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1 Introduction

In recent years a lot of progress has been achieved in the spectral problem of the gauge-

string correspondence by using ideas and methods from the theory of integrable mod-

els [1, 2]. For strings on AdS5 × S5 the corresponding light-cone sigma model is quantum

integrable which allows one to obtain its spectrum by means of Thermodynamic Bethe
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Ansatz (TBA) [3]–[7] or the modern incarnation of the latter known as Quantum Spectral

Curve [8].

We recall that the construction of the TBA is essentially based on the asymptotic

S-matrix for scattering of string world-sheet excitations in the uniform light-cone gauge.

This S-matrix is determined by symmetries of the AdS5 × S5 light-cone sigma model up

to an overall scalar factor called the dressing factor [9]. Thus, determination of the latter

quantity and investigation of its properties constitutes an important part of the spectral

problem to which many studies has been devoted in the recent past. In this paper we will

undertake an effort to complete the existing considerations and clarify some issues related

to a perturbative expansion of the dressing factor (phase) at strong coupling.

Before we pass to the discussion of our approach, we briefly recall what is known about

the dressing factor σ = eiθ, where θ is the dressing phase. The functional form of σ as a

perturbative power series in the inverse string tension g with coefficients written in terms of

local conserved charges was conjectured in [9] by discretising equations that encode finite-

gap solutions of the classical string sigma model. Since g is related to the ’t Hooft coupling

λ as g =
√
λ/2π, from the point of view of gauge theory this power series represents a strong

coupling expansion of σ. Further, the asymptotic S-matrix appears to be compatible with

crossing symmetry which implies a non-trivial functional equation for the dressing factor

— the crossing equation [10]. The found leading (AFS) [9] and sub-leading (HL) [11] terms

in the strong coupling expansion of σ were shown to satisfy the crossing equation [12] and

an all-order asymptotic solution of the latter was obtained in [13]. The weak coupling

expansion for σ was conjectured in [14] (BES) as a sort of analytic continuation of the

corresponding strong coupling expansion. In opposite to the latter, the weak coupling

expansion of θ(x1, x2) has a finite radius of convergence and defines a function which admits

an integral representation (DHM) well defined in a certain kinematical region of particle

rapidities x1, x2 and for finite values of g [15]. Analytic continuation of the dressing phase to

other kinematical regions compatible with crossing symmetry has been constructed in [16],

which in fact provides verification of the crossing equation for finite g. Finally, under some

assumptions on the analytic structure the minimal solution of the crossing equation has

been found and cast precisely in the DHM form [17, 18]. Let us also note that the dressing

phase admits a representation in terms of a single integral (rather than double integral

representation of DHM) which proved to be useful for numerical construction of solutions

of the TBA equations [19].

It was soon realised [20] that a non-perturbative resummation prescription must be

implemented if we want to extract the weak coupling expansion of σ from the strong

coupling data. After a particular non-perturbative prescription to resum the leading order

dressing phase contribution at strong coupling, the authors of [20] were able to expand it in a

suitable weak coupling regime. In this way they found a connection between the strong and

weak coupling coefficients of the dressing phase, reminiscent of the analytic continuation

conjectured in [14]. Similarly the leading contribution to the magnons dressing phase in

the strong coupling regime was obtained in [21] via Borel resummation of a particular class

of terms in the asymptotic limit. Finally in [22] the authors expanded the dressing phase

of [14] reproducing precisely the asymptotic strong coupling coefficients. To obtain the
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strong coupling regime, these authors did not use the contour integral type of argument

utilized in [14], but rather implemented a suitable ad hoc regularization procedure to

expand the integrand of the Beisert-Eden-Staudacher dressing phase and obtained back

the formal asymptotic expansion studied in [13]. Although the results of [20, 21] and [22]

suggest that the dressing phase proposed in [14] (that we will call BES in what follows) has

the correct properties to interpolate between the weak and strong coupling regime, to our

mind no rigorous and complete treatment of the resummation procedure of the full strong

coupling asymptotic expansion of σ exists so far.

In this paper we would like to present the discussion of the strong coupling expansion

of the dressing phase, and its resummation, in the modern context of resurgence [23]. We

show how to resum the strong coupling expansion by using a modified version of the well-

known Borel transform method. Our main result is that, in order to reproduce the dressing

phase of [14], we have to modify the perturbative strong coupling expansion studied in [13]

to what is called a transseries expansion by adding new, non-perturbative terms of the form

e−4πg n with n > 1 integer. These exponentially suppressed terms can be associated with

ambiguities related to the resummation procedure of the purely perturbative expansion.

Having modified the purely perturbative coefficients we need to check once again that the

new strong coupling dressing phase satisfies the crossing symmetry equation and indeed we

show that these new non-perturbative contributions to σ solve the homogenous crossing

symmetry equation.

According to our findings the leading non-perturbative correction to the dressing phase

comes with an exponentially suppressed factor e−4πg multiplied by an infinite perturbative

expansion starting from three-loops, i.e. with the factor g−2. From the purely perturbative

point of view, the three-loop coefficient is also distinguished because only starting from

three-loops the odd coefficients produce contributions to the dressing phase which satisfy

the homogeneous crossing equation, while this is not the case for the one-loop perturbative

coefficients or the even ones. For the non-perturbative contributions it might be that

there is a protection mechanism based on vanishing of the zero mode contributions, forcing

perturbation theory on top of these new non-perturbative saddles to start from three-loops,

in the same spirit to what has been observed for the case of the instanton corrections for

the anomalous dimension of the Konishi operator [24, 25].

The origin of these new, non-perturbative effects in the dressing phase is quite mysteri-

ous. This story is analogous to the non-perturbative effects [26, 27] emergent in the strong

coupling expansion, g → ∞, of the cusp anomalous dimension of N = 4. Similarly to the

dressing phase, the cusp anomaly has a transseries expansion at strong coupling [28, 29]

and, perhaps surprisingly, these exponentially suppressed terms have a semiclassical origin

that can be understood from the string theory side. In the dual, weakly coupled descrip-

tion the calculation of the cusp anomaly translates into the computation of the spectrum

of folded spinning strings on AdS5 × S5, the so-called GKP-strings [30]. At low energies

we can describe the world-sheet theory in terms of an effective sigma model, containing an

O(6) factor [31], with a non-trivial strongly coupled IR dynamics. In a suitable regime [32],

this 2-d quantum field theory contains non-perturbative objects, i.e. finite action solutions

to the classical equations of motion, that, in the semiclassical approximation, give rise to

– 3 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

exponentially suppressed contributions to the energy levels hence explaining the presence

of non-perturbative terms in the cusp anomaly expansion at strong coupling, on the gauge

theory side. How precisely these non-perturbative objects translate into the full string

theory remains however to be understood.

In the case of the dressing phase the weakly coupled dual side can be most conveniently

studied via a different stringy solution: the BMN string [33]. The S-matrix computed from

the sigma model perturbation theory has been shown (see e.g. [34, 35]) to reproduce the

well known first few orders of the dressing phase expansion. For this reason and from the

presence of non-perturbative terms in the dressing phase transseries expansion, we predict

the existence of new non-perturbative objects in the world-sheet sigma model theory1 (or

possibly a suitable complexification thereof) that hopefully one can construct more easily

in one of the Pohlmeyer reduced versions of the world-sheet theory [36]. Note also that

the leading non-perturbative effect presents in the cusp anomalous dimension [26, 31] takes

the form e−πg, or e−
√
λ/2 in terms of the ’t Hooft coupling, while the leading correction

we find in the dressing phase is of the form e−4πg, or e−2
√
λ. This stresses once more

that these new non-perturbative corrections we find in the dressing phase should have

a different semi-classical origin compared to the cusp anomaly ones. It is interesting to

note that the difference between these two types of leading non-perturbative effects is

analogous to the relation between the mass gap of the O(N) sigma model and the action

of its minimal uniton-like saddle which is N − 2 times bigger than the mass gap [32], this

precisely reproduces a factor of 4 difference in the O(6) case, i.e. the model relevant to

our discussion. It is possible that these finite action saddles might be responsible for the

non-perturbative effects we found, although it is absolutely not obvious how and why they

should be realised in the string description.

From a mathematical point of view we perfectly understand why these non-perturba-

tive terms must be incorporated in order to represent a very particular analytic function,

i.e. this BES dressing phase, in terms of a transseries expansion, but from a physical point

of view it is a very important question to understand the semi-classical origin of these

exponentially suppressed contributions in terms of non-perturbative strings configurations.

Finally, we mention the universality of the methods developed in the present paper.

Similar results about non-perturbative sectors of the dressing phase might be expected

also for the case of q-deformed theories [37]–[43] and for lower dimensional examples of

AdS/CFT, like for instance for AdS3/CFT2, see e.g. [44]–[46]. Furthermore similar type

of methods can be applied also to different observables within the context of AdS/CFT

correspondence, for example it was realized in [47] that the hydrodynamic gradient series

for the strongly coupled N = 4 super Yang-Mills plasma is only an asymptotic expansion

leading to the works [48]–[50] dealing with resurgence and resummation issues in the fluid

context of AdS5/CFT4.

The paper is organized as follows. In section 2 we review some known facts about

the dressing phase and its strong coupling expansion while in section 3 we introduce a

modified version of the Borel transform to resum the perturbative coefficients. We prove in

1We thank Lorenzo Bianchi for useful discussions on this problem.
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section 4 that the Borel-Ecalle resummation of our proposed transseries expansion matches

perfectly the BES dressing phase. The exact form of the non-perturbative terms is related

to the ambiguity in the resummation of the perturbative expansion, which is computed

explicitly in section 5 and then expanded at strong coupling in section 6. In section 7 we

use a standard dispersion-like argument to show how the perturbative coefficients of the

non-perturbative sectors can be reconstructed from the large order behaviour of the purely

perturbative ones and finally, in section 8, we use precisely these coefficients to obtain

new, non-perturbative contributions to the dressing phase, solutions to the homogeneous

crossing symmetry equation. Because of the involved algebraic manipulations, many of the

more technical results obtained in this paper are relegated to the appendices.

2 The dressing phase

Here we collect some known facts about the dressing phase which we need to our further

discussion. The S-matrix is determined up to an overall scalar function — the dressing

factor σ(x±1 , x
±
2 ), which satisfies a non-trivial functional equation — the crossing equation.

It turns out to be convenient to write the dressing factor in the exponential form σ(x1, x2) =

eiθ(x1,x2). Here the dressing phase

θ12 ≡ θ(x+
1 , x

−
1 , x

+
2 , x

−
2 ) =

∞∑
r=2

∑
s>r

r+s=odd

cr,s(g)
[
qr(x

±
1 )qs(x

±
2 )− qs(x±1 )qr(x

±
2 )
]

(2.1)

with

qr(x
−
k , x

+
k ) =

i

r − 1

[(
1

x+
k

)r−1

−
(

1

x−k

)r−1]
, (2.2)

where x± are subject to the relation

x+ +
1

x+
− x− − 1

x−
=

2i

g
. (2.3)

Here g is related to the ’t Hooft coupling λ as g =
√
λ/2π.

The phase θ12 can be written as

θ12 = +χ(x+
1 , x

+
2 )− χ(x+

1 , x
−
2 )− χ(x−1 , x

+
2 ) + χ(x−1 , x

−
2 )

− χ(x+
2 , x

+
1 ) + χ(x−2 , x

+
1 ) + χ(x+

2 , x
−
1 )− χ(x−2 , x

−
1 ) , (2.4)

where the function χ obtained from (2.1)–(2.2) is

χ(x1, x2) =

∞∑
r=2

∞∑
s=r+1

−cr,s(g)

(r − 1)(s− 1)

1

xr−1
1 xs−1

2

. (2.5)

The coefficients cr,s(g) admit an asymptotic large g expansion

cr,s(g) = g2
∞∑
n=0

c(n)
r,s g

−n−1, g � 1 , (2.6)
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where the numerical coefficients are given by

c(0)
r,s =

1

2
δr+1,s , c(1)

r,s = −1− (−1)r+s

π

(r − 1)(s− 1)

(s+ r − 2)(s− r) , (2.7)

and for n > 2 by

c(n)
r,s =

(−1)nζ(n)

2πnΓ[n− 1]
(r − 1)(s− 1)

Γ
[

1
2(s+ r + n− 3)

]
Γ
[

1
2(s− r + n− 1)

]
Γ
[

1
2(s+ r − n+ 1)

]
Γ
[

1
2(s− r − n+ 3)

] . (2.8)

Note that for n = 0, 1 this expression is formally 0/0, but nevertheless (2.7) can easily be

recovered from (2.8). At any given order in the asymptotic 1/g expansion the double series

defining χ is convergent for |x1,2| > 1.

The series (2.6) is divergent and of Gevrey-1 type2 since the coefficients (2.8) grow as

c
(n)
r,s ∼ n!, for this reason we can thus perform a Borel resummation of series (2.6).

The crossing equation satisfied by the dressing phase has the form

iθ(xj , xk) + iθ(1/xj , xk) = 2 log h(xj , xk) , (2.9)

where the function h is

h(xj , xk) =
x−k
x+
k

(
1− 1

x−j x
−
k

)
(x−j − x+

k )(
1− 1

x+j x
−
k

)
(x+
j − x+

k )
. (2.10)

Here we have chosen to uniformize x± in terms of a single variable x via [12]

x±(x) = x

√
1− 1

g2
(
x− 1

x

)2 ± i

g

x

x− 1
x

. (2.11)

3 Modified Borel transform

We start with recalling that the standard Borel transform of a divergent series

∞∑
n=0

cnz
−n−1 (3.1)

with coefficients cn growing as n! is defined as

B0 :

∞∑
n=0

cnz
−n−1 7→

∞∑
n=0

cn
n!
ξn. (3.2)

The standard Borel image is now convergent to some function
∞∑
n=0

cn
n! ξ

n = ϕ̂(ξ) and the

initial series can be resummed through the “inverse” of the standard Borel transform which

is the Laplace transform

ϕ(z) = L[φ̂](z) =

∫ ∞
0

dξ e−zξ ϕ̂(ξ) ∼
∞∑
n=0

cnz
−n−1, (3.3)

2A series {cn}n∈N is of Gevrey type 1/m if the large orders asymptotic terms are bounded by |cn| <
αC(n!)m for some constants α and C.
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where ∼ means asymptotic in the standard sense. Typically, ϕ̂(ξ) has singularities which

lead to ambiguities in the resummation procedure associated with the choice of integration

contour in the Laplace transform as we will discuss in full details later on.

Here, to remove an additional Riemann-zeta factor, we consider a modified (similarly

to [51]) Borel transform3

B :

∞∑
n=2

cnz
−n 7→

∞∑
n=2

cn
ζ(n)Γ(n+ 1)

ξn = ϕ̂(ξ) , (3.4)

which on a monomial acts as

B[z−n] =
ξn

Γ(n+ 1)ζ(n)
, for n > 2 , (3.5)

where ζ(n) denotes the Riemann zeta function. At this stage we introduce the modified

Borel transform only to get rid of the Riemann-zeta factor and simplify the expressions to

be working with. We will carefully analyse the implications that the use of this transform

has with regards to the non-perturbative sectors later in the paper.

This transform can be easily inverted by noticing that the momenta of the measure

dµ =
1

4 sinh2(ξ/2)
dξ (3.6)

are precisely

〈ξn〉 =

∫ ∞
0

dµ ξn =

∫ ∞
0

dξ
ξn

4 sinh2(ξ/2)
= Γ(n+ 1)ζ(n) for n > 2 . (3.7)

As seen before, the “inverse” can be given via

ϕ(z) = z

∫ ∞
0

dξ

4 sinh2(ξ z/2)
ϕ̂(ξ) ∼

∞∑
n=2

cnz
−n. (3.8)

According to (2.6) the variable z in (3.8) should be identified with g.

Note that by making use of ζ(n) =
∑∞

k=1 k
−n we can easily relate the standard Borel

transform to the modifed one.4 We can rewrite (3.2) in terms of (3.4)

ϕ̂0(ξ) =

∞∑
n=2

ζ(n) cn
ζ(n)Γ(n+ 1)

ξn =

∞∑
k=1

∞∑
n=2

cn
ζ(n)Γ(n+ 1)

(
ξ

k

)n
=

∞∑
k=1

ϕ̂

(
ξ

k

)
, (3.9)

where ϕ̂0 denotes the standard Borel transform (3.2), while ϕ̂ denotes the modified one,

associated with the coefficients {cn}. In particular we have the identity

ϕ(z) = z

∫ ∞
0

dξe−z ξϕ̂0(ξ) =

∞∑
k=1

(k · z)

∫ ∞
0

dξ e−k·z ξ ϕ̂(ξ) = z

∫ ∞
0

dξ

4 sinh2(ξ z/2)
ϕ̂(ξ) ,

3Note that the summation extends from n = 2 because ζ(1) =∞.
4Equivalently we could have expand the modified kernel 1/ sinh2(ξ z/2) =

∑∞
k=1 4k e−kz ξ, see the dis-

cussion around (4.18).
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telling us that the modified Borel resummation can be seen as an infinite sum of standard

Borel resummations evaluated at shifted couplings z 7→ k · z. This will be important when

we will discuss the non-perturbative sectors.

Applying this modified Borel transform to (2.6) we can sum up the modified Borel

image
∞∑
n=2

c
(n)
r,s

Γ(n+ 1)ζ(n)
ξn = ϕ̂r,s(ξ) , (3.10)

where

ϕ̂r,s(ξ) =
1

48π3
(r − 1)(s− 1)ξ2 (3.11)

×
[

12π 4F3

({
3

2
− r

2
− s

2
,

1

2
+
r

2
− s

2
,

1

2
− r

2
+
s

2
,−1

2
+
r

2
+
s

2

}
,

{
1

2
,

3

2
, 2

}
,

(
ξ

4π

)2
)

+(r−s)(r+s−2) ξ 4F3

({
2− r

2
− s

2
, 1+

r

2
− s

2
, 1− r

2
+
s

2
,
r

2
+
s

2

}
,

{
3

2
, 2,

5

2

}
,

(
ξ

4π

)2
)]

with pFq({a1, . . . , ap}, {b1, . . . , bq}, z) being the generalised hypergeometric function.

Recalling that s+ r must be odd and r > 2, s > r + 1, we introduce new variables

p =
s+ r − 1

2
, s = p+ q + 1 ,

q =
s− r − 1

2
, r = p− q , (3.12)

where the integers p, q are restricted to q > 0, p > q + 2, and, with the definition ξ ≡ 4πx,

the modified Borel transform

ϕ̂r,s(ξ) ≡ φ̂p,q(x) (3.13)

takes the form

φ̂p,q(x) :=
4

3
(p− q − 1)(p+ q)x2 (3.14)

×
[
3 4F3

(
{1− p, p,−q, 1 + q},

{
1

2
,

3

2
, 2

}
, x2

)
− (2p− 1)(2q + 1)x 4F3

({
3

2
− p, 1

2
+ p,

1

2
− q, 3

2
+ q

}
,

{
3

2
, 2,

5

2

}
, x2

)]
.

In terms of the variables p and q the perturbative coefficients c
(n)
r,s acquire the form

c(n)
p,q = (−1)nζ(n)

(p+ q)(p− q − 1)

2πnΓ(n− 1)

Γ
(
n
2 + p− 1

)
Γ
(
n
2 + q

)
Γ
(
− n

2 + p+ 1
)
Γ
(
− n

2 + q + 2
) . (3.15)

As discussed earlier in this section, we can naively resum the asymptotic power series with

coefficients (3.15) via

cp,q(g) = c(0)
p,q · g + c(1)

p,q + πg2

∫ ∞
0

dx

sinh2(2πgx)
φ̂p,q(x) . (3.16)

To understand the region of analyticity of the function cp,q(g) in the complex coupling

constant g-plane, we need first to understand the analytic properties of the modified Borel

transform (3.14) in the complex Borel x-plane.

– 8 –
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To begin, we note that the first hypergeometric function in (3.14) is a simple polynomial

of degree 2q in x. This contribution to the full modified Borel transform is an entire function

of x because is coming from the coefficients c
(n)
p,q with n even which are only finitely many

in number: from the explicit expression (3.15), we see that c
(2m)
p,q = 0 for any m > q + 2.

The second hypergeometric function in (3.14), which we denote as

Ω(z) := 4F3

({
3

2
− p, 1

2
+ p,

1

2
− q, 3

2
+ q

}
,

{
3

2
, 2,

5

2

}
, z

)
, (3.17)

where z = x2, has a cut along the real interval (1,+∞). Therefore, the resummation

formula (3.16) does not define an analytic function of g, unless we specify a contour of

integration that dodges the cut. This introduces an ambiguity in the resummation proce-

dure, related to the particular choice of integration contour, i.e. that is above or below the

real line. For the discontinuity of Ω(z) we found in appendix A the following formula

Ω(z + iε)− Ω(z − iε) = (3.18)

− i 3

(2p− 1)(2q + 1)(p+ q)!

× 1√
z

dq

dzq
zq−1 d

p−2

dzp−2

[
(1−z)p+qzp−

1
2 2F1

(
1

2
+ p,

3

2
+ q, p+ q + 1, 1− z

)]
, |z|>1 ,

so that combining this with (3.14) we find

Disc φ̂p,q = (3.19)

i
4(p− q − 1)

(p+ q − 1)!

× z d
q

dzq
zq−1 d

p−2

dzp−2

[
(1−z)p+qzp−

1
2 2F1

(
1

2
+ p,

3

2
+ q, p+ q +1, 1−z

)]
z=x2

, |z|>1 .

The discontinuity along the cut (1,+∞) is purely imaginary and for z = 1 it vanishes

Disc φ̂p,q(1) = 0. Note also that due to the hypergeometric function the discontinuity itself

has a logarithmic branch cut in the directions Arg z = π. These facts will shortly be of

importance.

As an example we can specify p = 2, q = 0 in (3.19) obtaining

Disc φ̂2,0(x) =
64 i

3π
x
[
(x2 + 1)E(1− x2)− 2x2K(1− x2)

]
= 16 i (x− 1)2

(
1 +

3

2
(x− 1) +

15

32
(x− 1)2 +O

(
(x− 1)3

))
, <x > 0

where K(k) and E(k) denote the complete elliptic integrals of the first and second kinds

respectively. In Disc φ̂p,q(x) the same elliptic functions appear multiplied by two p, q-

dependent polynomials in x for which we do not have the generic expression. Since K(k)

and E(k) have branch cut discontinuities for k ∈ (1,∞) we deduce that Disc φ̂2,0(1 + t)

a branch cut along t = −1 + iR. One can easily check, using the known discontinuities

for the elliptic integrals, that the discontinuity of Disc φ̂2,0(x) across the cut gives back
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Figure 1. Plot of real part of the function φ̂p,q for a few values of p and q.

precisely the non-analytic part of φ̂2,0(x), modulo an overall constant. The fact that the

singularity structure of φ̂p,q(x) and of its discontinuity closes with just these two functions

will be of crucial importance later on.

One natural way to fix the ambiguity related to the choice of the integration contour

is to demand that cp,q(g) must be real for real g. Further analysis reveals that < φ̂p,q(x)

has neither pole nor cut on the real line and for generic p and q is a decreasing function as

x→∞, see figure 1. We thus can define the manifestly real coefficients by

cp,q(g) = c(0)
p,q · g + c(1)

p,q + πg2

∫ ∞
0

dx

sinh2(2πgx)
< φ̂p,q(x) , (3.20)

whose strong coupling expansion g � 1 coincide with the original asymptotic formal power

series (2.6). This prescription for the resummation procedure seems somehow ad hoc but in

the next section we will show that it corresponds in fact to the median Borel resummation.

To straightforwardly integrate < φ̂p,q is rather difficult because it contains a separate

polynomial part. Also the first two terms in (3.20) come apart which suggests that they

originate from contour integrals around isolated points, as was explained in [14]. Therefore,

to proceed, we show that < φ̂p,q admits another but alternative representation through the

function

Φ̂p,q(x) = δq,0 + (−1)p+q25−4p(p− q − 1)(p+ q)
Γ(2p− 2)

Γ(p− q)Γ(p+ q + 1)

× x2−2p · 4F3

({
p− 1, p− 1

2
, p, p+

1

2

}
; {2p, p− q, p+ q + 1};x−2

)
. (3.21)

Namely, both functions φ̂p,q and Φ̂p,q share the same real part

< φ̂p,q(x) = < Φ̂p,q(x) , x > 0 , (3.22)
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a statement which is analytically proven in appendix B in two different ways.5 At this

point it is gratifying to see that (3.21) is essentially the same formula as equation (3.25)

in [14], which has been proposed there to describe a sort of analytic continuation of the

coefficients crs from strong to weak coupling. Note that, contrary to φ̂p,q, the new function

Φ̂p,q is an even function of x and this property will be crucial in the next section to extend

the integration over the whole real line to implement a Cauchy-like argument .

4 Non-perturbative resummation of the coefficients cr,s(g)

In this section we prove that the manifestly real resummation (3.20) proposed in the previ-

ous section does indeed coincide with the coefficients for the BES dressing phase introduced

in [14]. Furthermore we show that the proposed real resummation (3.20) can be understood

as the Borel-Ecalle resummation of a particular transseries expansion, generalization of the

formal power series (2.6) that we started with.

4.1 From the Borel sum to the BES dressing phase

According to the discussion in the previous section, the coefficients cp,q can be repre-

sented as

cp,q(g) = c(0)
p,q · g + c(1)

p,q +
1

2
πg2

∫ ∞
−∞

dx

sinh2(2πgx)
< Φ̂p,q(x) , (4.1)

where the integration was extended to the whole real line since < Φ̂p,q(x) is an even function

of x. The rest of the computation follows the same steps as in [14] but now for arbitrary

values of r and s and, therefore, we outline it here for completeness.

The starting point is to pass from integration of Φ̂p,q over the real line to integration

of Φ̂p,q along the contour depicted on figure 2. The function Φ̂p,q has a cut on the interval

(−1, 1) and the integration contour C1 runs just above this cut. Since the kernel f(z) =
Φ̂p,q(z)

sinh2(2πgz)
is symmetric with respect to z → −z, the contribution from two points symmetric

around zero amounts to f(−z̄) + f(z) = f(z̄) + f(z) = f(z) + f(z) = 2<f(z), because f(z)

is real analytic. Thus, integration of f(z) above the cut is equivalent to the integration

of <f(z) over the interval (−1, 1). One has however to take into account that f(z) has a

residue at infinity and at z = 0 which lead to additional contributions. In particular, the

two isolated terms entering (4.1) can be treated (similarly to [14]) as the following contour

integrals:

1. For the integral around the contour C3, where |x| → ∞ with ε < arg x < π − ε, a

non-trivial contribution occurs only due to the leading term in Φ̂p,q(x) = δq,0 + . . .,

which is present for q = 0 only. One gets

1

2
πg2

∫
C3

dx
Φ̂p,q(x)

sinh2(2πgx)
= δq,0 lim

|x|→∞

[
− 1

4
coth(2πg|x|eiθ)

∣∣∣θ=π
θ=0

]
=

1

2
gδq,0 = c(0)

r,s .

(4.2)

5We warn the reader that to verify the coincidence of the real parts of the above functions numerically, for

instance, by using Mathematica, one needs to apply first to the function Φ̂ the command “FunctionExpand”

which renders the answer in terms of complete elliptic integrals of the first and second kind. After that a

numerical comparison can be straightforwardly performed.
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*

...

. .
0 1−1 ∞−∞

i∞

in
2g

C1 C1C2

C3

Figure 2. Integration contour for the coefficients cr,s.

2. To compute the integral around the contour C2, we have to expand Φ̂p,q(x) around

zero and we find for the leading behaviour

Φ̂p,q(x) = −16i

π

(p+ q)(p− q − 1)

(2p− 1)(2q + 1)
x+ . . . , (4.3)

i.e. it is purely imaginary for real x. Note that the case q = 0 should be treated

with care which results in the absence of the leading δq,0 when q = 0 in the small x

expansion for Φ̂p,q(x). Hence, the contribution from the contour C2 is

1

2
πg2

∫
C2

dx
Φ̂p,q(x)

sinh2(2πgx)
= πg2 16i

π

(p+ q)(p− q − 1)

(2p− 1)(2q + 1)

∫
C2

dx
1

4g2π2 x

= − 2

π

(p+ q)(p− q − 1)

(2p− 1)(2q + 1)
= c(1)

p,q . (4.4)

Thus, the resummation formula can be written as the following contour integral

cp,q(g) =
1

2
πg2

∫
C

dx
Φ̂p,q(x)

sinh2(2πgx)
, (4.5)

with contour C = C1 ∪ C2 ∪ C3 from figure 2. This is evaluated by Cauchy theorem as

cp,q(g) = i(πg)2
∞∑
n=1

Resin/2g
Φ̂p,q(x)

sinh2(2πgx)
=
i

4

∞∑
n=1

d

dx
Φ̂p,q(x)

∣∣∣∣
x= in

2g

. (4.6)

The derivative is given by

d

dx
Φ̂p,q(x) = 23(−1)p+q+1 Γ(2p− 1)

Γ(p+ q)Γ(p− q − 1)

×(4x)1−2p
4F3

({
p− 1

2
, p, p, p+

1

2

}
; {2p, p− q, p+ q + 1};x−2

)
. (4.7)

Thus, for the coefficients cp,q we find

cp,q(g) = (−1)q 22−2p Γ(2p− 1)

Γ(p+ q)Γ(p− q − 1)
(4.8)

×
∞∑
n=1

(n/g)1−2p
4F3

({
p− 1

2
, p, p, p+

1

2

}
; {2p, p− q, p+ q + 1};

(
2i

n/g

)2
)
.

– 12 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

Next, we apply the following identity

z−α m+kFn

({
a1, . . . , am,

α

k
,
α+ 1

k
, . . . ,

α+ k − 1

k

}
; {b1, . . . , bn};

(
kλ

z

)k)
=

1

Γ(α)

∞∫
0

dt tα−1e−zt mFn
(
{a1, . . . , am}; {b1, . . . , bn}; (λt)k

)
, (4.9)

where we identify z = n/g, α = 2p− 1, k = 2 and λ = i. Hence,

cp,q(g) =
(−1)q 22−2p

Γ(p+ q)Γ(p− q − 1)

×
∞∑
n=1

∞∫
0

dt t2p−2e−n t/g 2F3

({
p, p+

1

2

}
; {2p, p− q, p+ q + 1};−t2

)
(4.10)

or, going back to the (r, s)-representation

cr,s(g) = 2(−1)(s−r−1)/2(s− 1)(r − 1)
1

Γ(r)Γ(s)
(4.11)

×
∞∑
n=1

∞∫
0

dt tr+s−3e−2n t/g
2F3

({
s+ r

2
,
s+ r − 1

2

}
; {r, s, r + s− 1};−4t2

)
.

Here one can recognise the well-known formula

0F1(r,−t2) 0F1(s,−t2) = 2F3

({
r + s

2
,
r + s− 1

2

}
; {r, s, r + s− 1};−4t2

)
(4.12)

and use the representation of the Bessel function Jν(t) via the hypergeometric one

Jν(2t) =
tν

Γ(ν + 1)
0F1(ν + 1,−t2) (4.13)

to get

cr,s(g) = 2(−1)(s−r−1)/2(s− 1)(r − 1)

∞∑
n=1

∞∫
0

dt

t
e−2n t/gJr−1(2t)Js−1(2t) . (4.14)

Summing a geometric series up, one finally gets

cr,s(g) = 2(−1)(s−r−1)/2(s− 1)(r − 1)

∞∫
0

dt

t(et − 1)
Jr−1(gt)Js−1(gt) . (4.15)

This formula proves that the median Borel resummed formula for cr,s coincides with the

coefficients of the BES dressing phase that first appeared in [14].

– 13 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

4.2 Non-perturbative ambiguities and median resummation

Let us go back to the initial problem of going from the modified Borel transform to a

suitable analytic continuation (3.16) of the original asymptotic formal power series (2.6).

To properly define the inverse transform (3.16), we need to integrate over a contour

where the modified Borel transform φ̂p,q(x) is not singular. As shown above, the singular

directions in the complex x Borel plane, also called Stokes directions, for the case under

considerations are Arg x = 0 and Arg x = π.

We can thus introduce the directional Borel resummation via

Sθ
[
cp,q
]
(g) = c(0)

p,q · g + c(1)
p,q + πg2

∫ eiθ∞

0

dx

sinh2(2πgx)
φ̂p,q(x) , (4.16)

which defines an analytic function in the wedge of the complex coupling constant plane

given6 by Dθ = {g ∈ C | <(eiθg) > 0}, provided that θ is a regular direction, i.e. θ /∈ {0, π}.
For every θ for which the above integral exists, if we expand for g � 1 we ob-

tain precisely the original asymptotic, formal power series expansion (2.6). Furthermore

when {0, π} /∈ [θ1, θ2] we have that Sθ2 [cp,q] is the analytic continuation of Sθ1 [cp,q], i.e.

Sθ1 [cp,q](g) = Sθ2 [cp,q](g) for every g ∈ Dθ1 ∩ Dθ2 . This allows us to analytically continue

the function Sθ1 [cp,q](g) on a wider wedge of the complex g-plane, i.e. on the union of the

two domains Dθ1 ∪Dθ2 .

Due to the presence of singularities in the Borel plane, if we keep on increasing Arg g,

or equivalently θ, we will necessarily encounter branch cut singularities for the analytic

continuation of the purely perturbative asymptotic power series (2.6). To understand the

reason for that, we pick ε > 0 and small, and consider the two lateral resummations across

the Stokes line θ = 0 given by S±ε[cp,q](g), a similar story holds for the other Stokes line

θ = π. These two analytic functions, although having the same asymptotic expansion (2.6),

differ from one another on the intersection of their domains of analyticity. Their difference

(related to the so called Stokes automorphism) can be written as an integration over the

Hankel contour C shown in figure 3, originating from infinity below the positive real axis,

circling the origin and then going back to infinity above the positive real axis:

∆Sp,q(g) ≡ S+ε[cp,q](g)− S−ε[cp,q](g) = πg2

∫
C

dx

sinh2(2πgx)
φ̂p,q(x) (4.17)

= πg2

∫ ∞
1

dx

sinh2(2πgx)
Disc φ̂p,q(x)

=
∞∑
n=1

(4πng2) e−4πng

∫ ∞
0

dt e−4πngt Disc φ̂p,q(t+ 1) ,

6The integral (4.16) is well-defined for g ∈ C such that | sinh2(2πgx)| > 1 for |x| large enough. This

leads to two disjoint domains of analyticity separated by the line <(eiθg) = 0. We decided to restrict

our attention to the upper domain but one could have directly worked with the union of the two disjoint

domains analyzing the discontinuity across them.
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C

10

Figure 3. Integration contour in the Borel plane used to compute the difference between lateral

resummations.

where we used the fact that the discontinuity (3.19) starts at x = 1 and, in the last step,

we expanded the sinh for g � 1

1

sinh2(2πgx)
=
∞∑
n=1

4ne−4πgnx, (4.18)

to make explicit the exponentially suppressed factor e−4πng, benchmark of non-perturbative

physics.

Note that although we used the modified Borel transform (3.4) to resum the purely

perturbative series, we expanded the 1/ sinh2 kernel to express the discontinuity ∆Sp,q(g)

as an infinite sum of usual instanton factors, i.e. exponentially suppressed terms e−4πng,

multiplied by the standard Borel resummation (3.3) of a single function φ̂p,q(t+1) evaluated

at shifted coupling 4πng.

Upon integration, we can see that each of these non-perturbative contributions is

multiplied by a formal power series Φ̃NP
p,q (4πgn) whose standard Borel transform (3.2) can

be extracted easily from (4.17)

Φ̂NP
p,q (t) = B0

[
Φ̃NP
p,q

]
(t) = +iDisc φ̂p,q(t+ 1) , (4.19)

so we can represent ∆Sp,q(g) as

∆Sp,q(g) = −i
∞∑
n=1

(4πng2) e−4πngL
[
Φ̂NP
p,q

]
(4πgn)

= −i
∞∑
n=1

(4πng2) e−4πng Φ̃NP
p,q (4πgn) , (4.20)

where in the second line, with a slight abuse of notation, we used a formal transseries

(see [53]) representation for ∆Sp,q(g). Note that the formal power series Φ̃NP
p,q (4πgn) associ-

ated with the non-perturbative sector is also asymptotic since we already know that Φ̂NP
p,q (x)

has a singularity at x = −1, see (3.19). However its Laplace transform, L
[
Φ̂NP
p,q

]
(4πgn),

is perfectly well defined since Φ̂NP
p,q (x) has no singularities along R+. We will study the

asymptotic nature of the formal power series Φ̃NP
p,q (4πgn) at the end of section 6.
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At this point we specify one particular determination of the analytic continuation

of (2.6) as follows

cPp,q(g) =

{
S−ε[cp,q](g) , 0 < Arg g < π ,

S+ε[cp,q](g) , −π < Arg g < 0 ,
(4.21)

where the suffix P reminds us that this is only the resummation of the perturbative power

series (2.6). This analytic function has two branch cuts, one for Arg g = 0 and the other

for Arg g = π. The two discontinuities are easy to obtain using the formula (4.17)

Disc0 c
P
p,q(g) = −∆Sp,q(g) , (4.22)

Discπ c
P
p,q(g) = −∆Sp,q(−g) , (4.23)

where for the discontinuity along the direction Arg g = π, we used the results, proven in

the previous section, that the discontinuity of the modified Borel transform is a function of

x2 over the Borel plane. We will study in detail these discontinuity in the following section.

Note that the particular analytic continuation cPp,q(g) of the perturbative power se-

ries (2.6) has two different and complex limits as Arg g → 0±. This “ambiguity” in defining

our resummation procedure for real coupling suggests that despite (4.21) has the correct

asymptotic power series expansion it misses nonetheless crucial non-perturbative contribu-

tions and leads to the wrong (i.e. non-physical) analytic continuation.

To obtain an analytic continuation that is real for real coupling we make use of the

median resummation [52], i.e. the appropriate, unambiguous, analytic continuation that

is real for real coupling. In the present case the median resummation is very simple and

ultimately consists in taking the real part of the modified Borel transform of the purely

perturbative expansion.

To show this we first rewrite the perturbative coefficients (2.8) by expanding the Rie-

mann zeta as ζ(k) =
∑∞

n=1 n
−k and then use the Laplace integral (3.3) to resum the

standard Borel transform (3.2). This let us rewrite the resummation (3.16) of the purely

perturbative coefficients as an infinite sum of standard Borel resummations evaluated at

shifted couplings 4πgn

cp,q(g) = c(0)
p,q · g + c(1)

p,q +
∞∑
n=1

(4πng2)L
[
φ̂p,q

]
(4πgn) , (4.24)

as discussed below equation (3.8). Note that this is completely identical to expanding the

sinh2(2πgx) kernel via (4.18) in the modified resummation (3.16) as previously mentioned.

We already know that each of these Laplace transforms is ill-defined because of the

logarithmic branch cut discontinuity (3.19) of the integrand φ̂p,q(x). In Ecalle’s language

we have that the only non-trivial alien derivative in the direction Arg x = 0 is given by

∆̇1φ̂p,q(x), directly related to (3.19). Further applications of the alien derivative would give

rise to ∆̇1Φ̂NP
p,q (x) but we know already that ∆̇1Φ̂NP

p,q (x) = 0 since the direction Arg x = 0

is a regular direction for the discontinuity Disc φ̂p,q(x), see (3.19). This fact simplifies

dramatically the fractional Stokes automorphism that becomes simply S
±1/2
0 = Id± 1

2∆̇1.

Had we been interested in the direction Arg x = π we would have found a singular behaviour
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for the non-perturbative sector, i.e. ∆̇−1Φ̂NP
p,q (x) 6= 0, entirely caputer by φ̂p,q(x), see the

discussion below (3.19), but since we focus only on the wedge < g > 0 we can completely

forget about the singularity structure of Φ̂NP
p,q (x). Since we will not make use of these more

sofisticated objects we refer to [52] for all the details.

To simplify the discussion one can think that the relevant singular behaviour of φ̂p,q(x),

captured entirely by (3.19), is the only discontinuity in play for the wedge < g > 0 under

consideration, then the median resummation [52] consists in subtracting from the direc-

tional Borel resummation (4.16) the associated ambiguity. In practice this means that

for each term of the form (4πng2)L
[
φ̂p,q

]
(4πgn) in (4.24) we have to subtract the corre-

sponding non-perturbative ambiguity, easily read from the full ambiguity ∆Sp,q(g) (4.20),

which takes the form ∓ i
2(4πng2) e−4πng Φ̃NP

p,q (4πgn). The sign is chosen accordingly to the

contour of the ambiguous Laplace transform L
[
φ̂p,q

]
(4πgn) being understood as above or

below the cut, similarly to (4.16).

This means that in the sector < g > 0 under consideration the median resummation

transseries is given by

cTS
p,q(g) = c(0)

p,q · g + c(1)
p,q +

∞∑
n=1

(4πng2)
[
φ̃p,q(4πgn) + s e−4πng Φ̃NP

p,q (4πgn)
]

= cp,q(g) + s

∞∑
n=1

(4πng2) e−4πng Φ̃NP
p,q (4πgn) , (4.25)

where φ̃p,q(g) denotes the formal power series obtained from the strong coupling expansion

of L
[
φ̂p,q

]
(g). The first term of the second line denotes the collection of all the purely

perturbative power series as in (4.24). The parameter s is linked with the lateral resum-

mation procedure and called the transseries parameter s = −i/2 for 0 < Arg g < π/2 and

s = +i/2 for −π/2 < Arg g < 0. Note that although we have infinitely many instanton

sectors they are all multiplied by the same and only transseries parameter s. The reason

for this is that the one under consideration is not a one-(or multi-)parameter transseries

(see for example [54]) but rather an infinite sum of two terms transseries of the form[
φ̃p,q(4πgn) + s e−4πng Φ̃NP

p,q (4πgn)
]
, at least in the wedge under consideration.

One can perform the infinite sum (4.24) of all the purely perturbative contributions

evaluated at shifted couplings reproducing the modified Borel transform (i.e. we repeat

backwards the argument presented above) while the non-perturbative sectors remain as

an infinite sum. This generates an apparent mismatch between perturbative and non-

perturbative sectors. Nonetheless, (4.25) remains a very simple infinite sum of two-terms

transseries in disguise. This transseries (4.25) is a formal representation of a unique analytic

function that can be explicitly obtained via Borel-Ecalle resummation. First we notice that

with the median resummation choice for the transseries parameter s we have that the two

lateral resummations of the transseries coincide for real and positive coupling g

cTS
p,q(g) = S−ε[cp,q](g)− i

2

∞∑
n=1

(4πng2) e−4πngL
[
Φ̂NP
p,q

]
(4πgn) (4.26)

= S+ε[cp,q](g) +
i

2

∞∑
n=1

(4πng2) e−4πngL
[
Φ̂NP
p,q

]
(4πgn) , (4.27)
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where L
[
Φ̂NP
p,q

]
(g) denotes the standard Laplace transform (3.3) of the perturbative series

associated with the non-perturbative sector (4.19) which is completely regular, i.e. it does

not have any Stokes line in the wedge under consideration.

Furthermore we can make use of (4.20) to show that in the case at hand the median

resummation of (2.6) is simply given by

cTS
p,q(g) = Smed[cp,q](g) =

{
S−ε[cp,q](g) + 1

2 ∆Sp,q(g) , 0 < Arg g < π/2 ,

S+ε[cp,q](g)− 1
2 ∆Sp,q(g) , −π/2 < Arg g < 0 .

(4.28)

The superscript is to remind us that, upon expansion of the analytic function cTS
p,q(g) for

g � 1, we do not obtain just the power series (2.6) but rather the transseries (see [53]) repre-

sentation.7 The function cTS
p,q(g), when expanded at strong coupling gives precisely (4.25),

containing infinitely many exponentially suppressed, i.e. non-perturbative, terms of the

form e−4πng. Each of these non-perturbative contributions is multiplied by a formal power

series Φ̃NP
p,q (4πgn).

Finally, by combining (3.19), (4.17) and (4.28), the Borel-Ecalle resummation of the

transseries gives

cTS
p,q(g) = c(0)

p,q · g + c(1)
p,q + πg2

∫ ∞
0

dx

sinh2(2πgx)
< φ̂p,q(x) , (4.29)

which is precisely the integral form (3.20) used in the previous section that we proved

coinciding with the coefficients (4.15) of the BES dressing phase. So we learn that the

correct strong coupling expansion of the BES coefficients (4.15) is not simply given by

the asymptotic power series (2.6) but rather from the transseries (4.25) which coincides

with (2.6) perturbatively but it contains infinitely many new exponentially suppressed

terms.

However, although the transseries representations (4.25) contains infinitely many

terms, it remains a two-terms transseries in disguise as noted above. Generically, physical

observables are represented with multiple parameter transseries and the actual implemen-

tation of the median resummation can be very complicated. Even in a one-parameter

transseries there are very intricate set of relations between the different instanton sectors

and the median resummation is not as straightforward, while in our case the presence of

infinite many instantons is a red-herring and is ultimately connected to the expansion of

the Riemann zeta function ζ(n) as noted before. We refer to [54] for a comprehensive

discussion on the cancellation of non-perturbative ambiguities and the construction of the

median resummation in one- and two-parameters transseries, relevant for more general

physical observables than the one discussed in the present paper.

Another important thing to keep in mind is that the problem under consideration is

indeed a linear problem which roughly means that each instanton sector does not “commu-

nicate” in an intricate way with all the others. This is a very lucky case which simplifies

7With a slight abuse of notation we denote the median resummation (4.28) with the same symbol as

its transseries representation (4.25) having in mind that they both uniquely define the one and the same

analytic function.

– 18 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

dramatically the Borel-Ecalle resummation procedure. One of the central points in Ecalle’s

works [23] is precisely the decodification of the complicated set of relations connecting the

different perturbative coefficients in different sectors and the deep intertwining between

all sectors: perturbative and non-perturbative. In the present case this could go under-

appreciated due to the linearity of the problem and perhaps one of the nicest illustrations

where the full power of Ecalle’s work can be better appreciated is shown in a nonlinear

case [55] within the context of large-N dualities where the authors are also able to obtain a

very explicit strong-weak coupling interpolation similar to the one described in our paper.

As already shown in the previous section, equation (4.29) coincides with physical an-

swer given by the coefficients of the BES dressing phase (4.15), but in order to obtain (4.29)

we had to pass from the formal power series (2.6) to the transseries (4.25). This amounted

to introduce infinitely many non-perturbative contributions and ultimately means that

the initial purely perturbative formal power series (2.6) is not enough to reconstruct the

physical answer.

It is worth emphasizing that, due to its asymptotic nature, the strong coupling

transseries representation (4.25) is only a formal object but its Borel-Ecalle resummation

defines a perfectly good analytic function in a wedge of the complex g-plane. In particu-

lar, this means that the weak coupling expansion coefficients, obtainable from the gauge

theory side, must be encoded in some intricate way in the strong coupling transseries coef-

ficients (4.25). We do not know how to read this weak coupling expansion directly from the

strong coupling transseries, but as proven above, the median resummation of the strong

coupling coefficients yields precisely the coefficients of the BES dressing phase (4.15), which

directly allow for a weak coupling expansion that matches precisely the gauge theory results

as shown in [14].

5 Ambiguity of the Borel resummation

As we have just seen, the ambiguity in the Borel resummation procedure comes from the

discontinuity of the integrand of the Laplace transform (4.17). In this section we therefore

compute this ambiguity explicitly by analyzing

∆Sp,q(g) = πg2

∫ ∞
1

dx

sinh2(2πgx)
Disc φ̂p,q(x) , (5.1)

where

Disc φ̂p,q = i
4(p− q − 1)

(p+ q − 1)!
(5.2)

×z d
q

dzq
zq−1 d

p−2

dzp−2

[
(1−z)p+qzp−

1
2 2F1

(
1

2
+ p,

3

2
+ q, p+ q + 1, 1−z

)]
z=x2

, |z| > 1 .

The important property of the discontinuity is that Disc φ̂p,q(1) = 0.

Since we have
1

sinh2(2πgx)
=
∞∑
n=1

4ne−4πgnx, (5.3)
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we can write

∆Sp,q(g) = −g
∞∑
n=1

∫ ∞
1

dx (−4πng) e−4πngx Disc φ̂p,q(x) . (5.4)

Substituting here the explicit formula for the discontinuity we get

∆Sp,q(g) = −2ig
(p− q − 1)

(p+ q − 1)!

∞∑
n=1

∫ ∞
1

dz (−hn
√
z) e−hn

√
z (5.5)

× dq

dzq
zq−1 d

p−2

dzp−2
zp−

1
2

[
(1− z)p+q 2F1

(
1

2
+ p,

3

2
+ q, p+ q + 1, 1− z

)]
,

where we have introduced a concise notation

hn = 4πng . (5.6)

We proceed integrating by parts and noting that boundary terms always vanish we

arrive at the following expression

∆Sp,q(g) = −2ig
(p− q − 1)

(p+ q − 1)!

∞∑
n=1

∫ ∞
1

dz Qn(z)(z − 1)p+q 2F1(1− z) , (5.7)

where for conciseness we omitted the parameters of 2F1 and introduce the following function

Qn(z) =
∞∑
k=0

(−hn)k+1

k!
zp−

1
2
dp−2

dzp−2
zq−1 d

q

dzq
z

1
2

(k+1). (5.8)

In appendix C we show that Qn(z) has the following representation as a double sum

Qn(z) = e−hn
√
z

q∑
k=0

p−k−2∑
m=0

(−1)1+k+p21−k−m−p(hn
√
z)p+k−m (5.9)

×
√
π q! Γ(p+m− k − 1)

hn k!m! (q − k)! Γ(p−m− k − 1)Γ
(

3
2 + k − q

) .
Since

(−1)p+k−mhp+k−mn

∂p+k−m

∂hp+k−mn

e−hn
√
z = (hn

√
z)p+k−m e−hn

√
z, (5.10)

we have

Qn(z) =
1

hn

q∑
k=0

p−k−2∑
m=0

(−1)m+1√π 21−k−m−p q! Γ(p+m− k − 1)

k!m! (q − k)! Γ(p−m− k − 1)Γ
(

3
2 + k − q

) (5.11)

× hp+k−mn

∂p+k−m

∂hp+k−mn

e−hn
√
z.

Thus, we can represent Qn(z) as a certain differential operator acting on e−hn
√
z:

Qn(z) = Q̂ne
−hn
√
z, (5.12)
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with the whole z dependence just sitting in the exponent. Then further computation

reduces to the following integral

∆Sp,q(g) = −2ig
(p− q − 1)

(p+ q − 1)!

∞∑
n=1

Q̂n

∫ ∞
1

dz e−hn
√
z(z − 1)p+q 2F1(a, b, c, 1− z) , (5.13)

where a = p+ 1
2 , b = q + 3

2 and c = p+ q + 1. Thus, we are led to compute the integral

f(h) =

∫ ∞
1

dz e−h
√
z(z − 1)c−1

2F1(a, b, c, 1− z) . (5.14)

For generic values of a, b, c this integral is given in [56]. Keeping for the moment p and q

generic (non-integer), the answer is given by the following formula

f(h)

h
=

1

2π
Γ(−p)Γ(−1− q)Γ(1 + p+ q) 1F2

({
1

2

}
; {1 + p, 2 + q}; t

)
(5.15)

+
2Γ(2p− 1)Γ(p− q − 1)Γ(1 + p+ q)

4pΓ
(

1
2 + p

)
Γ
(
− 1

2 + p
) 1

tp
1F2

({
1

2
− p
}

; {1− p, 2− p+ q}; t
)

+
2Γ(1− p+ q)Γ(1 + 2q)Γ(1 + p+ q)

41+qΓ
(

1
2 + q

)
Γ
(

3
2 + q

) 1

t1+q 1F2

({
− 1

2
− q
}

; {p− q,−q}; t
)
,

where we have introduced a concise notation t = h2/4. This formula can be obtained by

using the Mellin transform technique, see e.g. [57]. While well-defined for generic p and q,

the above expression becomes nonsensical for p and q being positive integers. In the latter

case the answer can still be found from (5.15) by using the continuity principle — first

one starts from generic p, q close to integer values by introducing a kind of regularisation

and then takes a limit to these values. A regularisation parameter controls the apparent

singularities which are supposed to cancel in the final expression.

To proceed, we introduce the following shorthand notation

H1 ≡ 1F2

({
1

2

}
; {1 + p, 2 + q}; t

)
=

∞∑
k=0

Γ
(

1
2 + k

)
Γ(1 + p)Γ(2 + q)√

πΓ(1 + k)Γ(1 + k + p)Γ(2 + p+ k)
tk (5.16)

and consider the power series expansion for the second hypergeometric function

H2 ≡ t−p 1F2

({
1

2
− p
}

; {1− p, 2− p+ q}; t
)

=
∞∑
k=0

Γ(1− p)Γ
(

1
2 + k − p

)
Γ(2− p+ q)

Γ(1 + k)Γ
(

1
2 − p

)
Γ(1 + k − p)Γ(2 + k − p+ q)

tk−p. (5.17)

Denote by p̄ and q̄ positive integers to which p and q are close by. Then this sum can be

split into three parts

H2 =
1

Γ
(

1
2 − p

) p̄−q̄−2∑
k=0

Γ
(

1
2 + k − p

)
Γ(1 + k)

Γ(p− k)

Γ(p)

Γ(p− q − k − 1)

Γ(p− q − 1)
tk−p (5.18)

+
Γ(2−p+q)

Γ
(

1
2−p

)
Γ(p)

q̄∑
k=0

(−1)k−1+p̄−q̄Γ
(
− 1

2 +k−p+p̄−q̄
)
Γ(1−k+p−p̄+q̄)

Γ(k+p̄−q̄)Γ(1+k+p̄−p+q−q̄) tk−1−p+p̄−q̄

+
Γ(1− p)Γ(2− p+ q)

Γ
(

1
2 − p

) ∞∑
k=0

Γ
(

1
2 + k − p+ p̄

)
Γ(1 + k + p̄)Γ(1 + k − p+ p̄)Γ(2 + k − p+ q + p̄)

tk−p+p̄.
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Here to obtain the second line we made a shift of the original summation label k as k →
k+ p̄− q̄− 1, while to get the third line we shifted as k → k+ p̄. Note that the first line of

H2 is finite in the limit p → p̄, q → q̄, while the second and the third lines are “linearly”

and “quadratically” divergent, respectively, cf. the factors in front of the corresponding

sums.

Analogously, we consider

H3 ≡
1

t1+q 1F2

({
− 1

2
− q
}

; {p− q,−q}; t
)

=

∞∑
k=0

Γ
(
− 1

2 + k − q
)
Γ(p− q)Γ(−q)

Γ(1 + k)Γ
(
− 1

2 − q
)
Γ(k − q)Γ(k + p− q) t

k−q−1 (5.19)

and split the sum into two parts

H3 =
Γ(p− q)

Γ(1 + q)Γ
(
− 1

2 − q
) q̄∑
k=0

(−1)k
Γ
(
− 1

2 + k − q
)
Γ(1− k + q)

Γ(1 + k)Γ(k + p− q) tk−q−1 (5.20)

+
Γ(−q)Γ(p− q)

Γ
(
− 1

2 − q
) ∞∑

k=0

Γ
(

1
2 + k − q + q̄

)
Γ(2 + k + q̄)Γ(1 + k − q + q̄)Γ(1 + k + p− q + q̄)

tk−q+q̄.

To obtain the second line we made a shift of the original summation label as k → k+ q̄+1.

The first line in the expression above is finite in the limit p → p̄, q → q̄, while the second

one is “linearly” divergent.

Now we put everything together and simplify the factors in front of the sums

f(h)

h
= −

√
π Γ(1 + p+ q)

2 sin(πp) sin(πq)

∞∑
k=0

Γ
(

1
2 + k

)
Γ(1 + k)Γ(1 + k + p)Γ(2 + p+ k)

tk (5.21)

+ cos(πp)Γ(1 + p+ q)

p̄−q̄−2∑
k=0

Γ
(

1
2 + k − p

)
Γ(p− k)Γ(p− q − k − 1)

2π3/2Γ(1 + k)
tk−p

+
cos(πp)Γ(1 + p+ q)

2
√
π sinπ(p− q)

q̄∑
k=0

(−1)k+p̄−q̄Γ
(
− 1

2 +k−p+ p̄− q̄
)
Γ(1−k + p− p̄+ q̄)

Γ(k + p̄− q̄)Γ(1 + k + p̄− p+ q − q̄) tk−1−p+p̄−q̄

−
√
π cot(πp)Γ(1 + p+ q)

2 sinπ(p− q)
∞∑
k=0

Γ
(

1
2 + k − p+ p̄

)
Γ(1 + k + p̄)Γ(1 + k − p+ p̄)Γ(2 + k − p+ q + p̄)

tk−p+p̄

− cos(πq)Γ(1 + p+ q)

2
√
π sinπ(p− q)

q̄∑
k=0

(−1)k
Γ
(
− 1

2 + k − q
)
Γ(1− k + q)

Γ(1 + k)Γ(k + p− q) tk−q−1

+

√
π cot(πp)Γ(1 + p+ q)

2 sinπ(p− q)
∞∑
k=0

Γ
(

1
2 + k − q + q̄

)
Γ(2 + k + q̄)Γ(1 + k − q + q̄)Γ(1 + k + p− q + q̄)

tk−q+q̄.

The second line in this expression is finite (it comes from the first line of H2) and

we can therefore put there p = p̄, q = q̄. This gives the first contribution I1 to f(h)

corresponding to integer values of p, q

I1 = (−1)pΓ(1 + p+ q)

p−q−2∑
k=0

Γ
(

1
2 + k − p

)
Γ(p− k)Γ(p− q − k − 1)

2π3/2Γ(1 + k)
tk−p. (5.22)

Obviously, I1 contains inverse powers of t from t−p up to t−q−2.

– 22 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

The rest of (5.21) is divergent. To proceed, we introduce the following regularisation

p = p̄+
1

2
ε , q = q̄ − 1

2
ε . (5.23)

To take the limit, we need the formulae

sinπ(ε+m) = sin(πε)(−1)m, cotπ

(
± ε

2
+m

)
= ± cot

π

2
ε , (5.24)

valid for any integer m. The second contribution to f(h) comes therefore from finite sums

I2 = lim
ε→0

[
cos(πp)Γ(1+p+ q)

2
√
π sinπ(p− q)

q̄∑
k=0

(−1)k+p̄−q̄Γ
(
− 1

2 +k−p+p̄− q̄
)
Γ(1−k+p−p̄+ q̄)

Γ(k + p̄− q̄)Γ(1 +k + p̄− p+ q − q̄) tk−1−p+p̄−q̄

− cos(πq)Γ(1 + p+ q)

2
√
π sinπ(p− q)

q̄∑
k=0

(−1)k
Γ
(
− 1

2 + k − q
)
Γ(1− k + q)

Γ(1 + k)Γ(k + p− q) tk−q−1

]
. (5.25)

Substituting here the formulae (5.23) and taking the limit ε→ 0, we find

I2 = −Γ(1+ p+ q)

q∑
k=0

(−1)k+pΓ
(
− 1

2 + k − q
)
Γ(1− k + q)

2π3/2Γ(1 + k)Γ(k + p− q) t
k−q−1 (5.26)

×
[

log t+ ψ

(
− 1

2
+k− q

)
− ψ(1+k)− ψ(k+p− q)− ψ(1−k+q)

]
,

where after the computation we replaced p̄ → p and q̄ → q. Note that this term contains

inverse powers of t from t−q−1 up to t−1.
Finally, the third contribution comes from infinite sums

I3 = Γ(1 + p+ q) lim
ε→0

[
−

√
π

2 sin(πp) sin(πq)

∞∑
k=0

Γ
(

1
2 + k

)
Γ(1 + k)Γ(1 + k + p)Γ(2 + p+ k)

tk

−
√
π cot(πp)

2 sinπ(p− q)
∞∑
k=0

Γ
(

1
2 + k − p+ p̄

)
Γ(1+k + p̄)Γ(1+k−p+ p̄)Γ(2+k − p+ q + p̄)

tk−p+p̄

+

√
π cot(πp)

2 sinπ(p− q)
∞∑
k=0

Γ
(

1
2 + k − q + q̄

)
Γ(2+k+ q̄)Γ(1+k− q + q̄)Γ(1+k+p− q + q̄)

tk−q+q̄
]
.

The expression I3 delivers the most complicated contribution which upon taking the limit

and renaming p̄→ p and q̄ → q reads

I3 = −(log t)2
∞∑
k=0

(−1)p−qΓ
(

1
2 + k

)
Γ(1 + p+ q)

4π3/2Γ(1 + k)Γ(1 + k + p)Γ(2 + k + q)
tk (5.27)

− log t
∞∑
k=0

(−1)p−qΓ
(

1
2 + k

)
Γ(1 + p+ q)

2π3/2Γ(1 + k)Γ(1 + k + p)Γ(2 + k + q)
tk

×
[
ψ

(
1

2
+ k

)
− ψ(1 + k)− ψ(1 + k + p)− ψ(2 + k + q)

]
−
∞∑
k=0

(−1)p−qΓ
(

1
2 + k

)
Γ(1 + p+ q)

4π3/2Γ(1 + k)Γ(1 + k + p)Γ(2 + k + q)
tk

×
[(
ψ(1 + k) + ψ(1 + k + p) + ψ(2 + k + p)− ψ

(
1

2
+ k

))2

+ ψ(1)

(
1

2
+ k

)
− ψ(1)(1 + k)− ψ(1)(1 + k + p) + ψ(1)(2 + k + p)

]
.
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In this way we have found that the original integral is given by the sum of three terms

f(h) = h(I1 + I2 + I3) . (5.28)

In fact, the whole expression I3 can be written as

I3 =
d2

dε2

∞∑
k=0

(−1)p+q+1Γ
(

1
2 + k + ε

)
Γ(1 + p+ q)

4π3/2Γ(1 + k + ε)Γ(1 + k + p+ ε)Γ(2 + k + q + ε)
tk+ε

∣∣∣∣
ε=0

(5.29)

=
d2

dε2
tε(−1)p+q+1Γ

(
1
2 + ε

)
Γ(1 + p+ q)

4π3/2Γ(1 + ε)Γ(1 + ε+ p)Γ(2 + ε+ q)
2F3

({
1,

1

2
+ ε

}
; {1+ ε, 1+ ε+ p, 2 + ε+ q}; t

)∣∣∣∣
ε=0

.

6 Strong coupling expansion of the discontinuity

Here we show how to obtain an asymptotic expansion at large g starting from the exact

answer for the difference ∆Sp,q(g). To this end we have to analyse the expansion of I3

when t → ∞. The simplest way to proceed is to use the formula (5.29), where we keep ε

finite and send t→∞. The corresponding expansion of 2F3 is known to be

2F3

(
{a1, a2}; {b1, b2, b3}; t

)
= F1 + F2 + F3 , (6.1)

where

F1 =
Γ(b1)Γ(b2)Γ(b3)Γ(a2 − a1)

Γ(a2)Γ(b1 − a1)Γ(b2 − a1)Γ(b3 − a1)
(6.2)

× (−t)−a1 4F1

(
{a1, a1 − b1 + 1, a1 − b2 + 1, a1 − b3 + 1}; {a1 − a2 + 1}; 1

t

)
,

F2 =
Γ(b1)Γ(b2)Γ(b3)Γ(a1 − a2)

Γ(a1)Γ(b1 − a2)Γ(b2 − a2)Γ(b3 − a2)
(6.3)

× (−t)−a2 4F1

(
{a2, a2 − b1 + 1, a2 − b2 + 1, a2 − b3 + 1}; {a2 − a1 + 1}; 1

t

)
,

and F3 will be discussed later.

For the case at hand we identify

a1 = 1 , a2 =
1

2
+ ε , b1 = 1 + ε , b2 = 1 + ε+ p , b3 = 2 + ε+ q . (6.4)

We start with analysis of the contribution of F1 into I3, which we denote as I
(1)
3 . We have

I
(1)
3 =

d2

dε2

[
tε−1(−1)p+q

4π3/2

Γ(1 + p+ q)Γ
(
− 1

2 + ε
)
Γ
(

3
2 − ε

)
Γ(ε)Γ(1− ε)Γ(1− ε− p)Γ(−ε− q)Γ(p+ ε)Γ(1 + ε+ q)

×
∞∑
k=0

Γ(1− ε+ k)Γ(1− ε+ k − p)Γ(−ε+ k − q)
Γ
(

3
2 − ε+ k

) 1

tk

]∣∣∣∣
ε=0

. (6.5)

Further simplification gives

I
(1)
3 =

∞∑
k=0

d2

dε2

[
Γ(1+ p+ q)Γ(1− ε+k)Γ(1− ε+k − p)Γ(−ε+ k − q) sin2(πε) tan(πε)

4π7/2Γ
(

3
2 − ε+ k

) 1

tk+1−ε

]∣∣∣∣
ε=0

.
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Now it is important to realise that the expression in the brackets above has different

behaviour in the limit ε→ 0 depending on the value of the summation variable k. If k > p

then due to the factor sin2(πε) tan(πε) the expansion starts from ε3 and therefore it does

not produce any contribution at order ε2. This means that we can cut the infinite sum at

k = p− 1. Then we naturally spilt it into two parts

I
(1)
3 =

p−1∑
k=q+1

d2

dε2

[
Γ(1+p+ q)Γ(1− ε+k)Γ(1− ε+k − p)Γ(−ε+k − q) sin2(πε) tan(πε)

4π7/2Γ
(

3
2 − ε+ k

) 1

tk+1−ε

]∣∣∣∣
ε=0

+

q∑
k=0

d2

dε2

[
Γ(1+p+ q)Γ(1− ε+k)Γ(1− ε+k − p)Γ(−ε+k − q) sin2(πε) tan(πε)

4π7/2Γ
(

3
2 − ε+ k

) 1

tk+1−ε

]∣∣∣∣
ε=0

.

(6.6)

Then we make a replacement in both sums

Γ(1− ε+ k − p) sin(πε) =
π(−1)p+k

Γ(ε+ p− k)
, (6.7)

and in the second one we also replace

Γ(−ε+ k − q) sin(πε) =
π(−1)1+k+q

Γ(1 + ε+ q − k)
. (6.8)

This gives

I
(1)
3 =

p−1∑
k=q+1

d2

dε2

[
(−1)p+kΓ(1 + p+ q)Γ(1− ε+ k)Γ(−ε+ k − q) sin(πε) tan(πε)

4π5/2Γ
(

3
2 − ε+ k

)
Γ(ε+ p− k)

1

tk+1−ε

]∣∣∣∣
ε=0

+

q∑
k=0

d2

dε2

[
Γ(1 + p+ q)Γ(1− ε+ k) tan(πε)

4π3/2Γ
(

3
2 − ε+ k

)
Γ(ε+ p− k)Γ(1 + ε+ q − k)

1

tk+1−ε

]∣∣∣∣
ε=0

. (6.9)

In the first sum sin(πε) tan(πε) ∼ π2ε2 in the limit ε→ 0 which allows one to immediately

find the corresponding contribution. To proliferate a comparison with the finite contribu-

tions delivered by I1 and I2, it is convenient to implement in the first sum the change of the

summation variable k → −k+ p− 1, while in the second one k → −k+ q, correspondingly.

This gives

I
(1)
3 = −Γ(1 + p+ q)

p−q−2∑
k=0

(−1)kΓ(p− k)Γ(p− q − k − 1)

2
√
πΓ
(

1
2 − k + p

)
Γ(1 + k)

tk−p (6.10)

+

q∑
k=0

d2

dε2

[
Γ(1 + p+ q)Γ(1− ε− k + q) tan(πε)

4π3/2Γ
(

3
2 − ε− k + q

)
Γ(ε+ p− q + k)Γ(1 + ε+ k)

tk−q−1+ε

]∣∣∣∣
ε=0

.

Since
1

Γ
(

1
2 − k + p

) =
1

π
(−1)k+pΓ

(
1

2
+ k − p

)
, (6.11)

we observe that the first sum just becomes −I1, while differentiation over ε in the second

one leaves us with the following answer

I
(1)
3 = −I1 − Γ(1 + p+ q)

q∑
k=0

(−1)p+qΓ(1− k + q)

2
√
πΓ(1 + k)Γ(k + p− q)Γ

(
3
2 − k + q

) tk−q−1 (6.12)

×
[

log t− ψ(1 + k)− ψ(k + p− q)− ψ(1− k + q) + ψ

(
3

2
− k + q

)]
.
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Now taking into account eq. (6.11) as well as the fact that ψ
(

3
2 − k+ q

)
= ψ

(
− 1

2 + k− q
)
,

we see that the second sum is nothing else but −I2. Thus, we have found, that

I
(1)
3 = −I1 − I2 , (6.13)

that is in the strong coupling expansion the contribution of I
(1)
3 cancels out against the

sum I1 + I2.

Now we analyse the contribution of the terms F2, which we denote as I
(2)
3 . We have

I
(2)
3 =

i(−1)p+qΓ(1 + p+ q)

4π
√
tΓ
(

1
2 + p

)
Γ
(

3
2 + q

) 3F0

({
1

2
,

1

2
− p,−1

2
− q
}

; {0}, 1

t

)
d2

dε2
e−iπε

cos(πε)

∣∣∣∣
ε=0

= 0 .

(6.14)

Finally, the contribution F3 is given by the following formula

F3 =
Γ(b1)Γ(b2)Γ(b3)

2
√
πΓ(a1)Γ(a2)

t
ν
2

(
eiπν−2

√
t
∞∑
`=0

(−1)`
2−`c`

(
√
t)`

+ e2
√
t
∞∑
`=0

2−`c`

(
√
t)`

)
, (6.15)

where ν = a1 + a2 − b1 − b2 − b2 + 1
2 = −2− p− q − 2ε. Determination of the asymptotic

coefficients c` represents a rather non-trivial task which we undertake in appendix D. There

we show that the coefficients c` do not depend on ε and are given by the following explicit

formula

c` =
Γ(2 + `+ p+ q)3F2

({
− `, 1

2 + p, 3
2 + q

}
,
{

1− `
2 + p

2 + q
2 ,

3
2 − `

2 + p
2 + q

2

}
, 1
)

(−2)`Γ(`+ 1)Γ(2− `+ p+ q)
.

(6.16)

Hence we have the following contribution of F1 which we denote I
(3)
3 ,

I
(3)
3 =

d2

dε2
(−1)p+q+1Γ(1+p+q)

8π2t(
√
t)p+q

(
(−1)p+qe−2πiεe−2

√
t
∞∑
`=0

(−1)`
2−`c`

(
√
t)`

+e2
√
t
∞∑
`=0

2−`c`

(
√
t)`

)∣∣∣∣
ε=0

.

Differentiating over ε and taking the limit ε→ 0 leaves us with the following expression

I
(3)
3 =

Γ(1 + p+ q)

2t(
√
t)p+q

e−2
√
t
∞∑
k=0

(−1)`
2−`c`

(
√
t)`

. (6.17)

Note that the growing exponent e2
√
t does not enter the asymptotic expansion. Recalling

that t = h2/4 we arrive at the following strong coupling asymptotic expansion of the

integral (5.14)

f(h) = e−h
2p+q+1Γ(p+ q + 1)

hp+q+1

∞∑
`=0

(−1)`
c`
h`
. (6.18)

With this expression at hand we can now find the asymptotic expansion of ∆Sp,q. According

to eq. (5.13) we have

∆Sp,q(g) = −ig (p− q − 1)(p+ q)

q∑
k=0

p−k−2∑
m=0

(−1)m+1√π 23−k−m+q q! Γ(p+m− k − 1)

k!m! (q − k)! Γ(p−m− k − 1)Γ(3
2 + k − q)

×
∞∑
`=0

(−1)`c`

∞∑
n=1

hp+k−m−1
n

∂p+k−m

∂hp+k−mn

[
e−hn

h`+p+q+1
n

]
.

(6.19)
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Performing differentiations we get

∆Sp,q(g) = (6.20)

ig (p− q − 1)(p+ q)

q∑
k=0

p−k−2∑
m=0

(−1)p+k
√
π 23−k−m+q q! Γ(p+m− k − 1)

k!m! (q − k)! Γ(p−m− k − 1)Γ
(

3
2 + k − q

)
×
∞∑
`=0

(−1)`c`

p+q∑
s=q+m−k

Γ(p−m+ k + 1)Γ(1 + k + p+ `+ s−m)

Γ(1 + `+ p+ q)Γ(1 + s+ k −m− q)Γ(1 + p+ q − s)
∞∑
n=1

e−hn

h2+`+s
n

.

Due to the gamma function standing in the middle of the denominator in the second line

of the above formula, the sum over s can be extended down to zero. Next we introduce

a “loop” parameter L = ` + s + 3 and change the order of summation arranging the sum

over L to precede the one over `:

∆Sp,q(g) = (6.21)

ig (p− q − 1)(p+ q)

q∑
k=0

p−k−2∑
m=0

(−1)p+k
√
π 23−k−m+q q! Γ(p+m− k − 1)

k!m! (q − k)! Γ(p−m− k − 1)Γ
(

3
2 + k − q

)
×
[ p+q+2∑

L=3

L−3∑
`=0

(−1)`c` Γ(p−m+ k + 1)Γ(k + p+ L−m− 2)

Γ(1 + `+ p+ q)Γ(L− 2− `+ k −m− q)Γ(4 + p+ q − L+ `)

∞∑
n=1

e−hn

hL−1
n

+

∞∑
L=p+q+3

L−3∑
`=L−3−p−q

(−1)`c` Γ(p−m+ k + 1)Γ(k + p+ L−m− 2)

Γ(1+`+p+q)Γ(L−2−`+k−m−q)Γ(4+p+q−L+`)

∞∑
n=1

e−hn

hL−1
n

]
.

Here in the last line the lower integration bound L − 3 − p − q > 0 of the variable ` can

be extended down to zero without changing the answer because of the gamma function

Γ(4 + p+ q − L+ `). This allows one to combine two sums over L and obtain a formula

∆Sp,q(g) = (6.22)

ig (p− q − 1)(p+ q)

∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1

×
L−3∑
`=0

(−1)`c`
Γ(1 + `+ p+ q)Γ(4 + p+ q − L+ `)Γ(L− 2− `+ k −m− q)

×
q∑

k=0

p−k−2∑
m=0

(−1)p+k
√
π 23−k−m+q q! Γ(p+m− k − 1)

k!m! (q−k)! Γ(p−m−k−1)Γ
(

3
2 +k−q

)
Γ(p−m+k+1)Γ(k+p+L−m−2)

,

where we have taken into account that

∞∑
n=1

e−hn

hL−1
n

=
LiL−1(e−4πg)

(4πg)L−1
. (6.23)

In appendix D by using the explicit form (6.16) of the coefficients c` we bring the expression

for discontinuity ∆Sp,q(g) found above to the following form

∆Sp,q(g) = (4ig)(p− q − 1)(p+ q)

∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1
cL(p, q) , (6.24)
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where the coefficients cL(p, q) are given by

cL(p, q) =

L−3∑
k=0

Γ
(
p+ 1

2 + k
)
Γ
(
q + 3

2 + k
)

Γ
(
p+ 1

2

)
Γ
(
q + 3

2

)
Γ(k + 1)

(6.25)

×
k+p+q∑
n=0

(−1)n22n+3(n+ 1)√
π

Γ
(
p+ 1

2 + n
)
Γ
(
q + 3

2 + n
)

Γ(p+ q + 1 + k − n)Γ
(
n+ 3

2

)
Γ(2n+ 5− L)

.

In appendix D we also provide an alternative method to compute the discontinuity ∆Sp,q(g)

and find the same expression (D.37).

Note that not only the original perturbative coefficients (3.15), but also these new

perturbative coefficients of the non-perturbative sector are factorially growing with L.

This is absolutely not obvious from the above equation but it is ultimately related to the

fact that these coefficients were derived from the strong coupling expansion of the Laplace

integral (5.5) of the discontinuity Disc φ̂p,q(x) which has a singular behaviour at x = −1,

hence the asymptoticity of this expansion. As mentioned below (3.19), the discontinuity of

Disc φ̂p,q(x) is related to the non-entire part of the original Borel transform itself φ̂p,q(x).

This is also the reason why the transseries (4.25) constructed via the median resummation

is just a two-term transseries. Although neither the current expression for cL(p, q) nor

the one we will derive shortly, see equation (7.21), are particularly amenable to extract

analytically the asymptotic form valid for L� 1, we can nonetheless perform a numerical

study to obtain the asymptotic form

cL(p, q) ∼ (−1)L Γ(L− 2)

π (p− q − 1)(p+ q)

(
(4π)3 c

(3)
p,q

ζ(3)
+

(4π)5 c
(5)
p,q

ζ(5) (L− 3)(L− 4)
(6.26)

+
(4π)7 c

(7)
p,q

ζ(7) (L− 3)(L− 4)(L− 5)(L− 6)
+O(L−6)

)
where c

(n)
p,q are precisely the perturbative coefficients given in equation (3.15). Note that

only the perturbative coefficients with n odd appear in the asymptotic formula because the

even ones, being finite in number, give rise to a modified Borel transform which is entire

and cannot possibly be captured by the strong coupling coefficients of the discontinuity

analysed in this section. As a check we can compute the difference between the coefficients

obtained via (6.25) and the first term in the asymptotic expansion (6.26)

dL =

(
cL(p, q)× π (p− q − 1)(p+ q)

(−1)L Γ(L− 2)
− (4π)3 c

(3)
p,q

ζ(3)

)
× (L− 3)(L− 4) ∼ (4π)5 c

(5)
p,q

ζ(5)
+O(L−2)

and in figure 4 we plot dL as a function of L for p = 3 and q = 1. Using the perturbative

coefficients given in equation (3.15) one obtains (4π)5 c
(5)
3,1/ζ(5) = −8400 matching perfectly

with the predicted asymptotic expansion as seen in the figure.

7 Dispersion relation and the non-perturbative sector

Having computed the discontinuities of the modified Borel transform across the two Stokes

directions 0 and π, we can obtain the asymptotic expansion of the perturbative coefficients
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Figure 4. Plot of the value for dL as a function of L when p = 3 and q = 1. Asymptotically it

reaches the expected value (red line) (4π)5 c
(5)
3,1/ζ(5) = −8400.

c
(n)
p,q for n � 1, via a standard dispersion-like type of argument [58, 59]. The way to

proceed is to consider the Cauchy integral for the analytic continuation (4.21) of the purely

perturbative series cPp,q(g):

cPp,q(g) =
1

2πi

∮
dw

cPp,q(w)

w − g , (7.1)

where the contour is around the complex point g.

Making use of

1

w − g = −
∞∑
n=0

wng−n−1, (7.2)

valid for g →∞, we can read the perturbative coefficients c
(n)
p,q from the contour integral

c(n)
p,q = − 1

2πi

∮
dw cPp,q(w)wn−2

= − 1

2πi

∫ ∞
0

dwDisc0 c
P
p,q(w)wn−2 − 1

2πi

∫ −∞
0

dwDiscπ c
P
p,q(w)wn−2, (7.3)

where we pushed the contour of integration to infinity as depicted in figure 5, under that

assumption that the residue at infinity of cPp,q vanishes.

We know the discontinuities across the singular directions 0 and π from (4.22)–(4.23) so

c(n)
p,q =

1

2πi

∫ ∞
0

dw∆Sp,q(w)wn−2 +
1

2πi

∫ −∞
0

dw∆Sp,q(−w)wn−2.

To compute these two integral we make use of the perturbative expansion (6.24), and, by

analyzing loop order, L, by loop order we simply need to evaluate∫ ∞
0

dw
w LiL−1(e−4πw)

(4πw)L−1
wn−2, (7.4)

that, for n� 1, gives
ζ(n)Γ(n+ 1− L)

(4π)n
. (7.5)
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Figure 5. The Cauchy contour around the point g can be closed outward as a sum over Hankel

contours.

So, by putting everything together, we obtain the asymptotic expansion valid for n� 1

c(n)
p,q ∼

2
(
1− (−1)n

)
π

ζ(n)Γ(n− 2)

(4π)n
(p+ q)(p− q − 1)

×
(
c3(p, q) +

c4(p, q)

n− 3
+

c5(p, q)

(n− 3)(n− 4)
+O(n−3)

)
, (7.6)

where the first three coefficients are

c3(p, q) = 4(−1)(p−q),

c4(p, q) = 4(−1)(p−q) ×
(

2p(p− 1) +
1

2
(2q + 1)2

)
, (7.7)

c5(p, q) = 4(−1)(p−q) × 1

8

(
− 3 + 4p(p− 1) + 4q(q + 1)

)(
4p(p− 1) + (2q + 1)2

)
.

Note that the n even coefficients completely disappear from this analysis because, as ex-

plained before, the c
(n)
p,q with n even are non-vanishing only for a finite number of terms. The

large order behaviour of the perturbative coefficients captures precisely the lower order per-

turbative coefficients on top of the non-perturbative contributions in the transseries (4.25),

i.e. the coefficients for the strong coupling expansion of Φ̃NP
p,q (g). In figure 6 we show how

well, at large n, the perturbative coefficients c
(n)
p,q can be approximated by even their leading

asymptotic expansion

c(n)As
p,q =

2
(
1− (−1)n

)
π

ζ(n)Γ(n− 2)

(4π)n
(p+ q)(p− q − 1)c3(p, q) , (7.8)

and also how one could numerically extrapolate even the subleading corrections, c4(p, q),

c5(p, q), etc., shown in (7.6).

The formula (7.6) allows us to obtain an explicit formula for the polynomials cL(p, q)

by comparing the large n asymptotic expansion of the coefficients c
(n)
p,q with the right hand
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Figure 6. We plot r
(n)
As =

(
R(n)(2, 0) − 1

)
× (n − 3) ∼ 9

2 + O(n−1) which measures the deviation

from 1 of the ratio R(n)(p, q) (7.9) for the particular case p = 2, q = 0.

side of (7.6). Hence, we need to asymptotically expand formula (3.15) for large n. To this

end we consider the ratio between c
(n)
p,q and its leading asymptotic coefficient which for n

odd takes the form

R(n)(p, q) = c(n)
p,q

/
c(n)As
p,q =

c
(n)
p,q π(4π)n

4ζ(n)Γ(n− 2)(p+ q)(p− q − 1)c3(p, q)

∼ 1 +
c4(p, q)

c3(p, q)

1

(n− 3)
+
c5(p, q)

c3(p, q)

1

(n− 3)(n− 4)
+O(n−3) . (7.9)

In what follows it appears advantageous to use the change of variables n = 2(m+ 1) where

m is half-integer and replace q → q − 1. Then for R(n)(p, q − 1) we get

R(n)(p, q − 1) =
24mm

π
B(m+ 1− p,m+ p)B(m+ 1− q,m+ q) , (7.10)

where B(a, b) is the Euler beta integral

B(a, b) =

∫ 1

0
dv vb−1(1− v)a−1. (7.11)

We observe that in the formula (7.10) contribution of p and q completely factorises and

comes in a symmetric fashion. Therefore, our task now is to find an asymptotic expansion

of the Euler integral when m→∞. First we compute the integral by means of the saddle

point method. Consider

B ≡ B(m+ 1− p,m+ p) =

∫ 1

0
dv vm+p−1(1− v)m−p

=

∫ 1

0
dv vp−1(1− v)−pem log(v(1−v)) . (7.12)

For large m the dominant contribution to this integral comes from the critical point v = 1
2

for which the “action” is log
(
v(1 − v)

)
|v=1/2 = − log 4. This motivates to perform the

following change of integration variable

t = log(4)− log
(
v(1− v)

)
(7.13)
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which converts the integral to

B = 2−2m

∫ ∞
0

dt
e−mt

2
√
et − 1

[(
et/2 +

√
et − 1

)2p−1
+
(
et/2 −

√
et − 1

)2p−1
]
. (7.14)

Now using binomial expansions twice we rewrite the integrand as a double sum

B = 2−2m
p−1∑
s=0

s∑
r=0

(
2p− 1

2s

)(
s

r

)
(−1)r

∫ ∞
0

dt
e(−m+p−r−1/2)t

√
et − 1

. (7.15)

Evaluating this integral in the regime m � 1 and further performing one summation we

arrive at

B = −2−2m√π
p−1∑
r=0

(−1)p−r4r
(2p− 1)Γ(p+ r)

Γ(2r + 2)Γ(p− r) ×
Γ(m− r)

Γ
(
m+ 1

2 − r
) . (7.16)

The ratio of two gamma function has the known asymptotic expansion in the limit m→∞,

namely

Γ(m− r)
Γ
(
m+ 1

2 − r
) ∼ m−1/2

∞∑
l=0

(−1)l(1/2)l
B

(1/2)
l (−r)
l!

1

ml
, (7.17)

where B
(1/2)
l (−r) are the generalised Bernoulli polynomials also known as Norlund poly-

nomials, see e.g. [60].

Using this result we can obtain the asymptotic expansion of the Euler beta for m� 1:

B(m+ 1− p,m+ p) ∼ −2−2m

√
π

m
×
∞∑
l=0

1

ml
dl(p) , (7.18)

where

dl(p) = (−1)p+l
(2p− 1) (1/2)l

l!

p−1∑
r=0

(−1)r4rB
(1/2)
l (−r) Γ(p+ r)

Γ(2r + 2)Γ(p− r) . (7.19)

The function Rn(p, q−1) can be expanded for large n, using the variable n = 2(m+1),

via the convolution of the above coefficients

Rn(p, q − 1) ∼
∞∑
l=0

1

ml

( l∑
k=0

dk(p) dl−k(q)

)
. (7.20)

This is not quite the expansion we sought for, as shown in equation (7.9) we want to express

this ratio as

Rn(p, q − 1) ∼ 1 +
c4(p, q − 1)

c3(p, q − 1)

1

2m− 1
+
c5(p, q − 1)

c3(p, q − 1)

1

(2m− 1)(2m− 2)
+O(m−3) .

We can easily relate one expansion to the other via

cL(p, q) = −4 (−1)p+q
L−3∑
l=0

S
(l)
L−3 2l

( l∑
k=0

dk(p) dl−k(q + 1)

)
, (7.21)
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where S
(l)
L denotes the Stirling number of the first kind. This expression looks completely

different from the one previously obtained in equation (6.25), nonetheless one can check

numerically that the two expressions match perfectly. Even in this alternative derivation

the factorial growth with L of the coefficients cL(p, q) is not manifest.

As we will shortly see, these coefficients cL(p, q), polynomials in p and q, will give rise

to important non-perturbative contribution to the dressing phase (2.1).

8 Non-perturbative contributions to the dressing phase

We have shown in section 4, that the purely perturbative asymptotic power series expan-

sion (2.6), is not enough to reconstruct the coefficients of the BES dressing phase (4.15). We

need to replace the perturbative expansion by the transseries representation (4.25) whose

Borel-Ecalle resummation (4.29) matches precisely the non-perturbative result (4.15). In

this section we see the effects that our transseries expansion produces to the dressing phase.

8.1 Effects of the non-perturbative sector to the dressing phase

Our replacement from the perturbative power series (2.6) to the transseries (4.25) is not

without consequences. In [13] the authors showed that if we restrict the sum (2.6) to even

n, we obtain a strong coupling solution to the crossing symmetry equation (2.9). This

particular solution does not have the correct weak coupling limit and for this reason the

authors considered the analytic continuation of the series (2.6) by summing over all the

integers n. This amounts to adding to the dressing phase a solution to the homogeneous

crossing symmetry equation

iθ(xj , xk) + iθ(1/xj , xk) = 0 . (8.1)

The BES coefficients (4.15) proposed in [14] thus interpolates between the formal

power series expansion (2.6) at strong coupling and the correct gauge theory weak coupling

limit. The crucial point is that this integral representation for the BES coefficients is not

quite equivalent to the formal power series (2.6), but rather it is obtained via the Borel-

Ecalle resummation of the transseries (4.25). This means that the non-perturbative terms

we added must lead to additional contributions to the dressing phase, solutions to the

homogeneous crossing symmetry equation (8.1).

Let us compute this additional non-perturbative contributions to the dressing phase.

Since we know from [13] that the formal power series (2.6) solves the full crossing sym-

metry equation (2.9) we can just focus on the purely non-perturbative terms (6.24) of our

transseries ansatz (4.25). The non-perturbative contributions to the function χ(x1, x2),

given by equation (2.5) and written using p, q variables is

χNP(x1, x2) = s

∞∑
p=2

p−2∑
q=0

i∆Sp,q(g)

(p− q + 1)(p+ q)

1

xp−q−1
1 xp+q2

, (8.2)

where s is once again the transseries parameter discussed in section 4.2, i.e. s = −i/2 for

0 < Arg g < π/2 and s = +i/2 for −π/2 < Arg g < 0.
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We do not know how to perform this double sum (8.2) using the exact integral repre-

sentation (5.5) for ∆Sp,q(g), but we can easily compute it loop order by loop order using

the strong coupling expansion (6.24).

Using (6.24) we can rewrite the above equation in the form of the loop expansion

χNP(x1, x2) = −4 s
∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1
χ

(L)
NP(x1, x2) , (8.3)

with the definition

χ
(L)
NP(x1, x2) =

∞∑
p=2

p−2∑
q=0

cL(p, q)

xp−q−1
1 xp+q2

, (8.4)

where the coefficients cL(p, q) are given for example by (6.25) (see also the other equivalent

forms presented in equation (7.21) and appendix D). Note that the coupling constant, g,

only appears in front of the series (8.3). It is surprising that the Lth loop contribution to

χNP coming from all instantons sectors can be fully resummed giving rise to the exponen-

tially suppressed factor LiL−1(e−4πg). From (2.3) one could think that we have to expand

x1,2 as functions of g, but to do so one has to specify how the momenta of the scattered

particles scale with g and this give rise to many different regimes to consider, for instance,

BMN/spinning strings or “giant magnon”. Picking up a certain expansion of x1,2 identifies

the corresponding quasi-particle excitations and in this respect reflects the physics of the

problem, however the additional non-perturbative terms we predicted must still give rise

to solutions to the homogeneous crossing symmetry equation (8.1) which effectively means

that we can treat x±1,2 as independent of g for the purpose of this section.

From the explicit coefficients (6.25)–(7.7) it is a straightforward calculation to obtain

the first few

χ
(3)
NP(x1, x2) =

4x2

(1 + x1x2)(x2
2 − 1)

,

χ
(4)
NP(x1, x2) =

2x2(1− 6x1x2 + 14x2
2 + x2

1x
2
2 + 36x1x

3
2 + x4

2 + 6x2
1x

4
2 + 2x1x

5
2 + 9x2

1x
6
2)

(1 + x1x2)3(x2
2 − 1)3

,

χ
(5)
NP(x1, x2) =

x2P (x1, x2)

(1 + x1x2)5(x2
2 − 1)5

, (8.5)

where P (x1, x2) is a certain polynomial of degree 4 and 12 respectively in x1 and x2. The

reader can easily develop higher order contributions to χ
(L)
NP from the formula (8.4).

At this point it is simply a matter of calculation to plug these non-perturbative con-

tributions χ
(L)
NP into the dressing phase (2.4) and show that these new terms are solutions

to the homogeneous crossing symmetry equations (8.1). Note that the full series (8.3) is a

solution to the homogenous equation because every order in the g−1 expansion solves (8.1):

i.e. the coefficient χ
(L)
NP(x1, x2) of the g−L+1 term is already on its own a solution to the

crossing symmetry equation coming from the resummation of infinitely many instanton

sectors.

Note that the first non-perturbative contribution is given by χ
(3)
NP, which corresponds

to a three-loop perturbative correction g−2, on top of a non-perturbative background.
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As mentioned in the Introduction, the vanishing of the tree level, one- and two-loops

contributions might be explained by a protection mechanism based on vanishing of the

zero mode factors, forcing perturbation theory on top of these mysterious non-perturbative

saddles to start from three-loops .

We claim that the complete non-perturbative correction (8.2) to the dressing phase,

since it is a formal sum (8.3) of homogeneous solutions, gives also rise to a solution to the

homogeneous crossing symmetry equation (8.1), very likely not of the simple rational form

in x1, x2 as the coefficients χ
(L)
NP just encountered.

8.2 Generating solutions to the homogenous crossing symmetry equation

From the large order behaviour (7.6) of the perturbative coefficients (2.8) we can con-

struct a generating functional to obtain solutions to the homogeneous crossing symmetry

equations (8.1). In [13] the authors noticed that the perturbative coefficient c
(n)
p,q , with n

odd, n > 1, generates a contribution to the dressing phase that solves (8.1). Similarly,

for n � 1, we can consider the asymptotic expansion (7.6) and, as we have just seen, for

each loop order L, the perturbative coefficient cL(p, q) yields once again solutions to the

homogeneous crossing symmetry equation.

Thus we can consider, similarly to (2.5), the expression

∞∑
p=2

p−2∑
q=0

c
(2z+1)
p,q

(p− q − 1)(p+ q)

1

xp−q−1
1 xp+q2

. (8.6)

When n = 2z + 1 is an odd integer, this function reproduces the known perturbative

contributions to the dressing phase. Viceversa, when z � 1, we know from (7.6) that the

perturbative coefficients c
(2z+1)
p,q can be written as an asymptotic expansion in z−1 in terms

of the non-perturbative sector’s coefficients cL(p, q) (7.21). Thanks to the analysis of the

previous section, each one of these terms will produce a solution to (8.1) and equation (8.6)

will basically sum up all of these contributions and it will still solve the homogeneous

problem since it is a linear problem. Hence equation (8.6) is somehow interpolating between

the perturbative and the non-perturbative solutions to (8.1).

Discarding from equation (8.6) an overall factor which is only z-dependent, we consider

the generating functional for homogenous solutions to the crossing symmetry equation (8.1)

given by

Ξ(z;x1, x2) =

∞∑
p=2

p−2∑
q=0

(−1)p+q

xp−q−1
1 xp+q2

(z − 1/2)p(z + 1/2)−p(z + 1/2)q(z − 1/2)−q . (8.7)

The sum over q can be easily performed giving

Ξ(z;x1, x2) =

∞∑
p=2

(I1 + I2) , (8.8)

with

I1 = (−1)p(z − 1/2)p(z + 1/2)−p
2F1

(
1, 1

2 + z; 3
2 − z

∣∣ x1
x2

)
xp1x

p−1
2

, (8.9)
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and

I2 =
[
(z − 1/2)p(z + 1/2)−p

]2 2F1

(
1, p− 1

2 + z; p+ 1
2 − z

∣∣ x1
x2

)
x2p−1

2

. (8.10)

Note that this analysis is very similar to the one carried out in [21], particularly the

discussion in their appendix C. However, in [21] the authors considered only the magnon

regime for which x1 and x2 take a rather special form at strong coupling, thus allowing

to simplify equation (8.7). Furthermore, since the authors were interested in extracting

the leading contribution they focused only on the case where z is an even integer. In the

present discussion we do not make any assumption on x1 and x2 and we are interested

in the full series (8.7) and not just in its leading behaviour; this complicates the story

considerably.

For I1 the sum over p is straightforward

S1 =
∞∑
p=2

I1 =
(1 + 2z) 2F1

(
1, 3

2 + z; 5
2 − z

∣∣ 1
x1x2

)
(2z − 3)x1x2

2F1

(
1, 1

2 + z; 3
2 − z

∣∣ x1
x2

)
x2

. (8.11)

The first term in S1 is obviously symmetric in x1 ↔ x2, while for z ∈ N one can easily

show using the inversion formula for the hypergeometric function8 that also the second

fraction is symmetric. This means that, for z ∈ N, the contribution of S1 to the dressing

phase (2.4) is actually zero.

The second contribution to Ξ comes from

S2 =

∞∑
p=2

I2 =

∞∑
p=2

[
(z − 1/2)p(z + 1/2)−p

]2 2F1

(
1, p− 1

2 + z; p+ 1
2 − z

∣∣ x1
x2

)
x2p−1

2

. (8.12)

This sum is trickier than S1 because the index of summation p appears in the parameters

of the hypergeometric function. We notice that, for z ∈ N, the difference between the two

parameters c and b of the hypergeometric is p+ 1/2− z− (p− 1/2 + z) = 2z− 1 ∈ N. This

allows us to use the reduction formula, see e.g. [56],

2F1

(
1, p− 1

2
+ z; p+

1

2
− z

∣∣∣∣ x1

x2

)
=

2z−1∑
k=0

(
2z − 1

k

)
k!

(p− z + 1/2)k

(
x1

x2 − x1

)k x2

x2 − x1
.

The sum over p can be now performed

S2 =
[(1 + 2z) Γ(3/2− z)]2

4x2
2(x2 − x1)

(8.13)

×
2z−1∑
k=0

(
x1

x2 − x1

)k Γ(2z)

Γ(2z − k)
3F̃2

(
1, z +

3

2
, z +

3

2
;

5

2
− z, 5

2
+ k − z

∣∣∣∣ 1

x2
2

)
,

where 3F̃2 denotes the generalized hypergeometric function regularized.

For z ∈ N, our generating functional Ξ(z;x1, x2) produces only rational functions of

x1, x2. In particular, using the explicit formulas (8.11)–(8.13), we can easily check that

8We simply used equation (15.8.2) of [61] for the case at hand.
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Ξ(1;x1, x2) coincides precisely (modulo an overall numerical factor) with the three world

sheet loops contribution χ(3)(x1, x2) presented in equation (5.6) of [13].

Similarly, from our studies of large order behaviour (7.6), we expect the following

behaviour of the generating functional for z � 1

Ξ(z;x1, x2) ∼ χ(3)
NP(x1, x2) +

χ
(4)
NP(x1, x2)

(2z − 2)
+

χ
(5)
NP(x1, x2)

(2z − 2)(2z − 3)
+O(z−3) , (8.14)

where the rational function χ
(L)
NP(x1, x2) are precisely the non-perturbative contributions to

the dressing phase (8.5) previously computed.

It would be interesting to obtain an analytic expression for Ξ(z;x1, x2) for arbitrary

values of z and show that it solves the homogenous crossing symmetry equation.
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A Derivation of the discontinuity of Ω

To obtain the discontinuity of Ω, cf. (3.17), we first apply the reduction technique [56]

which allows one to reduce our particular 4F3 to a multiple derivative of 2F1 with respect

to the variable z by means of the following formula

Ω =

p−2∑
k=0

q∑
m=0

(
p− 2

k

)(
q

m

)
1

(5/2)k(3/2)m
zm

dm

dzm
zk

dk

dzk
f (A.1)

=

p−2∑
k=0

q∑
m=0

m∑
s=0

(
p− 2

k

)(
q

m

)(
m

s

)
1

(5/2)k(3/2)m

Γ(k + 1)

Γ(1−m+ k + s)
zk+sd

k+sf

dzk+s
,

where we have introduced a concise notation

f(z) := 2F1

(
3

2
− p, 1

2
− q, 2, z

)
. (A.2)

First the sum over m can be straightforwardly taken leaving behind

Ω =

p−2∑
k=0

q∑
s=0

3× 22(k+s)Γ(−1 + p)Γ(1 + q) 2F1(−k, s− q, 3/2 + s, 1)

(3 + 2k)Γ(2 + 2k)Γ(p− k − 1)Γ(1 + q − s)Γ(2 + 2s)
zk+sd

k+sf

dzk+s
.

– 37 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

And further summation gives

Ω =
3π

8

Γ(p− 1)

Γ(q + 3
2)

(A.3)

×
p+q−2∑
`=0

3F̃2

({
3
2 + `, 2 + `− p− q,−q

}
,
{

1 + `− q, 5
2 + `− q

}
, 1
)

Γ(p+ q − `− 1)
z`
d`f

dz`
,

where 3F̃2 stands for the regularised hypergeometric function, which is given in fact by the

finite sum

3F̃2

({
3
2 + `, 2 + `− p− q,−q

}
,
{

1 + `− q, 5
2 + `− q

}
, 1
)

Γ(p+ q − `− 1)
= (A.4)

q∑
r=0

Γ
(

3
2 + `+ r

)
q!

Γ
(

3
2 + `

)
r!(q − r)!

1

Γ(1 + `− q + r)Γ
(

5
2 + `− q + r

)
Γ(p+ q − 1− `− r) .

The function f has a branch cut on the interval [1,∞) and the corresponding discon-

tinuity is known to be

Disc f(z) = 2πi
(z − 1)p+q 2F1

(
1
2 + p, 3

2 + q, p+ q + 1, 1− z
)

Γ
(

3
2 − p

)
Γ
(

1
2 − q

)
Γ(1 + p+ q)

. (A.5)

Using the series representation for 2F1 we find from this formula

z`
d` Disc(f)

dz`
= −8i

π

∞∑
n=0

(−1)n+p+qz`(z − 1)n+p+q−`Γ
(

1
2 + n+ p

)
Γ
(

3
2 + n+ q

)
(2p− 1)(2q + 1)Γ(n+ 1)Γ(p+ q + n+ 1− `) . (A.6)

Plugging everything together we get

Disc(Ω) = −3i
Γ(p− 1)

Γ
(
q + 3

2

) ∞∑
n=0

p+q−2∑
`=0

q∑
r=0

(−1)n+p+qz`(z − 1)n+p+q−`Γ
(

1
2 + n+ p

)
Γ
(

3
2 + n+ q

)
(2p− 1)(2q + 1)Γ(n+ 1)Γ(p+ q + n+ 1− `)

× Γ
(

3
2 + `+ r

)
q!

Γ
(

3
2 + `

)
r!(q − r)!

1

Γ(1 + `− q + r)Γ
(

5
2 + `− q + r

)
Γ(p+ q −1− `− r) .

(A.7)

Because of Γ(1 + ` − q + r) in the denominator, the sum over ` can be restricted to run

from q − r to p + q − 2. We therefore make a change of variable ` = q − r + s, so that s

runs from 0 to p+ r − 2. Then we get

Disc(Ω) = −3i

∞∑
n=0

(−1)n+p+qΓ(p− 1)Γ
(

3
2 + n+ q

)
Γ
(

1
2 + n+ p

)
Γ(1 + n)Γ

(
q + 3

2

)
(2p− 1)(2q + 1)

q∑
r=0

q!

r!(q − r)!

×
p−2+r∑
s=0

Γ
(

3
2 + q + s

)
(z − 1)r−s+n+pzq−r+s

Γ(1 + s)Γ
(

5
2 + s

)
Γ(p− 1− s)Γ

(
3
2 + q − r + s

)
Γ(1 + r − s+ n+ p)

.

(A.8)
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Here in the denominator of the last sum the term Γ(p− 1− s) cuts the summation range

for s at p− 2. Therefore, we can change the order of summation in r and s and write

Disc(Ω) = −
∞∑
n=0

3i(−1)n+p+qΓ(p− 1)

Γ
(
q + 3

2

)
(2p− 1)(2q + 1)

p−2∑
s=0

q! Γ
(

3
2 + q + s

)
Γ
(

3
2 + n+ q

)
Γ
(

1
2 + n+ p

)
Γ(1 + n)Γ(1 + s)Γ

(
5
2 + s

)
Γ(p− 1− s)

×
q∑
r=0

(z − 1)r−s+n+pzq−r+s

r!(q − r)!Γ
(

3
2 + q − r + s

)
Γ(1 + r − s+ n+ p)

. (A.9)

The sum over r yields

R ≡
q∑
r=0

(z − 1)r−s+n+pzq−r+s

r!(q − r)!Γ
(

3
2 + q − r + s

)
Γ(1 + r − s+ n+ p)

=
(z − 1)n+p−szq+s 2F1

(
− q,−1

2 − q − s, 1 + n+ p− s, z−1
z

)
Γ(1 + q)Γ(1 + n+ p− s)Γ

(
3
2 + q + s

) . (A.10)

Next with the help of the well-known transformation formula

2F1(a, b, c; z) = (1− z)−a 2F1

(
a, c− b, c; z

z − 1

)
(A.11)

we can write

2F1

(
−q,−1

2
−q−s, 1+n+p−s, z − 1

z

)
= z−q 2F1

(
−q, 3

2
+n+p+q, 1+n+p−s, 1−z

)
,

so that

R =
(z − 1)n+p−szs 2F1

(
− q, 3

2 + n+ p+ q, 1 + n+ p− s, 1− z
)

Γ(1 + q)Γ(1 + n+ p− s)Γ
(

3
2 + q + s

) . (A.12)

Next, the following identity holds

(z − 1)n+p−szs 2F1

(
− q, 3

2
+ n+ p+ q, 1 + n+ p− s, 1− z

)
=

(−1)n+p+q−sΓ(1 + n+ p− s)
Γ(1 + n+ p+ q − s)

1√
z

dq

dzq
[
(1− z)q+n+p−sz

1
2

+q+s
]
. (A.13)

Hence, we get

Disc(Ω) = − 3i√
z

dq

dzq
Γ(p− 1)

Γ
(
q + 3

2

)
(2p− 1)(2q + 1)

∞∑
n=0

Γ
(

1
2 + n+ p

)
Γ
(

3
2 + n+ q

)
Γ(1 + n)

×
p−2∑
s=0

(−1)s (1− z)q+n+p−sz
1
2

+q+s

Γ(1 + s)Γ
(

5
2 + s

)
Γ(p− 1− s)Γ(1 + n+ p+ q − s) . (A.14)

Further, summing over s results into

S =

p−2∑
s=0

(−1)s(1− z)q+n+p−sz
1
2

+q+s

Γ(1 + s)Γ
(

5
2 + s

)
Γ(p− 1− s)Γ(1 + n+ p+ q − s)

=
4

3
√
π

(1− z)n+p+qz
1
2

+q
2F1

(
2− p,−n− p− q, 5

2 ,
z
z−1

)
Γ(p− 1)Γ(1 + n+ p+ q)

(A.15)

=
4

3
√
π

(1− z)n+q+2z
1
2

+q
2F1

(
2− p, 5

2 + n+ p+ q, 5
2 , z
)

Γ(p− 1)Γ(1 + n+ p+ q)
,
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where to obtain the last expression we again used the transformation formula (A.11). Now,

taking into account that

(1− z)n+q+2z
1
2

+q
2F1

(
2− p, 5

2
+ n+ p+ q,

5

2
, z

)
=

3
√
πzq−1

4Γ
(

1
2 + p

) dp−2

dzp−2

[
zp−

1
2 (1− z)n+p+q

]
,

the expression for S acquires the form

S =
zq−1

Γ
(

1
2 + p

)
Γ(p− 1)Γ(1 + n+ p+ q)

dp−2

dzp−2

[
zp−

1
2 (1− z)n+p+q

]
. (A.16)

Thus, for the discontinuity we have

Disc(Ω) = (A.17)

− 3i√
z

dq

dzq
zq−1 d

p−2

dzp−2
zp−

1
2 (1− z)p+q

× 1

(2p− 1)(2q + 1)(p+ q)!

∞∑
n=0

Γ
(

3
2 + q + n

)
Γ
(
q + 3

2

) Γ
(

1
2 + p+ n

)
Γ
(

1
2 + p

) Γ(1 + p+ q)

Γ(1 + p+ q + n)

(1− z)n

n!
.

Summing up we finally get the desired formula (3.18).

B From the Borel image φ̂p,q to its representation Φ̂p,q

B.1 First proof

The main ingredient of the formula (3.14) is its non-polynomial part represented by the

hypergeometric function Ω(z), cf. (3.17), where we have introduced a variable z = x2. To

proceed, we will use representation (A.3), where we analytically continue the function f in

the complex plane for the values |Arg(−z)| < π. The corresponding formula is well known

and reads

f(z) =
i

Γ
(

1
2−q

)[(−1)q+1zq−
1
2

Γ
(
p+ 1

2

) ∞∑
n=0

(
3
2−p

)
n+p−q−1

(
1
2−p

)
n+p−q−1

n!(n+ p− q − 1)!
z−n

(
log(−z) + h(p, q, n)

)
+ (−1)pzp−

3
2

p−q−2∑
n=0

(
3
2 − p

)
n
Γ(p− q − 1− n)

n!Γ
(

1
2 + p− n

) z−n

]
, (B.1)

where

h(p, q, n) = ψ(p− q + n) + ψ(n+ 1)− ψ
(

1

2
− q + n

)
− ψ

(
3

2
+ q − n

)
. (B.2)

Obviously, the function f(z) has a cut on the real axis. Taking into account that p and q

are positive integers it is elementary to find the real part for f(z) for z positive. Using the

fact that log(−z) = log |z|+ iπ, we find that

< f(z) =
(−1)p+q

Γ
(

3
2 − p

)
Γ
(

1
2 − q

) ∞∑
n=0

Γ
(

1
2 + n− q

)
Γ
(
− 1

2 + n− q
)

n! (n+ p− q − 1)!
zq−n−

1
2 , z > 0 . (B.3)

– 40 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

As a next step we compute

z`
d`(< f)

dz`
= π

(−1)p

Γ
(

3
2 − p

)
Γ
(

1
2 − q

) ∞∑
n=0

(−1)nΓ
(
n− q − 1

2

)
n! Γ(n+ p− q)Γ

(
1
2 − `− n+ q

)zq−n− 1
2 . (B.4)

Substituting this result into the real part of (A.3) and replacing the regularised hypergeo-

metric function via its normal counterpart, we obtain

<Ω =
(−1)p

Γ
(

3
2 − p

)
Γ
(

1
2 − q

) ∞∑
n=0

(−1)nΓ
(
n− q − 1

2

)
n! Γ(n+ p− q) S(n) zq−n−

1
2 ,

where we need to compute the following sum

S(n) = κ
p+q−2∑
`=0

3F2

({
3
2 + `, 2 + `− p− q,−q

}
,
{

1 + `− q, 5
2 + `− q

}
, 1
)

Γ(1 + `− q)Γ
(

5
2 + `− q

)
Γ
(

1
2 − `− n+ q

)
Γ(p+ q − 1− `) , (B.5)

where the coefficient κ is chosen for convenience to be

κ =
3π2

8

Γ(p− 1)

Γ
(
q + 3

2

) . (B.6)

Here for the hypergeometric function we can substitute its definition

3F2

({
3

2
+ `, 2 + `− p− q,−q

}
,

{
1 + `− q, 5

2
+ `− q

}
, 1

)
= (B.7)

q∑
r=0

(−1)r

r!

Γ(r−q)
Γ(−q)

Γ
(

3
2 +`+r

)
Γ
(

3
2 + `

) Γ(1 + `− q)
Γ(1+`−q+r)

Γ
(

5
2 + `− q

)
Γ
(

5
2 +`−q+r

) Γ(p+ q − 1− `)
Γ(p+q−1−`−r) .

After the change of order of summation eq. (B.5) acquires the form

S(n) = κ
q∑
r=0

(−1)r
Γ(r − q)
r!Γ(−q) (B.8)

×
p+q−2−r∑
`=q−r

Γ
(

3
2 + `+ r

)
Γ
(

3
2 +`

)
Γ
(

1
2−`−n+q

)
Γ(1+`−q+r)Γ

(
5
2 +`−q+r

)
Γ(p+q−1−`−r) ,

where the restrictions on the summation variable ` are clear from the arguments of the

Γ-functions entering the denominators of the second sum. In the second sum we change

variable `→ ` = q − r + s, summing now over s we obtain

S(n) =
κ
π

(−1)n
p−2∑
s=0

(−1)sΓ
(

3
2 + q + s

)
s!Γ
(

5
2 + s

)
Γ(p− 1− s)

q∑
r=0

Γ
(

1
2 + n+ s− r

)
Γ
(

3
2 + q + s− r

) q! (−1)r

r!(q − r)! .

The internal sum is given by

q∑
r=0

Γ
(

1
2 + n+ s− r

)
Γ
(

3
2 + q + s− r

) q! (−1)r

r!(q − r)! =
Γ
(

1
2 + n+ s

)
Γ
(

3
2 + q + s

) Γ
(

1
2 − n− s

)
Γ
(

1
2 + q − n− s

) Γ(2q + 1− n)

Γ(q + 1− n)
.

Finally, to perform the last sum over r we have to carefully distinguish two cases: q 6= 0

and q = 0. We treat these cases in turn.
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1. Case q 6= 0. We have

S(n)=
3π2

8

1

Γ( 1
2 +p)Γ( 3

2 +q)



Γ(p+q−n)Γ(1+2q−n)

Γ( 1
2 +q−n)Γ(1+q−n)Γ(2+q−n)

, 06n6q ;

0 , q+16n6p+q−1 ;

(−1)p+q
Γ(n−1−q)Γ(n−q)

Γ(n−2q)Γ(1+n−p−q)Γ( 1
2−n+q)

, n>p+q .

(B.9)

Now we are ready to compute the real part of Ω

<Ω =
3

2

(−1)q

(1− 2p)(1 + 2q)
(B.10)

×
[
z−

1
2

q∑
n=0

(−1)nΓ
(
n− q − 1

2

)
n! Γ(n+ p− q)

Γ(p+ q − n)Γ(1 + 2q − n)

Γ
(

1
2 + q − n

)
Γ(1 + q − n)Γ(2 + q − n)

zq−n

+ (−1)p+qz−
1
2

∞∑
n=p+q

(−1)nΓ
(
n−q− 1

2

)
n! Γ(n+p−q)

Γ(n− 1− q)Γ(n− q)
Γ(n−2q)Γ(1+n−p−q)Γ

(
1
2−n+q

) zq−n] .
Changing the summation indices appropriately, we find the final answer

<Ω(z) = (B.11)

1

(2p− 1)(2q + 1)

[
3 z−

1
2 4F3

(
{1− p, p,−q, 1 + q},

{
1

2
,

3

2
, 2

}
, z

)
−z− 1

2−p
3×23−4p(−1)p+qΓ(2p−2)

Γ(p−q)Γ(p+q+1)
4F3

({
p−1, p− 1

2
, p, p+

1

2

}
, {2p, p−q, p+q+1}; 1

z

)]
.

Now we recall that function < φ̂p,q reads as

< φ̂p,q(x) =
4

3
(p− q − 1)(p+ q)x2 (B.12)

×
[
3 4F3

(
{1− p, p,−q, 1 + q},

{
1

2
,

3

2
, 2

}
, x2

)
− (2p− 1)(2q + 1)x<Ω(x2)

]
.

Substituting here (B.11) we find that the polynomial part cancels out completely and

we are left with the desired result (3.22).

2. Case q = 0. In this situation we have

Sq=0(n) =
3π2

8

1

Γ
(

1
2 + p

)
Γ
(

3
2

)


Γ(p− n)

Γ
(

1
2 − n

)
Γ(2− n)

, n = 0, 1 ;

0 , 2 6 n 6 p− 1 ;

(−1)p
Γ(n− 1)

Γ(1 + n− p)Γ
(

1
2 − n

) , n > p .

(B.13)

We therefore find

<Ω =
3

2

1

1− 2p

[
z−

1
2

1∑
n=0

(−1)nΓ
(
n− 1

2

)
n! Γ(n+ p)

Γ(p− n)

Γ
(

1
2 − n

)
Γ(2− n)

z−n

+ (−1)pz−
1
2

∞∑
n=p

(−1)nΓ
(
n− 1

2

)
n! Γ(n+ p)

Γ(n− 1)

Γ(1 + n− p)Γ
(

1
2 − n

) z−n] ,
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which gives

<Ω =
1

2p− 1

[
3z−

1
2 − 3

4p(p− 1)
z−

3
2 (B.14)

− z− 1
2−p

3×23−4p(−1)pΓ(2p−2)

Γ(p)Γ(p+ 1)
3F2

({
p−1, p− 1

2
, p+

1

2

}
, {2p, p+1}; 1

z

)]
.

Then we specify (B.12) for q = 0 and get

< φ̂p,q(x) = (B.15)

4

3
p(p− 1)x2

×
[

3− x
[
3x−1 − 3

4p(p− 1)
x−3

− x−1−2p 3×23−4p(−1)pΓ(2p− 2)

Γ(p)Γ(p+ 1)
3F2

({
p− 1, p− 1

2
, p+

1

2

}
, {2p, p+ 1}; 1

x2

)]]
,

which finally boils down to

< φ̂p,q(x) = 1 + (−1)p25−4pp(p− 1)
Γ(2p− 2)

Γ(p)Γ(p+ 1)
(B.16)

× x2−2p
3F2

({
p− 1, p− 1

2
, p+

1

2

}
, {2p, p+ 1}; 1

x2

)
.

Thus, we have proved that in all the cases < φ̂p,q is equivalent to eq. (3.21).

B.2 Second proof

Another approach is based on the Mellin-Barnes integral representation [61] for the hyper-

geometric function (3.17):

∏4
k=1 Γ(ak)∏3
k=1 Γ(bk)

4F3(a,b, z) =
1

2πi

i∞∫
−i∞

∏4
i=1 Γ(ai + s)∏3
i=1 Γ(bi + s)

Γ(−s)(−z)sds , (B.17)

where the integration contour separates the poles of Γ(ak + s), k = 1, . . . , 4, from those of

Γ(−s). The right-hand side of (B.17) provides the analytic continuation of the left-hand

side from the open unit disk to the sector |Arg(1 − z)| < π. In our case parameters are:

b1 = 3
2 , b2 = 2, b3 = 5

2 and ai+1 = ai + mi, i = 1, 2, 3, with a1 = 3
2 − p, m1 = p − q − 1,

m2 = 2q + 1, m3 = p − q − 1. Since all mi ∈ N, the function of integration in (B.17) has

the following poles:

• first order poles s = −a1 − k, k = 0, 1, 2, . . . ,m1 − 1;

• second order poles s = −a2 − k, k = 0, 1, 2, . . . ,m2 − 1;

• third order poles s = −a3 − k, k = 0, 1, 2, . . . ,m3 − 1;

• fourth order poles s = −a4 − k, k = 0, 1, 2, . . . ,∞.
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The method is thus build on the further calculation of the residues of the integrand at

each pole. The full expression for the residues includes a huge amount of summands.

Therefore, we present only the needed real part which comes from the terms of the form

(−z)1/2+n log(−z), n ∈ N.

The 1st order poles. In this case the residue is given by

Res1 = (−1)k(−z)−
3
2

+p−kΓ
(

3
2 + k − p

)
Γ(2p− k − 1)Γ(p− q − 1− k)Γ(p+ q − k)

k!Γ(p− k)Γ
(
p− k + 1

2

)
Γ(p− k + 1)

(B.18)

and is purely imaginary. Thus, <Res1 = 0.

The 2nd order poles. At the k-th pole, 0 6 k 6 2q, we have the following expression

for the real part of the residue:

<Res2 = (iπ)(−1)p−q+1(−z)−
1
2
−k+q Γ

(
1
2 + k − q

)
Γ(p+ q − k)Γ(2q − k + 1)

k!(p−q+k−1)!Γ(q−k+1)Γ
(

3
2 +q−k

)
Γ(q−k+2)

.

(B.19)

Note, that the residue is non-zero only for 0 6 k 6 q. After changing factorials by Gamma

functions, transforming k → q − s, 0 6 s 6 q, and using Γ(1 − z) = π/
(
Γ(z) sin(πz)

)
,

one gets

<Res2 = 2(−1)p−q+1πz−
1
2

(1− p)s(p)s(−q)s(1 + q)s
(1/2)s(3/2)s(2)s

zs

Γ(1 + s)
. (B.20)

Summing over all the second order poles (0 6 s 6 q), we arrive at

<Res2 = 2(−1)p−q+1πz−
1
2 4F3

(
{1− p, p,−q, 1 + q},

{
1

2
,

3

2
, 2

}
, z

)
. (B.21)

Putting all the coefficients from (B.17) and (3.14), one gets the polynomial part in < φ̂p,q(x)

with a minus sign. This means that the first term in (3.14) is cancelled by this residue

term.

The 3rd order poles. Here 0 6 k 6 p− q− 2 and the the real part of the residue at the

k-th pole is given by

<Res3 =
(iπ)(−1)p+q−1(−z)−

3
2
−k−q

Γ(−k − q)Γ(1− k − q)
Γ(−1− k + p− q)Γ

(
3
2 + k + q

)
k!(k + p+ q)!(1 + k + 2q)!Γ

(
1
2 − k − q

) (B.22)

×
(

log(z) + ψ(1 + k)− ψ(−k − q)− ψ
(

1

2
− k − q

)
− ψ(1− k − q)

+ ψ(−1− k + p− q)− ψ
(

3

2
+ k + q

)
+ ψ(1 + k + p+ q) + ψ(2 + k + 2q)

)
.

Note that for 0 6 k 6 p − q − 2 the above expression goes to zero thanks to the term

1/
(
Γ(−k − q)Γ(1− k − q)

)
that behaves as 1/∞2, leading to <Res3 = 0.
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The 4th order poles. In this case the expression for the real part of the residue <Res4

is huge. Nevertheless, again thanks to the Γ(1−k−p)Γ(2−k−p) factor in the denominator

most of the terms vanish. The rest is given by

<Res4 = (iπ)(−z)−
1
2
−k−pΓ

(
1
2 + k + p

)
Γ
(

3
2 − k − p

) 1

2k!(−1 + k + 2p)!(−1 + k + p− q)!(k + p+ q)!

×
(
ψ(1− k − p) + ψ(2− k − p)

)2 − (ψ′(1− k − p) + ψ′(2− k − p)
)

Γ(1− k − p)Γ(2− k − p) . (B.23)

This can be simplified with the help of the following identities: ψ(1−z) = π cot(πz)+ψ(z),

ψ′(1− z) = π2/ sin2(πz)− ψ′(z) and Γ(1− z) = π/
(
Γ(z) sin(πz)

)
:

<Res4 = z−
1
2
−pΓ(k + p− 1)Γ

(
k + p− 1

2

)
Γ
(
k + p+ 1

2

)
Γ(k + p)

Γ(k + 2p)Γ(k + p− q)Γ(k + p+ q + 1)

z−k

k!
. (B.24)

Summing over all the fourth order poles (0 6 k <∞), taking into account all the coefficients

from (B.17) and (3.14), one comes to the desired expression for < Φ̂p,q which proves (3.22)

for q 6= 0.

q = 0. Strictly speaking, the direct substitution q = 0 into the results obtained above

leads to the wrong answer. In this case one has to perform the same procedure from the

very beginning. This happens because (3.17) reduces to 3F2

({
3
2 − p, 1

2 , p + 1
2

}
,
{

2, 5
2

}
, z
)

and now we have a different system of poles. The final result gives an additional factor 1

which completely corresponds to (3.22).

C Derivation of Q

In section 5 we introduced the following function

Q(z) =

∞∑
k=0

(−h)k+1

k!
zp−

1
2
dp−2

dzp−2
zq−1 d

q

dzq
z

1
2

(k+1) . (C.1)

Performing straightforward differentiations and then summation over k we arrive at the

following formula

Q(z) = −πhz 1F2

({
3
2

}
,
{

5
2 − p, 3

2 − q
}
, h

2z
4

)
2Γ
(

5
2 − p

)
Γ
(

3
2 − q

) +
h2z3/2

2F3

(
{1, 2},

{
3
2 , 3− p, 2− q

}
, h

2z
4

)
Γ(3− p)Γ(2− q) .

(C.2)

Further one can show that for p > q + 2, q > 0, the following identity takes place

h2z3/2
2F3

(
{1, 2},

{
3
2 , 3−p, 2−q

}
, h

2z
4

)
Γ(3− p)Γ(2− q) =−4

√
π
(
h2z
4

)p− 1
2

h

Γ(p) 1F2

(
{p},

{
p− 1

2 , p−q
}
, h

2z
4

)
Γ
(
p− 1

2

)
Γ(p− q) .

Thus, Q(z) is essentially written as the sum of two 1F2 functions that both have the same

characteristic feature. Namely, if the upper parameter is ρ + q, where q > 0, then among

the lower parameters there is ρ. In this situation we can apply the following reduction
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formula, where 1F2 gets replaced by a finite sum of 0F1, the latter being expressed via the

modified Bessel function of the first kind Iν ,

Q(z) = −π
h

q∑
k=0

2
1
2
−k−p(h

√
z)

1
2

+k+p Γ(1 + q)

Γ(1 + k)Γ(1 + q − k)Γ
(

3
2 + k − q

) I 3
2

+k−p(h
√
z)

+

√
π

h

q∑
k=0

2
3
2
−k−p(h

√
z)

1
2

+k+p Γ(1 + q)Γ(p)

Γ(1 + k)Γ(1 + q − k)Γ(p+ k − q) I− 3
2

+k+p(h
√
z) .

(C.3)

Note that due to our restrictions on the range of p and q the index ν of the first Bessel

function I 3
2

+k−p is always negative, while the index of the second one, I− 3
2

+k+p, is always

positive. Moreover, the index always takes half-integer values which means that Iν can be

written via elementary functions. Indeed, let us introduce the following auxiliary functions

I e
n (x) =

[n2 ]∑
m=0

Γ(1 + n+ 2m)

(2m)! Γ(1 + n− 2m)
(2x)−2m,

I o
n (x) =

[n−1
2 ]∑

m=0

Γ(2 + n+ 2m)

(2m+ 1)! Γ(n− 2m)
(2x)−2m−1,

In(x) =

n∑
m=0

Γ(n+m+ 1)

m! Γ(n+ 1−m)
(2x)−m = ex

√
2x

π
K 1

2
+n(x) ,

(C.4)

where [n] ≡ Floor(n) and Kν(x) is the Macdonald function. Then for an integer n > 0 we

have

I 1
2

+n(x) = e−x(−1)n+1 I e
n (x) + I o

n (x)√
2πx

+ ex
I e
n (x)−I o

n (x)√
2πx

,

I− 1
2
−n(x) = e−x(−1)n+1 I e

n (x) + I o
n (x)− 2In(x)√
2πx

+ ex
I e
n (x)−I o

n (x)√
2πx

.

(C.5)

First, we note that each individual Iν involves the growing exponent, ex, as x → ∞. On

the other hand, as is obvious from (5.5), these terms cannot appear in the final answer

for Q(z). Thus, upon summing up they all must cancel. Second, concerning the terms

with the damping exponent e−x, our numerical analysis shows that the terms involving the

functions I e
n (x) and I o

n (x) all cancel in the sum, so that the only contribution left comes

from In(x). In this way we find

Q(z) =
π

h

q∑
k=0

(h
√
z)

1
2

+k+p 2
3
2
−k−pΓ(1 + q)

Γ(1+k)Γ(1+q−k)Γ
(

3
2 +k−q

) e−h√z(−1)p+k+1Ip−k−2(h
√
z)√

2πh
√
z

,

where upon substituting the series representation for Ip−k−2(h
√
z) and replacing h→ hn,

we obtain the desired formula (5.9). Note also that in terms of Kν , the above formula

reads as

Q(z) =
1

h

q∑
k=0

(−1)p+k+12
3
2
−k−p(h

√
z)

1
2

+p+k
Kp−k− 3

2
(h
√
z)Γ(1 + q)

Γ(1 + k)Γ(1 + q − k)Γ
(

3
2 + k − q

) .

– 46 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
5

D Details for the construction of the asymptotic expansion for ∆Sp,q(g)

Here we resolve several technical issues concerning construction of the asymptotic expansion

of the discontinuity ∆Sp,q(g) and also present an alternative method to derive the same

asymptotic expansion.

D.1 Solution of the difference equation for c`

The coefficients c` which arise in the asymptotic expansion of the function 2F3 can be

determined recurrently by using Riney’s method. The corresponding recurrence formula

reads [61]

c0 = 1 , c` = − 1

4`

`−1∑
k=0

cke`,k , (D.1)

where

e`,k =
4∑
j=1

Γ(1− ν − 2bj + `+ 2)

Γ(1− ν − 2bj + k)

2∏
i=1

(ai − bj)

4∏
i=1,i 6=j

(bi − bj)
, b4 ≡ 1 . (D.2)

Here the coefficients a1, . . . , b3 are given by (6.4) and ν = a1 + a2 − b1 − b2 − b2 + 1
2 =

−2−p−q−2ε. For our purposes, however, this recurrence formula is not enough as we need

to determine these coefficients in the closed form, i.e. without referring to any recurrence

procedure.

We start our analysis with some observations. First, computing e`,k explicitly we note

that they do not depend on ε and, as a consequence, c` are also ε independent. Second,

the coefficients c` satisfy certain difference equations. To understand this issue, consider

the differential equation for the function 2F3:

(
ϑ(ϑ+ b1 − 1)(ϑ+ b2 − 1)(ϑ+ b3 − 1)− t(ϑ+ a1)(ϑ+ a2)

)
2F3

(
{a1, a2, a3}, {b1, b2}, t

)
= 0 ,

where ϑ = t ddt . To derive the difference equations for c`, it is enough to substitute in this

equation the part of the asymptotic expansion for 2F3 which contains either damping or

growing exponent

F−3 = t
ν
2 eiπν−2

√
t
∞∑
`=0

(−1)`c`
2` t`/2

, F+
3 = t

ν
2 e2
√
t
∞∑
`=0

c`
2` t`/2

. (D.3)

Both lead to the same difference equations, so it is enough to consider only one of them.

Substituting for instance F−3 , we get an expression which contains ε-independent term and

the term proportional to ε. Since the original equation is valued for arbitrary ε these terms

must separately vanish. Collecting terms proportional to t`/2 in the first, ε-independent,
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term we get the following difference equation:

(−1 + `+ p− q)(1 + `− p+ q)(1 + `+ p+ q)2c`−1

−
(

1 + 4`3 − 2p3 + 2p2(1 + q)− 2q(1 + q)(2 + q) + 2p(2 + q)2

+6`2(2 + p+ q) + 2`
(
5 + 3q + p(7 + 4q)

))
c` (D.4)

+
(

11 + 5`2 + 7p− (p− q)2 + 3q + `
(
15 + 4(p+ q)

))
c`+1 − 2(2 + `)c`+2 = 0 .

From the second term proportional to ε we find a simpler difference equation, namely,

(−1 + `+ p− q)(1 + `− p+ q)(1 + `+ p+ q)c`−1 (D.5)

+
(
− 3`2 − `(5 + 2p+ 2q) + (p− q)2 − 3p+ q − 1

)
c` + 2(1 + `)c`+1 = 0 .

In fact, the second equation (D.5) implies the first. Shifting in eq. (D.5) the variable

` → ` + 1, solving for c`+2 and plugging this solution into (D.4), we observe that the

last equation factorises and it contains the left hand side of eq. (D.5) as a factor. Thus,

fulfilment of (D.5) implies the fulfilment of (D.4).

Now we explain how to find a closed formula for the coefficients c`. It is not difficult

to see that these coefficients must arise in the large s-expansion of the following ratio of

the gamma functions

Γ
(
s+ 1

2

)
Γ(s+ 1)Γ(s+ p+ 1)Γ(s+ q + 2)

∼
∞∑
`=0

22s+5/2+p+q

(2π)1/2Γ(2s+ 3 + p+ q + j)
c` . (D.6)

Indeed, according to the discussion in chapter 2.2.2 by [62], the numbers c` can be computed

from the following recursion formula

c` = − 1

4`

`−1∑
k=0

ckE`,k , (D.7)

where

E`,k =

3∑
j=1

Γ(5 + p+ q − 2bj)

Γ(3 + p+ q − 2bj)

(1/2− bj)∏′3
i=1(bi − bj)

. (D.8)

Here b1 = 1 + p, b2 = 2 + q, b3 = 1, and the prime signifies omission of the term with i = j.

Computing recurrently the first few coefficients

c0 = 1 ,

c1 =
1

2

(
1− p2 − q(1 + q) + p(3 + 2q)

)
,

c2 =
1

8

(
9 + p4 + (q − 1)q2(3 + q)− 2p3(3 + 2q) (D.9)

− 2p(3 + 2q)(−4 + q + q2) + p2
(
5 + 2q(7 + 3q)

))
,

. . . ,
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we verify that they form a sequence satisfying the difference equation (D.5). It is however

unknown how to produce an expansion of the left hand side of eq. (D.6) in a way which

would allow one to read off the closed formula for an arbitrary coefficient c`. What is

however known in the closed form is the following asymptotic expansion

Γ
(
s+ 1

2

)
Γ(s+ 1)Γ(s+ p+ 1)Γ(s+ q + 2)

∼
∞∑
j=0

υ(j)

Γ(s+ 5/2 + p+ q + j)Γ(s+ 1)
(D.10)

with the coefficients

υ(j) =
(1/2 + p)j(3/2 + q)j

j!
, (D.11)

see formula (2.2.39) in [62]. At this point it is natural to use the large s asymptotic

expansion of the inverse product of two gamma functions, cf. eq. (2.2.34) in [62],

1

Γ(s+ 5/2 + p+ q + j)Γ(s+ 1)
∼ 22s+5/2+p+q+j

(2π)1/2

∞∑
k=0

σ(k, j)

Γ(2s+ 3 + p+ q + j + k)
(D.12)

where

σ(k, j) =
(−2)−k

k!

k∏
r=1

((
3

2
+ p+ q + j

)2

−
(
r − 1

2

)2
)

=
(−1− j − p− q)k (2 + j + p+ q)k

2k k!
. (D.13)

Thus, we arrive at the following double sum representation

Γ
(
s+ 1

2

)
Γ(s+ 1)Γ(s+ p+ 1)Γ(s+ q + 2)

∼
∞∑
j=0

∞∑
k=0

22s+5/2+p+q

(2π)1/2

2jυ(j)σ(k, j)

Γ(2s+ 3 + p+ q + j + k)
.

(D.14)

This expansion is to be compared with (D.6). To this end we make a change of the

summation variables j + k = ` and get

Γ
(
s+ 1

2

)
Γ(s+1)Γ(s+p+1)Γ(s+q+2)

∼
∞∑
`=0

22s+5/2+p+q

(2π)1/2Γ(2s+3+p+q+`)

∑̀
j=0

2jυ(j)σ(`−j, j) .

(D.15)

In this way we get an explicit formula for the coefficients c`:

c` =
∑̀
j=0

2jυ(j)σ(`− j, j) . (D.16)

Substituting here the corresponding coefficients and performing the summation over j we

arrive at the following result

c` = (−1)`
Γ(2 + `+ p+ q)

Γ
(

1
2 + p

)
Γ
(

3
2 + q

) ∑̀
j=0

(−1)j 22j−1 Γ
(

1
2 + j + p

)
Γ
(

3
2 + j + q

)
Γ(1 + `− j)Γ(1 + j)Γ(2 + 2j − `+ p+ q)

(D.17)

=
Γ(2 + `+ p+ q) 3F2

({
− `, 1

2 + p, 3
2 + q

}
,
{

1− `
2 + p

2 + q
2 ,

3
2 − `

2 + p
2 + q

2

}
, 1
)

(−2)`Γ(`+ 1)Γ(2− `+ p+ q)
.

One can now directly verify that the coefficients c` given by the formula above satisfy the

difference equation (D.5) and coincide with those found through the recursion formula.
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D.2 Simplifying the expression for ∆Sp,q(g)

We start with the expression (6.22) for ∆Sp,q(g), isolate the sum over ` and substitute

there the coefficients c` in the form of the sum (D.17). We get the following double sum

W(k,m) =

L−3∑
`=0

∑̀
j=0

Γ(2 + `+ p+ q)

Γ
(

1
2 + p

)
Γ
(

3
2 + q

) (−1)j 22j−1 Γ
(

1
2 + j + p

)
Γ
(

3
2 + j + q

)
Γ(1 + `− j)Γ(1 + j)Γ(2 + 2j − `+ p+ q)

× 1

Γ(1 + `+ p+ q)Γ(4 + p+ q − L+ `)Γ(L− 2− `+ k −m− q) . (D.18)

Now we isolate from ∆Sp,q(g) the sum over ` and substitute there c` in the form of the

sum (D.17). We get the following double sum

W(k,m) =
L−3∑
`=0

∑̀
j=0

Γ(2 + `+ p+ q)

Γ
(

1
2 + p

)
Γ
(

3
2 + q

) (−1)j 22j−1 Γ
(

1
2 + j + p

)
Γ
(

3
2 + j + q

)
Γ(1 + `− j)Γ(1 + j)Γ(2 + 2j − `+ p+ q)

× 1

Γ(1 + `+ p+ q)Γ(4 + p+ q − L+ `)Γ(L− 2− `+ k −m− q) . (D.19)

As a next step we interchange the order of summation and get

W(k,m) =

L−3∑
j=0

L−3∑
`=j

Γ(2 + `+ p+ q)

Γ
(

1
2 + p

)
Γ
(

3
2 + q

) (−1)j 22j−1 Γ
(

1
2 + j + p

)
Γ
(

3
2 + j + q

)
Γ(1 + `− j)Γ(1 + j)Γ(2 + 2j − `+ p+ q)

× 1

Γ(1 + `+ p+ q)Γ(4 + p+ q − L+ `)Γ(L− 2− `+ k −m− q) . (D.20)

Taking the sum over ` we obtain

W(k,m) = (D.21)
L−3∑
j=0

(−1)j2j−1Γ
(
1
2

+ j + p
)
Γ
(
3
2

+ j + q
)

Γ
(
1
2

+ p
)
Γ
(
3
2

+ q
)
Γ(1 + j)

×
[
2
3F2

(
{−1− j− p− q, 3 +j −k −L+m+ q, 2 +j + p+ q}, {1+j + p+ q, 4+j + p+ q −L}, 1/2

)
Γ(−2− j + k + L−m− q)Γ(1 + j + p+ q)Γ(4 + j + p+ q − L)

− 2j−L+3 Γ(L+ p+ q)

Γ(2 + p+ q)Γ(L+ p+ q − 1)

× 4F3

(
{1,−2j +L− 3−p− q, 1−k +m+ q, L+p+ q}, {−1−j +L, 2 + p+ q, L−1+ p+ q}, 1/2

)
Γ(−1− j + L)Γ(k −m− q)Γ(4 + 2j − L+ p+ q)

]
.

Note that for the allowed values of k and m the function 4F3 is always finite, but the

gamma function Γ(k−m− q) which divides it is always infinite because k 6 q and m > 0.

Thus, the term of W containing 4F3 does not contribute to the discontinuity ∆Sp,q and we

can safely omit it. We therefore consider

W(s,m) = (D.22)
L−3∑
k=0

(−1)k2kΓ
(
1
2

+ k + p
)
Γ
(
3
2

+ k + q
)

Γ
(
1
2

+ p
)
Γ
(
3
2

+ q
)
Γ(1 + k)

× 3F2

(
{−1−k − p− q, 3−L− s+ k +m+ q, 2 +k + p+ q}, {1+k + p+ q, 4+k + p+ q −L}, 1/2

)
Γ(−2 + L+ s− k −m− q)Γ(1 + k + p+ q)Γ(4 + k + p+ q − L)

,
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where for further clarity we replace the index k by s and j by k. Further, the hypergeometric

function

V = 3F2

(
{−1− k− p− q, 3−L− s+ k+m+ q, 2 + k+ p+ q}, {1 + k+ p+ q, 4 + k+ p+ q−L}, 1/2

)
featuring in the last formula can be reduced, namely,

V = 2 2F1(−1− k − p− q, 3 + k − L+m+ q − s, 4 + k + p+ q − L, 1/2) (D.23)

− 2F1(−k − p− q, 3 + k − L+m+ q − s, 4 + k + p+ q − L, 1/2) .

To each of these two 2F1’s we apply an identity

2F1(a, b, c, z) = (1− z)−a 2F1

(
a, c− b, c, z/(z − 1)

)
and get

V = 2−k−p−q
[
2F1(−1− k − p− q, 1−m+ p+ s, 4 + k + p+ q − L,−1)

− 2F1(−k − p− q, 1−m+ p+ s, 4 + k + p+ q − L,−1)
]

(D.24)

= 2−k−p−q
1−m+ p+ s

4 + k + p+ q − L 2F1(−k − p− q, 2−m+ p+ s, 5 + k + p+ q − L,−1) .

Therefore,

W(s,m) =
L−3∑
k=0

(−1)k2−p−qΓ
(

1
2 + k + p

)
Γ
(

3
2 + k + q

)
Γ
(

1
2 + p

)
Γ
(

3
2 + q

)
Γ(1 + k)

(p−m+ s+ 1) (D.25)

× 2F1(−k − p− q, 2−m+ p+ s, 5 + k + p+ q − L,−1)

Γ(−2 + L+ s− k −m− q)Γ(1 + k + p+ q)Γ(5 + k + p+ q − L)
.

For the discontinuity we therefore find

∆Sp,q(g) = ig (p− q − 1)(p+ q)

∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1

q∑
s=0

p−s−2∑
m=0

W(s,m)

×√π (−1)p+s 23−s−m+q q! Γ(p+m− s− 1)Γ(p−m+ s+ 1)Γ(−2 + s+ p+ L−m)

s!m! (q − s)! Γ(p−m− s− 1)Γ
(

3
2 + s− q

)
or explicitly

∆Sp,q(g) = (D.26)

ig (p− q − 1)(p+ q)

∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1

L−3∑
k=0

Γ
(

1
2 + k + p

)
Γ
(

3
2 + k + q

)
Γ
(

1
2 + p

)
Γ
(

3
2 + q

)
Γ(1 + k)

×
q∑
s=0

p−s−2∑
m=0

√
π

(−1)p+s+k 23−s−m−p q! Γ(p+m−s−1)Γ(p−m+s+2)Γ(−2 + s+ p+L−m)

s!m! (q − s)! Γ(p−m− s− 1)Γ
(

3
2 + s− q

)
× 2F1(−k − p− q, p−m+ s+ 2, 5 + k + p+ q − L,−1)

Γ(−2 + L+ s− k −m− q)Γ(1 + k + p+ q)Γ(5 + k + p+ q − L)
.

We note as an interesting fact that the hypergeometric function entering in the last ex-

pression is expressible via the following Jacobi polynomial

2F1(−k − p− q, p−m+ s+ 2, 5 + k + p+ q − L,−1) = (D.27)

(k + p+ q)!(−2)k+p+q

(5 + k − L+ p+ q, k + p+ q)
J

(−2−k+m−2p−q−s,−2+k−L+p+q)
k+p+q (0) .
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Expanding 2F1 into the hypergeometric series, one comes to another representation

∆Sp,q(g) = 4ig (p− q − 1)(p+ q)

∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1
CL(p, q) , (D.28)

where the coefficients CL(p, q) are

CL(p, q) =

L−3∑
k=0

Γ
(

1
2 + k + p

)
Γ
(

3
2 + k + q

)
Γ
(

1
2 + p

)
Γ
(

3
2 + q

)
Γ(1 + k)

(D.29)

×
p+q−2∑
τ=0

(−1)k+τ2−1−τ√π Γ(1 + q)Γ(4 + τ)Γ(τ + L)

Γ(p+ q + k + 1)Γ(p+ q − τ − 1)Γ(L+ τ − k − p− q)
× 2F̃1(−k − p− q, 4 + τ ; 5 + k − L+ p+ q;−1)

× 3F̃2

({
1

2
(4−2p+τ),

1

2
(5−2p+τ), 2−p− q +τ

}
,

{
3−p+ τ,

7

2
−p− q + τ

}
, 1

)
,

where “∼” denotes that the hypergeometric function is regularised.

In appendix D.3 we provide an alternative but simpler expression for CL(p, q).

D.3 Alternative derivation of the asymptotic expansion for ∆Sp,q(g)

An alternative method to compute the discontinuity in (5.5), is by using the Gauss series

expansion for the hypergeometric function

2F1

(
1

2
+ p,

3

2
+ q, p+ q + 1, 1− z

)
=
∞∑
k=0

(
1
2 + p

)
k

(
3
2 + q

)
k

(p+ q + 1)kΓ(k + 1)
(1− z)k. (D.30)

We need just to compute the following integral

f =

∫ ∞
1

dz (−hn
√
z)e−hn

√
z d

q

dzq

(
zq−1 d

p−2

dzp−2

[
zp−

1
2 (1− z)p+q+k

])
. (D.31)

First we use the binomial expansion to expand (1 − z)p+q+k and rewrite

f =

p+q+k∑
s=0

(−1)sΓ(p+ q + 1 + k)

Γ(s+ 1)Γ(p+ q + 1 + k − s)

∫ ∞
1

dz (−hn
√
z)e−hn

√
z d

q

dzq

(
zq−1 d

p−2

dzp−2
zp+s−

1
2

)
.

Now we compute the derivatives by using dmzn = Γ(n + 1)/Γ(n + 1 − m)zn−m, so the

integral takes the form

f =

p+q+k∑
s=0

(−1)s
Γ(p+ q + 1 + k)

Γ(s+ 1)Γ(p+ q + 1 + k − s)

× Γ
(
p+ s+ 1

2

)
Γ
(
q + s+ 3

2

)
Γ
(
s+ 3

2

)
Γ
(
s+ 5

2

) ∫ ∞
1

dz (−hn)e−hn
√
zzs+1. (D.32)

We pass back to the original variable x2 = z and note that

2

∫ ∞
1

dx (−hn)e−hnxx2s+3 = 2hn
d2s+3

dh2s+3
n

∫ ∞
1

dx e−hnx

= 2hn
d2s+3

dh2s+3
n

(
e−hn

hn

)
= (−2)

2s+3∑
l=0

Γ(2s+ 4)

Γ(2s+ 4− l)
e−hn

hln
.
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Here the summation range of l can be extended all the way to infinity thanks to Γ(2s+4−l)
in the denominator. The sum over n in ∆Sp,q is now trivial and gives

∞∑
n=1

e−hn

hln
=

Lil(e
−4πg)

(4πg)l
. (D.33)

By putting everything together we obtain

∆Sp,q(g) = (4ig)(p− q − 1)(p+ q)

∞∑
l=0

Lil(e
−4πg)

(4πg)l

∞∑
k=0

Γ
(
p+ 1

2 + k
)
Γ
(
q + 3

2 + k
)

Γ
(
p+ 1

2

)
Γ
(
q + 3

2

)
Γ(k + 1)

×
p+q+k∑
s=0

(−1)s

Γ(s+ 1)Γ(p+ q + 1 + k − s)
Γ
(
p+ s+ 1

2

)
Γ
(
q + s+ 3

2

)
Γ
(
s+ 3

2

)
Γ
(
s+ 5

2

) Γ(2s+ 4)

Γ(2s+ 4− l) .

(D.34)

The sum over s can be extended all the way to infinity thanks to Γ(p + q + 1 + k − s) in

the denominator and this can be performed:

∞∑
s=0

(−1)s

Γ(s+ 1)Γ(p+ q + 1 + k − s)
Γ
(
p+ s+ 1

2

)
Γ
(
q + s+ 3

2

)
Γ
(
s+ 3

2

)
Γ
(
s+ 5

2

) Γ(2s+ 4)

Γ(2s+ 4− l) = (D.35)

2l
Γ
(
p+ 1

2

)
Γ
(
q + 3

2

)
Γ(p+ q + k + 1)

4F̃3

({
2, p+

1

2
, q +

3

2
,−p− q − k

}
,

{
3

2
, 2− l

2
,

5

2
− l

2

}
; 1

)
,

where 4F̃3 is the regularized generalized hypergeometric function.

It can be shown, cf. [56], that 4F̃3

({
2, p + 1

2 , q + 3
2 ,−p − q − k

}
,
{

3
2 , 2 − l

2 ,
5
2 − l

2

}
; 1
)

vanishes for k+2 > l. This implies that in (D.34) the sum over l actually starts from l = 2,

while k runs from 0 to l − 2. We can therefore shift l = L− 1 and finally arrive at

∆Sp,q(g) = (4ig)(p− q − 1)(p+ q)

∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1
2L−1 (D.36)

×
L−3∑
k=0

Γ
(
p+ 1

2 +k
)
Γ
(
q+ 3

2 +k
)

Γ(k+1)Γ(p+q+k+1)
4F̃3

({
2, p+

1

2
, q+

3

2
,−p−q−k

}
,

{
3

2
,

5−L
2

,
6−L

2

}
; 1

)
.

Thus, the discontinuity takes the form

∆Sp,q(g) = (4ig)(p− q − 1)(p+ q)
∞∑
L=3

LiL−1(e−4πg)

(4πg)L−1
cL(p, q) , (D.37)

where the coefficients cL(p, q) are given by

cL(p, q) = 2L−1
L−3∑
k=0

Γ
(
p+ 1

2 + k
)
Γ
(
q + 3

2 + k
)

Γ(k + 1)Γ(p+ q + k + 1)
(D.38)

× 4F̃3

({
2, p+

1

2
, q +

3

2
,−p− q − k

}
,

{
3

2
,

5− L
2

,
6− L

2

}
; 1

)
,
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or equivalently by expanding the hypergeometric function

cL(p, q) =
L−3∑
k=0

Γ
(
p+ 1

2 + k
)
Γ
(
q + 3

2 + k
)

Γ
(
p+ 1

2

)
Γ
(
q + 3

2

)
Γ(k + 1)

(D.39)

×
k+p+q∑
n=0

(−1)n22n+3(n+ 1)√
π

Γ
(
p+ 1

2 + n
)
Γ
(
q + 3

2 + n
)

Γ(p+ q + 1 + k − n)Γ
(
n+ 3

2

)
Γ(2n+ 5− L)

.

Note that these coefficients cL(p, q) entering the expansion (D.37) seem very different from

the previously computed CL(p, q) given by (D.29), nonetheless we have numerically checked

that the two expressions coincide k by k once we fix values for p, q and L.
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[55] R. Couso-Santamaŕıa, R. Schiappa and R. Vaz, Finite N from resurgent large N ,

Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].

[56] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and series. Vol. 3: More special

functions, Gordon and Breach, New York U.S.A. (1989).

[57] O.I. Marichev, A method of calculating integrals of special functions. Theory and tables of

formulas (in Russian), Nauka i Tekhnika, Minsk U.S.S.R. (1978).

[58] C.M. Bender and T.T. Wu, Anharmonic oscillator. II. A study of perturbation theory in

large order, Phys. Rev. D 7 (1973) 1620 [INSPIRE].

[59] J.C. Collins and D.E. Soper, Large order expansion in perturbation theory,

Annals Phys. 112 (1978) 209 [INSPIRE].

[60] N.M. Temme, Special functions: an introduction to the classical functions of mathematical

physics, John Wiley & Sons Inc. (1996).

[61] F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST handbook of mathematical

functions, Cambridge University Press, Cambridge U.K. (2010).

[62] R. Paris and D. Kaminski, Asymptotics and Mellin-Barnes integrals, Cambridge University

Press, Cambridge U.K. (2001).

– 57 –

https://arxiv.org/abs/0801.4877
http://dx.doi.org/10.1007/s00220-014-2165-z
https://arxiv.org/abs/1308.1115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1115
http://dx.doi.org/10.1016/j.aop.2015.02.019
https://arxiv.org/abs/1501.01007
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.01007
http://dx.doi.org/10.1103/PhysRevD.7.1620
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D7,1620%22
http://dx.doi.org/10.1016/0003-4916(78)90084-2
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,112,209%22

	Introduction
	The dressing phase
	Modified Borel transform
	Non-perturbative resummation of the coefficients c(r,s)(g)
	From the Borel sum to the BES dressing phase
	Non-perturbative ambiguities and median resummation

	Ambiguity of the Borel resummation
	Strong coupling expansion of the discontinuity
	Dispersion relation and the non-perturbative sector
	Non-perturbative contributions to the dressing phase
	Effects of the non-perturbative sector to the dressing phase
	Generating solutions to the homogenous crossing symmetry equation

	Derivation of the discontinuity of Omega
	From the Borel image hat phi(p,q) to its representation hat Phi(p,q)
	First proof
	Second proof

	Derivation of Q
	Details for the construction of the asymptotic expansion for Delta S(p,q)(g)
	Solution of the difference equation for c(ell)
	Simplifying the expression for Delta S(p,q)(g)
	Alternative derivation of the asymptotic expansion for Delta S(p,q)(g)


