curvature. The Constant model again performs more erratically. Corresponding box-whisker plots for the eastern
directional octant (not shown) show similar characteristics: for a given inference scheme, all non-stationary models
yield similar performance, but the Constant model overestimates throughout. It is interesting that MLE shows some
bias in return value estimation for the omnidirectional 37.5th percentile, but this is not the case in general. True

11



values of the 37.5th percentile for the western sector (see Figure 12) are considerably lower than for the eastern sector,
and lower again than the omnidirectional values. In this sector, the rate of occurrences of events is generally lower
in all cases. Nevertheless, Figure 12 has many similar features to Figure 11. However, we note that MH struggles
in combination with the Fourier parameterisation, probably since the latter has the whole of the covariate domain
as its support; intelligent proposals (like those used here in MLE and mMALA) are necessary. Estimates using the
Constant model are erratic. Overall, we note that MLE and mMALA inference for all of Spline, Fourier and Gaussian
Process parameterisations perform relatively well, and equally well.

[Figure 11 about here.]

[Figure 12 about here.]

3.3. Assessing efficiency of inference

The effective sample size (m∗, e.g. Geyer 1992) gives an estimate of the equivalent number of independent iterations
that a Markov chain Monte Carlo represents, and is defined by m∗ = m/(1 + 2

∑∞
k=1 ck), where ck is the autocorre-

lation of the MCMC chain at lag k, and m is the actual chain length. The effective sample size per hour is defined
by m∗/T , where T is the elapsed computational time (in hours) for m steps of the chain. For maximum likelihood
inference with bootstrap uncertainty estimation, since bootstrap resamples are independent of one another, we esti-
mate effective sample size per hour as mBS/T where mBS is the number of bootstrap resamples used and T is now
the total elapsed computational time (in hours) to execute analysis of the mBS bootstrap resamples. Comparison
of effective sample sizes per hour for different cases, parameterisations and inference methods gives some indication
of relative computational efficiency, although objective comparison is difficult. In particular we note that software
implementations in MATLAB exploiting common computational structures between different approaches have been
used; these are almost certainly to the detriment of computational efficiency for some of the approaches, particulary
the Constant parameterisation. For this reason, we do not report effective sample size per hour for the Constant pa-
rameterisation. Computational run-times are also of course critically dependent on software and hardware resources
used. We note that the focus of this work is primarily quality of inference, rather than its computational efficiency.
Specific modelling choices, such as the set-up of the cross-validation strategy adopted for MLE and choice of burn-in
length and proposal step-size for MH and mMALA within reasonable bounds may not influence inferences greatly, but
will obviously however affect run times. Similarly the Spline, Fourier and Gaussian Process parameterisations used
were chosen to be of similar complexity, but small differences may again influence relative computational efficiency of
inference. With these caveats in mind, Figure 13 illustrates the distribution of estimated effective sample size (ESS),
and effective sample size per hour (ESS/hr) for different cases, model parameterisations and inference procedures.

The left hand side of Figure 12 illustrates log10(ESS) for all combinations of parameterisations and inference schemes.
For MLE inference, we choose to report the number of bootstrap resamples used, as described in Section 3. The
effective sample sizes for mMALA inference are considerably larger than for MH for B-spline and Fourier param-
eterisations. For the Gaussian process parameterisation, mMALA still provides a larger ESS, but the difference
between mMALA and MH is smaller. For mMALA inference, ESS is largest for the B-spline parameterisation; the
Gaussian process parameterisation provides the smallest ESS on average. For MH inference, ESS for B-splines and
Fourier parameterisations is near 10, suggesting that the posterior density has not been sufficiently explored due to
poor MCMC mixing using the MH algorithm as implemented. The value of ESS is approximately constant across
the different Cases examined for all combinations of model parameterisation and inference method. The right hand
side of Figure 12 indicates that for B-spline parameterisation, ESS/hr is also higher for mMALA than for MH. For
Fourier and Gaussian process parameterisations, ESS/hr is comparable for mMALA and MH. The right hand side of
Figure 13 shows that, for mMALA inference, the ESS/hr is considerably lower for Cases 4, 5 and 6, indicating that
inference using large sample sizes is slower. For this reason, in this work, we do not provide results for Cases 4, 5
and 6 using MLE and MH. Overall, comparing non-stationary parameterisations, ESS/hr is larger for Splines and
Gaussian Processes than for Fourier. There is little difference in ESS/hr for different model parameterisations using
MLE.

[Figure 13 about here.]
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4. Discussion

Adequate allowance for non-stationarity is essential for realistic environmental extreme value inference. Ignoring
the effects of covariates leads to unrealistic inference in general. The applied statistics and environmental literature
provides various competing approaches to modelling non-stationarity. Adoption of non- or semi-parametric functional
forms for generalised Pareto shape and scale in peaks over threshold modelling is far preferable in general in real
world applications, than the assumption of a less flexible parameterisation. We find that B-spline and Gaussian
Process parameterisations estimated by Bayesian inference (using mMALA) perform well in terms of quality and
computational efficiency, and generally outperform alternatives in this work.

The Gaussian Process parameterisation is computationally unwieldy for larger problems, unless covariate gridding on
the covariate domain is performed. The Fourier parameterisation, utilising bases with global support (compared to
Spline and Gaussian Process basis functions whose support is local on the covariate domain), is generally somewhat
more difficult to estimate well in practice, showing greater instability to choices such as starting solution for maximum
likelihood estimation. The Constant parameterisation performs surprisingly well in estimating the omnidirectional
return values distribution in some cases, but is generally very poor in estimating directional variation.

Various choices of methods of inference are also available. Competing approaches include maximum (penalised)
likelihood optimisation and Bayesian inference using Markov chain Monte Carlo sampling. It appears however that
the major difference, in terms of practical value of inference, is not between frequentist and Bayesian paradigms but
rather the advantage gained by exploiting knowledge of likelihood gradient and curvature. In addition, it appears that
inference schemes which sample from a negative log likelihood surface randomly, rather that seeking its minimum
deterministically, are more stable, and therefore more routinely implementable and useable. Moreover, Bayesian
inference gives a more intuitive framework for statistical learning and communication of uncertainty, particularly to
a non-specialist audience.

Here, we have focussed on the estimation of non-stationary shape and scale parameters for the conditional distribution
of independent peaks over threshold. In practical application, careful estimation of non-stationary extreme value
threshold is at least as important for reliable inference. We emphasise that for practical application, any non-
stationarity of extreme value threshold should be examined and identified either before or alongside non-stationarity
of GP parameters. Anderson et al. (2001) notes that the combination of non-stationary threshold and stationary GP
shape and scale is sufficient for modelling a sample of significant wave heights in the North Sea. Physical and statistical
intuition suggest, when considering a an extreme value model for a quantity such HS , that non-stationary estimates
should be sought in order for each of (a) extreme value threshold, (b) then GP scale, and (c) finally GP shape, and
adopted only if justified statistically. Note however that physically plausible oceanographic examples corresponding,
for instance, to stationary extreme value threshold but non-stationary GP parameters are also conceivable. In the
current work, we assume effectively that any non-stationarity in extreme value threshold as already been identified
perfectly and its effect removed from the sample cases considered.

It appears that specification of a piecewise model for the whole sample (e.g. Behrens et al. 2004, MacDonald et al.
2011, Randell et al. 2015b) incorporating the appropriate tail form, rather than a model for threshold exceedances in
isolation is a promising route, since then threshold and tail parameters can be estimated together. However, even the
simplest form of a whole sample model requires estimation of additional parameters for the model below the threshold;
these parameters are also typically non-stationary with respect to covariates. Efficient and reliable non-stationary
estimation using parameterisations and inference schemes similar to those presented here is key.
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Appendix

Maximum likelihood estimation

For maximum likelihood estimation (MLE), we use a back-fitting (or iteratively re-weighted least-squares, IRLS)
algorithm to estimate vectors of basis coefficients βη (η = ξ, ν) derived in Jonathan et al. (2014). For fixed value

of smoothness parameter λη, we initialise coefficients to starting value β
(0)
η , and then iterate the following step until

convergence

β(i+1)
η =

(
BT
η W

(
β(i)η

)
Bη + ληQη

)−1 (
BT
η V

(
β(i)η

)
+BT

η W
(
β(i)η

)
Bηβ

(i)
η

)
where

V (βη) = ∇ηL (y|Ω) and W (βη) = −∇η∇T
η L (y|Ω)

are derived at the end of this Appendix. This algorithm is similar to the mMALA algorithm (see below) used
to generate proposals for the corresponding Metropolis-Hastings step in MCMC, in that both exploit first- and
second-derivative information to move towards regions of high probability. The back-fitting iteration is of course
deterministic, whereas the mMALA step is stochastic. In practice we use the expected values of W (βη) for ease of
computation.

MCMC sampling algorithms

Denoting the set of parameters to be estimated by Ω = {βξ , βν , λξ , λν}, inference proceeds by sampling from the full
conditional distributions f (Ωk|y,Θ,Ω¬k,Γ) for each parameter in Ω in turn, where Γ = {aξ , bξ , aν , bν} is the set of
fixed hyper-parameters for prior distributions. The form of the full conditional distribution varies depending on the
type of parameter being estimated, as explained below.

Full conditional distributions for basis coefficients

Vector βη (η = ξ, ν) has the following conditional distribution

f
(
βη|y,Θ,Ω¬βη ,Γ

)
∝ f (y|Θ, β¬η) f (βη|λη)

which is not available in closed form, and therefore cannot be sampled directly in a Gibbs step. Instead, we generate

samples using the Metropolis-Hastings algorithm: given current state β
(i)
η , we propose new parameter β∗η from proposal

distribution f
(
β∗η |β

(i)
η

)
and evaluate the acceptance ratio

A
(
β∗η , β

(i)
η

)
=

f
(
β∗η |y,Θ,Ω¬βη

)
f
(
β
(i)
η |β∗η

)
f
(
β
(i)
η |y,Θ,Ω¬βη

)
f
(
β∗η |β

(i)
η

)
accepting the proposal with probability q = min (1, A), setting β

(i+1)
η = β∗η . Otherwise we reject the proposal and

set β
(i+1)
η = β

(i)
η . As outlined in Section 2.3 and detailed below, we consider two different methods for generating

multivariate proposals for βη. In the first approach (referred to as MH), we make an entirely stochastic Gaussian
random walk proposal using a fixed covariance matrix; in the second (referred to as mMALA), we make a proposal
which is partly deterministic and partly stochastic, accounting for local curvature of the likelihood surface.

For Metropolis-Hastings (MH) inference, we generate Gaussian random walk proposals of the form

β∗η = β(i)η + (BT
η Bη + κηQη)

−1νηε
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where ε is a vector of independent standard Normal random variables, and the values of step size νη and scale factor
κη are adjusted to achieve reasonable acceptance rates of approximately 0.25. For inference using the Riemann
manifold Metropolis-adjusted Langevin algorithm (mMALA, as implemented by Girolami and Calderhead 2011) we
propose using derivatives of the target distribution at the current sample. This promotes proposals in regions of
higher probability, at the additional computational cost of computing necessary derivatives and matrix inverses. At

iteration i of the sampling algorithm, where the current sample of the coefficients is β
(i)
η , proposals are made as

β∗η = β(i)η +
ν2η
2

G−1
(
β(i)η

)
D
(
β(i)η

)
+ νη

√
G−1

(
β
(i)
η

)
ε

where ε is a vector of independent standard Normal random variables, νη is (adjustable) step size, and

D
(
β(i)η

)
= ∇βηL (βη)

∣∣∣∣
β
(i)
η

and G
(
β(i)η

)
= −∇βη∇T

βηL (βη)

∣∣∣∣
β
(i)
η

are the negative gradient and negative Hessian of the log density, with

L (βη) = log f
(
βη|y,Θ,Ω¬βη ,Γ

)
and ∇βη = (∂/∂βη1, . . . , ∂/∂βηp)T .

Computation of likelihood derivatives is described at the end of this Appendix. In practice we use the expected values

of G
(
β
(i)
η

)
for ease of computation.

Full conditional distributions for prior precisions

Prior precision parameter λη (η = ξ, ν) has the following conditional distribution

f
(
λη|y,Θ,Ω¬λη ,Γ

)
∝ f (βη|λη) f (λη|aη, bη) .

By construction, since the Gamma distribution is a conjugate prior for the precision of a Gaussian distribution, we
know that the full conditional distribution is also Gamma, with updated parameters

âη = aη +
pη
2

and b̂η = bη +
1

2
βTη Qηβη .

Derivatives of the posterior distribution

Here we find the derivatives of the log posterior distribution, required for maximum likelihood and mMALA inference.
The log likelihood of the observed data under the generalised Pareto distribution is

L (y|Ω) =


∑N

i=1

[
− log

(
νi

1+ξi

)
−
(

1
ξi

+ 1
)

log
(

1 + ξi
νi

(1 + ξi)yi

) ]
for ξi 6= 0∑N

i=1

[
− log

(
νi

1+ξi

)
− (1+ξi)yi

νi

]
for ξi = 0 .

The log conditional distribution for the vector of basis coefficients βη (η = ξ, ν) is then the sum of this likelihood plus
a contribution from the prior distribution

L (βη) = log
(
f
(
βη|y,Θ,Ω¬βη ,Γ

) )
= L (y|Ω) − λη

2
βTη Qηβη .

We note the equivalence between this expression and the penalised (negative log) likelihood used for maximum
likelihood inference. The gradient of the log conditional distribution for vector of coefficients βη (η = ξ, ν) is

∇βηL (βη) = ∇βηL (y|Ω) − ληQηβη .
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Using the chain rule, the likelihood gradient can be computed as

∇βηL (y|Ω) =
(
∇βη(Bηβη)

)
T (∇ηL (y|Ω) )

= BT
η (∇ηL (y|Ω) ) .

The components of ∇ξL (y|Ω) are computed as

∂

∂ξi
L (y) =

{
− 1
ξ2iGi

(1− 2ξi)(Gi − 1) + 1
1+ξi

+ 1
ξi

log (Gi) for ξi 6= 0

−yi
νi

+ 1
1+ξi

for ξi = 0

where Gi = 1 + ξi
νi

(1 + ξi)yi, and the components of ∇νL (y|Ω) are

∂

∂νi
L (y) =


1
νi

(
1−

(
1
ξi

+ 1
)
Gi−1
Gi

)
for ξi 6= 0

1
νi

(
1− Gi−1

ξi

)
for ξi = 0 .

Differentiating ∇βηL (βη) (η = ξ, ν) again gives the Hessian matrix

∇βη∇T
βηL (βη) = ∇βη∇T

βηL (y|Ω) − ληQη .

Applying the chain rule
∇βη∇T

βηL (y|Ω) = BT
η

(
∇η∇T

η L (y|Ω)
)
Bη .

Note that the components of ∇ηL (y|Ω) and (∇η∇T
η L (y|Ω) ) are computed separately for η = ξ and η = ν. Further,

the expected values of likelihood second derivatives with respect to ξ and ν are

−EY
[

∂2

∂ξi∂ξj
L (y|Ω)

]
=

{
1

(1+ξi)2
for i = j

0 for i 6= j

and

−EY
[

∂2

∂νi∂νj
L (y|Ω)

]
=

{
1

ν2(1+2ξi)
for i = j

0 for i 6= j

such that Hessian matrices are diagonal. Moreover, the expectations of all of the cross derivatives ∂2

∂ξi∂νj
L (y|Ω) are

zero, since estimates of ξ and ν are asymptotically independent by construction (e.g. Chavez-Demoulin and Davison
2005).
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Figure 1: Hindcast storm peak significant wave height on direction for 8 locations worldwide. From right to left, top to bottom: Gulf
of Mexico (GOM), North-West Shelf of Australia (NWS), Northern North Sea (NNS), Southern North Sea (SNS), South Atlantic Ocean
(SAO), Alaska (Als), South China Sea (SCS) and West Africa (WAf). Panel titles give the location, the sample period and storm peak
sample size. Please refer to Randell et al. (2014) for details of data sources.
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Figure 2: Directed acyclic graphical representation of the Bayesian inference scheme.
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Figure 3: Illustrations of sample realisations from each of Cases 1 (left), 2 (centre) and 3 (right). Upper panels show parameter variation
of GP shape ξ, scale σ and Poisson rate ρ with direction θ for each case. Lower panels show the 10th realisation of the corresponding
simulated samples. ξ and σ for Cases 4, 5 and 6 are identical to those of Cases 1, 2 and 3 respectively. The value of ρ for Cases 4, 5 and 6
is five times that of Cases 1,2 and 3 respectively.
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Figure 5: Posterior cumulative distribution functions of return value for the sample realisation of Case 2 shown in Figure 1, corresponding
to a return period of ten times the period of the original sample. The left hand panel shows the omnidirectional return value distribution,
and right hand panels the corresponding directional estimates. The title for each panel gives the expected percentage of individuals in
that directional sector. In each panel, estimates are given for different model parameterisations using mMALA inference. The true return
value distribution is given in solid black.
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Figure 6: Uncertainty (over all 100 sample realisations) in the cumulative distribution function of return value for Case 2, corresponding
to a return period of ten times the period of the original sample. The left hand panel shows the omnidirectional return value distribution,
and right hand panels the corresponding directional estimates. The title for each panel gives the expected percentage of individuals in
that directional sector. In each panel, the true return value distribution is given in solid black. The median estimate (over realisations)
for return value distribution of the Spline model parameterisation using mMALA inference is shown in solid grey, with corresponding
point-wise 95% uncertainty band in dashed grey.
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Figure 7: Empirical cumulative distribution functions of the Kullback-Leibler divergence between return value distributions (corresponding
to a return period of ten times that the original sample) estimated under the true model and those estimated under models of sample
realisations with different parameterisations and mMALA inference for Case 2. The title for each panel gives the expected percentage of
individuals in that directional sector.
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Figure 8: Empirical cumulative distribution functions of the Kullback-Leibler divergence between return value distributions (corresponding
to a return period of ten times that the original sample) estimated under the samples from the true return value distribution and those
estimated under models of sample realisations with Spline parameterisations and different inference procedures for Case 2. The title for
each panel gives the expected percentage of individuals in that directional sector.
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Figure 9: Box-whisker comparison of samples of Kullback-Leibler (KL) divergence between omnidirectional return value distributions
(corresponding to a return period of ten times that the original sample) estimated under samples from the true return value distribution
and those estimated under models of each of 100 sample realisations. mMALA inference is reported for all six Cases (abscissa labels)
and model parameterisations (columns of panels). Metropolis-Hastings (MH) inference and maximum likelihood estimation (MLE) are
reported only for the smaller sample sizes. The sample of KL divergence is summarised by the median (white disc with black central dot),
the interquartile range (grey rectangular box) and the (2.5%, 97.5%) interval (grey line).
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Figure 10: Box-whisker comparison of samples of Kullback-Leibler (KL) divergence between western sector return value distributions
(corresponding to a return period of ten times that the original sample) estimated under samples from the true return value distribution
and those estimated under models of each of 100 sample realisations. mMALA inference is reported for all six Cases (abscissa labels)
and model parameterisations (columns of panels). Metropolis-Hastings (MH) inference and maximum likelihood estimation (MLE) are
reported only for the smaller sample sizes. The sample of KL divergence is summarised by the median (white disc with black central dot),
the interquartile range (grey rectangular box) and the (2.5%, 97.5%) interval (grey line). The ordinate scale is the same as that of Figure
9 to facilitate comparison. The Constant parameterisation for Case 4 with mMALA inference yields values of KL divergence larger than 8.
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Figure 11: Box-whisker comparison of estimates for the 37.5th percentile of the omnidirectional return value distribution (in metres)
for different cases, model parameterisations and inference procedures. mMALA inference is reported for all six cases (abscissa labels)
and model parameterisations (columns of panels). Metropolis-Hastings (MH) inference and maximum likelihood estimation (MLE) are
reported only for the smaller sample sizes. In each panel, the estimate from simulation under the true model is shown as a black disc.
The distribution of estimates from 100 different sample realisations is summarised by the median value (white disc with black central dot),
the interquartile range (grey rectangular box) and the (2.5%, 97.5%) interval (grey line). The Constant parameterisation for Case 4 with
mMALA inference yields values larger than 20m.
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Figure 12: Box-whisker comparison of estimates for the 37.5th percentile of the return value distribution (in metres) for the western
directional sector (least populous for cases 2, 3, 5 and 6), for different cases, model parameterisations and inference procedures. mMALA
inference is reported for all six cases (abscissa labels) and model parameterisations (columns of panels). Metropolis-Hastings (MH) inference
and maximum likelihood estimation (MLE) are reported only for the smaller sample sizes. In each panel, the estimate from simulation
under the true model is shown as a black disc. The distribution of estimates from 100 different sample realisations is summarised by the
median value (white disc with black central dot), the interquartile range (grey rectangular box) and the (2.5%, 97.5%) interval (grey line).
The Constant parameterisation for Case 4 with mMALA inference yields values larger than 15m.

32



Figure 13: Estimates for effective sample size (ESS, left hand side) and effective sample size per hour (ESS/hr, right hand side) on logarithm
base 10 scale for different cases, non-stationary model parameterisations and inference procedures. mMALA inference is reported for all
six cases (abscissa labels) and model parameterisations (columns of panels). Metropolis-Hastings (MH) inference and maximum likelihood
estimation (MLE) are reported only for the smaller sample sizes. The distribution of estimates from 100 different realisations of the original
sample is summarised by the median value (white disc with black central dot), the interquartile range (grey rectangular box) and the
(2.5%, 97.5%) interval (grey line).
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