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Abstract. A spectral sequence is defined which converges to the Čech cohomology
of the Euclidean hull of a tiling of the plane with Euclidean finite local complexity.
The terms of the second page are determined by the so-called ePE homology and ePE
cohomology groups of the tiling, and the only potentially non-trivial boundary map
has a simple combinatorial description in terms of its local patches. Using this spectral
sequence, we compute the Čech cohomology of the Euclidean hull of the Penrose tilings.

Introduction

To a tiling of Euclidean space one may associate a tiling space, a moduli space of
locally indistinguishable tilings equipped with a certain natural topology. In the field of
aperiodic order, one is typically less interested in short-range features, such as the precise
shapes of individual tiles of a given tiling, than long-scale features, such as the nature
of recurrence of patches across the tiling. Passing from the original tiling to a tiling
space (or associated dynamical system) is an elegant way of investigating an aperiodic
tiling, since inessential features are forgotten whilst much useful qualitative information
is retained. Recent work of Julien and Sadun makes this precise; to paraphrase, two
translational hulls of FLC tilings being homeomorphic is equivalent to those tilings being
MLD equivalent (local redecorations of each other) up to a possible ‘shape change’ [5].
For an introduction to the study of aperiodic tilings through the topology of tiling
spaces, see Sadun’s book [12].

The translational hull of a tiling T is the space T + Rd, the completion of the transla-
tional orbit of T with respect to an intuitively defined metric on tilings. Whilst most
attention in the literature has been given to the this choice of tiling space, there is
another space naturally associated to T, the Euclidean hull Ωrot, which retains more in-
formation on the rotational symmetries of the tiling. It is given by taking the completion
of the collection of tilings which are rigid motions of T, rather than just translations.
For example, for T any Penrose kite and dart tiling Ωrot is the moduli space of tilings
of the plane which may be constructed from rigid motions of the Penrose kite and dart
tiles, fitting together according to their matching rules.

A common topological invariant employed to study tiling spaces is Čech cohomology.
For a two-dimensional substitution tiling, Barge, Diamond, Hunton and Sadun gave a
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spectral sequence converging to the Čech cohomology Ȟ•(Ωrot) of the Euclidean hull
[3]. The entries of the second page of this spectral sequence are determined by the
number of tilings in the hull with non-trivial rotational symmetry (assumed all to be
of the same order) and the Čech cohomology of the quotient space Ω0 := Ωrot/SO(2),
given by identifying tilings of the Euclidean hull which agree up to a rotation at the
origin. Unfortunately, there are often difficult extension problems left to resolve at the
E∞ page of this spectral sequence.

In this paper we develop an alternative spectral sequence for computing the Čech coho-
mology of the Euclidean hull. It is applicable to any tiling with ‘Euclidean finite local
complexity’ (defined in Subsection 1.1), at least after passing to an equivalent polytopal
tiling. The terms of this spectral sequence, given in Theorem 2.1, are determined by
the ‘Euclidean pattern-equivariant’ (ePE) cohomology and ePE homology groups of the
tiling. The ePE homology, defined in [13] and recalled in Subsection 1.4, is based on a
similar construction to the well-known pattern-equivariant cohomology initially devel-
oped by Kellendonk and Putnam [6, 7] and later reformulated in the cellular setting by
Sadun [11]. Much like the spectral sequence of [3], the E2 page is mostly determined
by the Čech cohomology of Ω0 (which is isomorphic to the ePE cohomology), but the
existence of rotationally invariant tilings of the hull often induces extra torsion in a
single entry, here via the ePE homology term.

In Theorem 2.2 we show that there is a simple combinatorial description of the only
potentially non-trivial boundary map of this spectral sequence, determined by the rigid-
equivalence classes of ‘star-patches’ about the vertices of the tiling. This makes the E∞

page computable for certain aperiodic tilings of interest. More seems to be resolved by
the E∞ page than in the spectral sequence considered in [3]. In particular, applied to
the Penrose tilings all torsion is killed by the E∞ page, giving the following cohomology
groups of its Euclidean hull:

Ȟk(Ωrot) ∼=



Z for k = 0;

Z2 for k = 1;

Z3 for k = 2;

Z2 for k = 3;

0 otherwise.

This corrects the calculation of these cohomology groups published in [3]. The above
result is surprising, since it seems to have been previously believed that in general
the existence of pairs of rotationally invariant tilings in the hull inevitably leads to
non-trivial torsion in the cohomology. One may expect for the exceptional fibres in
the BDHS approximants of Ωrot to produce non-trivial torsion elements in the degree
one homology of the approximants, and so also torsion in the degree two cohomology.
However, we show directly that for the Penrose kite and dart tilings the loop associated
to the two rotationally invariant tilings of the hull is null-homotopic, explaining the lack
of torsion in Ȟ2(Ωrot). The main spectral sequence of [3, Theorem 9] is correct, the
error in calculation seems to lie wholly with [3, Theorem 12], which essentially appears
to be built around the idea that singular fibres always contribute torsion to Ȟ2(Ωrot) in
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the expected way. So our result establishes, contrary to [3, Theorem 12], that the E∞
page of the spectral sequence of [3, Theorem 9] may in fact leave a non-trivial extension
problem.

The paper is organised as follows. In Section 1 we recall the construction of the spaces
Ωrot and Ω0. We explain how their Čech cohomologies may be expressed in terms
of pattern-equivariant cohomology, and recall the ePE homology defined in [13]. In
Section 2 we prove Theorem 2.1, on the existence of a spectral sequence whose E2 page
is given in terms of the ePE homology and ePE cohomology which converges to the
Čech cohomology of Ωrot. We then define a special class of the ePE homology of a tiling
which, according to Theorem 2.2, determines the boundary map of the E2 page of this
spectral sequence. In Section 3 we apply our spectral sequence to the Penrose tilings.
In the final section we present an alternative approach to these computations for tilings
with translational finite local complexity. We apply this method to the Penrose tilings
to obtain a completely different calculation of its cohomology groups which agrees with
the approach via the ePE spectral sequence.

Acknowledgements. Many thanks to John Hunton and Dan Rust for helpful discus-
sions related to this work. I am also grateful to the anonymous referee for their valuable
suggestions.

1. Preliminaries

1.1. Polytopal Tilings. A polytopal tiling T of Rd is a regular CW decomposition
T of Rd of polytopal cells, equipped with a labelling. Given a set C of ‘colours’, a
label of a cell c of T is a function lc : c → C (where we consider c as a closed subset
c ⊆ Rd); a labelling of T is then simply a choice of label for each cell of T over some
fixed set of colours C. Frequently one has no need for a labelling, but equipping one
can be helpful in case one wishes to allow for decorated patches so that two of which
may be distinct despite their cells being geometrically equivalent. For example, one
may consider the standard CW decomposition of R2 of unit squares with vertices at
the lattice points Z2. Without labelling (i.e., labelling each cell with a ‘blank’ colour),
this gives a periodic tiling of the plane, the structure is preserved under translation by
elements of Z2. One may remove periodicity by introducing colours, say by a certain
labelling which assigns each 2-cell some chosen colour (for Wang tilings, it is convenient
to label the 1-cells instead). More generally, the 2-cells could be labelled using more
than one colour for each, so as to draw motifs on them. This allows tilings such as the
Robinson [10, Figure 2] or arrow tilings [3, Section 5] to be realised. For the purposes
of studying such tilings translationally, it would have sufficed to simply allow a single
colour for each 2-cell, as above. However, the more general scheme is helpful when
considering rotations, which may then act non-trivially on labels; for example, a ninety
degree clockwise rotation of a tile from an arrow tiling, with arrow pointing NE, is an
arrow tile pointing SE. Whilst this sort of decoration could have been achieved in an ad
hoc fashion using only a single colour for each cell by introducing extra cells to T , doing
this ultimately leads only to extra unnecessary computational efforts. More generally,
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it is possible to consider spaces of labels, as introduced in [9]. Our results here can be
generalised to these more general labelling schemes, equipped with rotation actions, so
long as the labelling is amenable to the necessary pattern-equivariant constructions (to
be introduced in Subsection 1.4). When the action of rotations on the labels is trivial,
for example, this essentially corresponds to the space of labels being zero-dimensional,
allowing a kind of ‘combinatorial infinite local complexity’ (c.f., [9, Example 3]). To
avoid extra technical details, however, we shall not pursue this point of view here.

Little generality is lost in considering only polytopal tilings, since any given tiling is
always ‘S-MLD’ equivalent to a polytopal tiling via a Voronoi construction. This equiv-
alence relation was introduced in [2], and is the obvious extension to general rigid mo-
tions of the more standard ‘mutually locally derivable’ (MLD) equivalence relation (of
which see also [2] or [12]) in the translational setting. In particular, the topologies of
the spaces Ω0 and Ωrot (to be defined below) do not depend on the particular chosen
representative of an S-MLD equivalence class.

A patch of T is a finite subcomplex P of T , equipped with the labelling l restricted to
the cells of P . A patch consisting of only a single d-cell and its boundary cells shall be
called a tile. Two patches are rigid equivalent if there is a rigid motion Φ (an orientation
preserving isometry of Rd) bijectively mapping the cells of one patch to the other in a
way which respects the labelling i.e., so that whenever Φ maps cell c1 to c2 and x ∈ c1,
then lc1(x) = lc2(Φ(x)). The diameter of a patch is the diameter of the support of its
cells. We say that T has Euclidean finite local complexity (eFLC ) if, for any r > 0, there
are only finitely many patches of diameter at most r up to rigid equivalence. This is
equivalent to asking for there to be only finitely many two-tile patches of pairs of tiles
meeting along a (d− 1)-dimensional face in T, up to rigid motion.

Given a homeomorphism φ of Rd, we define the tiling φ(T) in the obvious way, by
applying φ to each cell of T and their labels (and similarly we may apply φ to finite
patches). For r ∈ R>0 and cell c of T, we let the r-patch at c be the patch of T supported
on the set of tiles which are within radius r of c. Denote by E = SE(d) = Rd o SO(d)
the group of rigid motions of Rd. For k-cells c1, c2 of T, let ET(c1, c2; r) be the set of
rigid motions φ ∈ E which send c1 to c2 and the r-patch at c1 to the r-patch at c2.

We shall always assume that T has trivial cell isotropy : there exists some r > 0 for
which each φ ∈ ET(c, c; r) is the identity upon restriction to c. Any polytopal tiling can
be made to have trivial cell isotropy by taking a barycentric subdivision which gives an
S-MLD tiling [13]. We point out that trivial cell isotropy does not rule out rotational
symmetries of patches or even of whole tilings. For example, a 2-dimensional tiling
has trivial cell isotropy when sufficiently large patches have their centre of rotational
symmetry, if at all, at a 0-cell. For a 3-dimensional tiling to have trivial cell isotropy
patches may only have axes of rotational symmetry lying along 1-cells, at least at points
sufficiently far from the boundary of the patch.

For a cell c of the tiling, let St(c) be the star of c, the patch of tiles t incident with c, that
is, with supp(t) ⊇ c. For example, the star St(c) of a top-dimensional cell c is simply a
tile; for a tiling of R2, the star St(e) of a 1-cell e is a two-tile patch. Up to an S-MLD
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equivalence, given simply by a slightly more elaborate labelling, we may strengthen the
trivial cell isotropy condition with the following: for every φ ∈ E taking c and St(c)
to themselves, φ is the identity map on c. It shall be convenient, and cause no loss of
generality, to always assume this condition for eFLC tilings with trivial cell isotropy, to
which our main theorems apply. In this case, we may consistently orient each cell of T,
which is to say that whenever φ ∈ E takes c1 to c2 and St(c1) to St(c2), then φ maps
our chosen orientation of c1 to that of c2; henceforth, we shall always assume that our
cells are provided with orientations satisfying this condition. Assuming eFLC, there are
finitely many distinct rigid equivalence classes of tiles; choose for each a representative
prototile. For a tiling of R2, assuming our strengthened trivial cell isotropy condition,
for each rigid motion t of prototile p there exists a unique rotation, denoted τt ∈ S1, for
which τt(p) and t agree up to translation. Let |τt| ∈ [0, 2π) be the magnitude of rotation
determining τt, measured anticlockwise.

1.2. Rotational Tiling Spaces. A collection of tilings may be topologised by declar-
ing that two tilings T1 and T2 are ‘close’ whenever T1 and φ(T2) agree to a ‘large’
radius about the origin for some ‘small’ perturbation φ, a homeomorphism of Rd which
moves points within a large radius of the origin only a small amount. This is usually
achieved via a metric; see [12] or [3]. There are inevitably some arbitrary and ultimately
inconsequential choices to be made in the precise choice of the metric; an alternative
(see [13, §1.2]) is to define a uniformity, which is essentially unique and has a very direct
description from the notion of ‘closeness’ described above.

Definition 1.1. The Euclidean hull of a tiling T is the topological space

Ωrot = Ωrot
T := {φ(T) | φ ∈ SE(d)},

the completion of the Euclidean orbit of T with respect to the metric discussed above.

When T has eFLC, two tilings are ‘close’ precisely when they agree about the origin to a
‘large’ radius up to a ‘small’ rigid motion (so considering more general homeomorphisms
is not necessary). Consequently it is not hard to show that Ωrot is a compact space whose
points may be identified with the set of tilings whose patches are all rigid motions of the
patches of T. The Euclidean group E naturally acts on Ωrot via φ · T′ 7→ φ(T′), where
φ ∈ E and T′ ∈ Ωrot. In particular, the group of rotations at the origin SO(d) 6 E acts
on the Euclidean hull. Following the notation of [3], we define Ω0 := Ωrot/SO(d), the
quotient of the Euclidean hull which identifies tilings that are rotates of each other at
the origin.

1.3. Cohomology of Tiling Spaces. Our central goal is to calculate the Čech coho-
mology Ȟ•(Ωrot) of the Euclidean hull of an eFLC two-dimensional tiling. For certain
tilings, in particular for substitution tilings, there are relatively simple methods of com-
puting the cohomology Ȟ•(Ω0) of the quotient [3]. There is a close relationship between
these cohomologies. For a two-dimensional tiling, the fibres π−1(x) of the quotient map
π : Ωrot → Ω0 may be identified with SO(2) =: S1 at generic fibres, corresponding to
tilings with trivial rotational symmetry, and to SO(2)/Cn =: S1/n ∼= S1 at exceptional
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fibres, corresponding to tilings with n-fold rotational symmetry at the origin, where Cn
is the cyclic subgroup of rotations by 2πk/n at the origin. Without these exceptional
fibres, the map π would be a fibration. In the presence of tilings with rotational symme-
try, π is no longer a fibration, although it is in some sense very close to one; in particular,
one may show that over real coefficients Ȟn(Ωrot;R) ∼= Ȟn(Ω0 × S1;R) [3, Theorem 8].
However, over integral coefficients the failure of π to be a fibration at exceptional points
can create extra torsion in Ȟn(Ωrot).

1.4. Pattern-equivariant (co)homology for Ω0. Our approach shall rely on a highly
geometric pattern-equivariant point of view of these cohomology groups. Given a tiling
T with underlying CW decomposition T , denote by C•(T ) the cellular cochain complex
of T . We shall say that a k-cochain ψ ∈ Ck(T ) is Euclidean pattern-equivariant (ePE )
if there exists some r > 0 for which, whenever ET(c1, c2; r) 6= ∅ for k-cells c1 and c2, then
ψ(c1) = ψ(c2) (recall that our cells are consistently oriented). In other words, to say that
a cochain ψ is ePE is simply to say that ψ is constant on k-cells whose neighbourhood
patches agree to a sufficiently large radius up to rigid motion. It is easy to show that
the cellular coboundary of an ePE cochain is ePE, so we may define the sub-cochain
complex C•(T0) of C•(T ) consisting of ePE cochains. Its cohomology H•(T0) is called
the ePE cohomology of T.

Using a certain inverse limit presentation for Ω0 (see [12]) and two fundamental prop-
erties of Čech cohomology, one may show the following:

Theorem 1.2. Let T be an eFLC tiling with trivial cell isotropy. Then there exists a
canonical isomorphism Ȟ•(Ω0) ∼= H•(T0).

We define the ePE chain complex C•(T
0) by replacing the cellular coboundary map by

the cellular boundary map in C•(T0); so we think of ePE chains as particular kinds
of ‘infinite’ cellular chains. The homology H•(T

0) is called the ePE homology of T. It
was shown in [13] that over divisible coefficients the ePE homology groups are Poincaré
dual to the ePE cohomology groups, which follows from a classical cell, dual-cell argu-
ment and a proof that the ePE homology is invariant under barycentric subdivision for
divisible coefficients. However, these groups are not necessarily Poincaré dual over inte-
gral coefficients. For a two-dimensional tiling, one may modify the ePE chain complex
C•(T

0) in degree zero so as to restore duality, as follows. Define the subgroup C†0(T0)
of C0(T0) as the group of ePE chains σ for which there exists some r > 0 such that,
whenever the patch of cells within radius r of a vertex v has n-fold symmetry about
v, then σ(v) = n · k for some k ∈ Z. In other degrees we set C†i (T

0) := Ci(T
0). With

the standard cellular boundary maps, this defines a sub-chain complex C†•(T
0) of the

ePE chain complex. We collect below the necessary results from [13] on these various
homology groups1: items 1 and 3 are theorems 3.3 and 3.7 respectively, and item 2 is a
simple observation following the proof of Theorem 3.7.

1A less general labelling scheme was used in [13], but extending the results to the setting of this paper
requires only trivial modifications (or consideration of the generalisations outlined there in Subsection
3.5).
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Theorem 1.3 ([13]). Let T be an eFLC tiling of Rd with trivial cell isotropy. Then

(1) if G is a divisible coefficient ring with identity, H•(T0;G) ∼= Hd−•(T
0;G);

(2) if d = 2, we have that Hk(T0) ∼= H2−k(T
0) for k 6= 2 and H0(T0) is an extension

of H2(T0) by a torsion group whose generators have orders determined by the
rotationally invariant tilings of Ω0;

(3) if d = 2, we have that H•(T0) ∼= H†2−•(T
0).

1.5. Pattern-equivariant (co)homology for Ωrot. The polytopal decomposition T
of Rd defines a decomposition of E, by pulling back cells of T to E via the fibration
q : E → Rd which sends φ ∈ E to φ(0) ∈ Rd. Denote by T k the k-skeleton of T and
X k := q−1(T k). The decomposition X of E is not cellular; of course, the preimage of a
k-cell c is homeomorphic to SO(d)×c. To define the analogue of PE cohomology for Ωrot

we need to introduce additional cells so as to break up X into a cellular decomposition.
In dimension d = 2, a simple way of doing this is described in [12]. For completeness
we shall describe here a similar method.

For each tile t of T, we define two 3-cells of E. Let c3
+(t) to be the set of φ ∈ E for

which φ−1(t) contains the origin in its interior and |τφ−1(t)| ∈ (0, π); that is, the tile
corresponding to t in φ−1(T) lies over the origin, and is an anticlockwise rotate of its
representative prototile. We analogously define the cell c3

−(t) ⊆ E in terms of clockwise
rotates of t lying over the origin. The cells of T naturally define lower dimensional cells
of E in a similar manner which, together with the cells c3

±(t), define a CW decomposition
E of E which refines the non-cellular decomposition X . For example, each 0-cell of E is
given by an element φ ∈ E for which φ−1(T) has a vertex at the origin, incident with
a tile t for which |τt| ∈ {0, π}. This breaks the fibre q−1(v) ∼= S1 of a vertex v of T
into a union of 2n vertices and 2n open intervals, where n is number of tiles incident
with v (at least typically; of course it may happen, and does not cause problems, for
two tiles t1 and t2 incident with v to satisfy τt1 = ±τt2). The cylinder q−1(e) of an
open 1-cell e is (typically) decomposed into four 1-cells and four 2-cells, each region
corresponding to when the two tiles incident with e are oriented identically, oppositely,
clockwise or anti-clockwise relative to their representative prototiles. Each solid torus
q−1(t) ∼= t × S1 for a tile t has its interior decomposed by the two 3-cells c3

±(t) and
the two 2-cells corresponding to when t is oriented identically, and oppositely to its
representative prototile.

For φ ∈ E and A ⊆ E, let φ(A) := {φ ◦ a | a ∈ A}. Suppose that c1, c2 are cells of T for
which φ(c1) = c2. Then φ(q−1(c1)) = q−1(c2), so φ locally respects the decomposition
X . Moreover, for tiles t1, t2 with φ(t1) = t2 we have that φ ◦ τt1 and τt2 agree up to
a translation. So for φ ∈ ET(c1, c2; r), with r sufficiently large, it is easy to see that
φ(C1) = C2 for subcomplexes Ci of E containing neighbourhoods of q−1(ci); explicitly,
we may take Ci to be the cells of q−1(supp(P )), where P is the patch of tiles contained
in the r-patch at ci and not intersecting tiles of its complement. In other words, the
elements of ET(−,−;−) locally respect the CW decomposition E .
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A k-cochain ψ ∈ Ck(E) is pattern-equivariant (PE ) if there exists some r ∈ R>0 for
which, for all φ ∈ ET(c1, c2; r) and every k-cell c ∈ Ek with c ⊆ q−1(c1), we have that
ψ agrees on c and φ(c). It is not hard to see that the coboundary of such a cochain is
still PE, so we may define the sub-cochain complex C•(Trot) of PE cochains of C•(E).
Similarly, the boundary of a PE cochain—thought of as an infinite chain—is still PE, so
we may define the chain complex C•(T

rot) by replacing the cellular coboundary maps of
C•(Trot) with boundary maps.

Theorem 1.4. Let T be a tiling of Rd with eFLC. There exist isomorphisms

Ȟ•(Ωrot
T ) ∼= H•(Trot) ∼= Hd−•(T

rot).

Proof. The first isomorphism Ȟ•(Ωrot
T ) ∼= H•(Trot) follows (see [12]) from an analogous

argument to the translational case (of which, see [11]). To recall some details, one may
use the maps of ET(c1, c2; r) to identify cells of E for successively larger r, constructing
a diagram of CW complexes Γi, called approximants, and quotient maps fi between
them whose inverse limit is homeomorphic to Ωrot. The PE cochains of E are precisely
the pullbacks of cochains from these approximants. Since the Čech cohomology of an
inverse limit of compact CW complexes is naturally isomorphic to the direct limit of
cellular cohomologies, it follows that

Ȟ•(Ωrot) ∼= Ȟ•(lim←−(Γi, fi)) ∼= lim−→(H•(Γi), f
∗
i ) ∼= H(lim−→(C•(Γi), f

∗
i )) ∼= H•(Trot).

For the second isomorphism H•(Trot) ∼= Hd−•(T
rot), one may consider the CW decom-

position E together with the maps ET(−,−;−) as a ‘system of internal symmetries’ with
trivial isotropy, defined in [13, Subsection 3.5]. For such systems one may show that we
have the desired Poincaré duality isomorphism, through a cell, dual-cell argument and
by proving that these invariants are preserved under barycentric subdivision. �

2. The Spectral Sequence and Boundary Map

Theorem 2.1. Let T be a tiling of R2 with eFLC and trivial cell isotropy. Then there
exists a spectral sequence (of homological type) converging to H•(T

rot) ∼= Ȟd−•(Ωrot
T )

whose E2 page is given by:

1 H0(T0) Ȟ1(Ω0) Ȟ0(Ω0)

0 Ȟ2(Ω0) Ȟ1(Ω0) Ȟ0(Ω0)

0 1 2

Proof. In analogy to the standard construction of the Serre spectral sequence for a
fibration with CW base space, consider the filtration of the CW decomposition E by
the subcomplexes supported on each X k (recall that X k is the preimage under the
fibration q : E → Rd of the k-skeleton T k). This induces a filtration of subcomplexes
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C•(X
k) of the PE chain complex C•(T

rot) by restricting to those PE chains supported
on each X k. Denote the relative chain complexes of successive levels of this filtration
by C•(X

k,Xk−1). Associated to such a bounded filtration, there is bounded spectral
sequence of homological type with

E1
p,q = Hp+q(X

p,Xp−1)⇒ Hp+q(X
2) = Hp+q(T

rot).

We claim that there exist canonical chain isomorphisms

E1
•,0 = H•(X

•,X•−1)
∼=−→ C†•(T

0); E1
•,1 = H•+1(X•,X•−1)

∼=−→ C•(T
0),

with all other rows of the E1 page trivial. The result then follows from the ePE Poincaré
duality isomorphisms of Theorem 1.3.

From our assumption of trivial isotropy on the cells of T, we may consistently assign
orientations to its cells with respect to the system of patch-preserving rigid motions of
ET(−,−;−). This naturally induces orientations on the cells of E . Consider the map
F0 which sends an (infinite) cellular k-chain σ of E to the k-chain of T defined on an
open k-cell c ∈ T by

F0(σ)(c) :=
∑

c′⊆q−1(c)

σ(c′),

where the sum is taken over all k-cells c′ in q−1(c) ⊆ E (such a c′ does not lie in X k−1;
visualise it as a copy of c in E). It is easy to see that F0 commutes with the boundary
map. Moreover, it sends PE chains of E to ePE chains of T . Indeed, let σ be a PE
k-chain of E . For sufficiently large r, each φ ∈ ET(c1, c2; r) transports the chain at
q−1(c1) to that at q−1(c2). Hence, the oriented sum of coefficients of σ at q−1(c1) and
q−1(c2) agree with respect to the map φ, so F0(σ) is ePE for the same value of r.

It follows directly from the definition of F0 that it does not depend on the coefficients
of a k-chain at cells of X k−1. We claim that it induces a chain isomorphism

F̃0 : H•(X
•,X•−1)

∼=−→ C†•(T
0).

Clearly outside of degrees 0, 1, 2, both chain complexes are trivial. Let us firstly show
that F̃0 induces an isomorphism in degree two. For each tile t of T, there are precisely
two 2-cells c2

+(t) and c2
−(t) corresponding to t in the relative complex (X 2,X 1): the set

of φ ∈ E for which the origin belongs to the interior of φ−1(t) and |τφ−1(t)| = 0 (that
is, φ−1(t) is oriented exactly as its associated prototile is) and, respectively, those φ for
which the origin is interior to φ−1(t) and |τφ−1(t)| = π. Modulo PE boundaries, each
element of H2(X2,X1) is uniquely represented by a chain concentrated on the cells of
the form c2

+(t) and F0 maps such elements isomorphically to C2(T0).

Showing that F̃0 is an isomorphism in degree one is analogous: as before, by trivial cell-
isotropy, we may pick a distinguished 1-cell of (X 1,X 0) for each 1-cell of T, consistently
with respect to the maps of ET(e1, e2; r); the argument proceeds as in degree two.
Finally, we must show that F̃0 induces an isomorphism in degree zero. Suppose that σ ∈
C0(X0). By pattern-equivariance, there exists some r for which, for all φ ∈ ET(c1, c2; r),
we have that φ maps the 0-chain at q−1(c1) to that at q−1(c2). In particular, the chain σ
is preserved at any fibre q−1(v) by the maps of ET(v, v; r). It follows that F0(σ) assigns



10 JAMES J. WALTON

a multiple of #ET(v, v; r) to v; that is, a multiple of the order of rotational symmetry

of the r-patch at v. Hence, F0(σ) ∈ C†0(T0). Conversely, by choosing distinguished

0-cells in X 0, given any σ ∈ C†0(T0) it is easy to see that we may lift it (uniquely, up to
boundaries in the fibres) to a PE chain of X 0 which maps to σ.

To show that E1
•,1
∼= C•(T

0), note that each element of Hk+1(Xk,Xk−1) is defined by a
chain of the form

σ =
∑
c∈T k

σ(c) · νc

where σ(c) ∈ Z and νc is the sum of consistently oriented (k+ 1)-cells of q−1(c). To say
that such a chain is PE is simply to say that the chain

F1(σ) :=
∑
c∈T k

σ(c) · c

is ePE. It is easy to see that ∂F1(σ) = F1(∂σ), so this establishes the desired chain
isomorphism. It is perhaps useful to point out that, in contrast to the isomorphism
H0(X0) ∼= C†0(T0), there is no divisibility condition on the coefficients σ(v) for vertices
v of rotational symmetry; the cycle νv is already invariant under rotation.

The above determines the first and second rows of the E1 page of the spectral sequence.
All cells of X k not contained in X k−1 are either k or (k+1)-dimensional, so the remaining
entries E1

p,q for q 6= 0, 1 are trivial. Applying homology and Theorem 1.3 completes the
proof. �

The E2 page of the spectral sequence constructed above is concentrated in degrees
(p, q) ∈ {0, 1, 2}×{0, 1}. As such, there is only one potentially non-trivial boundary map
∂ : E2

2,0 → E2
0,1 required to determine the E∞ page. The E2

2,0 entry is given by Ȟ0(Ω0),

which is isomorphic to Z since Ω0 is connected, so we seek to describe [ω] = ∂(Γ) for a
generator Γ ∈ E2

2,0. It turns out that we may effectively describe such a representative
ω in terms of the local combinatorics of the star-patches of T.

Recall that each tile t has associated to it a rotation τt relating it to its representa-
tive prototile, and each star of edge St(e) determines an orientation for e. For each
equivalence class of such star, pick a representative St(e) and let ρe ∈ R be such that
ρe ≡ |τe(l)| − |τe(r)| mod 2π, where e(l) and e(r) are the tiles to the left and the right of
e, respectively. Set ρe′ = ρe for each e′ whose star is rigid equivalent to that of e; clearly
ρe′ ≡ |τe′(l)|− |τe′(r)| mod 2π too. Repeat this process for each other class of edge.

Let v be a vertex of T and list the edges e1, e2, . . . , ek incident with v. Consider the sum∑k
i=1 εiρei , where εi = 1 if ei is oriented outwards from the vertex v, and εi = −1 if it

is oriented inwards. Passing to the quotient R/2πZ, the values |τt| appear twice with

opposite signs in the sum, so
∑k

i=1 εiρei ∈ 2πZ. Let ω(v) =
∑k

i=1 εiρei/2π ∈ Z; we may
think of ω(v) as a winding number associated to the sequence of rotations ρe relating
the rotations τt of consecutive tiles incident with v. Repeating this procedure for each
vertex of T defines an ePE 0-chain ω ∈ C0(T0). See the discussion in Subsection 3.2,
along with Figure 3.2a, for an example computation of this 0-chain. Although it will
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follow from the result below, note that it is easily seen that whilst ω depends on the
choices of ρe for each edge star, its homology class does not. Indeed, given choices ρ′e
defining ω′ instead, we have that ρe − ρ′e ∈ 2πZ and we may define the ePE 1-chain
τ which has coefficient (ρe − ρ′e)/2π on an edge e. Then ω′ − ω = ∂τ as both have

coefficient
∑k

i=1 εi(ρ
′
ei
− ρei)/2π on a vertex v incident with edges e1, . . . , ek.

Theorem 2.2. Let ∂ : E2
2,0 → E2

0,1 be the boundary map of the E2 page of the spectral

sequence in Theorem 2.1. Then, with respect to the isomorphism E2
0,1
∼= H0(T0), we

have that ∂(Γ) = [ω] for a generator Γ of E2
2,0
∼= Z, where ω ∈ C0(T0) is the ePE 0-chain

constructed above.

Proof. To determine the image of ∂, it suffices to find a representative σ ∈ C2(X2) of
the generator of E2

2,0 and some τ ∈ C2(X1) for which ∂(σ + τ) ∈ C1(X0); then ∂[σ] is

precisely the homology class of ∂(σ + τ) in E2
0,1
∼= H0(T0).

Recall that the proof of Theorem 2.1 relied on the chain isomorphisms E1
•,0
∼= C†•(T

0) and

E1
•,1
∼= C•(T

0). A generator of H†2(T0) is represented by a fundamental class Γ =
∑

t∈T 2 t

of consistently oriented tiles in T. Under the chain isomorphism H•(X
•,X•−1) ∼= C†•(T

0),
this cycle is represented by the PE chain σ ∈ C2(Trot) which assigns value 1 to each cell
c2

+(t) in E and zero to the others (recall the definition of the cell c2
+(t) from the proof of

Theorem 2.1). Its boundary ∂(σ) is supported on the 1-cells c1(e, t) of E given by the
set of φ ∈ E for which φ−1(e) contains the origin and |τφ−1(t)| = 0, where e is a 1-cell
of T and t is a tile incident with e. The two such edges at any cylinder q−1(e) occur
with opposite orientations in ∂(σ): positive for the edge c1(e, e(r)) for the tile e(r) to the
right of e and negative for the edge c1(e, e(l)) for the tile e(l) to the left of e (without
loss of generality, by choosing the appropriate orientation for the fundamental class Γ).
Starting at the edge c1(e, e(r)), rotate ρe radians in the second coordinate about the
cylinder e o S1. This traces out a sum of rectangular 2-cells in q−1(e), the lower edge
of the first being c1(e, e(r)) and the upper edge of the final one c1(e, e(l)). Repeating
this process for every other edge of the tiling defines a PE 2-chain τ ∈ C2(X1) which,
by construction, is such that ∂(σ + τ) ∈ C1(X0).

To determine ∂(σ + τ) note that, since ∂(σ + τ) is a cycle supported on the disjoint
union X 0 of circular fibres q−1(v), it suffices to calculate the sum of rotations at each
fibre. Since ∂(σ) was confined to cells not supported on X 0, we need only calculate the
sum for ∂(τ). At the fibre of a vertex v, the boundary ∂(τ) contributes ρe radians for
each outwards oriented edge e, and −ρe for each inwards pointing edge. This sum is
precisely that used to define the chain ω. �

We recover as a corollary to the above theorems the following result, stated in [3,
Theorem 8] for eFLC recognisable substitution tilings:

Corollary 2.3. Let T be a tiling of R2 with eFLC. Then over real coefficients

Ȟ•(Ωrot
T ;R) ∼= Ȟ•(Ω0

T × S1;R) ∼= Ȟ•(Ω0
T;R)⊕ Ȟ•−1(Ω0

T;R).



12 JAMES J. WALTON

Proof. We may assume that T has trivial cell isotropy (by taking a barycentric subdivi-
sion, which does not change the topologies of the spaces Ω0 or Ωrot). Consider the real
coefficient counterparts of theorems 2.1 and 2.2. The chain ω is directly constructed
as a boundary in C•(T

0;R) over real coefficients: it is the boundary of the ePE 1-
chain whose coefficient at an edge e is given by −ρe/2π ∈ R. So the boundary map at
the E2 page is trivial and E2 ∼= E∞. Over real coefficients, E∞p,0

∼= Ȟ2−p(Ω0;R) and,

since H0(T0;R) ∼= Ȟ2(Ω0;R) by Theorem 1.3, E∞p,1
∼= Ȟ2−p(Ω0;R) also; all other rows

are trivial. There are no extension problems over field coefficients, and so the result
follows. �

3. Cohomology of the Penrose Tilings

3.1. Invariants of Hierarchical Tilings. Many interesting aperiodic tilings have the
special property of being equipped with a hierarchical structure, typically described
in terms of a ‘substitution rule’. For tilings such as this, Anderson and Putnam [1]
showed how one may construct a CW approximant Γ with self-map f for which the
translational hull Ω1 := T + Rd is homeomorphic to the inverse limit of the diagram

Γ
f←− Γ

f←− · · · . This allows the Čech cohomology of Ω1 to be computed. Barge,
Diamond, Hunton and Sadun showed how one may construct similar such approximants
for Ω1 (which often leads to simpler computations than the method of [1]), as well as for
the rotational tiling spaces Ω0 and Ωrot. In [13], we showed how one may compute H•(T

0)
of a hierarchical tiling with eFLC, the method being close in spirit to the computations
of [3] for invariants of Ω0. For T a tiling of R2, the method is easily modified to compute

the Čech cohomology Ȟ•(Ω0) ∼= H†2−•(T
0). The approach is phrased directly in terms

of the star-patches of the tiling, and so dovetails conveniently with the description of
the E∞ page of the spectral sequence provided by Theorem 2.2.

3.2. The Penrose Tilings. Let T be a tiling of Penrose’s famous ‘kite’ and ‘dart’
tiles which meet along edges according to their matching rules [8]. These tilings have
a hierarchical structure, based upon self-similarity with inflation constant the golden
ratio. Applying the computations of [13] to T, one calculates:

Hk(T
0) ∼=


Z2 ⊕ Z/5 for k = 0;

Z for k = 1;

Z for k = 2;

0 otherwise.

H†k(T
0) ∼=


Z2 for k = 0;

Z for k = 1;

Z for k = 2;

0 otherwise.

These ePE homology groups determine the E2 page of the spectral sequence of Theorem
2.1; see Figure 3.1.

Theorem 2.2 determines the differential ∂ : E2
2,0 → E2

0,1. There are two rigid equivalence
classes of tiles in a Penrose tiling: kites and darts. They have official rotational orien-
tations in the plane, as indicated by the arrows of Figure 3.2a. For the star of an edge
e, recall that we must set ρe so that ρe ≡ |τe(l)| − |τe(r)| mod 2π. The value ρe is simply
the angle of rotation which takes the arrow of the right tile to that of the left. We let ρe
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1 Z2 ⊕ Z/5 Z Z

0 Z2 Z Z

0 1 2

1 Z2 Z Z

0 Z2 Z Z

0 1 2

Figure 3.1. The E2 (left) and E∞ page (right) of the spectral sequence
for the Penrose tilings.

be the smallest such magnitude of rotation, counted positive for anticlockwise rotations
and negative for clockwise rotations. Then ρek = 2πnk/10, where nk = −2, +2, +1, −1,
0, 0 and −4, for the seven edge-stars, with respect to their ordering in Figure 3.2a. To
calculate ω, we sum the values ρe/2π about each vertex, taken with the appropriate sign
according to whether e is oriented inwards or outwards from v; equivalently, calculate
the winding number of the motion that the arrow takes about a vertex, rotating from
one tile to the next by the smallest magnitude. Then ω(vk) = +1, +1, 0, 0, 0, −1, 0 for
the seven vertex-stars, ordered as in Figure 3.2a.

The ePE 0-chain ω is precisely the representative of a generator of the 5-torsion of
H0(T0) calculated in [13]. So the 5-torsion at the E2 page is killed. This leaves the E∞

page free Abelian (see Figure 3.1) and so there are no extension problems. It follows
that Ȟk(Ωrot) ∼= Z,Z2,Z3,Z2 for k = 0, 1, 2, 3, and is trivial in other degrees.

3.3. Exceptional Fibres. A common explanation for additional torsion in Ȟ2(Ωrot) is
that exceptional fibres in the BDHS approximants Γ to Ωrot (see [3]), corresponding to
patches of rotational symmetry, lead to non-trivial torsion in H1(Γ). The result above
shows that this cannot happen for the Penrose tilings, we shall demonstrate that directly
here.

The action of rotation naturally induces an action on Γ. Let r : Γ → Γ/S1 =: Γ0 be
the quotient; the space Γ0 is an approximant for Ω0. The S1-action is free on all but
finitely many isolated fibres r−1(x), corresponding to patches with non-trivial rotational
symmetry. This is the analogue, from 3-manifold theory, of a ‘Seifert fibred space’ (only
an analogue since the approximant Γ here is a branched manifold). We call the fibres
upon which S1 acts freely generic; the fibres which are fixed by the cyclic subgroup
Cn 6 S1 of order n shall be called n-exceptional.

Given x ∈ Γ0, there is a corresponding loop lx about the fibre of r−1(x) (traversing
it, say, in an anticlockwise direction). The loops lx and ly at generic fibres are always
homotopic; indeed, connect x to y by a continuous path and shift lx to ly fibre-wise. We
may not shift the loop lx of an n-exceptional point x to a generic fibre y in this fashion;
instead, we have that ly is homotopic to n · lx. If we have two n-exceptional points
x, y ∈ Γ0, we may attempt to create n-torsion in π1(Γ), and hence n-torsion in H2(Γ),
by considering the concatenation of loops lx ∗ l−1

y (where we concatenate as standard
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(a) The tiles of the Penrose tilings are given ro-
tational orientations in the plane (left). These
define the values ρe (mod 2π) of the 1-stars
(middle). The chain ω is defined by the result-
ing winding numbers at each 0-star (right).

(b) Illustration of homotopies a ' p∗a (bottom
triangle) and p−1 ∗ a ' b (top triangle).

Figure 3.2

by connecting the loops to some arbitrary base point). Since they may not be simply
shifted onto nearby generic fibres, we may suspect that lx and ly are not homotopic, but
we have that n · lx ' lz ' n · ly for a generic point z, so n(lx ∗ l−1

y ) = 0 and lx ∗ l−1
y is

n-torsion. Unfortunately, this argument relies on lx and ly not being homotopic; they
are certainly not naively homotopic by shifting the loops fibre-wise. However, they may
be homotopic via a more subtle procedure.

Consider the Penrose tiling spaces Ωrot and Ω0, with corresponding BDHS approxi-
mants Γ := Krot

ε and Γ0 := K0
ε for small ε > 0 (see the notation of [3] for the BDHS

approximants K0
ε and Krot

ε ). There are precisely two 5-exceptional points x and y of
Γ0, corresponding to the centres of the ‘sun’ and ‘star’ patches, respectively (which are
the first and second vertex-stars of Figure 3.2a). Our calculation of the cohomology
Ȟ•(Ωrot) implies that the exceptional loops a := lx and b := ly represent the same
homology classes. We shall in fact show that they are homotopic loops.

The patch of tiles of Figure 3.2b is a valid patch from a Penrose tiling, so a path on it
staying clear of its boundary (with respect to ε above) defines a path on Γ0. A further
1-parameter continuous choice of rotational orientations of this patch lifts the path to a
path of Γ. In this manner, the loop a is represented by staying at the sun vertex at the
bottom of the patch, and continuously rotating the patch anti-clockwise from its original
orientation to 2π/5 by the end of the motion. The loop b is similarly represented, by
staying put at the upper star vertex, and rotating the picture continuously by 2π/5.
Consider the pair of horizontally aligned sun vertices at the centre of the patch. We
may define a loop p in Γ by setting p(t) to be the point of Γ corresponding to the patch
at p′(t) for a continuous path p′ travelling horizontally rightwards from the left sun
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vertex to the right one. We claim that p is null-homotopic in Γ, and that b ' p−1 ∗ a.
It then follows that a = b in π1(Γ).

Both of these claims follow from a quick examination of Figure 3.2b. Consider the left
(resp. right) line segment between the lower sun vertex and the left (resp. right) sun
vertex of the patch. Let xs and ys be the pair of points lying on the left and right
line segments, respectively, at vertical displacement s between the lower sun vertex and
the two upper ones (normalised so that this vertical displacement is 1); so x0 = y0

corresponds to the bottom sun vertex and x1, y1 correspond to the left and right sun
vertices, respectively. For t ∈ [0, 1/2], we define ls(t) to be the point of Γ corresponding
to the point of the patch (1 − 2t) · xs + 2t · ys; that is, ls(t) travels linearly from xs at
time t = 0 to ys at time t = 1/2. At times t ∈ [1/2, 1] we define ls(t) by linearly rotating
the patch at ls(1/2) anticlockwise, so that ls(1) is eventually rotated 2π/5 relative to
ls(1/2). Note that the patches at xs and ys are related by a rotation by 2π/5 at ys,
so each ls defines a loop. Since ls(t) varies continuously in s and t, we have defined a
homotopy between l0 ' a and l1 = p ∗ a. So a = p ∗ a in π1(Γ) which implies that p is
null-homotopic.

A second homotopy of loops l′s is defined similarly. This time, we begin with the loop
l′0 = p−1 ∗ a, visualised by travelling from right to left between the two central sun
vertices, and then rotating at the end of the loop by 2π/5. Analogously to above, we may
continuously shift this loop upwards, so that l′1 ' b. It follows that p−1 ∗ a = b in π1(Γ).
Since p is null-homotopic, it follows that the exceptional loops a and b are homotopic.
This agrees with our calculation of Ȟ•(Ωrot), the loop a∗ b−1 is null-homotopic and does
not induce torsion in Ȟ2(Ωrot).

4. Tilings of Finite Local Complexity

A tiling is said to have translational finite local complexity (FLC ) if there are only
finitely many patches of diameter at most r up to translation equivalence for each
r > 0. Many interesting examples of aperiodic tilings (such as the Penrose tilings)
have FLC, although some only satisfy the weaker condition of having eFLC (such as
the Conway–Radin pinwheel tilings). The spectral sequence developed above not only
gives a method of computing the Čech cohomology of an eFLC tiling for which the ePE
(co)homology may be computed, it also provides a filtration of its cohomology in terms
of these ePE invariants. For a tiling with FLC, we shall provide an alternative approach
to computation of its cohomology which produces a different decomposition in terms of
invariants of its translational hull.

4.1. Translational Hulls. For a tiling T of Rd with FLC, its translational hull is the
topological space

Ω1 = Ω1
T := T + Rd,

the completion of the translational orbit of T with respect to the standard tiling metric.
Say that a finite subgroup Θ 6 SO(d) acts on T by rotations if, for every patch P of
T and rotation φ ∈ Θ, we have that φ(P ) is also a patch of T, up to translation. Note
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that, in this case, Θ naturally acts on Ω1 via φ · T′ 7→ φ(T′) for φ ∈ Θ and T′ ∈ Ω1.
We say that T has rotation group Θ if, additionally, whenever a sufficiently large patch
P as well as its rotate φ(P ) appears in T up to translation, for some φ ∈ SO(d), then
φ ∈ Θ. One may easily construct tilings which do not have a rotation group, but they
tend to be somewhat artificial.

4.2. Mapping Tori. Let X be a compact, Hausdorff space with self-homeomorphism
f : X → X. The mapping torus of f is defined to be the quotient space

Xf :=
X × [0, 1]

(x, 1) ∼ (f(x), 0)
.

There is a map π : Xf → R/Z defined by setting π(x, t) = [t], making Xf a fibre
bundle over S1 with fibres X. Cut S1 into two closed semicircles and consider their
preimages U, V ; each is homotopy equivalent to X and their intersection U ∩ V is
homotopy equivalent to a disjoint union of two copies of X. The associated Mayer–
Vietoris sequence reads

· · · → Ȟk(Xf )→ Ȟn(X)⊕ Ȟk(X)
Ψ−→ Ȟk(X)⊕ Ȟk(X)→ Ȟk+1(Xf )→ · · · ,

where Ψ is given by Ψ(x, y) = (x+ y, x+ f ∗(y)); see [4, §2]. With some further simple
algebraic manipulations, we may express the cohomology of Xf in terms of invariants
and coinvariants of f . We have short-exact sequences

0→ coinvark−1(f)→ Ȟk(Xf )→ invark(f)→ 0

where

invark(f ∗) := ker(id−f ∗ : Ȟk(X)→ Ȟk(X));

coinvark(f ∗) :=
Ȟk(X)

im(id−f ∗ : Ȟk(X)→ Ȟk(X))
.

4.3. Rotational Tiling Spaces as Mapping Tori. Let T be a tiling of R2 with
FLC and rotation group Θ. Then Θ = Cn for some n ∈ N, where Cn is the cyclic
subgroup of SO(2) of rotations by 2πk/n. Rotation by 2π/n generates Θ, and induces a
homeomorphism f : Ω1 → Ω1. It is not difficult to see that Ωrot is homeomorphic to the
mapping torus of f ; a point of the mapping torus represented by (T′, t) ∈ Ω1 × [0, 1] is
identified with φ2πt/n(T′), where φs ∈ SO(2) is the rotation by s at the origin. Then from
our discussion above on the cohomologies of mapping tori, we obtain the following:

Theorem 4.1. For a tiling T of R2 with FLC and rotation group Θ of order n, we have
short exact sequences

0→ coinvark−1(f ∗)→ Ȟk(Ωrot)→ invark(f ∗)→ 0

for all k ∈ N0, where f : Ω1 → Ω1 is the homeomorphism induced by the rotation by
2π/n.
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4.4. Invariants and Coinvariants of the Penrose Tilings. The translational hull
Ω1 of the Penrose tilings has cohomology Ȟk(Ω1) ∼= Z,Z5,Z8 in degrees k = 0, 1, 2,
respectively. The Penrose tilings have rotation group of order 10; let f denote the
homeomorphism of Ω1 induced by rotation by 2π/10. Since each cohomology group of
Ω1 is free Abelian, so is invark(f ∗) for each k ∈ N0, so there are no extension prob-
lems and the cohomology of the Euclidean hull splits as a direct summand Ȟk(Ωrot) ∼=
coinvark−1(f ∗)⊕ invark(f ∗) of the invariants and coinvariants.

These cohomology groups, and the induced action f ∗ on them, may be computed using
the methods of [1, 3], or via PE homology as described in [13]. Using the latter approach,
we directly compute

invark(f ∗) ∼= Z,Z,Z2; coinvark(f ∗) ∼= Z,Z,Z2

for k = 0, 1, 2, respectively. This agrees with our computation via the ePE spectral
sequence. For example, in the degree k = 2 of particular interest where extra torsion is
potentially picked up, we compute that f ∗ acts on H1(Ω1) ∼= Z5 by the matrix

M :=

(
1 0 0 0 0
0 0 0 0 −1
0 1 0 0 1
0 0 1 0 −1
0 0 0 1 1

)

Then M − id sends the first basis vector to zero and is an isomorphism upon restriction
to the invariant subspace spanned by the remaining four basis vectors. It follows that
coinvar1(f ∗) ∼= Z and we may already conclude that Ȟ2(Ωrot) ∼= Z ⊕ invar2(f ∗) is
free Abelian. We may similarly compute invar2(f ∗) directly, or note that the rank of
invar2(f ∗) is equal to the rank of Ȟ2(Ω0) ∼= Z2 (c.f., [3, Theorem 7], [13, Proposition
3.12]). It follows that Ȟ2(Ωrot) ∼= Z3.
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