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ABSTRACT
We propose a new framework for testing gravity using cluster observations, which aims to
provide an unbiased constraint on modified gravity models from Sunyaev–Zel’dovich (SZ)
and X-ray cluster counts and the cluster gas fraction, among other possible observables.
Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass
scaling relations from � cold dark matter (�CDM) to f(R) gravity for SZ and X-ray cluster
observables. We find that the complicated modified gravity effects can be simply modelled
as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z),
regardless of the f(R) model parameter. By employing a large suite of N-body simulations,
we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement
with the dynamical mass enhancement of dark matter haloes for a large range of background
field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of
other models and inclusion of further observables, and the one-parameter description of the
dynamical mass enhancement can have important implications on the theoretical modelling
of observables and on practical tests of gravity.
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1 IN T RO D U C T I O N

Galaxy clusters are the largest gravitationally bound objects in the
Universe. Found within vast dark matter clumps that are believed
to trace the peaks of initial density perturbations in the Universe,
they provide a powerful probe of cosmology. Several of their global
properties, such as the abundance and clustering on large scales,
can be predicted accurately using numerical simulations. These
properties are sensitive to fundamental physics and the values of
cosmological parameters, such as the matter density of the Universe,
the strength of gravity, and the value of the cosmological constant
�. Galaxy cluster observations may therefore be used to constrain
these values (e.g. Vikhlinin et al. 2009b). Among these cosmological
parameters, the constraint on the cosmological constant � is of
particular interest. It is widely assumed to have driven the late-time
accelerated expansion of our Universe, but its origin and nature is
poorly understood, and even its existence has been questioned.

Observationally, clusters can be detected using different tech-
niques, e.g. as galaxy groups in a galaxy survey, from X-ray emis-
sion of the hot intracluster gas, the Sunyaev–Zel’dovich (SZ) effect,
and weak lensing. We are currently experiencing an exciting time for
cluster cosmology, with many existing and upcoming high-impact
galaxy cluster surveys across all available methods of detection

� E-mail: m.a.mitchell@durham.ac.uk

(e.g. Weisskopf et al. 2000; Jansen et al. 2001; Lawrence et al.
2007; Ivezic et al. 2008; Laureijs et al. 2011; Merloni et al. 2012;
Hasselfield et al. 2013; Levi et al. 2013; Planck Collaboration I
2016). In order to make best use of these observations in testing
fundamental models of physics and cosmology, it is important that
the relevant theoretical apparatus is ready to use at the time when
the wealth of information from upcoming surveys is made available.

In observations, it is generally difficult to directly measure the
masses of clusters. This is particularly the case for distant clusters,
for which the required exposure time is prohibitively expensive.
Instead, one has to infer them using mass proxies such as the X-ray
temperature, luminosity, and the SZ Compton Y-parameter. This,
however, can lead to various sources of bias and uncertainty. For
example, this can stem from the calibration procedures used to find
the scaling relations linking these proxies to the masses, where
observational uncertainty and various assumptions can lead to un-
certain and possibly biased estimates of the mass. Unless these
scaling relations are recalibrated for any new cosmological models
to be studied to remove any sources of bias, these will carry through
to the predictions of properties that are dependent on the mass, such
as the cluster abundance and the cluster gas fraction, which will
therefore lead to biased constraints of the cosmological models and
parameters. In practice, the calibration of the scaling relations can
be achieved through different approaches. One way is to use full-
physics hydrodynamical simulations including radiative processes
(Nagai, Vikhlinin & Kravtsov 2007; Fabjan et al. 2011). Fabjan
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et al. (2011) employ this approach to calibrate the relations for three
X-ray proxies. Another way is to use subsamples of a complete data
set as e.g. in Vikhlinin et al. (2009a), where Chandra observations
are used to calibrate relations for X-ray proxies that can be cross-
checked with weak lensing data. A third option is self-calibration,
where the calibration is achieved with additional observables, for
instance the clustering of clusters (Schuecker et al. 2003; Majumdar
& Mohr 2004). In addition to these external calibrations, one can
also calibrate data internally, e.g. by simultaneously constraining
the scaling relations and cosmological models via a joint likelihood
analysis (e.g. Mantz et al. 2010, 2015).

The situation becomes even more complicated and largely un-
explored when it comes to testing theories involving modifications
to Einstein’s general relativity (GR; Koyama 2016) using cluster
observations. Proposed as alternative models to � cold dark matter
(�CDM) in explaining the accelerated cosmic expansion, modified
gravity theories can be probed using galaxy cluster observations:
numerical simulations show that the effect of many modified grav-
ity theories speeds up the assembly of dark matter haloes and alters
their number counts. Massive haloes are the simulation counterparts
to galaxy clusters. Measuring the halo mass function (HMF) and
comparing it to observations of galaxy cluster counts therefore of-
fers a means of testing modified gravity, and has been discussed by
various works in the literature (e.g. Mak et al. 2012; Cataneo et al.
2015; Liu et al. 2016; Peirone et al. 2017).

Another effect of modified gravity, which appears in various
models, is to enhance the dynamical mass of a galaxy cluster so that
it becomes larger than the true mass. This results from the additional
gravitational forces that alter the virial equation, which is used to
infer the dynamical mass from the velocities of the constituent parts
of the system. Tests that aim to measure both the dynamical and
lensing masses to check for a disparity include recent works by
Terukina et al. (2014), Wilcox et al. (2015, 2016), and Pizzuti et al.
(2017), which utilize actual measurements of the profiles of these
two masses for massive clusters. Other probes include the cluster
gas fraction (Li, He & Gao 2016), the clustering of clusters (Arnalte-
Mur, Hellwing & Norberg 2017) and weak lensing (e.g. Barreira
et al. 2015) by clusters. The resulting weak lensing masses are
only modified in some but not all modified gravity models (Arnold,
Puchwein & Springel 2014).

While earlier studies have pointed to a strong power of clus-
ter observations in the tests of gravity, one potential issue that has
so far not been given detailed attention is that the inferred cluster
abundance, and other mass-dependent quantities, can change as a
result of the enhancement of the dynamical mass with respect to
the true mass, depending on which mass proxy is being used. If
this enhancement is not accurately taken into account, the inferred
abundance could be biased. In particular, scaling relations that are
used to determine the cluster mass should first be calibrated in the
contexts of specific modified gravity models in order to incorporate
this effect. Furthermore, these scaling relations are often derived
using multiple probes, for example X-ray emission and weak lens-
ing, which are affected by modified gravity in different ways even
in the same model. This adds more complexity and challenges for
cosmological constraints. The main purpose of this paper is to con-
sider these complications and propose a suitable calibration method
that is straightforward to implement in modified gravity model
tests.

In this paper, we will introduce a framework to incorporate the
various effects of modified gravity on galaxy cluster scaling rela-
tions in a self-consistent way. The aim is to have a fully calibrated
model that incorporates these effects into model predictions and

allows for detailed Markov chain Monte Carlo (MCMC) searches
of the parameter space to produce debiased constraints of gravity.
Of particular importance in this framework is the requirement to be
able to make reliable model predictions for arbitrary model param-
eter values, as opposed to a very small number of model parameters
that have been studied in detail in previous N-body simulations of
modified gravity (which are therefore not allowing for a continu-
ous search of the large parameter space). To achieve this we will
provide various simulation-calibrated fitting formulae that are es-
sential for model predictions. As we will show later, this framework
consists of various components that will be discussed in a series of
papers. In this particular paper we will focus on the relationship
of the lensing and dynamical masses of galaxy clusters. The modi-
fied gravity model used in this study is the well-known f(R) gravity
model (Buchdahl 1970, for reviews, see De Felice & Tsujikawa
2010; Sotiriou & Faraoni 2010), which is an example of a much
larger class of theories called chameleon gravity models (Khoury &
Weltman 2004a,b; Mota & Shaw 2007). It is probably the most rep-
resentative example of a scalar–tensor modified gravity model that
can pass local gravity tests through the so-called chameleon screen-
ing mechanism, which suppresses deviations from GR in regions of
high matter density and deep Newtonian potential. In this model,
massive particles feel an extra force (the so-called fifth force) me-
diated by an additional scalar field. This field is redshift dependent,
and its present-day background value can be chosen as a model pa-
rameter. The enhancement of the dynamical mass therefore depends
on the redshift and the background field strength at z = 0.

Previous works analysing the dynamical mass and lensing mass
in f(R) gravity include Schmidt (2010), Zhao, Li & Koyama (2011b),
and Arnold, Puchwein & Springel (2014). The studies were model
specific, and they did not give a general formula that can be applied
to arbitrary values of model parameters and redshifts. For example,
the focus may only be on a particular present-day field strength
at z = 0: these results can be used for a qualitative understanding
of particular models, but we really need a generic formula that is
applicable to general models at all redshifts. In this work we propose
such a generic fitting formula that is based on a simple analytical
model, the spherical thin-shell model (Khoury & Weltman 2004a).
We check this fitting formula against simulations with different
resolutions and find it to work very well across all tested field
strengths. Although we use a specific choice of f(R) gravity as
our example, as discussed below, the results are expected to be
applicable to or have useful implications for general chameleon
gravity theories (Gronke, Mota & Winther 2015).

The paper is organized as follows. Section 2 presents the un-
derlying theory of f(R) gravity, discusses the key results of the
thin-shell model, and defines the effective mass, which can be used
interchangeably with the dynamical mass in simulations. Section 3
discusses the background behind the use of galaxy clusters in con-
straining cosmological models, presents the outline of our proposed
framework, which is to be covered in a series of papers, and pro-
poses a method to account for the dynamical mass enhancement in
scaling relations. Section 4 summarizes the properties of the simu-
lations that are used and how we make use of them in our analyses,
presents our fitting formula for the enhancement, and illustrates the
method used to test this model. Section 5 presents the main results
of our tests, including key formulae that have been fitted to the sim-
ulation data. Finally, Section 6 summarizes the key insights from
this investigation and the implications for future work. An appendix
is included summarizing the results obtained from using an alter-
native fitting procedure, and showing consistency tests to check for
dispersions between the various data sets used.

MNRAS 477, 1133–1152 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/477/1/1133/4925586
by University of Durham user
on 24 April 2018



Dynamical mass modelling in f(R) gravity 1135

Throughout this paper we use the unit convention c = 1, where c
is the speed of light. Greek indices run over 0,1,2,3, while Roman
indices run over 1,2,3. Unless otherwise stated, an overbar (x̄) de-
notes the mean background value of a quantity, while a subscript 0
means the present-day value.

2 f(R) G R AV I T Y

The f(R) model is an extension of GR. The modifications are made
by adding a – so far undefined – scalar function, f(R), of the Ricci
scalar, R, to the Ricci scalar in the Einstein–Hilbert action, S (see
e.g. De Felice & Tsujikawa 2010; Sotiriou & Faraoni 2010, for
reviews):

S =
∫

d4x
√−g

[
R + f (R)

16πG
+ LM

]
, (1)

where G is the Newtonian gravitational constant and LM is the
Lagrangian density of matter fields. In GR the Einstein–Hilbert
action yields the Einstein field equations through the principle of
least action. Taking a variation of equation (1) with respect to the
metric yields the following so-called ‘modified Einstein equations’:

Gαβ + Xαβ = 8πGTαβ, (2)

where Gαβ is the Einstein tensor, Tαβ is the stress–energy tensor,
and the term Xαβ denotes the modification to GR:

Xαβ = fRRαβ −
(

f

2
− �fR

)
gαβ − ∇α∇βfR, (3)

where fR ≡ df(R)/dR denotes the extra scalar degree of freedom
of this model, known as the scalaron, Rαβ is the Ricci curvature,� is the d’Alembert operator, and ∇α , ∇β denote the covariant
derivatives associated with the metric gαβ . The scalar field mediates
an attractive force whose physical range is set by the Compton
wavelength, λC, with

λC = a−1

(
3

dfR

dR

) 1
2

, (4)

where a is the cosmic scale factor. On scales smaller than λC,
gravitational forces are raised by a factor 1/3 in unscreened regions,
which enhances the growth of structure (Zhao, Li & Koyama 2011a).

The chameleon screening mechanism (e.g. Khoury & Weltman
2004a,b; Mota & Shaw 2007) was proposed and used to give the
scalar field an environment-dependent effective mass, mφ = λ−1

C ,
so that mφ is very heavy in dense regions and therefore the fifth
force mediated by the scalar field is suppressed locally so as to
avoid conflicts with experiments. This is necessary in order to pass
Solar system tests that confirm GR to remarkably high precision in
our local neighbourhood (Will 2014).

The functional form of f(R) must be carefully chosen so that it
gives rise to the late time cosmic acceleration without violating the
Solar system constraints (see Li & Barrow 2007; Brax et al. 2008,
for some examples). One of the most popular among the viable
models was proposed by Hu & Sawicki (2007), with

f (R) = −m2 c1

(−R/m2
)n

c2

(−R/m2
)n + 1

, (5)

where m2 ≡ 8πGρ̄M,0/3 = H 2
0 	M with ρ̄M,0 being the mean matter

density, 	M is the matter density parameter, and H0 is the Hubble
expansion rate today. If −R̄ � m2 and c1/c2 ∼ O(1), we have

Figure 1. Absolute background scalar field value plotted as a function of
redshift for the F4, F5, and F6 models (from top to bottom) assuming the
Hu–Sawicki f(R) model with parameters n = 1 and |fR0| = 10−4, 10−5, and
10−6, respectively. Cosmological parameters 	� = 0.719 and 	M = 0.281
are used.

f (R̄) ≈ −m2c1/c2 that is a constant; if we choose
c1/c2 = 6	�/	M, where 	� ≡ 1 − 	M, then

− R̄ = 3m2

(
a−3 + 4

	�

	M

)
≈ 3m2

(
a−3 + 2

3

c1

c2

)
, (6)

which indicates that f(R) behaves like a cosmological constant in
background cosmology as desired. We note that −R̄ � m2 holds for
any realistic background cosmology and is a good approximation.
For example, (	M, 	�) = (0.281, 0.719) yields −R̄ ≈ 33.7m2 �
m2.

In the Hu & Sawicki (2007) model, with −R̄ � m2, one can
simplify the expression for the background field value:

f̄R = − c1

c2
2

n
(

−R̄
m2

)n−1

[(
−R̄
m2

)n

+ 1
]2 ≈ −n

c1

c2
2

(
m2

−R̄

)n+1

, (7)

in which

c1

c2
2

= − 1

n

[
3

(
1 + 4

	�

	M

)]n+1

fR0, (8)

where fR0 denotes the background value of fR today. We shall omit
the overbar for fR0 in the following even though this is a background
quantity.

If one fixes the value of c1/c2 in the way described above, two
free model parameters remain, n and fR0. These can be used instead
of the three parameters n, c1, and c2 appearing in equation (5). For
all numerical simulations used in this paper we adopt the values
n = 1 and |fR0| = 10−4, 10−5, or 10−6 (F4, F5, or F6, respectively).
The variation of fR as a function of the redshift under these three
parameter combinations is shown in Fig. 1. The field drops with
increasing redshift. The present-day field values thus represent the
highest values in cosmic history. The effects of f(R) gravity are on
the other hand expected to vanish at higher redshifts. The objective
of this work is to find fitting formulae for generic Hu–Sawicki
models with arbitrary values of fR0. Below we will present a way
to go beyond the three values of fR0 (|fR0| = 10−4, 10−5, 10−6) for
which full N-body simulation data are available.

2.1 Thin-shell model

A useful way to model chameleon screening is via thin-shell mod-
elling, which was first proposed in Khoury & Weltman (2004b)
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and has been used extensively in theoretical modelling (e.g. Li &
Efstathiou 2012; Lombriser et al. 2013; Lombriser, Koyama & Li
2014). Consider a constant spherically symmetric top-hat matter
density, ρ in, within a radius, rth, where φin and φout represent the
scalar field inside and outside of rth, respectively. Given this set-up,
one can make the following approximation:


r

rth
≈ (3 + 2ω)

φin − φout

6�N
≈ − φout

2�N
, (9)

where 
r is the distance (from the boundary of the top-hat density
distribution) necessary for the scalar field, φ, to settle from φout to
φin, which to a good approximation is φin ≈ 0. ω is the Brans–Dicke
parameter, equal to zero for the f(R) model under consideration. One
can furthermore identify φ with fR, and φout with the background
value fR(z) for a given model and redshift (note that we again omit
the overbar for fR(z)). The depth of the Newtonian potential at the
boundary, �N, is given by

�N = GM

rth
, (10)

with M the mass enclosed in the spherical top-hat. Using

M ≡ 4π

3
ρinr

3
th, (11)

we find that �N ∝ M
2
3 for a fixed density.

In this work, we will focus on dark matter haloes found from
N-body simulations. To make a connection between these haloes
and the spherical top-hat densities described above that are used
for thin-shell modelling, we make two approximations. First, dark
matter structures in real simulations are not spherically symmetric,
but we approximate them as spherical. Second, the radial density
distribution of dark matter haloes is known to satisfy a Navarro–
Frenk–White (NFW; Navarro, Frenk & White 1997) profile,

ρ(r) = ρ0

(r/Rs) (1 + r/Rs)
2 , (12)

where ρ0 is a parameter with the same unit as density, and Rs is the
scale radius. ρ(r) scales like r−1 (r−3) in the inner (outer) part of
a halo, and is not a constant within the halo radius, R
c, which is
determined as the distance from the halo centre within which the
mean density is 
 times the critical density of the Universe, ρcrit, at
the halo redshift. In our modelling, we treat the haloes as top-hats
with density equal to M
c/( 4

3 πR3

c), where M
c is the halo mass,

i.e. the mass enclosed in R
c.1 It is furthermore shown in Arnold,
Springel & Puchwein (2016), that the above scaling approach also
works for ideal NFW haloes, validating our second assumption. The
top-hat radius is given by rth = R
c.

With the above approximations, we have

�N =
4πG

3 ρcrit,0
 (1 + z)3 r3
th

(1+z)3

rth
1+z

= GM

rth
(1 + z) ∝ M

2
3 (1 + z),

(13)

where ρcrit,0 is the critical density today, and so ρcrit,0
 is the mean
matter density in the halo today; the factor (1 + z)3 multiplying the
density guarantees that we are using the physical density at redshift
z, and the (1 + z) factors associated with rth ensures that we use

1 For a more detailed and realistic modelling of chameleon screening, see
e.g. Lombriser et al. (2012, 2014) and Cataneo et al. (2016). However, as
we show below, our simpler treatment works well and its predictions are in
excellent agreement with simulations.

the physical radius (note that R
c = rth is the comoving radius of a
halo).

With this set-up, a qualitative argument can be made (e.g. Li &
Efstathiou 2012) that gravity is enhanced by the maximum factor
4/3 when 
r ≥ rth

3 . On the other hand, a small positive constant
ε � 1 can be defined such that one can assume no deviation from
GR when 
r ≤ εrth.

From the theoretical arguments discussed above, it is expected
that the dynamical mass of a halo in f(R) gravity varies in a range
Mtrue ≤ Mdyn ≤ 4

3 Mtrue (Schmidt 2010; Zhao et al. 2011b). One
can define the smallest true halo mass, M1, for which there is no
deviation from GR (Mdyn = Mtrue), and the highest true halo mass,
M2, for which there is no chameleon suppression of the scalar
field (Mdyn = 4

3 Mtrue). From equations (9) and (13) and using the
definitions for M1 and M2, these are, respectively, given by

M1 = κ1

(
1

ε

fR(z)

1 + z

) 3
2

∝
(

fR(z)

1 + z

) 3
2

(14)

and

M2 = κ2

(
3
fR(z)

1 + z

) 3
2

∝
(

fR(z)

1 + z

) 3
2

, (15)

where the constants κ1 and κ2 enclose Newton’s gravitational con-
stant along with some other constant factors from equations (9),
(10), and (11):

κ1 = κ2 = (2GH0)−1
−1/2. (16)

Both masses display power-law fits as functions of fR (z)
1+z

, and this
is an important observation of this work: when comparing thin-
shell model predictions against N-body simulations, both of them
should be expressed as a function of fR(z)/(1 + z). An additional
advantage is that this makes the dependence on the model parameter
fR0 implicit: two models, A and B, with different fR0 values, should
have the same fR(z)/(1 + z) value at some different redshifts zA

and zB. If the thin-shell model is generic enough, its predictions for
model A at zA and model B at zB should be the same, irrespective
of the fact that these are two different models. We shall show below
that this is indeed the case, and so promises a way to constrain
general f(R) models.

In reality, chameleon screening comes not only from a haloes
own mass, but also from the matter that surrounds it. This can be
considered as environmental screening. This is more important in
F6 than in F4 and F5, because in the former the weak scalaron field is
more easily suppressed, occasionally resulting in total suppression
of the field inside a low-mass halo if it is within a larger scale high-
density environment. This means that the background field value at
a halo, fR(z), evaluated by equation (7), may often be incorrect if
there is a surrounding high-density environment. Therefore a better
approximation for the thin-shell modelling would be to replace �N

in equation (9) with �N + �env with �env the average Newtonian
potential caused by the environment at the location of the halo (He
et al. 2014; Shi, Li & Han 2017), which can be read from the
simulation data. For the time being this will not be included in the
modelling in this investigation, as it is not necessary to achieve such
accuracy in the statistical treatment we aim for. Our approach will
cover haloes that live in different environments so that the effects
of �env largely cancel when looking at the median of all haloes (see
below for further comments on this point).
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2.2 Dynamical mass and effective mass

The dynamical mass of a cluster or halo is the mass that massive
test particles (e.g. stars or nearby galaxies) feel. It can be measured
using the relationship between the gravitational potential energy
and the kinetic energy of all of the constituent parts. In simulations
it can be calculated for each halo, detected from the density field
created by the dark matter particles.

The formation of large-scale structures in f(R) gravity is largely
determined by the modified Poisson equation,

∇2� = 16πG

3
δρ − 1

6
δR, (17)

where � is the (modified) gravitational potential, which is felt by
massive particles and therefore associated with the dynamical prop-
erties of haloes and processes of structure formation in f(R) gravity.
The quantities δρ and δR are, respectively, the perturbations to the
mean density and curvature, δρ ≡ ρ − ρ̄ and δR ≡ R − R̄. An ef-
fective density field, δρeff (He et al. 2015), can be defined such that
equation (17) can be cast into the form

∇2� = 4πGδρeff, (18)

where δρeff and δρ are related via

δρeff ≡
(

4

3
− δR

24πGδρ

)
δρ. (19)

The effective haloes are then identified from the effective density
field, which is not necessarily the same as the true density field. In
GR the two are seemingly the same but in modified gravity they
are different. It has been suggested in previous work by He et al.
(2015) that using the effective density field to describe haloes allows
us to view the dynamical properties of haloes in an f(R) model as
in a �CDM cosmology. In this sense calculations of dynamical
properties, such as the circular velocity of the halo, can be done
assuming GR regardless of the model (f(R) gravity or GR) that the
simulation is actually run for, as long as the effective mass of a halo
is known. Therefore the effective mass can be used as a proxy for
Mdyn. As is evident from equation (19), the maximum enhancement
to the true density field is 4/3. Thus both the effective and the
dynamical mass vary between Mtrue and 4

3 Mtrue. In what follows we
shall use the effective mass and dynamical mass interchangeably,
regardless of the (minor) differences between them (He et al. 2015).

3 A F R A M E WO R K FO R G R AV I T Y T E S T S
USING C LUSTERS

This investigation aims to test various modified gravity models.
Here we focus on Hu–Sawicki f(R) gravity (Hu & Sawicki 2007),
which is characterized by the present-day scalar field, |fR0|, the key
parameter to be constrained. Initial tests will be carried out using
the galaxy cluster abundance (see e.g. Schmidt, Vikhlinin & Hu
2009; Mak et al. 2012; Cataneo et al. 2015, for earlier works along
this direction), which is explained in Section 3.1, and further tests
will utilize the cluster gas fraction and other global properties, as
described in Section 3.2. We pay particular attention to the enhance-
ment of the dynamical mass in the analyses, which can change the
cluster scaling relations and would cause biased tests if not properly
taken into account.

Our proposed framework is sketched in Fig. 2. A fitting formula
for the HMF is required to predict the halo abundance, and this
can be obtained by using semi-analytical models calibrated by sim-
ulations. In this work we adopt the HMF that has been proposed
and calibrated by Cataneo et al. (2016), which itself is built upon

earlier works (Lam & Li 2012; Li & Efstathiou 2012; Li & Lam
2012; Lombriser et al. 2013, 2014) motivated by excursion set the-
ory (Bond et al. 1991); this will be discussed in Section 3.1.1. The
Cataneo et al. (2016) HMF has been calibrated using the halo mass
definition M300m, which is the total mass contained within a sphere
that encloses an average density of 300 times the mean matter den-
sity, ρcrit	M, of the Universe. To ensure generality, we will also
require a mass conversion, M300m(M
), to allow conversions to ar-
bitrary mass definitions, which will require a concentration–mass
relation, c300m(M300m), of dark matter haloes in f(R) gravity. This is
discussed in Section 3.1.3, in addition to other future work to be
carried out. These ingredients will enable us to predict a theoretical
cluster abundance for generic f(R) models and mass definitions.

On the observational side, a key observable to be used in our test
framework is the cluster abundance derived from SZ and X-ray sur-
veys, such as Planck’s SZ cluster abundance (Planck Collaboration I
2016). As discussed in Section 3.1.2, converting from cluster ob-
servables to the cluster mass typically involves the use of a scaling
relation, however, the most accurate scaling relations that are cur-
rently available are observational and/or derived for �CDM. We
propose a method for converting these relations from �CDM to
f(R) gravity, based on the findings of He & Li (2016). We discuss
this point in more detail in Section 3.1.2. The conversion requires
a formula for the ratio Mdyn/Mtrue, which is the focus of this paper.
Our procedure to measure Mdyn/Mtrue as a function of Mtrue, z, and fR

is discussed in Section 4, and our results are presented in Section 5.
We show that a simple fitting formula for Mdyn/Mtrue motivated by
the theoretical modelling of Section 2.1 works very well in describ-
ing the results of a large suite of simulations. The simulations are
introduced in Section 4.1.

Following the corrections described above, the predicted and
observed abundances can be combined to constrain |fR0| by con-
fronting theoretical predictions for models with an arbitrary value
of fR0 with observations. A continuous parameter space search can
be carried out using techniques such as MCMC, which accounts
for relevant covariances between data. The fitting formulae for var-
ious quantities, with corresponding errors, can be used to construct
mock cluster catalogues to validate the model constraint pipeline. In
Section 3.2 we will also mention some other possible observables
that can be included in this framework and which will also require
a knowledge of Mdyn/Mtrue that we focus on in this paper.

3.1 Cluster abundance tests

One of the frequently used probes of cosmological models and the
underlying theory of gravity is the cluster abundance, defined as the
number density of galaxy clusters per unit mass interval, d ncluster

d log10 M
.

This depends sensitively on the cluster mass, M, which means that
model tests using the cluster abundance require an accurate mea-
surement of the cluster mass. We have seen that the term ‘mass’
can be ambiguous in modified gravity theories because different ob-
servables depend on different masses, e.g. dynamical versus lensing
mass. Therefore, any effects of f(R) gravity on the mass should be
accounted for to prevent a biased prediction of the abundance.

The theoretical counterparts of galaxy clusters in N-body simula-
tions are massive dark matter haloes (>1013 h−1 M). A prediction
of the cluster abundance can be obtained by measuring the abun-
dance of haloes. Some efforts must also be made to account for
the limitations of an observational survey, for example the blocking
of many clusters by foreground stars and the galactic plane, and
the rejection of low signal-to-noise ratio sources. These effects are
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Figure 2. Flow chart illustrating the structure of the investigation, which will be covered through a series of papers. The flow chart depicts the key steps of our
framework to test f(R) gravity using cluster counts. It takes halo mass function fitting formulae from some existing work (e.g. Cataneo et al. 2016) and uses a
concentration–mass relation to convert this from M300m definition to other mass definitions (assuming an NFW profile; see main text). The concentration–mass
relation needs to be modelled and calibrated using f(R) simulations, which will be left as future work (blue dotted box). The main focus of this paper (red
dotted box) is a simulation-calibrated fitting formula for the dynamical mass enhancement, Mdyn/Mtrue, in f(R) gravity. Combining this with the �CDM
cluster observable–mass scaling relations (Yobs–M, where Yobs can be, e.g. YSZ or YX, the SZ and X-ray Compton Y-parameters) gives rise to predictions of
the corresponding scaling relations for the f(R) model (He & Li 2016) as described in the main text. The effect of galaxy formation on the accuracy of these
predictions will be further tested using full-physics hydrodynamical simulations in future work (green dotted box). Finally, the scaling relations can be used to
infer the cluster abundance from observations, which can then be confronted with theoretical predictions to constrain the model using MCMC (brown dotted
box).

specific to the survey under consideration. In summary, the follow-
ing quantities are required:

(i) an HMF that evaluates the number density of dark matter
haloes per unit mass interval;

(ii) a scaling relation to predict the cluster observable, given the
mass of the dark matter halo;

(iii) the selection function of the survey, which evaluates the
probability of a cluster being detected and included in the resulting
data set, as a function of the observable flux, redshift, etc.;

(iv) the likelihood of the measurements, which would be pro-
duced along with the observed data itself.

These corrections will ensure that the prediction of the cluster
abundance is consistent with measurements taken in the real Uni-
verse using detectors with finite precision. However, the HMF and
scaling relations are generally more challenging to implement in
f(R) gravity tests without inducing sources of bias. This can stem
from effects like the chameleon screening mechanism and the en-
hancement of the dynamical mass, which are complicated to model
exactly. Sections 3.1.1 and 3.1.2 illustrate our proposed methods to
tackle these difficulties, and Section 3.1.3 discusses other current
issues in using the cluster abundance to test f(R) gravity that we
hope to correct in future works.

3.1.1 Halo abundance

The abundance of dark matter haloes can be predicted using semi-
analytical models, such as excursion set theory (Bond et al. 1991),

which generally show reasonable qualitative agreement with simu-
lations. These models connect high peaks in the initial density field
to the late-time massive dark matter haloes by assuming spherical
collapse. However, quantitative agreements with simulations are not
great, which has motivated models with more physical assumptions,
such as the ellipsoidal collapse model (Sheth & Tormen 1999, 2002;
Sheth, Mo & Tormen 2001) that gives up the sphericity assumption
above. These efforts have led to various fitting formulae of the HMF
in standard �CDM, whose parameters can be calibrated using sim-
ulations (e.g. Jenkins et al. 2001; Warren et al. 2006; Reed et al.
2007; Tinker et al. 2008).

In modified gravity theories, excursion set theory still applies but
the connection between initial density peaks and late-time dark mat-
ter haloes becomes more complicated. In some scenarios, such as
the Galileon model (e.g. Deffayet, Esposito-Farese & Vikman 2009;
Nicolis, Rattazzi & Trincherini 2009), as in �CDM, the spherical
collapse of an initial top-hat overdensity does not depend on the en-
vironment, and analytical solutions can be obtained for their HMFs
(Schmidt, Hu & Lima 2010; Barreira et al. 2013, 2014). In f(R)
gravity and general chameleon models, however, the behaviour of
the fifth fore is more complicated and the spherical collapse be-
comes environment dependent. Theoretical models of HMFs in
these theories have been studied in Li & Efstathiou (2012), Li &
Lam (2012), Lam & Li (2012), Lombriser et al. (2013, 2014), and
Kopp et al. (2013), and qualitative agreement with simulations is
reasonable.

In this work we adopt the HMF as proposed in Cataneo et al.
(2016), which is based on an extension of the theoretical mod-
elling described in Lombriser et al. (2013, 2014) by adding free
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parameters to the theoretical HMF to account for the chameleon
screening mechanism and allow a better match with simulations.
These parameters have been fitted using a subset (Crystal, see Sec-
tion 4.1) of our dark-matter-only f(R) gravity simulations that have
been run for F4, F5, and F6, but they work for general values of
|fR0| within [10−6, 10−4]. Cataneo et al. (2016) show that their HMF
fitting formula agrees with simulation results to within 5 per cent.

We note that the HMF fitting formula is an independent ingredient
in our framework as depicted in Fig. 2, by virtue of which we can
always use the latest and most accurate in our analysis.

3.1.2 Scaling relations in f(R) gravity

The cluster mass is difficult to measure via direct observations, and
a scaling relation is usually used to connect the cluster mass to some
more readily observable quantities, such as the average temperature,
Tgas, of the intracluster gas, the cloud of gas that envelopes the cluster
galaxies. This relates to the total mass, M, via the virial theorem
that leads to

GM

R
= 3

2

kBTgas

μmp
, (20)

where R is the cluster radius, mp is the proton mass, kB is the
Boltzmann constant, and μ is the molecular weight.

We are interested in cluster abundances measured from X-ray
emission, the SZ effect, and weak lensing. The X-ray radiation by a
cluster is generated by the bremsstrahlung process, and the SZ effect
(Sunyaev & Zeldovich 1980) is due to the inverse-Compton scatter-
ing of cosmic microwave background photons off electrons in the
intracluster medium. Both of these effects depend on Tgas. There-
fore several related and easily observable quantities can be used as
mass proxies, such as the integrated SZ Compton Y-parameter, YSZ,
the X-ray equivalent of the integrated SZ flux, YX, and the X-ray
luminosity, LX. For each of these observables the cluster mass can
be inferred through a scaling relation.

In �CDM, such scaling relations can be obtained in different
ways, such as by using hydrodynamical simulations (e.g. Nagai
et al. 2007; Fabjan et al. 2011) or from subsets of observed clusters
whose masses can be measured in other means, e.g. weak lensing
(Vikhlinin et al. 2009a). An example is the YSZ–M scaling relation
calibrated by the Planck Collaboration (Planck Collaboration XXIV
2016), which incorporates the results from various observational
surveys and simulations, and where rigorous methods have been
used to prevent various sources of bias, including Malmquist bias
and hydrostatic equilibrium bias.

In f(R) gravity, and in general for any new gravity theory, the
scaling relations calibrated for �CDM are unlikely to still apply. It
is impractical to calibrate these relations by using hydrodynamical
simulations, since they are expensive even for a single specific
f(R) model, let alone the whole fR0 parameter range. Calibrations
using a subset of data or using other observables should be treated
with caution as well. For example, the scaling relations may be
different between the subset of data and the whole sample, due to
the environmental dependence of the modified gravity effect, and
different observables are proxies of different masses in f(R) gravity,
and so the combined use of different observations is tricky. It is
therefore highly desirable to have a physically motivated model for
obtaining (certain) scaling relations for arbitrary values of the f(R)
parameter fR0 with good precision and minimal effort.

Along this line and based on the use of the so-called effective
mass (Section 2.2), a procedure for correcting for the effect of
modified gravity on the physical properties of clusters, such as their

various observable–mass scaling relations, has been proposed by
He & Li (2016). This method avoids direct calibration of the cluster
mass using full hydrodynamical simulations in the f(R) model, and
instead calculates the scaling relations in f(R) gravity by using the
corresponding ones in standard �CDM (which are better known)
with a rescaled baryon-to-total mass ratio. Its results are found to
agree very well with f(R) simulations.

He & Li (2016) discussed the cluster mass proxies LX, YSZ, and
YX, and here we describe the result for YSZ as an example. Using
a non-radiative approximation, in which the baryonic content of
the hydrodynamical simulations behaves as an ideal gas satisfying
equation (20), YSZ is given by

YSZ = σT

mec2

∫ r

0
dr4πr2Pe, (21)

where σ T is the Thomson cross-section and me is the electron mass.
The electron pressure, Pe, is given by Pe = 2+μ

5 ngaskBTgas, where
ngas is the number density of gas particles. From the simulations it
was found that the Tgas–M relations for the effective haloes in f(R)
gravity and the haloes in �CDM agree very well:

T f (R)
gas

(
M

f (R)
dyn

)
= T �CDM

gas

(
M�CDM

)
. (22)

This is as expected given that the temperature and the gravitational
potential of a halo are intrinsically linked through the virial theorem.

Using a suite of non-radiative hydrodynamical simulations, it was
found that outside the core regions, the profiles of effective haloes
in f(R) gravity closely resemble those in �CDM, with a rescaled
gas mass fraction:

ρf (R)
gas (r) ≈ Mf (R)

M
f (R)
dyn

ρ�CDM
gas (r) ∝ Mf (R)

M
f (R)
dyn

	b

	m

(
r2 + r2

core

)− 3β
2 , (23)

where rcore is the core radius and β is the ratio between the specific
kinetic energy (kinetic energy per unit mass) of cold dark matter
and the specific internal energy (internal energy per unit mass) of
gas. For an effective halo in f(R) gravity with an effective mass that
is equal to the true mass of a �CDM halo, M

f (R)
dyn = M�CDM, it

follows from equations (22) and (23) that∫ r

0
dr4πr2

(
ρf (R)

gas

)a (
T f (R)

gas

)b

≈
(

Mf (R)

M
f (R)
dyn

)a ∫ r

0
dr4πr2

(
ρ�CDM

gas

)a (
T �CDM

gas

)b

, (24)

where a and b are indices of power. By combining this result with
equation (21) it follows that the YSZ–M scaling relations in these
two models can be related by

M
f (R)
dyn

M
f (R)
true

Y
f (R)
SZ

(
M

f (R)
dyn

)
≈ Y�CDM

SZ

(
M�CDM = M

f (R)
dyn

)
. (25)

As mentioned previously, this relation has been verified by a suite
of non-radiative hydrodynamical simulations. Similar results have
been obtained and verified for the other two proxies (YX and LX) as
well, and are particularly accurate for YSZ and YX with the error just
slightly over 3 per cent.

As the scaling relations in �CDM are much better understood
than in f(R) gravity, equation (25) can potentially be used to recal-
ibrate a scaling relation obtained for �CDM, into a form linking
YSZ to the cluster dynamical mass in f(R) gravity.
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3.1.3 Other issues

The mass of a galaxy cluster or dark matter halo is usually defined
as the mass enclosed in some radius, R
, centred around the cluster
or halo centre. This is the radius in which the average matter density
is 
 times the mean matter density (for R
m) or the critical density
(for R
c) at the halo redshift. In the literature different values of 


such as 500, 300, and 200 are commonly used, and so it is essential
to be able to convert amongst them. As an example, Cataneo et al.
(2016), whose f(R) gravity HMF fitting formula we use by default
in our framework, work with M300m. As another example, in the
literature M200c is very commonly used.

It is straightforward to convert between the different masses by
noting that the different definitions only differ in where the halo
boundary lies. Therefore, all we need is the density profile ρ(r) of
a halo. In �CDM, dark matter haloes are well described by the
NFW density profile given by equation (12), which has two free
parameters, ρ0 and Rs. The NFW profile has also been shown to
work well for haloes in f(R) gravity (Lombriser et al. 2012; Shi
et al. 2015). Of the two NFW parameters, the scale radius, Rs,
can be expressed by using the halo concentration, c
 ≡ R
/Rs,
and ρ0 can be further fixed using the halo mass, M
 ≡ M(≤ R
).
Therefore, to convert between the different mass definitions requires
an understanding of the concentration–mass relation, c
(M
). For
example, the Cataneo et al. (2016) HMF is fitted using the mass
definition M300m, and so we would require c300m(M300m), for dark
matter haloes in f(R) gravity, to be able to convert it to general M
.
This is currently being investigated in both screened and unscreened
regimes, using data from various modified gravity simulations, and
the results will be presented in a forthcoming paper.

Another issue that merits further investigation is a check of the
method by He & Li (2016) against full-physics hydrodynamical sim-
ulations including baryonic feedback processes, which go beyond
the non-radiative approximations originally used. Studies in �CDM
(e.g. Fabjan et al. 2011) have found that, for certain quantities such
as YX, the resulting scaling relation is insensitive to baryonic pro-
cesses, such as cooling, star formation, and active galactic nuclei
(AGN) feedback, in galaxy formation if the data from the very inner
part of a cluster are excluded. We expect the same to apply in f(R)
gravity, but in order to be certain we plan to conduct an analysis us-
ing full-physics hydrodynamical simulations for Hu–Sawicki f(R)
gravity in the future.

Such simulations will also be useful to better understand the
impact of galaxy formation on the HMF in f(R) gravity, though we
expect it to be small. We also note that the fitting formula by Cataneo
et al. (2016), which has a 3–5 per cent accuracy with the simulation
data for F4–F6 and halo masses above 1013 h−1 M, was calibrated
using dark-matter-only simulations (Crystal, see Section 4.1).

3.2 Other observables

As mentioned above, the focus of the remainder of this paper is a
fitting function for the relationship between the dynamical and true
masses of dark matter haloes, which would be useful for deriving
cluster scaling relations in f(R) gravity. But the use of this relation
is certainly not restricted to this.

A direct use of the Mdyn/Mtrue relation is to constrain the fifth
force by comparing measurements of Mdyn and Mtrue. In observa-
tions, the profiles of these masses can be obtained using the X-ray
surface brightness profile and lensing tangential shear profile of
a cluster, respectively. The measurements can be done for massive
clusters for which high-quality X-ray and lensing data are available.

Terukina et al. (2014) and Wilcox et al. (2015, 2016) performed the
first analyses using this method and found constraints on general
chameleon gravity theories. A more recent analysis can be found in
Pizzuti et al. (2017). The dynamical mass or potential can also be
inferred from the escape velocity edges in the radius/velocity phase
space, which can be compared with the lensing-inferred mass pro-
file, or the gravitational potential profiles for samples of low- and
high-mass haloes, which would feel different effects of gravity due
to the chameleon screening, can be compared (Stark et al. 2016).

Another potentially powerful probe in cluster cosmology is the
cluster gas fraction (e.g. Mantz et al. 2014), fgas = Mgas/Mhalo, where
Mgas is the mass of baryons (or hot gas) in the intracluster medium
and Mhalo is the total halo mass. In massive clusters, the mass of
the hot intracluster gas dominates over that in cold gas and stars,
and thus fgas is expected to approximately match the cosmic baryon
fraction, 	b/	M. However, measurements of fgas involve measuring
Mhalo, which is the dynamical rather than the true mass of the halo.
Constraints from fgas on f(R) gravity are therefore likely to be biased
(Li et al. 2016). To make amends for this we will require a general
formula for the ratio Mdyn/Mtrue, which is presented in Section 5.

Our framework is sufficiently flexible to include these, among
other, observables in the ultimate cluster constraints, though certain
generalizations may be needed, such as the concentration–mass
relations for not only the true but also the effective haloes.

4 SI M U L AT I O N S A N D M E T H O D S

The specifications of the f(R) gravity simulations used in this work
are presented in Section 4.1. The procedure to measure the dynam-
ical mass enhancement from this data is discussed in Section 4.2,
along with the details for the modelling of this enhancement and its
parameters.

4.1 Simulations

Our collisionless simulations are run using the ECOSMOG code (Li
et al. 2012), a code based on the publicly available N-body and hy-
drodynamical code RAMSES (Teyssier 2002), and which can be used
to run N-body simulations for a wide range of modified gravity
and dynamical dark energy scenarios. The code is efficiently paral-
lelized, and uses adaptive mesh refinement to ensure accuracy of the
fifth force solution in high-density regions. In order to reliably fit the
dynamical mass enhancement as a function of the halo mass, an ap-
propriate range of halo true mass that covers the transition between
Mdyn = Mtrue and Mdyn = 4

3 Mtrue would be required. For this reason,
three different simulations of varying resolutions were utilized. For
the purposes of clarification, these are listed as the Crystal, Jade,
and Diamond simulations with increasing resolutions.

The parameters and technical specifications of the simulations
are listed in Table 1. The Hubble expansion rate, H0, is set to
69.7 km s−1 Mpc−1. Diamond is the highest resolution simulation,
and its small particle mass allows lower mass haloes to be investi-
gated. While Crystal is the lowest resolution, its large volume and
particle number mean that higher mass haloes can be included. Jade
is needed in order to provide bridging halo mass regimes with both
Crystal and Diamond to ensure that a complete range of masses is
tested and to verify that the different simulations agree well in the
overlapping regions (see Appendix B). Because the results of this
investigation are intended to be used with the Planck 2015 data,
which only cover up to redshift z = 1, only simulation snapshots
with z < 1 are used. This includes 19 snapshots from both Crystal
and Diamond, and 33 from Jade. The use of data from only z < 1
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Table 1. Specifications of the three ECOSMOG simulations used in this inves-
tigation, labelled Diamond, Jade, and Crystal for convenience. The gold data
are defined as having been generated by f(R) gravity simulations, whereas
the silver data come from effective density data generated from �CDM
simulations. The strengths F4, F4.5,... correspond to present-day scalar field
strengths |fR0| = 10−4, 10−4.5,... for Hu–Sawicki f(R) gravity with param-
eter n = 1. The Hubble constant, H0, is set to 69.7 km s−1 Mpc−1 in all
simulations.

Parameters and Simulations
data types Diamond Jade Crystal

Box size/h−1 Mpc 64 450 1024
Particle number 5123 10243 10243

Particle mass/h−1 M 1.52 × 108 6.60 × 109 7.80 × 1010

	M 0.281 0.282 0.281
	� = 1 − 	M 0.719 0.718 0.719

Gold F6 F5 F4, F5, F6
Silver F5.5, F6.5 F4.5, F5.5, F6.5 F4.5, F5.5

also means that we can avoid using high-z data from the Crystal
simulations, which suffer from poor resolutions.

Halo catalogues for these simulations are constructed in two
steps. First a modified ECOSMOG code is run to generate effective
density data from the particle data for all of the snapshots. After
that AHF (Gill, Knebe & Gibson 2004; Knollmann & Knebe 2009),
a halo finder that is properly modified to read the effective density
data, is run to identify effective haloes. AHF is run with the M500c

mass definition, and the outputted halo catalogues include the ratio
Mdyn/Mtrue for each halo, as well as the lensing mass that can be
treated as Mtrue.

Given the expensive cost of full modified gravity simulations,
our f(R) simulation suite only includes a limited number of models.
The Crystal simulations have only been run for F4, F5, and F6, Jade
has been run for F5 only, and Diamond for F6 only. From Fig. 1,
we can see that up to z = 1 (the redshift limit in the simulation
data for our analysis) the three simulated models – F4, F5, F6 – do
not cover all possible values of fR(z) continuously but leave gaps
in between. In order to test the proposed model for the dynamical
mass enhancement over the greatest possible range of field values,
without making too much effort in running full f(R) simulations for
other fR0 values, we propose a simpler approach. At any desired red-
shift z, the modified gravity solver in the ECOSMOG code was run on
the particle data of �CDM simulations to generate further effective
density data by assuming these were actually f(R) gravity calcula-
tions with strengths F4.5 (|fR0| = 10−4.5), F5.5 (|fR0| = 10−5.5), and
F6.5 (|fR0| = 10−6.5). Because these calculations involve running the
ECOSMOG only for one step (for each fR0 and z), they are much less
expensive than a full simulation that means that we can afford to
run many of them. Indeed, we could repeat this for any other values
of fR0, but found that the above three additional values already give
decent overlapping in the halo mass ranges (see below).

AHF effective halo catalogues were then generated for the addi-
tional fR0 values using the effective density field from these ‘approx-
imate simulations’, the latter neglecting effects from the different
structure formations under these models that could lead to different
internal structure and large-scale environments of haloes. For this
reason, this additional data is labelled ‘silver’ data, and it was used
in addition to the ‘gold’ data that were generated from the actual
full f(R) gravity simulations. We justify the use of silver data by
noticing that our thin-shell modelling (see above) treats haloes as
spherical top-hats by averaging the mass distribution within R500c

(the same can be done for other halo mass definitions, although in
this work we use M500c when studying Mdyn/Mtrue) and therefore
is not sensitive to the actual subtle differences in the halo density
profiles from the full and approximate simulations. In addition, we
have checked the validity of using silver data by doing the same
analysis for |fR0| = 10−5, for which we have gold data to compare
to: as is shown in Appendix B, in this case the gold and silver data
of F5 are in excellent agreement.

4.2 Measuring the dynamical mass enhancement

The ratio of the dynamical mass to the true mass of a halo depends
on the mass of the halo, the background scalar field of the Universe,
and the redshift. Because the field is a redshift-dependent quantity,
the different snapshots for a given model all have different field
values with which to investigate the dynamical mass enhancement.
The ratio Mdyn/Mtrue is described by two parameters p1, p2 (as will
be discussed below), which vary with the background field value
fR(z) and redshift z. In Section 2.1 it was shown that, according to
our thin-shell modelling, the screening effect can be described by a
specific combination of fR(z) and z, fR(z)/(1 + z), and so we expect
that both p1 and p2 can be fitted as functions of fR(z)/(1 + z) using
their values at the snapshots. In this subsection we describe how
this fitting process was carried out in our analysis.

4.2.1 tanh function fit to Mdyn/Mtrue

In this step, the AHF halo catalogues were first sifted to keep
only haloes made up of a sufficient number of dark matter par-
ticles and to exclude subhaloes. The mass criteria for the sift-
ing of Crystal, Jade, and Diamond were, respectively, M500 >

(4 × 1013, 3 × 1012, 6.5 × 1010) h−1 M, which correspond to a
minimum number of particles per halo of 513, 454, and 428. These
numbers were chosen conservatively to ensure that the �CDM halo
catalogues are complete down to those masses, which in practice
was done by requiring that the HMF is in good agreement with the
Tinker et al. (2010) analytical fitting formula.

Three plots of the mass ratio Mdyn/Mtrue as a function of the halo
mass Mtrue are shown in Fig. 3, for the sifted Crystal F4, Jade F5,
and Diamond F6.5 data for redshifts 0, 0.43, and 0.95, respectively.
These include the extremes in both field strength and redshift. Each
black data point corresponds to an individual halo. In each plot
a majority of the haloes lie along a dark band of points that is
asymptotic at ratios 4/3 and 1. The asymptote at ratio 1 corresponds
to Mdyn = Mtrue, which holds for higher mass haloes whose self-
screening is sufficient to completely remove the enhancement due
to the fifth force. The asymptote at 4/3 represents the maximum
possible enhancement to Mdyn, and therefore results for haloes in a
relatively empty environment and with mass low enough that there
is effectively no self-screening of the fifth force.

For F5 many points are found below the dark band. These cor-
respond to haloes that have most likely experienced environmental
screening due to nearby more massive haloes, such that chameleon
suppression of the fifth force is active even though the halo mass
itself might not be great enough for self-screening. The effect of
environmental screening in F5 is weak enough that the dark band
of data only traces haloes for which self-screening dominates over
environmental screening. In F4, few data points are observed be-
low the band because environmental screening is less effective in
stronger background fields. For F4 and F5, apart from numerical
noise, no data points are found to lie above 4/3 that is the maximally
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Figure 3. The ratio of the dynamical mass to the lensing mass versus the lensing mass for the dark matter haloes generated from N-body simulations run
with modified ECOSMOG simulations for Hu–Sawicki f(R) gravity with n = 1. From left to right: Crystal simulation with z = 0 for model F4; Jade simulation
with z = 0.43 for model F5; Diamond simulation with z = 0.95 for model F6.5. The simulation specifications are provided in Table 1. Unweighted (solid)
and weighted (dashed) least-squares fit of equation (26) are plotted over the data. These are generated using mass bins represented by the mean mass and the
median ratio, shown by the red points. These points and their one standard deviation error bars are produced using jackknife resampling. For jackknife errors
less than 10−4, we replace these with half of the 68 per cent width of the data, between the 16th and 84th percentiles (see main text).

allowed dynamical mass enhancement in f(R) gravity. In F6.5 the
dark band of data is observed to have lower enhancement, with many
data points found above it, particularly at Mtrue ≤ 1011.5 h−1 M.
With such low field values and halo masses in this mass range in
F6.5, environmental screening is now able to begin to dominate over
self-screening, which means the dark band of data no longer traces
the haloes with self-screening only, as it did for F4 and F5. This is
why it is now possible to find haloes above the main trend, as these
simply correspond to haloes in emptier environments. Note that the
upper bound of 4/3 applies also in this case.

In order to extract a trend for this data, the haloes are grouped
into a set of equally spaced logarithmic mass bins, which effectively
cover the full range of halo masses under consideration for a given
model and snapshot. For each bin, the mean logarithmic halo mass is
measured along with the median ratio Mdyn/Mtrue among all haloes.
The data in each bin approximately follow a lognormal distribution,
and the median is expected to yield an appropriate ratio from within
the main band of data. We leave the study of the detailed distribution
of Mdyn/Mtrue for a future work.

In the absence of multiple realizations of the data, the errors on
the mean halo mass and median Mdyn/Mtrue in the bins are evaluated
using jackknife resampling, in which the data are randomly split into
150 subvolumes at each snapshot. By systematically excluding one
subvolume at a time, 150 resamples are created. For each resample,
the haloes are split into the same set of mass bins, and 150 median
ratios Mdyn/Mtrue and 150 mean masses are measured for each bin.
Following the procedure outlined by Norberg et al. (2009), the
errors in the median ratio and mean mass are generated by taking
the square root of the variance of the 150 values, which has to be
rescaled by a factor of 149 to account for the lack of independence
of the resamples.

The mass ratio data are quoted to four decimal places in the
AHF output. Such precision can result in zero, or an unphysically
small, variance being measured by the jackknife method. This can
happen in unscreened or completely screened regimes where most
of the data in the bin span only a small range of ratios. Using the

argument that the ratio errors must at least equal 10−4, any errors
generated by jackknife that are less than this value are replaced
with half of the width of the 68 per cent range (in the bin under
consideration), which spans from the 16th to the 84th percentile.
The percentile spread is most often used for lower mass bins in
strongly unscreened regimes, where the ratio data span only a very
small range. This ensures that the errors for these bins become a
reasonable size relative to the errors of the other bins, which are
estimated by jackknife, though rigorously speaking the 68 per cent
range is more of a description of the spread of the mass ratio rather
than sample variation of the median ratio as jackknife gives. As
discussed below, in the main results of this paper we do not use
the error bars estimated using this combination of jackknife and the
68 per cent range.

The results for these bins are shown in Fig. 3, plotted over the
raw data. To account for the asymptotic nature of the data, we fit
the following tanh curve:

Mdyn

Mtrue
= 7

6
− 1

6
tanh

(
p1

[
log10 (Mtrue) − p2

])
. (26)

The two constants 7/6 and 1/6 are used to ensure the function re-
mains between fixed asymptotes at ratios 4/3 and 1. The parameters
p1 and p2 represent, respectively, the inverse width of the mass tran-
sition and the mass logarithm at the centre of the transition.

In the dashed line the parameters have been optimized through
weighted least squares: the minimization of the sum of the squared
normalized residuals, where the normalization is equal to the size
of the error bars. For F5 and F6.5 this fit of equation (26) shows
excellent agreement with the bin data, however, for F4 the fit shows
poor agreement with the result for the highest mass bin. This is
because the error bar of this bin is substantially greater than those
of the lower mass bins, and it contributes very little weight in the
optimization. Weighted least squares therefore overestimates the
value of p2 for this snapshot, as the tanh curve starts to drop at a
higher mass than the raw data. In contrast, the data point in the
second highest mass bin has a much smaller error and it slightly
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overshoots a tanh curve that would perfectly go through the highest
mass data point (the solid line). Note that the same happens to
the second and third lowest mass data points for F5 (the middle
panel of Fig. 3), but in this case there are four other data points at
higher masses that dominate the optimization, resulting in a good
visual agreement between the dashed curve and the data points. This
indeed highlights the importance of having data points that cover the
full transition of the tanh curve in order to fit p1 and p2 accurately.
Furthermore, the observation that the second lowest mass point for
F5 lies above the tanh curve is quite generic and happens in most
other plots where the curve starts to deviate from 4/3, implying a
slight insufficiency in the tanh fitting (we will comment on how this
affects the fitted values of p1 and p2 below).

On the other hand, for the solid line in Fig. 3 the parameters have
been optimized via unweighted least squares: the minimization of
the sum of the squared residuals, which have equal weights for all
bins now. Since it does not suffer from the same issues as described
above for the weighted fitting, this fit shows better agreement with
the data point of the highest mass bin of F4, while elsewhere shows
equally good agreement as weighted least squares.

As discussed above, in the completely screened or unscreened
regimes there is very little variation of the mass ratio and therefore
the resulting uncertainties – by using either Jackknife resampling or
the 68 per cent range – for mass bins in those regimes are extremely
small. Together with the facts that in many snapshots (e.g. the
left-hand panel of Fig. 3) the data points only cover part of the
transition of the tanh curve and that the lower mass bins can contain
around three orders of magnitude more haloes than the higher mass
bins, this makes it challenging to find a consistent way to estimate
uncertainties in all mass bins across all models/snapshots. Since the
inhomogeneous sizes of error bars in the data points can lead to
clearly unphysical fitting results, as shown in the dashed lines of
the left-hand panel of Fig. 3, the main results of this paper shall be
given using the unweighted least-squares approach. We have tried a
number of different ways to assign data error bars, including setting
a lower limit such as 10−4 to the individual errors, which all involve
certain degrees of arbitrariness (e.g. the 68 per cent range to get
error bars in Fig. 3 is really a characterization of the spread of the
data rather than an uncertainty of the median, and it is used solely to
avoid very small uncertainties for some mass bins). Perhaps more
importantly, the different ways of estimating uncertainties for the
weighted least-squares approach that we have tried all lead to similar
fitting results of p1 and p2 as functions of fR(z)/(1 + z) (the topic of
the next subsubsection), and the situation depicted in the left-hand
panel of Fig. 3 happens only for a few snapshots. As an example
for reassurance, in Appendix A we present fitting results of p1 and
p2 using the weighted least-squares approach with the error bars
estimated as in Fig. 3, which confirms that this different approach
does not significantly affect the final result.

For each snapshot in the investigation, five mass bins were used
for Crystal, seven for Jade, and six for Diamond, as these are the
maximum possible numbers of bins such that there are a minimum
of five haloes in almost all bins. We have checked different bin
numbers, and this combination of bin numbers was also found to
yield the smoothest results.

4.2.2 Fitting of p1, p2 as functions of fR(z)/(1 + z)

By carrying out a fitting of equation (26) for all snapshots of all
models, the field and redshift dependence of p1 and p2 can be tested.
To understand what should be plotted, Section 2 and in particular

the approximations for M1 and M2, given by equations (14) and
(15), are used. From the way that p1 and p2 have been defined, the
following can be shown:

p1(z, fR) ∝ 1

log10 (M1) − log10 (M2)
= const, (27)

p2(z, fR) = log10 (M1) + log10 (M2)

2

= 3

2
log10

( |fR|
1 + z

)
+ const. (28)

Equations (14) and (15) have been used to bring in the z and fR(z)
dependences. Equation (28) implies p2 should have a linear trend
as a function of log10( fR

1+z
) with a slope of 1.5. This comes from

the power 3/2 in equations (14) and (15), where it in turn stems
from the 2/3 power in �N ∝ M

2
3 for the Newtonian potential given

by equation (10). On the other hand equation (27) implies p1 has
no dependence on z and fR apart from through higher order effects,
such as the non-sphericity of haloes, non-uniformity of the mass
distributions within haloes, environmental screening, etc. Because
of the simplicity of our thin-shell modelling, here we shall not
attempt to include these higher order effects. Indeed, under the
thin-shell approximation, using equations (14)–(16), it is found that
the intercept of p2 in equation (28) only depends on ε, G (there is no
dependence on H0 = 100 h km s−1 Mpc−1 since the h is absorbed
into the unit of 10p2 , h−1 M), and 
, and p1 depends only on ε;
neither depends on the cosmological parameters, whose effects are
completely in determining fR(z). We will find later that p1 is indeed
very weakly dependent on fR(z)/(1 + z). We also show that this
dependency can be safely ignored without significantly affecting
the value of the ratio Mdyn/Mtrue.

A potential issue arises from the limitations of the mass range
covered by a particular set of data. As can be seen from Fig. 4,
the mass bins are located almost entirely in the unscreened regime
for F4 at low redshifts, while for high redshift Crystal F5, Jade
F6, and Diamond F6.5 the mass bins are mostly found in the com-
pletely screened regime. As will be discussed in Figs 5 and 6, the
latter can result in underestimation of the p1 and p2 values, and we
have already seen in Fig. 3 how, depending on the choice of fitting
procedure, p2 can be overestimated for F4 at low redshift.

To understand why the parameters are affected in such a manner,
consider the scenario where all mass bins are located at ratio 4/3.
As can be seen in the F4 and F5 panels of Fig. 3, the median ratio
data from the simulations in this regime are almost completely flat,
so a tanh fit will predict a turning point at a mass higher than is
actually the case, and so p2 will be overestimated. This flatness
of the raw data in the unscreened regime is particularly evident in
the F5 panel, where the second data point from the left ends up
above the trend line, despite having a negligible error, at the same
height as the first data point (this suggests that this region of the
data cannot be fitted perfectly by a tanh curve). On the other hand,
for mass bins at high-redshift snapshots and for low field strengths
(F6.5–F5), where almost all of the data points lie at a ratio of 1,
because the data here are flatter than predicted by equation (26) the
turning point at ratio 1 will thus be predicted at lower mass, leading
to an underestimation of p2. The effect on p1 turns out to be similar
to p2, but is even more sensitive to these limitations.

The issues presented here were the main motivation for using
data from simulations with differing resolutions. To prevent such
dubious estimations of p1 and p2 from adversely affecting the main
results, a strict criterion is enforced: we only trust p1 and p2 values
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Figure 4. Dynamical mass to lensing mass ratio as a function of the lensing mass for Hu–Sawicki f(R) gravity with |fR0| = 10−4 (red), 10−4.5 (orange), 10−5

(green), 10−5.5 (magenta), 10−6 (blue), and 10−6.5 (grey) at various redshifts as annotated. Only haloes with mass Mtrue > (1013.6, 1012.5, 1010.8) h−1 M
have been plotted for the Crystal (left-hand column), Jade (middle column), and Diamond (right-hand column) modified ECOSMOG simulations, respectively,
the specifications of which are provided in Table 1. The data points corresponding to mass bins represented by their median ratio and mean mass, and their
one standard deviation error bars are produced using jackknife resampling. Jackknife errors less than 10−4 are replaced with half of the range between the
16th and 84th percentiles. Solid line: equation (26) with p1 and p2 determined by unweighted least-squares fitting for the given snapshot; dashed line: equation
(26) with best-fitting constant p1 result (p1 = 2.21) and linear p2 result (p2 = 1.503 log10( |fR |

1+z
) + 21.64) from Fig. 6 (dashed line there) and Fig. 5 (solid line

there), respectively.

that have been calculated using snapshots for which the mass bins
enclose at least half of the height of the mass ratio transition (a
median ratio range of 1/6 or greater).

5 R ESULTS

As mentioned above, a fitting function for the ratio Mdyn/Mtrue that
works for general scalar field strength fR0 and redshift z should be

calibrated and validated against full numerical simulations with a
large dynamical range of halo masses in order to maximally cover
the transition between screened and unscreened regimes, which
itself varies strongly with z and fR0. However, N-body simulations
are known to have a limited dynamical range and it is also too
expensive to run full simulations for too many fR0 values. Our recipe
to tackle the former challenge is to combine a suite of simulations
with varying resolutions (Crystal, Jade, and Diamond) to increase
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Figure 5. Parameter p2 in equation (26) plotted as a function of the background scalar field at redshift z, fR(z), divided by (1 + z), for several present-
day field strengths fR0 (see legends, strengths listed from top to bottom refer to data from right to left) of Hu–Sawicki f(R) gravity with n = 1. p2 is
measured via an unweighted least-squares optimization of equation (26) to data from modified ECOSMOG simulations, described in Table 1, at simulation
snapshots with redshift z < 1. fR(z) is calculated for each snapshot using equation (7). The trend line has been produced via a weighted least-squares linear
fit, using the one standard deviation error bars, of the solid data points, which correspond to snapshots for which the mass bins contain at least half of
the median mass ratio range 1 to 4/3. The hollow data do not meet this criterion, so is deemed unreliable and neglected from the fit, which is given by
p2 = (1.503 ± 0.006) log10( |fR |

1+z
) + (21.64 ± 0.03).

Figure 6. Parameter p1 in equation (26) plotted as a function of the background scalar field at redshift z, fR(z), divided by (1 + z), for several present-day field
strengths fR0 (see legends, strengths listed from top to bottom refer to data from right to left) of Hu–Sawicki f(R) gravity with n = 1. p1 is measured via an
unweighted least-squares optimization of equation (26) to data from modified ECOSMOG simulations, described in Table 1, at simulation snapshots with redshift
z < 1. fR(z) is calculated for each snapshot using equation (7). Weighted least-squares linear (solid line) and constant (dashed line) fits, using the one standard
deviation error bars, of the solid data points, which correspond to snapshots for which the mass bins contain at least half of the median mass ratio range 1 to
4/3, are shown. The hollow data points do not meet this selection criterion, and therefore are deemed unreliable and neglected from the fits, which are given
by p1 = (0.17 ± 0.01) log10( |fR |

1+z
) + (3.2 ± 0.1) and p1 = (2.21 ± 0.01), respectively.
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the halo mass range, while for the latter issue we have introduced
the low-cost ‘silver’ simulations (see Section 4.1). Both approaches
need to be explicitly checked to guarantee validity and consistency.
Furthermore, in Section 4.2 we have discussed subtleties in the
tanh curve fitting such as the weighted and unweighted least-squares
approaches. In this section we give the main results on p1 and p2

from using this methodology, for unweighted least squares, and
leave various consistency checks to the appendices. In Appendix A
we compare with results from using the weighted least-squares
approach as a double check, and in Appendix B we check the use of
‘silver’ data and the combination of the Crystal, Jade, and Diamond
simulations.

A plot of p2 as a function of log10( |fR |
1+z

) is shown in Fig. 5. A linear
trend is fitted using the filled data points, which correspond to snap-
shots for which the mass bins enclose a median ratio range of 1/6 or
greater. The motivation for this criterion is discussed in Section 4.2.
The filled data points are expected to give a reasonable estimate for
the logarithm of the mass at the centre of the transition, and they
all turn out to lie along a clear linear trend in Fig. 5. The result
of the linear fit, found using the one standard deviation error bars,
is p2 = (1.503 ± 0.006) log10( |fR |

1+z
) + (21.64 ± 0.03). The gradient

of 1.503 ± 0.006 shows excellent agreement with the theoretical
prediction of 1.5 from equation (28).

Many of the hollow data points are observed to be peeling off
the trend, particularly in the F6 and F5.5 models. These snapshots
correspond to cases in which all mass bins are found in the totally
screened regime, resulting in an underestimation of the centre of
the transition as discussed in the previous section. This behaviour
provides no useful information about the dynamical mass enhance-
ment, but rather it tells us that a higher resolution simulation, with
lower mass particles to probe haloes of lower mass, is required. For
F5.5 the peeling off corresponds to Crystal data, whereas the higher
resolution Jade and Diamond simulations produce linear data. For
F6 both the Crystal and Jade data peel off from the linear trend, as
only Diamond has a high enough resolution to probe unscreened
haloes in F6. Diamond turns out to have a sufficient resolution to
effectively examine F6.5 as well, although a couple of high-redshift
snapshots do not get used in the linear fit, suggesting these are on
the boundary between reliable and untrustworthy data. F6.5 nev-
ertheless agrees with the linear behaviour of the rest of the filled
data.

A relatively noisy trend is observed in the F4 data (though the data
points all reasonably follow the linear trend), probably because each
snapshot only has one or two mass bins lying within the mass range
where the ratio Mdyn/Mtrue undergoes a transition between 1 and
4/3. Most bins lie in the unscreened regime, such that none of the
snapshots in F4 satisfy the selection criterion to be included in the
linear fit – all data points for F4 are hollow in Fig. 5. An improvement
of this result would require a simulation with a sufficiently large
box size to include more haloes at the higher masses necessary to
properly examine screening in F4.

The corresponding plot for p1 is shown in Fig. 6. The trend is
more complicated than that of p2, partly because the thin-shell model
result described in equation (27) predicts no dependence of p1 on fR

and z, while dependence can still be introduced through effects such
as environmental screening that are harder to model. However, we
expect that these effects have a relatively small impact, and indeed,
an approximately flat trend of p1 is observed. The results are noisier
here than in Fig. 5 for p2, because the width of the mass transition
requires a greater range of halo masses for a tanh fit to be reliable.
The criterion for selecting snapshots in the fit of p1 is the same as
for p2, and again only the solid data points that satisfy this criterion

is fitted. This rules out all of the data from the F4 model (which
produces a wild trend here that is left out of the plot area), and
several snapshots from other models.

The result for the constant p1 fit, as predicted by equation (27),
is p1 = (2.21 ± 0.01) and is shown by the dashed line in Fig. 6. A
linear model was also fitted, shown by the solid line, yielding the
result, p1 = (0.17 ± 0.01) log10( |fR |

1+z
) + (3.2 ± 0.1). These trends

have been fitted using the one standard deviation error bars. The
gradient of 0.17 ± 0.01 is small, though not in agreement with the
prediction of a flat trend. With a theoretical modelling that neglects
effects such as environmental screening, a small gradient neverthe-
less seems like a reasonable result. Being able to accurately predict
the width of the mass transition is not as important as being able to
predict the central mass of the transition, because the tanh curve is
less sensitive to p1 than to p2 (which can be easily checked). Almost
all the data points observed to be significantly peeling off from the
horizontal band of data in Fig. 6 (including Jade and Crystal F6,
Crystal F5.5, and some of Jade F4.5) fail to satisfy the selection
criterion. This is further evidence that these particular trends are
indeed caused by the limitations of the simulation resolution. Also,
a comparison of Figs 6 and A3 shows that the use of an unweighted
approach to measure p1 produces the smoother trend in the p1 data.

The quality of the above fits for p1 and p2 and the validity of
the theoretical predictions, given by equations (27) and (28), can
be assessed by examining Fig. 4. The solid lines represent the ex-
act fits produced in the unweighted least-squares optimization of
equation (26) to each snapshot of data. The dashed lines are plotted
using equation (26) and the p1 and p2 values that are predicted using
the constant fit of Fig. 6 (dashed line) and the linear fit of Fig. 5
(solid line), respectively. Noticeable disparities between the dashed
line and solid line fits are observed in the F4 data, resulting from the
relatively flat trend produced by the raw data in unscreened regimes
and the limited number of haloes in Crystal covering the high masses
necessary for properly examining the transition to complete screen-
ing in F4. The agreement between the dashed and solid lines in
Fig. 4 generally improves if one uses the linear fit predictions for
p1, although we only use the constant fit here, which is motivated by
our theoretical modelling. Nevertheless, in general the dashed line
fits show excellent agreement with the simulation data over the full
range of redshifts and models that are plotted in Fig. 4, implying
that equation (26) can be treated as a general formula when using
our constant and linear fits of p1 and p2, respectively.

5.1 Potential implications

Although they are not directly related to the preparation for cluster
constraints, we make the following interesting observations in the
results of this section, mainly Fig. 5.

First, the solid straight line in Fig. 5 represents the logarithm
of the halo mass, log10Mtrue, at the centre of the transition of the
median of Mdyn/Mtrue, and it roughly separates the haloes into
two parts – a screened sample (log10Mtrue well above the line)
and an unscreened sample (log10Mtrue well below the line). From
Figs 3 and 5 we notice that even at |fR(z)|/(1 + z) = 10−7, cor-
responding to a strongly screened model, about half of the haloes
(with high ratio Mdyn/Mtrue) with mass Mtrue ∼ 1011 h−1 M are
unscreened, and these are haloes that are likely to reside in un-
derdense regions. The other half of these haloes (with low ratio
Mdyn/Mtrue) are screened, aided by their environments, implying
the importance of environmental screening. It would certainly be
interesting to see if this linear trend goes to even smaller values of
|fR(z)|/(1 + z), which will tell us whether dwarf galaxy haloes can be
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environmentally screened for those field values. This will be rel-
evant for astrophysical tests of f(R) gravity (e.g. Jain, Vikram &
Sakstein 2013; Vikram et al. 2013; Sakstein, Jain & Vikram 2014).

Second, it is interesting that the screening of haloes in mod-
els with different fR0 can be well described by a single parameter:
fR(z)/(1 + z). This implies that the theoretical modelling of vari-
ous other properties in f(R) gravity can perhaps be simplified into
a one-parameter family of description and therefore may have pro-
found theoretical and practical implications. The exploration of this
possibility will be left for future work.

6 SUMMARY, D ISCUSSION,
A N D C O N C L U S I O N S

The global properties of galaxy clusters, such as their abundance and
clustering on large scales, are sensitive to the strength of gravity and
can be predicted accurately using cosmological simulations. They
therefore offer a powerful means of testing alternative models of
gravity, including f(R) gravity, on large scales. In order to utilize
the wealth of information being made available through current
and upcoming galaxy cluster surveys, it is important to ensure that
numerical predictions are prepared that can be directly confronted to
the observational data. This includes accounting for various sources
of theoretical bias, such as the enhancement of the dynamical mass
of galaxy clusters resulting from the presence of the fifth force in
unscreened f(R) gravity. This effect is currently not included in the
derivations of scaling relations used to determine the cluster mass.
The best means of correcting this would be through a recalibration
of the scaling relations that are better understood in �CDM, and
make them work in the context of modified gravity, which requires
an understanding of the relationship between the dynamical mass
and lensing mass. However, previous studies of this relationship in
the literature are specific and do not include a general formula that
can be applied to arbitrary model parameters and redshifts.

We have found a simple model to describe the relationship be-
tween the dynamical mass and lensing mass of dark matter haloes in
the Hu–Sawicki f(R) model. As shown by the solid line fits of Fig. 4,
the tanh fitting formula of equation (26) has generally shown excel-
lent agreement with AHF halo data, for z < 1, from three ECOSMOG

dark-matter-only simulations, which are summarized in Table 1. By
taking advantage of the variety of resolutions offered by these simu-
lations, and using �CDM simulations to produce approximate data
for field strengths not covered by the f(R) gravity simulations, the
validity of equation (26) has been probed vigorously across a wide
and continuous range of field values that cover 10−6.5 < |fR0| < 10−4

within z < 1.
In addition, we have used a simple thin-shell model (Section 2.1)

to predict the behaviours of free parameters p1 and p2 in equa-
tion (26), which characterize the inverse width and the central log-
arithmic mass of the tanh-like transition, respectively. The pre-
dictions, which neglect the effects of environmental screening
due to nearby dark matter haloes, are given by equations (27)
and (28). Using a stringent criterion to exclude unreliable snap-
shots in the fitting, the result for p2, shown in Fig. 5, is p2 =
(1.503 ± 0.006) log10( |fR |

1+z
) + (21.64 ± 0.03). The slope value of

1.503 ± 0.006 shows excellent agreement with the prediction of
1.5 by equation (28), and the data of Fig. 5 show a clear linear trend
as predicted. As shown in Fig. 6, the p1 data are more scattered, but
given the size of the one standard deviation error bars, the constant
trend predicted by equation (27) is not unreasonable, resulting in
p1 = (2.21 ± 0.01). As shown by the dashed line fits of Fig. 4, these
results for p1 and p2 show good agreement with the simulation data

across the full range of field values and redshifts. We have also
repeated the analysis using a different approach to utilize the errors
in the simulation data, and the results, shown in Appendix A, also
agree with the thin-shell model prediction very well. In Appendix B
we further argue that the results in this work apply to models with
different cosmological parameters such as σ 8 and 	M.

On the other hand, although we make a very specific choice of
f(R) gravity in this work, the theoretical model and the procedure
we followed to calibrate it are expected to be applicable to general
chameleon gravity theories (Gronke et al. 2015, 2016). As discussed
briefly in Appendix B, in other f(R) models the transition between
screened and unscreened regimes can be different from the Hu &
Sawicki (2007) model with n = 1, which may cause the exact fitted
values of pi to differ from what we presented in the above. Therefore,
other f(R) models may require a recalibration based on simulations.
However, given that all f(R) models are phenomenological, it is
perhaps more sensible to focus on a representative example, such
as that by Hu & Sawicki (2007), to make precise observational
constraints. The pipeline and methodology can then be applied to
any other models following general parametrization schemes (e.g.
Brax et al. 2012a; Brax, Davis & Li 2012b; Lombriser 2016), which
are useful for capturing the essential features of large classes of
models using a few parameters. Should a preferred one emerge,
the conclusion for the Hu–Sawicki model can serve as a rough
guideline as to what level future cluster observations can constrain
scalar–tensor-type screened theories. For this reason we decide not
to explore other forms of f(R) in this work.

A generic fitting function for the relationship between the dy-
namical and lensing masses of dark matter haloes is an essen-
tial ingredient of the new framework proposed in this work, to
carry out cosmological tests of gravity in an unbiased way. Taking
equation (25) as an example, our general formula for the dynamical
mass enhancement allows us to incorporate this particular effect of
f(R) gravity into galaxy cluster scaling relations in a self-consistent
way. A key benefit of a fitting function is that it allows a contin-
uous search through the model parameter space without having to
run full simulations for every parameter point sampled in MCMC.
The results will also be useful for other cluster tests of gravity that
employ the difference between dynamical and lensing masses, such
as by comparing cluster dynamical and lensing mass profiles, or by
looking at measured cluster gas fractions.

The results presented in this paper indicate that a simple model
sometimes works surprisingly well despite the greatly simplified
treatment of the complicated non-linear physics of (modified) grav-
ity. It naturally raises the following question: can other theoretical
or observational properties of dark matter haloes also be modelled
accurately, based on a simplified physical picture and calibrated
by numerical simulations? An example is the relationship between
the masses and density profiles of haloes, as mentioned in Sec-
tion 3. This concentration–mass relation is critical for converting
between the different halo mass definitions commonly used in dif-
ferent communities, and a great deal of effort has been made to
explain it in the standard �CDM model, while in modified gravity,
such as f(R) models, the understanding is still purely numerical and
confined to a limited few cases. We will explore this issue in a future
work.

Throughout the analysis of this project, we used dark-matter-only
simulations. The method to rescale the �CDM cluster scaling rela-
tions to get scaling relations that apply to modified gravity (He &
Li 2016) has been tested and validated using non-radiative hydro-
dynamical simulations. In Section 3 we argued that adding the full
baryonic physics in the simulations will not substantially change
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the conclusion, based on previous work on �CDM full-physics
simulations. It will be tremendously helpful to precise this argument
in future projects, by performing full hydrodynamical simulations
for Hu–Sawicki f(R) gravity.

Finally, we note again that a key ingredient of any test of gravity
using the cluster abundance is the ability to predict the HMFs for
arbitrary model parameters. In this work we have used the recently
developed HMF fitting formula by Cataneo et al. (2016), which
was calibrated using a subset of simulations (Crystal) used in this
work. This formula has 3–5 per cent accuracy for a range of fR0

values between F4 and F6 and for halo masses above 1013 h−1 M,
making it ideal for comparing with observed cluster abundances. A
full hydrodynamical simulation can also be useful in understanding
how the predicted abundance of dark matter haloes can change with
the inclusion of baryonic physics.

We will introduce the above-mentioned framework, which incor-
porates these effects into model predictions and allows for detailed
MCMC searches of the parameter space, in future work. The fitting
functions for Mdyn/Mtrue and for the halo concentration–mass re-
lation will also be useful for constructing mock observational data
that are needed to validate the MCMC model constraint pipelines
before they are applied to real data.
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A P P E N D I X A : W E I G H T E D F I T T I N G O F tanh
C U RV E

In Section 4.2, we have discussed and compared, for a few selected
cases, two schemes to fit the Mdyn/Mtrue mass ratio data using a
tanh curve. We found that, although the weighted and unweighted
fitting schemes give broadly consistent results, the latter scheme,
by assuming that all data points have the same error, leads to fitted
tanh curves that have better visual agreement with the data points.
This is because in some snapshots the data for the median Mdyn/Mtrue

ratio has big disparities in the uncertainties because there are few
high-mass haloes due to box size constraints, or because the ratio
data in screened and unscreened regimes show too little variation.
The estimated median ratio values therein are not biased because
of this, and so we presented our main results (see Section 5) using
the unweighted scheme. This gives all bins equal weight regardless
of the large disparities in the uncertainty, allowing the fitted curve
to more easily go through the data points. However, one could still
argue that the strong variation of median Mdyn/Mtrue ratio uncer-
tainties in the different mass bins is at least partly physical (e.g.
in the completely unscreened regime there is intrinsically little un-
certainty in the ratio). Therefore here we present our results from
using the weighted approach, which show that the choice of method
does not have a significant effect on the final results, namely on the
constant and linear fits of p1 and p2, respectively.

To check the reliability of the weighted fit across all redshifts,
field strengths, and simulations, Fig. A1 has been produced, which
is analogous to Fig. 4 and covers the same snapshots. The solid
line trends are the weighted fits of the simulation data at the given
snapshots, and in general these show very good agreement with the
simulation data. However the disparities in the sizes of the error bars
now have a stronger impact on the fit and significant deviation from
the simulation data is observed for several snapshots, including the
Crystal F4 z = 0.00, the Jade F4.5 snapshots, and Diamond F6.5
z = 0.00.

The results for p2, produced through the weighted approach, are
shown in Fig. A2. The lowest redshift snapshots of F4 are now
observed to peel off from the linear trend due to the large disparities
in the uncertainties of the mass bin data, as discussed in Section 4.2
(see Fig. 3). The disparity in uncertainty in part results from the
limited number of high-mass haloes that could be screened in F4;
such massive haloes are very rare and the only way to resolve this
issue is to have a simulation with a much larger box size. However,
as is shown in Fig. 5, using unweighted least squares to measure
p2 has the effect of smoothing out the F4 data for p2, although this
does not reduce the general scatter in F4. In general the data are
more scattered across all models in Fig. A2 than in Fig. 5, although
for F4 there is now a more even scatter, with the data showing better
alignment with the trend line than for the unweighted case.

The criterion for the rejection of the measured p2 values is the
same as for the unweighted approach, and so the outliers for low-
redshift F4 in Fig. A2 do not affect the linear fit of this data. As
can be seen from Fig. A2, all of the solid data points, which meet
this criterion, lie along a clear linear trend, while the hollow data
points of F5.5 and F6 are all observed to peel off from this trend
in a similar manner to the data in Fig. 5. The result of the linear
fit, using the one standard deviation error bars, is p2 = (1.496 ±
0.010) log10( |fR |

1+z
) + (21.58 ± 0.05). Agreement of the slope with

the theoretical prediction of 1.5 from equation (28) is excellent. The
best-fitting linear parameters of 1.496 ± 0.010 and 21.58 ± 0.05
also show strong agreement with the linear fit of the unweighted
results (see Fig. 5), implying that the choice of whether to use
weighted or unweighted least-squares fitting of equation (26) is not
of particular importance as far as p2 is concerned.

The results for p1, measured via weighted least squares, are given
in Fig. A3, which is plotted on the same axes range as Fig. 6. Once
again, the same selection criterion is used as for the unweighted
least-squares approach, and the hollow data points are left out of
any fitting. The points are now significantly more scattered, and all
models now contain notable outliers that include several of the solid
data points. Taking F6.5 z = 0.00 as an example, we can clearly
see from Fig. A1 that the width of the mass transition has been
underestimated by the weighted least-squares approach, probably
because of the large error bar on one of the data points lying within
the transition. A similar effect applies to the other strongly overes-
timated data points in Fig. A3, and as discussed above this comes
down to limitations in using a weighted least-squares fit.

The result of the constant fit, which is motivated by the theoretical
prediction of equation (27), using the solid data points only, is
p1 = (2.23 ± 0.02), which is shown by the dashed line. This shows
excellent agreement with the constant fit to the unweighted data of
Fig. 6. Again, a linear model was also fitted, shown by the solid
line, and is given by p1 = (0.25 ± 0.03) log10( |fR |

1+z
) + (3.6 ± 0.2).

The gradient is still not in agreement with the prediction of zero.
Accounting for higher order effects, e.g. environmental screening
and the non-sphericity of haloes, may bring these results into better
agreement with the theoretical predictions; however, since we are
interested in an empirical fitting function that can be of practical
use, we prefer a simple over a sophisticated theoretical model.

As with the unweighted least-squares fitting, the validity of these
fits of p1 and p2 can be checked through an examination of Fig. A1.
This time the dashed lines are produced using equation (26) along
with the linear fit of p2 from Fig. A2 (solid line) and the constant
fit of p1 from Fig. A3 (dashed line), which are motivated by the-
ory. Agreement is now not quite as strong between the dashed and
solid lines as in Fig. 4, though still very good for most snapshots
shown. Disagreement with the simulation data still exists for F4,
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Figure A1. Dynamical mass to lensing mass ratio as a function of the lensing mass for Hu–Sawicki f(R) gravity with |fR0| = 10−4 (red), 10−4.5 (orange), 10−5

(green), 10−5.5 (magenta), 10−6 (blue), and 10−6.5 (grey) at various redshifts as annotated. Only haloes with mass Mtrue > (1013.6, 1012.5, 1010.8) h−1 M
have been plotted for the Crystal (left-hand column), Jade (middle column), and Diamond (right-hand column) modified ECOSMOG simulations, respectively,
the specifications of which are provided in Table 1. The data points, corresponding to mass bins represented by their median ratio and mean mass, and their
one standard deviation error bars are produced using jackknife resampling. Jackknife errors less than 10−4 are replaced with half of the range between the 16th
and 84th percentiles. Solid line: equation (26) with p1 and p2 determined by weighted least-squares fitting for the given snapshot. Dashed line: equation (26)
with best-fitting constant p1 result (p1 = 2.23) and linear p2 result (p2 = 1.496 log10( |fR |

1+z
) + 21.58) from Fig. A3 (dashed line there) and Fig. A2 (solid line

there), respectively.

which partly results from the lack of high-mass haloes and the flat-
ness of the data in the unscreened regime, as for the unweighted
approach. However, in Fig. A1, disparities in F4 also result from
the limitations in the weighted least-squares fit in finding agreement
with mass bins of large error, and this affects other models as well.
Examples include the Jade F4.5 snapshots, Jade F5.5 z = 1.00, and
Diamond F6.5 z = 0.00. In these panels the theoretical dashed line

fits actually show better agreement with the simulation data than the
solid lines, as they depend on fits from all snapshots and are there-
fore effectively not error bar dependent. On the whole, the dashed
lines show excellent agreement with the simulation data, providing
further validation of the analytical model given by equations (26)–
(28), even if agreement is not quite as strong as for the unweighted
approach.
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Figure A2. Parameter p2 in equation (26) plotted as a function of the
background scalar field at redshift z, fR(z), divided by (1 + z), for several
present-day field strengths fR0 (see legends, strengths listed from top to bot-
tom refer to data from right to left) of Hu–Sawicki f(R) gravity with n = 1.
p2 is measured via a weighted least-squares optimization of equation (26)
to data from modified ECOSMOG simulations, described in Table 1, at simula-
tion snapshots with redshift z < 1. fR(z) is calculated for each snapshot using
equation (7). The trend line has been produced via a weighted least-squares
linear fit, using the one standard deviation error bars, of the solid data points,
which correspond to snapshots for which the mass bins contain at least half
of the median mass ratio range 1 to 4/3. The hollow data do not meet this
criterion, so is deemed unreliable and neglected from the fit, which is given
by p2 = (1.496 ± 0.010) log10( |fR |

1+z
) + (21.58 ± 0.05).

Figure A3. Parameter p1 in equation (26) plotted as a function of the
background scalar field at redshift z, fR(z), divided by (1 + z), for sev-
eral present-day field strengths fR0 (see legends, strengths listed from top
to bottom refer to data from right to left) of Hu–Sawicki f(R) gravity
with n = 1. p1 is measured via a weighted least-squares optimization of
equation (26) to data from modified ECOSMOG simulations, described in Ta-
ble 1, at simulation snapshots with redshift z < 1. fR(z) is calculated for each
snapshot using equation (7). Weighted least-squares linear (solid line) and
constant (dashed line) fits, using the one standard deviation error bars, of the
solid data points, which correspond to snapshots for which the mass bins con-
tain at least half of the median mass ratio range 1 to 4/3 are shown. The hollow
data do not meet this criterion, so is deemed unreliable and neglected from
the fits, which are given by p1 = (0.25 ± 0.03) log10( |fR |

1+z
) + (3.6 ± 0.2)

and p1 = (2.23 ± 0.02), respectively.

APPENDI X B: C ONSISTENCY TESTS

As was explained in the main text, the issue of an insufficient mass
range is resolved through the use of three simulations with varying
resolutions, whereas the use of silver data ensures an extended set
of present-day scalar field values from |fR0| = 10−4 right down to
|fR0| = 10−6.5. This allows the theoretical model to be rigorously
tested for all present-day field strengths in this range, not just for
F4, F5, and F6, for which full simulation data are available.

The validity of using silver data was tested by generating F5
silver data from the Crystal simulation �CDM data, to be directly
compared with the F5 gold data from the same simulation. A com-
parison of the values of the equation (26) parameter p2 is shown in
the left-hand panel of Fig. B1, where the percentage error is mea-
sured at around 0.1 per cent for the unweighted approach. This is
clearly low enough so that the use of silver data is justified. Phys-
ically, this makes sense, because major differences between a full
f(R) simulation (used to generate gold data) and its �CDM coun-
terpart (used to generate silver data) include the halo density profile
and halo mass, but the difference is generally small enough to not
have a strong impact on the scalar field profile. The averaging of the
halo mass distribution in the top-hat approximation is shown to be a
very good approximation, and further makes the differences in the
halo density profiles irrelevant from the point of view of thin-shell
modelling.

When combining simulations of different resolutions, the dis-
persion between these simulations can also lead to a significant
systematic source of uncertainty. This can be tested by looking at
a few model parameters fR0 for which the mass range necessary
to fit p1 and p2 as a function of fR(z)/(1 + z) for 0 ≤ z ≤ 1 is
offered by simulations of different resolutions. In the middle panel
of Fig. B1 the Crystal and Jade simulations are compared for F4.5,
and found to agree to within an accuracy of 0.3 per cent. A simi-
lar test on the Jade and Diamond simulations for F5.5 yielded an
error of 0.4–0.8 per cent (right-hand panel of Fig. B1). These agree-
ments are good enough that the disparity between the results of
the simulations is negligible and combination of different simula-
tions is justified. Note that these two checks are also done using the
unweighted least-squares approach.

A limitation of the current study is that we do not have simula-
tions that allow us to test the fitting functions of p1 and p2 for other
cosmological parameters, such as 	M and σ 8, as these are fixed in
the original simulations and cannot be changed for producing the
silver data. While this is something that would be good to explic-
itly check in future work, we believe that the excellent agreement
between the physically motivated thin-shell modelling and the sim-
ulation data, in spite of the approximations employed, has indicated
that the theoretical model has successfully captured the essential
physics. Therefore we expect the fitting functions we found in this
paper to apply to other values of 	M and σ 8 as well. For example,
in the paragraph below equations (27) and (28) we have discussed
that, according to the thin-shell model, p1 and p2 should depend
only on Newton’s constant G and the halo mass definition 
 (with
H0 = 100 h km s−1 Mpc−1), and in particular they do not depend
on cosmological parameters such as 	m and σ 8. Note that varying
	M and σ 8 will modify the halo abundances and density profiles,
and in the check of silver versus gold data above we have already
confirmed that slight changes to these quantities do not affect our
fitting functions noticeably.

Another check that is not included in this study is whether the
fitting functions work for forms of f(R) other than Hu–Sawicki as
well. While a detailed investigation of this is of interest, we do not
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Figure B1. Parameter p2 in equation (26) plotted as a function of the background scalar field at redshift z, fR(z), divided by (1 + z), for Hu–Sawicki f(R)
gravity with n = 1. p2 is measured via an unweighted least-squares optimization of equation (26) to data from modified ECOSMOG simulations, described in
Table 1, at simulation snapshots with redshift z < 1. The one standard deviation error bars are included. Left to right: comparison of gold and silver data from
the Crystal simulation with present-day scalar field value |fR0| = 10−5; comparison of the Crystal and Jade data with |fR0| = 10−4.5; and comparison of the
Jade and Diamond data with 10−5.5. The legend in the right-hand plot applies to both the middle and right-hand plots.

find a compelling justification to make substantial effort to include
it here, for two reasons. First, as for the case of varying 	M and σ 8,
the effects on the modelling of Mdyn/Mtrue through a modified halo
abundance and density profile are expected to be small/negligible.
Second, the different f(R) models generally have a different tran-
sition from screened to unscreened regimes, though the details of
this transition depend on the model itself and its parameters. This
indicates that, even though the slope of p2, which is 1.5, is ex-
pected to remain for general f(R) models, the intercept of p2 could
be model dependent. For p1, which denotes how the transition from
screened to unscreened regimes takes place, the discussion after
equations (27) and (28) implies it does not depend on the details of

f(R), though more explicit checks using simulations are necessary to
confirm this or to calibrate its (probably constant) value for general
f(R) models. As mentioned above, it is not feasible to do simulations
for all possible models. And nor is this necessary, given that any f(R)
model studied in a cosmological context is phenomenological and
not fundamental, and the focus should really be how to get precise
stringent constraints on a representative example, which can then
be interpreted in the context of general cases.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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