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ABSTRACT
The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way
(MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simu-
lation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment)
simulations to investigate the performance of the SJE in recovering the underlying mass pro-
files of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by
25 per cent and 40 per cent around their input values, respectively, when dark matter particles
are used as tracers. This scatter becomes as large as a factor of 3 when using star particles
instead. This is significantly larger than the estimated statistical uncertainty associated with the
use of the SJE. The existence of correlated phase-space structures that violate the steady-state
assumption of the SJE as well as non-spherical geometries is the principal source of the scatter.
Binary haloes show larger scatter because they are more aspherical in shape and have a more
perturbed dynamical state. Our results confirm that the number of independent phase-space
structures sets an intrinsic limiting precision on dynamical inferences based on the steady-
state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers
within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged
measurement over the whole halo sample is approximately unbiased.
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1 IN T RO D U C T I O N

Our galaxy, the Milky Way (MW), provides a wealth of valuable
information on the nature of the dark matter and the physics of
galaxy formation. Many important inferences, however, depend on
the precision with which the mass of its dark matter halo can be
estimated. For example, the ‘too big to fail’ problem claims that
the structure of the most massive dark matter subhaloes predicted
by � cold dark matter (�CDM) simulations of MW-like hosts
are inconsistent with the structure of the classical dwarf satellites
observed around the MW (Boylan-Kolchin, Bullock & Kaplinghat
2011; Ferrero et al. 2012). The number of massive subhaloes in these
simulations, which are inconsistent with the observed structure, is
sensitive to the assumed MW halo mass, and the problem would
disappear if the MW halo mass is sufficiently small (<1 × 1012M�;
Wang et al. 2012; Cautun et al. 2014).

There are many different approaches to measuring the underlying
potential of the MW. A brief summary of previous results can be
found in Wang et al. (2015). A few more recent measurements
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include Huang et al. (2016), Ablimit & Zhao (2017), McMillan
(2017), Patel, Besla & Mandel (2017), and Rossi et al. (2017).
The inference of the halo mass from such observations unavoidably
involves various model assumptions, which are often not entirely
justified or tested on realistic numerical simulations.

In a series of previous studies, we have examined the validity of
a few such model assumptions, by applying the relevant method to
simulated dark matter haloes and galaxies for which the underlying
potentials are known. In Wang et al. (2015), we tested the method of
fitting a given model distribution function to the observed radial and
velocity distribution of dynamical tracers such as halo stars, globular
clusters, and luminous satellite galaxies (e.g. Wilkinson & Evans
1999; Sakamoto, Chiba & Beers 2003; Wojtak et al. 2008, 2009;
Wojtak & Łokas 2010; Deason et al. 2012; Eadie, Harris & Widrow
2015; Li et al. 2017). Strong deviations between measured and true
halo parameters were found. Multiple factors are responsible for
the discrepancy, including deviations from the adopted functional
form of the model potential, deviations from spherical symmetry,
violations of the form of the distribution function, and violations of
the steady state assumption for the dynamical tracers.

Han et al. (2016a) developed the orbital probability distri-
bution function (oPDF) method that involves only two model

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnras/article-abstract/476/4/5669/4937822
by guest
on 17 April 2018

mailto:bilinxing.wenting@gmail.com


5670 W. Wang et al.

assumptions: (1) the potential is spherical and (2) the system is
in a steady state. The oPDF method expresses the steady-state so-
lution of the collisionless Boltzmann equation as a microscopic
equilibrium distribution function, from which one can predict the
radial distribution of tracers given a model potential and the ob-
served positions and velocities of the tracers. The predicted radial
distribution is then compared with the observed distribution to de-
rive the best-fitting potential. Although the method only works with
six-dimensional phase-space data in its current form, it involves
only the most basic model assumptions, which enables us to under-
stand the uncertainties from these assumptions in a focused way.
Han et al. (2016b) and Wang et al. (2017) applied this method
to large samples of dark matter haloes and galaxies in the Aquar-
ius simulations (Cooper et al. 2010), the Millennium-II simulation
(Boylan-Kolchin et al. 2009), and the hydrodynamical APOSTLE
simulations (A Project of Simulations of The Local Environment;
Fattahi et al. 2016; Sawala et al. 2016). In their analysis, the true
potential profiles in the simulation are extracted as model templates,
and thus the results are free from uncertainties due to imperfections
in the assumed potential profile.

It has been found that violations of the two model assumptions
above can lead to about 25 per cent uncertainty in the halo mass
when dark matter particles are used as tracers. This uncertainty in-
creases to 200–300 per cent when stars are used as tracers (Wang
et al. 2017). This uncertainty cannot be trivially decreased by in-
creasing the tracer sample size, reflecting a limiting precision linked
to the intrinsic number of phase-independent particles in each halo.
This intrinsic number is smaller than the actual size of the tracer
sample, due to correlations in the phase-space coordinates of the
tracer particles that violate the steady-state assumption. In partic-
ular, Wang et al. (2017) explicitly demonstrate that an effective
sample size estimated from the distribution of streams correlates
with the amplitude of the uncertainty in the best fits inferred using
the oPDF method.

In this paper, we further test the approach that uses the spherical
Jeans equation (SJE) to infer the underlying mass profile or circu-
lar velocity curve. SJE has been widely used to measure the halo
circular velocity of MW, Vcirc, from the radial velocity dispersion
of tracers, σ r(r) (e.g. Battaglia et al. 2005; Xue et al. 2008; Gnedin
et al. 2010; Watkins, Evans & An 2010; Kafle et al. 2012, 2014;
Ablimit & Zhao 2017). Both the oPDF and the Jeans equation are
derived from the collisionless Boltzmann equation. The SJE widely
used in the literature also depends on the assumptions of steady-state
tracers and a spherical potential.

Applying the SJE requires the tracer velocity anisotropy, β, and
density profiles, ρ∗, to be known. In reality, β and ρ∗ are often not
available and have to be assumed or marginalized over. We first
use the full set of simulation data to calculate tracer properties,
so that any uncertainty from the unknown velocity anisotropy and
density profiles is not a concern. This allows us mainly to check
uncertainties from the steady state and the spherical assumption,
which then enables direct comparisons with Han et al. (2016b) and
Wang et al. (2017). In the end, we also investigate what happens if
β is modelled as a constant, either with an assumed value or as a
free parameter. We also discuss the result if only tracers within a
given radial range are used.

After we have finalized this work, Kafle et al. (2018) published
a related study that tested the SJE in recovering the mass profile
from 10 to 100 kpc. While we have thoroughly studied how well
the potential profile can be recovered from different dynamical
models in a series of previous studies (Wang et al. 2015; Han et al.
2016a,b; Wang et al. 2017), in this work we focus on presenting

results on the recovered virial mass and concentration parameters
that are of more cosmological interests. We only briefly revisit
the recovered potential profile in the context of SJE that shows
consistent behaviour with our previous findings. Compared with
Kafle et al. (2018), our halo sample is much larger and our analysis
of the source of uncertainties is more complete and thorough.

2 SI M U L AT I O N S A N D T R AC E R S

We use the same data sets as previously analysed by Han et al.
(2016a) and Wang et al. (2017). Our analysis involves 120 ideal
haloes, more than 1000 isolated and binary haloes selected from
cosmological N-body simulation and 24 galaxies (or 12 pairs) in
hydro-dynamical simulations of the Local Group. Further informa-
tion can be found in the remainder of this section. Throughout this
paper, we do not include particles belonging to subhaloes in our
tracer sample. A thorough discussion of the further influence of
subhaloes can be found in Han et al. (2016b).

2.1 Ideal tracers

In order to test the SJE method in the ideal case, we first generate a
steady-state system of tracers according to the probability distribu-
tion dP(r, v) = f(E)L−2βd3rd3v used in Wang et al. (2015). The de-
tailed form of f(E) is specified by assuming a Navarro-Frenk-White
(NFW; Navarro, Frenk & White 1996, 1997) potential and requiring
the tracer density profile to be a double-power law. The complete
form of this distribution function and its derivation can be found in
equation 12 of Wang et al. (2015) and the corresponding section. It
describes a steady-state spherical system of tracers inside an NFW
halo. The model has six parameters, including the mass, M, and
concentration, c, of the NFW halo; the tracer velocity anisotropy,
β; the double-power-law slopes of the tracer density profile α and
γ ; and the pivot radius of the tracers, rc. Their values are chosen
to best match the distribution of mock stars inside an MW-sized
halo in the Aquarius simulation (Cooper et al. 2010; Lowing et al.
2015), with M = 1.83 × 1012 M�, c = 16.2, β = 0.715, rc = 69 kpc,
α = 2.3, and γ = 7.47. Tracer particles are generated between 10
and 1000 kpc in radius. We generate 120 samples, and each of them
contains 4500 particles. We will call them ideal tracers.

2.2 Millennium II

A large sample of more realistic haloes are selected from the
Millennium-II simulation (Boylan-Kolchin et al. 2009, hereafter
MRII). MRII is a dark-matter-only simulation with a box size of
100 h−1Mpc and a particle mass of 6.9 × 106h−1 M�. The cos-
mological parameters are those from the first-year WMAP result
(Spergel et al. 2003, 	m = 0.25, 	� = 0.75, h = 0.73, n = 1, and
σ 8 = 0.9).

To select haloes suitable for our analysis, we first identify a
parent sample of haloes whose masses are analogous to MW, i.e.
0.5 × 1012 < M200 < 2.5 × 1012M�.1 Starting from these haloes,
we further select a sample of isolated haloes and a sample of binary
ones. For isolated haloes, we require that all companions within a
sphere of 2 Mpc should be at least one order of magnitude smaller in

1 We use M200 to denote the mass of a spherical region with mean density
equal to 200 times the critical density, ρcrit of the universe. The radius of
the spherical region will be defined as the halo virial radius throughout the
paper, denoted as R200.
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M200. For binary haloes, we require the two haloes to be separated by
a distance of 500–1000 kpc to mimic the configuration of the MW
and M31 system. In addition, for a sphere centred on the mid-point
of the two haloes and with a radius of 1.25 Mpc, all haloes within
the sphere should be less massive than the smaller of the binary. In
the end, we have 658 isolated haloes and 336 binary haloes (or 168
pairs). Each halo contains about 105 dark matter particles that are
within R200 and not bound to any substructure.

2.3 The APOSTLE simulations

The APOSTLE ( Fattahi et al. 2016; Sawala et al. 2016) simulation
is a set of zoomed hydrodynamical simulations of Local Group-
like haloes in a �CDM universe, run using the same simulation
code and parameters as the EAGLE (Crain et al. 2015; Schaye et al.
2015) simulation. It consists of 12 realizations, each representing
a pair of galaxies analogous to the MW and M31 system. The
underlying cosmology of APOSTLE is that of WMAP7 (Komatsu
et al. 2011, 	m = 0.272, 	� = 0.728, h = 0.704, n = 0.967, and
σ 8 = 0.81). Each realization is simulated at three different resolu-
tions. The particle mass of the lowest-resolution run is comparable
to the intermediate-resolution EAGLE run. The mass resolution of in-
termediate and high runs are higher than the lowest resolution runs
by factors of 12 and 144, respectively, but the high-resolution runs
are not yet complete for all 12 volumes. For our analysis, we choose
to use the suite of intermediate-resolution runs. Each galaxy in the
intermediate level contains about ∼104 to ∼105 star particles in the
stellar halo that are not bound to any satellites.

3 M E T H O D O L O G Y

Assuming the Galactic halo is spherical and in a steady state, we
can derive the SJE (Binney and Tremaine 1987):

1

ρ∗

d(ρ∗σ 2
r,∗)

dr
+ 2βσ 2

r,∗
r

= −dφ

dr
= −V 2

c

r
. (1)

We measure the radial velocity dispersion of tracers, σ r, ∗, their ve-
locity anisotropy, β, and the radial profile, ρ∗, from the simulations.
Thus the potential gradient, or the rotation curve of the halo can be
directly inferred from equation (1).

To obtain parameters of the halo, we first fit an NFW potential
gradient,
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to the Jeans inferred potential by varying two parameters, ρs and rs.
The parameter rs is the radius where the effective logarithmic slope
of the halo density profile is −2. These parameters can be converted
to the halo mass, M200, and concentration parameter, c200 = R200/rs,
through the following relations:
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We infer the best-fitting parameters by minimizing

χ2 = dTC−1
d d (5)

where the vector d is given by

d =
(

dφNFW

dr
− dφjeansinferred

dr

)
. (6)

The data covariance matrix Cd is calculated from 100 bootstrap
resamples generated with replacements preserving the sample size.

The minimization of χ2 is achieved using the software IMINUIT,
which is a PYTHON interface to the MINUIT function minimiser (James
& Roos 1975). The statistical errors and covariance matrix of best-
fitting parameters2 are calculated from the Hessian matrix (i.e. gra-
dient) of the χ2 with respect to the parameters.

The above approach enables us to focus on testing the steady
state and spherical assumptions. However, it is a purely theoretical
approach. In reality, the observable quantity is the tracer radial
velocity dispersion, σ r, ∗, and β is often unknown. Assuming β is
constant, the solution to equation (1) reads

σ 2
r,∗(r) = 1

r2βρ∗(r)

∫ ∞

r

dr ′r ′2βρ∗(r ′)dφ/dr, (7)

subject to the boundary condition that limr→∞r2βρ∗σ 2
r,∗ = 0 (e.g.

Battaglia et al. 2005; Kafle et al. 2012). To assess the practical
application of the SJE, in Section 6 we will also use equation (7) to
fit the measured radial velocity dispersion profiles in the simulation,
by treating β as a radius-independent parameter.

Han et al. (2016b) and Wang et al. (2017) have used both the
NFW model profile and potential templates extracted from the true
shape of potential profiles of haloes in the simulation. In this paper,
we will focus on presenting results based on the NFW potential,
because in practice it is not possible to know the true shape of the
potential profile in advance and we have checked that the NFW
model profile and the true potential templates give very similar
levels of uncertainties in the best-fitting halo parameters (see Wang
et al. 2017). However, it has also been found by Wang et al. (2017)
that deviations from the NFW model can cause a systematic bias,
an underestimated M200 and overestimated c200 when tracers in the
very inner halo are used. We also discuss this.

To obtain the true c200 as a reference and compare with the best-
fitting values, we adopt two approaches: (1) directly fitting the
NFW model to the true halo density profiles in the simulation and
using the best-fitting c200 and (2) finding the scale radius, rs, where
the logarithmic slope of the halo density profile equals −2 and
estimating c200 through c200 = R200/rs. c200 calculated in these two
ways shows less than 5 per cent difference, and hence, uncertainties
due to how the reference c200 are defined are negligible.

4 ID E A L T R AC E R S A N D T H E STAT I S T I C A L
E R RO R O F T H E F I T S

Ideal tracers in our analysis are steady-state systems generated in
a spherical and stationary NFW potential, and thus the SJE should
be directly applicable. It is still interesting to apply our method
to this system in order to test the performance and understand the
error structure in the parameters. The best-fitting halo parameters
using equation (1) are shown in Fig. 1. The statistical error size is
comparable to the scatter in the best-fitting parameters (black ellipse
in the middle). This is because our ideal tracer sample is free of any
systematic uncertainty by construction and the scatter is dominated
by statistical errors. We will show in the following sections that
using more realistic tracers from cosmological simulations end up
with a much larger difference between statistical errors and the
scatter in the best-fitting parameters.

2 The parameter covariance is not to be confused with the data covariance
matrix Cd.
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Figure 1. Best-fitting halo mass (x-axis) and concentration (y-axis) in units
of their true values for 120 Monte Carlo realizations of ideal haloes generated
with a spherical NFW potential. Each dot represents the fit to one halo.
Horizontal and vertical black dashed lines mark the equality between best-
fitting and true parameters. The black ellipse marks the 1σ scatter of all
the measurements. The magenta ellipse in the top right corner shows the
average 1σ statistical error for a single halo.

Similar to Wang et al. (2017) and Han et al. (2016b), the statisti-
cal error tends to align with a direction of anticorrelation between
M200 and c200. In fact, the anticorrelation between halo mass and
concentration (or other combinations of equivalent parameters) is
commonly seen in dynamical modelling of the galactic potential
(e.g. Deg & Widrow 2014; Kafle et al. 2014; Wang et al. 2015),
despite distinctions among different models. No matter how differ-
ent the detailed approaches are, they all aim to fit the underlying
potential profile, which can be well modelled by a double-power-
law functional form. The parameter anticorrelation may partly arise
from such a functional form, as we know power-law fitting usually
results in anticorrelations between the amplitude parameter and the
shape parameter.

The upper panels of Fig. 2 show examples of true Jeans inferred
and best-fitting potential gradient profiles for two ideal haloes. The
differences can be seen more clearly in the middle panels, where
we plot profiles normalized by the true one. The errors are scaled
by the true profile and are thus relative errors. Over the whole
radial range, deviations from the true profile are smaller than the
errors, reflecting the fact that for ideal systems the uncertainties are
properly modelled by statistical noise.

To clearly show the radial variation of the errors, in the bottom
panels we plot the error bars centred at the horizontal unity line.
Both reveal a trend of being the smallest in the middle and largest on
both smaller and larger scales. The smallest error occurs at a radius
which is close but not equal to the median or half-mass radius of
tracers (vertical dashed line).

Given the smaller errors on such intermediate scales, the mass
inside some intermediate radius can be constrained much better. We
have checked that the 1σ uncertainty of the best-fitting mass within
the median radius of tracers is smaller than that of M200 by a factor
of 2 in log space. The better constraint of the total mass within
the half-light radius of tracers in dwarf MW satellite galaxies have

been widely reported (e.g. Peñarrubia, McConnachie & Navarro
2008; Walker et al. 2009; Wolf et al. 2010), though the adopted
approaches and discussion are not the same. For example, Wolf
et al. (2010) provide the theoretical justification for why the mass
within r3, the radius where dlog ρ∗/dlog r = −3, is insensitive to
the velocity anisotropy of tracers. For MW dwarf satellite galaxies,
r3 is close to the projected half-light radius. In our analysis, β at
all radii is known directly from the simulation, and the better con-
strained mass within the median tracer radius is a reflection of the
parameter anticorrelation. For parameter combinations along the
anticorrelation direction, a larger estimated mass corresponding to
a less concentrated profile, while a lower mass corresponding to a
more concentrated halo. Thus, one would naturally expect the mass
profiles predicted by parameter combinations along the anticorrela-
tion direction to cross with each other on some intermediate scale,
i.e. the mass within an intermediate scale will have the least un-
certainty. Interested readers can find more discussions in Han et al.
(2016a).

For Jeans inferred profiles, the smallest error does not have to
occur around the median tracer radius, however. This is because
for each radial bin, the error size is determined locally and does
not depend on the overall radial range of the tracers. The fact that
the errors in Fig. 2 are observed to be smallest near the median
radius has to be connected to the particular radial distribution of
the tracers. The tracers are most sparse on the largest scale, while
the phase-space volume is smallest on small scales. This introduces
larger variations on those two scales in general. Our current choice
of model distribution function and radial ranges happen to lead to a
smallest error near the median radius.

5 T R AC E R S I N R E A L I S T I C H A L O E S

Ideal tracers demonstrate that when the system is free of systematic
sources of bias, our statistical error estimate correctly describes the
scatter in best-fitting parameters. In this section, we move on to use
dark matter particles in MRII and star particles in APOSTLE as our
more realistic tracers. We exclude particles in subhaloes3 and adopt
an inner radius cut of 20 kpc for both simulations. The inner cut
helps to avoid the central disc region in APOSTLE.

For realistic tracers, there are three sources of systematic errors:
(1) violation of the steady-state assumption (σ steady), (2) violation
of the spherical assumption (σ sph), and (3) violation of the assumed
potential profile (σ NFW). Accordingly, the covariance matrix of the
model parameters can be formally decomposed as a sum of the three
plus statistical uncertainty (σ stat):

Cbest-fit = Csteady + Csph(+CNFW) + Cstat. (8)

Wang et al. (2017) showed that results based on true potential
templates and the NFW profile give very similar uncertainty in best-
fitting parameters if tracers within 20 kpc are excluded. Therefore,
the effect of (3) is subdominant with respect to (1) and (2), and we
have put CNFW in the bracket. These systematic sources of errors will
be investigated in this section. If velocity anisotropy is unknown in
the data, additional systematics may be introduced due to improper
modelling of this component, and we postpone this discussion to
Section 6.1.

3 Particles in subhaloes are only excluded in the tracer samples. When
calculating the true potential profile to extract true halo parameters, all
particles are used.
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Figure 2. Upper panels show comparisons of true halo potential gradient profiles in the simulation (black), Jeans profiles inferred through equation (1) (blue),
and best-fitting profiles (red) for two randomly selected ideal haloes. Errors on the inferred profile are obtained through 100 bootstrap resamples of the full
parent sample, while those on the best-fitting profile are computed from the covariance matrix of the best-fitting parameters. In the middle panel, the Jeans
inferred profiles, the best-fitting profiles and the errors are all scaled by the true profile. The bottom panel is similar to the middle panel, except that each
is scaled by its own profile to compare only the errors. In this panel, the errors on the best-fitting profiles are increased by a factor of 3 to make an easier
comparison with those on the inferred profile. Vertical dashed lines mark the position of the median or half-mass radius for tracers.

Figure 3. Left: Similar to Fig. 1, but based on all selected haloes in MRII. The black ellipse in the middle and the magenta ellipse in the top right show the
average size of the uncertainty in the best-fitting parameters and the statistical errors. The red ellipse in the middle is a reproduction of the uncertainty in the
best-fitting parameters in fig. 1 of Wang et al. (2017) using the oPDF method. Right: Best fits to binary (black) and isolated (green) haloes in MRII. Isolated
haloes have been matched in mass to binary haloes to ensure the same halo mass distribution.

5.1 Dark matter particles in MRII

Results based on equation (1) are shown in Fig. 3. The left plot is
for all selected isolated and binary haloes as a whole. Similar to

Wang et al. (2017), the 1σ uncertainty in best fits (black ellipse) is
calculated and plotted by excluding the most biased measurements
using 3σ clipping, that is, to first calculate the 1σ uncertainty us-
ing all measurements that have converged and then estimate the
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uncertainty again by excluding data points outside three times the
size of the 1σ uncertainty. The result indicates a scatter of about
25 per cent in M200 and 40 per cent in c200.

The uncertainty is close to that of oPDF in Wang et al. (2017)
(see the red ellipse in the middle). Although the detailed approaches
of oPDF and the SJE are different, they are both based on the
steady state and spherical assumptions, and thus we should expect
comparable level of uncertainties. According to the Cramer–Rao
theorem, maximum likelihood estimators constructed from the full
distribution function should be the most efficient. As a result, we
would naively expect the oPDF maximum likelihood estimator to
give a smaller uncertainty than the SJE, which is based on the
momentum of the distribution function. The oPDF predicts the ra-
dial distribution of tracers, given a model potential and the cur-
rent radius, radial, and tangential velocities of tracers. However,
as currently implemented, it obtains the best-fitting halo poten-
tial by comparing only the predicted and ‘observed’ radial distri-
butions of the tracers, and thus not all the available information
is used, which might explain why the oPDF gives slightly larger
uncertainties.

In contrast with results based on the ideal tracer sample above, the
statistical error is much smaller than the uncertainty in best-fitting
halo parameters, indicating the existence of various systematics (see
equation 8). The oPDF gives the same result. Despite the different
sizes, both the statistical error and the uncertainty in best fits tend
to align with an anticorrelation direction of M200 and c200. Wang
et al. (2017) attributed this alignment to the existence of the first
systematic error, Csteady, which is introduced by phase-correlated
structures such as streams.

The orbital phase of a particle is a measure of its location on
a given orbit (or more precisely, its travel time on the orbit; see
Han et al. 2016a,b; Wang et al. 2017 for a more precise defi-
nition), while phase-correlation refers to the clustering of parti-
cles along the orbit, forming coherently moving structures such
as streams. The time evolution of streams thus makes the phase-
space distribution function of the system evolve over time, vio-
lating the steady-state assumption. Thus, the error introduced by
these structures are classified as Csteady. On the other hand, this
violation can be largely accounted for if one properly considers
the number of phase-independent particles, which is expected to be
smaller than the actual number of tracer particles. In other words,
Csteady can be modelled as a statistical error determined by an ef-
fective number of phase-independent particles. This explains why
the error ellipse of the scatter takes similar shape as the statisti-
cal error, while the amplitude is larger. Despite the similar origin,
Wang et al. (2017) has shown that this effective number is almost
independent of the tracer sample size. Accordingly, Csteady is a
systematic uncertainty determined by the intrinsic property of the
system. In Sections 5.1.1 and 5.1.2, we will make further discus-
sions on this interpretation after disentangling different sources of
systematics.

The right plot shows in black and green symbols results based on
binary and isolated haloes separately. Note the mass distribution of
binary haloes are biased to be smaller than that of isolated haloes
according to our selection criterion. In order to ensure the same
halo mass distribution, we have matched each binary halo to one
isolated halo according to their M200. This is to avoid the bias
caused by possible correlations between halo dynamical properties
and M200.

The uncertainty in best-fitting parameters for the binary popula-
tion is slightly larger than that of the isolated population, in good
agreement with Wang et al. (2017). The reasons are twofold. First,

binary haloes are more aspherical than isolated ones. Moreover, the
dynamical status of binary haloes are more disturbed than isolated
haloes due to the existence of a nearby massive companion. In the
following section, we demonstrate these two effects separately.

5.1.1 Deviations from spherical symmetry versus violations of
steady state

In order to separate the effect of deviations from spherical symmetry
and violations of the steady state assumption, we divide haloes into
different subsamples based on their minor-to-major axis ratio, c/a,
which is computed from the inertia tensor obtained from the mass
distributions within R200. Results are shown in Fig. 4 for isolated
and binary haloes separately.

There is a clear trend for the uncertainty to increase with de-
creasing c/a. Interestingly, we can see clearly that for the binary
population, the measurements are biased more and more towards
the upper left region for the most elongated haloes. Note this is not
seen in Wang et al. (2017). Though oPDF also involves the spherical
assumption, Wang et al. (2017) used the true underlying potential
profiles as templates when fitting to isolate possible violations of
the NFW model, which helped to reduce this effect. In this paper,
we focus on the NFW model, but with the oPDF method, we have
repeated the analysis using the NFW model and see a similar bias
for those most elongated haloes.

There are no isolated haloes with c/a < 0.6, indicating the exis-
tence of more elongated binary haloes. Moreover, for fixed c/a, the
scatter for binary haloes is larger than for isolated ones. This sug-
gests the larger scatter in the binary population is not only because
binaries are more elongated but also because the dynamical status
of binaries are more disturbed due to the gravitational influence of
their companion haloes.

MW and M31 form a binary system, and it is interesting to see
where our MW lies in Fig. 4. Vera-Ciro & Helmi (2013) measured
its minor-to-major axis to be 0.8, which is slightly oblate. It sits in
the panel where the uncertainty in best-fitting halo parameters is
larger than the most spherical haloes, but the average measurement
is close to being ensemble unbiased.

The statistical error is almost independent of the halo shape for
isolated haloes. For the most spherical haloes with c/a > 0.9, since
violations of the spherical assumption (Csph = 0) and deviations
from the NFW profile (CNFW ≈ 0) are negligible, the remaining
source of systematic error is violations of the steady-state assump-
tion, i.e. Cbest-fit ≈ Csteady + Cstat.

The statistical error of these most spherical haloes is still about
five times smaller than the uncertainty in best fits. If one prop-
erly considers the effective number of phase-independent particles,
Cbest-fit is expected to be purely statistical. Since the statistical error
scales with sample size N as σ 2 ∝ 1/N, we can have an estimate of
the number of phase-independent particles as

Neff = Ntracer
σ 2

stat

σ 2
best-fit

= 105 ×
(

1

5

)2

= 4000.

(9)

This is in good agreement with the number estimated in Wang et al.
(2017).
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Figure 4. Best-fitting concentration and halo mass for isolated (left) and binary (right) haloes in MRII, shown in separate panels according to the minor-to-
major axis ratios of their inertia tensor within R200, as labelled on each panel. The small magenta ellipse in each panel of the left plot shows the size of the
statistical errors.

5.1.2 Reducing phase-correlated dynamical tracers

The argument of underestimated statistical errors due to phase-
correlated structures can be tested in the following way. The
basic idea is to degrade the sample size by down-weighting phase-
correlated particles. We implement this in an extreme way, by treat-
ing particles from the same progenitor as being in a phase-correlated
stream, and restricting each stream to contributing only one degree
of freedom. After that we can check whether the statistical error
is then closer to the uncertainty in best fits, at least for the most
spherical haloes.

We start by tracing particles back in time to identify their pro-
genitors, using the halo merger tree built by the HBT+ code (Han
et al. 2012, 2018). HBT+ normally does unbinding to remove un-
bound particles during halo tracking. For the purpose of this study,
we have switched off unbinding in HBT+ to allow a complete re-
covery of phase-correlated particles. Particles once belonging to
a progenitor at its maximum mass are treated as coming from this
progenitor. Note that hierarchical merging of progenitor haloes may
lead to the formation of subhalo groups (or groups of streams in our
case), which move coherently inside the host halo. Such cases can
potentially cause correlations even among different streams, which
is hard to account for in our current analysis.

We label the total number of particles in stream i as Ni, and each
particle is assigned a weight of 1/Ni. Smoothly accreted diffuse
particles that do not belong to any progenitor haloes are assigned
weights of 1. We repeat our analysis in Section 3 with this weighted
sample. The weights can be thought as the ‘mass’ associated with
each particle, which helps to decrease the contribution from massive
streams, whose particle number is large but the effective number of
phase-uncorrelated particles can be much smaller.

Note, however, this weighting scheme ignores the internal struc-
ture of streams. In reality, different streams may contribute differ-
ent number of phase-independent particles, since the correlation
strength among stream particles depends on factors such as the in-
fall time and orbit. Particles in streams accreted earlier have longer

time to reach a more phase-mixed status, and hence may contribute
a larger number of phase-independent particles. Moreover, with this
weighting, the SJE still holds only if all streams are independent
populations. This is not necessarily true due to possible correla-
tions among streams mentioned above. So our test is a simplified
approach.

Results are presented in Fig. 5. We only show isolated haloes
for a clean picture, as for binaries the dynamical status is affected
by the massive companion. Compared with the left plot of Fig. 4,
the uncertainty in best-fitting halo parameters (Cbest-fit) is almost the
same, and perhaps only slightly decreased along the major axis of
the error ellipse. This suggests that down-weighting stream particles
has not led to any significant loss of dynamical information. The
statistical errors are inferred from bootstrap sampling as before ex-
cept that each particle is assigned a weight according to its original
stream mass. There is a small change in the shape and direction of
the statistical error ellipse due to the introduction of weights. The
error ellipse of best-fitting parameters also changes correspond-
ingly. Encouragingly, the new statistical errors after weighting are
significantly larger and become comparable to the uncertainty in
best fits for the most spherical bin. Since Cbest-fit = Csteady + Cstat,
this means the systematic caused by phase-correlated particles that
violates the steady state assumption, Csteady, is much reduced. This
can be understood as contributions from phase-correlated particles
are suppressed in bootstrap due to their lower weights, enabling the
bootstrap process to correctly sample the variations from phase-
independent particles, thus capturing the true degree of freedom of
the system.

The test leads support to our argument that phase correlations
in streams violate the steady-state assumption and cause underes-
timates of the statistical errors. But we should note various factors
that can affect the statistical error size. If the internal structure
of streams can be estimated, the statistical error would be smaller.
Moreover, correlations between streams mentioned above, if consid-
ered, would increase the statistical error. Lastly, smoothly accreted
particles might also be phase correlated due to coherent infall along
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Figure 5. Similar to the left plot of Fig. 4, but each particle has been
weighted by the inverse of the total number of particles in the stream to
which it belongs. Streams are identified by tracing particles back to their
progenitors using the HBT+ code of Han et al. (2012, 2018). Magenta ellipses
are the new statistical errors after weighting, whereas green ellipses repeat
the statistical errors from the left plot of Fig. 4.

large cosmic filaments, corresponding to ‘unresolved’ streams. Tak-
ing streams that cannot be resolved into account, the statistical error
size is expected to further increase.

5.2 Stellar tracers in APOSTLE

The large sample of MRII haloes enables us to compare the system-
atic uncertainty with statistical noise and investigate the dependence
on the halo shape. However, dark matter particle tracers are not rep-
resentative of real observations. In the following, we further test
the model performance by using stellar tracers in the APOSTLE
simulations in order to have results more closely related to the real
observations.

Results are presented in Fig. 6. Note the axis range is different
from that in previous figures. One can see a much larger uncer-
tainty in the best-fitting parameters, which is about a factor of 3
in both mass and concentration. The statistical error is again much
smaller than the uncertainty in best-fitting halo parameters. The true
effective number of phase-independent particles is estimated to be
around only 40. However, due to the small sample size, it is diffi-
cult for us to separate contributions from violations of the spherical
assumption, and thus this number of 40 should only be regarded as
a lower limit.

The larger uncertainty and smaller number of phase-independent
particles for stars can be understood in the following way. First
of all, stars in the stellar halo are usually believed to be stripped
from a small number of satellite galaxies, which are hosted by dark
matter subhaloes and are the most bound part of those subhaloes.
Compared with dark matter particles in these subhaloes, stars are
stripped late due to their higher binding energy and thus they have
less time to reach a steady state. This introduces stronger violations
of the steady-state assumption, and it is natural to expect a smaller

Figure 6. Best-fitting halo parameters for galaxies in the APOSTLE sim-
ulations. Points are fits to individual galaxies and the black ellipse marks
the 1σ scatter. The magenta solid square is the average parameter of all
the galaxies. The tiny magenta ellipse in the top right corner shows the 1σ

statistical errors averaged over the entire sample of galaxies. An inner radius
cut of 20 kpc has been adopted to exclude the disc component.

number of phase-independent particles. Moreover, dark matter par-
ticles in the host halo are not only formed through stripped particles
from substructures, but also through smooth accretion of back-
ground particles. These smoothly accreted particles are expected to
be more relaxed and phase independent (Wang et al. 2011). Lastly
but importantly, baryonic physics such as mass ejections produced
by supernova explosions and stellar winds can act to violate the
steady-state assumption of stellar tracers. This process does not
exist in dark-matter-only simulations.

The overall uncertainty in Fig. 6 is in good agreement with Wang
et al. (2017), but the measurements are, on average, slightly biased
towards the upper left corner. Such an apparent overall bias might
be due to the small sample of 24 APOSTLE galaxies. A larger
sample might give results that are less ensemble biased. On the
other hand, it might indicate some systematics. Wang et al. (2017)
have discussed that if using the NFW potential profile to model
the underlying potential in hydrodynamical simulations, the result
would be ensemble biased in such a direction. The bias is more
obvious with more particles in the inner region included. In fact,
Schaye et al. (2015) found that the presence of stars can produce
cuspier inner profiles than the NFW model, and the effect is most
prominent in haloes of masses about 1012–1013 M�. Since we have
excluded particles within 20 kpc, the bias is unlikely to be due to the
deviation from the NFW model in inner regions. It is more likely
due to the deviation from the spherical assumption (see Fig. 4),
as all APOSTLE galaxies are in pairs and the underlying potential
profiles are more likely to be more elongated.

6 D I SCUSSI ON

6.1 Constant or improper β?

In reality, the tangential velocities of tracers are often missing. As
a result, the velocity anisotropy of tracers, β, cannot be measured
directly. To get over this issue, one has to either adopt some fiducial
values of β, or assume a certain parametrized form of β(r), and get
the best-fitting parameters. In this subsection, we first test the effect
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of fixing β in the left side of equation (1) to a given value and using
the NFW model potential to fit the inferred potential gradient. In
the next subsection, we further treat β as a free parameter.

Results are presented in Fig. 7, where we fix β to a few pre-
set values. From β = 0 to larger positive β, the results gradually
change from overestimated M200 (c200) to underestimated M200 (c200)
on average. This can be understood as the degeneracy between β

and d�/dr in equation (1) to maintain the first term on the left
side unchanged, increased β corresponds to decreased d�/dr. The
scatter remains almost unchanged with different β, and is slightly
larger for very large (tangential) values of β in APOSTLE. This
scatter is larger than previous results that used the true β(r) profile.

We also test the case when each halo adopts the average β of
its tracer sample, 〈β(r)〉. The scatter is reduced perpendicular to
the mass-concentration anticorrelation direction, because each halo
adopts its own average β rather than adopting a common pre-set
value. However, the scatter along the anticorrelation direction re-
mains larger than the previous result adopting the true β(r) profile.
Encouragingly, the result becomes mostly ensemble unbiased.

6.2 Radius-independent β as a free parameter?

We now directly fit the measured radial velocity dispersion profiles
from the simulations using equation (7) by treating β as a constant
but free parameter. This is a common approach adopted in the
literature (e.g. Battaglia et al. 2005; Kafle et al. 2014). Note it is
different from the approach in Section 6.1, where β was fixed to an
predefined constant value and the potential gradient inferred from
equation (1) was used for fitting.

Fig. 8 shows results for both isolated MRII haloes and APOSTLE
galaxies. Note we focus on isolated haloes in MRII, because the
radial density profiles of dark matter tracers are affected by the
massive companion halo in binary systems. This makes the integral
of equation (7) hard to converge. The problem does not exist when
stars in APOSTLE are used as tracers, because the radial density
profiles of stellar tracers drop quickly on large distance.

The axis range is larger than all previous figures. The results end
up with much larger uncertainties, which can be as large as one or-
der of magnitude, whereas for APOSTLE galaxies the uncertainty
of β can be two orders of magnitude. The larger scatter in β for
APOSTLE is probably because the velocity anisotropy of stars de-
pends more strongly on radius than that of the dark matter, and thus
modelling β as a free but radius-independent parameter introduces
larger systematic errors.

Compared with the large scatter, the measurements averaged over
all haloes/galaxies are much closer to zero. There are about 0.1 dex
of deviation in the average M200 towards the positive direction and
in the average β towards the negative direction.

β shows strong anticorrelations with both M200 and c200. This
trend has already been revealed in Fig. 7 that increased β corre-
sponds to underestimated M200 and c200. Interestingly, marginal-
izing over β leaves positive correlation between M200 and c200 in
contrast with the anticorrelation found previously. This means the
error is mainly driven by the uncertainty in β: a large deviation in
β from the true value leads to large deviations in both M200 and
c200 along the same direction, resulting in the positive correlation
between M200 and c200. This also leads to the comparable size of
scatter in the best-fitting M200 and c200 parameters between MRII
and APOSTLE. This is in contrast to previous results that APOS-
TLE galaxies show significantly larger scatters than MRII haloes,
when true β profiles and equation (1) are used.

In Figs 3 and 4, not only the average statistical error aligns with
the uncertainty in best fits but also above 98 per cent haloes show an
anticorrelation between M200 and c200 in their individual statistical
error. In contrast to Fig. 3, now the statistical errors show significant
halo-to-halo scatter and no longer align with the uncertainty in best-
fitting halo parameters. Due to the large scatter, it is not straight-
forward to compute the average statistical error, which is hence not
directly shown in Fig. 3.

We compare measurements within and outside the 1σ uncertainty
ellipse in the corresponding parameter plane, and find that for mea-
surements with larger deviations, the radial dependence of β is
stronger. On average, the β profile for measurements outside the 1σ

uncertainty ellipse drops faster at r > 100 kpc by about 30 per cent.
However, the halo-to-halo scatter of the β profile is very large, and
thus we avoid overinterpreting the result.

6.3 Radial range of tracers

We are interested in the question of what will happen if only trac-
ers within a limited radial range are used. This has been briefly
discussed in Wang et al. (2015), where it was found that the total
mass within the half-mass radius of all tracers over the whole radial
range can be well constrained even when only a subsample of tracers
within 60 kpc are used. However, with just five haloes, it is not very
clear to see how M200 is affected. Here, we investigate this using
both MRII and APOSTLE haloes and adopt three different radial
cuts of r < 1

5 R200, r < 1
3 R200, and r < 1

2 R200. We stick to equation
(1) instead of equation (7) in order to separate uncertainties due to
improper modelling of β.

Results are presented in Fig. 9. It is clear that with the reduction in
tracer outer radius, the measurements show larger and larger overall
scatter. The trend is not monotonic for APOSTLE, which might be
due to the small sample size. Interestingly, although the scatter is
significantly increased for r < R200/5, the measurements are still
close to be ensemble unbiased, indicating the SJE and the NFW
model profiles give good extrapolations to larger radii.

7 C O N C L U S I O N S

The SJE has been widely used to probe the mass profile or circular
velocity curve of our MW galaxy. In this study, we apply the SJE to
more than 1000 dark matter haloes in the Millennium-II simulation
and 24 MW-like galaxies in the APOSTLE simulations to investi-
gate the performance of the SJE in recovering the halo potential,
which we model as an NFW profile.

The large sample of haloes and galaxies enables us to test the
model in a statistically robust way. The best-fitting halo mass, M200,
and concentration, c200, suffer from about 25 per cent and 40 per cent
systematic uncertainties when dark matter particles in MRII are used
as dynamical tracers. When star particles in APOSTLE are used as
tracers, the uncertainty can be as large as a factor of 3. These un-
certainties warn us that inferences based on a single case, such as
our MW, are dangerous to make without quoting the large system-
atic errors behind. The uncertainties are in good agreement with
the results of Wang et al. (2017). Although the detailed modelling
approach of the oPDF used by Wang et al. (2017) is different from
SJE, both the oPDF and SJE assume only steady-state tracers and
spherical potentials, and thus it is encouraging to see such a good
agreement. The systematic uncertainty is attributed to violations
of both the steady-state and spherical symmetry assumptions. Any
dynamical model relying on the two assumptions will suffer from a
similar level of uncertainty.
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Figure 7. Best-fitting halo parameters when, instead of using the true β(r) profiles in the simulation, β is assumed to take a fixed values over the whole
radial range. Dots and the 1σ uncertainty ellipses are colour coded by the value of β, indicated in the legend. 〈β(r)〉 is the mean value of β(r) averaged over
20 kpc < r < R200 and varies for individual haloes. Calculations are shown for MRII (left) and APOSTLE (right). Black dots and ellipses in each panel repeat
the results from Fig. 3 and Fig. 6, respectively, to enable direct comparisons.

Figure 8. Best-fitting M200, c200, and β for isolated haloes in MRII (left) and galaxies in APOSTLE (right) using equation (7). The fits are made to the
measured radial velocity dispersion profiles of tracers, while β is treated as a radius-independent free parameter. The black ellipse and magenta square in each
panel mark the 1σ uncertainty and the average measurement.

Haloes with minor-to-major axis ratio less than 0.7 have larger
uncertainties and are, on average, biased towards underestimates
in M200 and overestimates in c200. The latter is due to deviations
from the NFW model, which can be eliminated if the exact density
profiles are used as templates for the fitting (Wang et al. 2017).
Binary haloes on average are more elongated and more disturbed
than isolated haloes and show larger uncertainties in the fitting.

We further verify the conclusion of Wang et al. (2017) that the sta-
tistical errors are underestimated because of phase-correlated struc-
tures such as streams. Assuming the statistical errors and the uncer-

tainty in the best-fitting halo parameters would have the same size
if one properly considered the true number of phase-independent
particles for the most spherical haloes,4 the effective number of
phase-independent tracer particles is estimated to be about 4000 for
dark matter (20 kpc inner cut). For stars, the lower limit is about 40.

4 By choosing the most spherical haloes, the systematic scatter is domi-
nated by violations of the steady-state assumption due to phase-correlated
structures, and thus we are able to isolate the effect due to violations of the
spherical symmetry assumption.
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Figure 9. Best-fitting M200 and c200 when using tracers within a fixed outer radius cut. Each dot represents one halo/galaxy. Measurements are colour coded
by the choice of this outer radius, indicated in the legend. Calculations are shown for MRII (left) and APOSTLE (right).

Such systematic uncertainties cannot be trivially reduced by simply
increasing the total sample size, since they are determined by the in-
trinsic effective number of phase-independent particles rather than
the total number of particles. We can call this the limiting precision
of dynamical modelling of the MW stellar halo.

There are ways to decrease the number of phase-correlated par-
ticles. If one can exclude tracers from the few most massive and
prominent streams, the phase-correlations would be reduced. In our
analysis, we weight particles from the same stream by the inverse of
the total particle number in this stream. This helps to down-weight
the contribution from massive streams and brings closer agreement
in the size of statistical errors and uncertainties in best-fitting halo
parameters.

Finally, we investigate the effect of improper modelling with a
radius-independent β parameter and the effect of only using trac-
ers within a given radial range. Treating β as a radius independent
but free parameter, we end up with much larger uncertainties in
best-fitting halo mass, concentration, and β itself. The uncertainty
can be as large as one order of magnitude but the average measure-
ments are approximately ensemble-unbiased compared with the
large scatter. Underestimating β causes overestimates in M200 and
c200 and vice versa. When β is a free parameter, M200 positively
correlates with c200, as the uncertainty becomes primarily driven
by the error in β. Using tracer particles within a given outer radius
can significantly increase the uncertainty. Nevertheless, even when
only tracers within R200/5 are used, the best-fitting halo parameters
are almost ensemble unbiased, indicating the SJE and the NFW
model profiles give good extrapolations to the outer radius of the
dynamical system.
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