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Abstract

It was shown by Fomin, Shapiro and Thurston [4] that some clus-
ter algebras arise from orientable surfaces. Subsequently, Dupont and
Palesi [2] extended this construction to non-orientable surfaces. We
link this framework to Lam and Pylyavskyy’s Laurent phenomenon
algebras [13], showing that both orientable and non-orientable un-
punctured marked surfaces have an associated LP-algebra.
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1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky with the inten-
tion of understanding a construction of canonical bases by Lustig and Kashi-
wara. Subsequently it has found deep roots in diverse areas of mathematics
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including Poisson geometry, integrable systems, quiver representations, poly-
topes and the theory of surfaces. The cluster algebra itself is a commutative
ring defined by a set of generators called cluster variables. These cluster
variables are grouped into overlapping finite subsets of the same cardinality.
Given a cluster there is an idea of mutation - this broadly consists of obtain-
ing a new cluster by substituting one of the cluster variables. The cluster
structure is the combinatorics describing how the clusters are connected via
the process of mutation. In the theory of cluster algebras the main focus is
usually not the underlying ring, but rather the cluster structure. In prac-
tice the set of cluster variables and clusters are not known from the outset.
Instead one specifies an initial cluster together with an additional piece of
combinatorial data to establish the rules of mutation - in the case of cluster
algebras this data is a skew-symmetrizable matrix. The rest of the clusters
are then obtained by repeated employment of mutation.

Fomin and Zelevinsky [7] proved the remarkable property that every clus-
ter variable in a cluster algebra can be written as a Laurent polynomial in
the initial cluster variables. In turn, they settled Gale and Robinson’s con-
jecture on the integrability of generalised Somos sequences, as well as several
other like-minded conjectures made by Elkies, Kleber and Propp. It is the
unification of cluster algebras with the caterpillar lemma that resolve these
conjectures, but cluster algebras certainly do not capture the generality which
the lemma provides. Aimed at extracting the full potential out of the lemma
Lam and Pylyavskyy concocted their own much broader cluster structure,
which, by design, produces the Laurent phenomenon. As such, they befit-
tingly named this structure the Laurent phenomenon algebra, or LP algebra
for short.

Lam and Pylyavskyy discovered in [13] that these LP algebras encom-
pass cluster algebras, and also appear naturally as coordinate rings of Lie
groups. Subsequently, Gallagher and Stevens [9] demonstrated that their
broken Ptolemy algebra exhibits an LP structure. Revealing yet more con-
nections, in this paper, we link Dupont and Palesi’s quasi-cluster algebras
to LP algebras. Namely, after making a minor tweak to their definition of a
quasi-triangulation, see Definition 4.1 and 4.2, we prove the following:

Theorem 4.20. Let (S,M) be an unpunctured (orientable or non-orientable)
marked surface. Then the LP cluster complex ∆LP (S,M) is isomorphic to
the quasi-arc complex ∆⊗(S,M), and the exchange graph of ALP (S,M) is
isomorphic to E⊗(S,M).

More explicitly, let T be a quasi-triangulation of (S,M) and ΣT its asso-
ciated LP seed. Then in the LP algebra ALP (ΣT ) generated by this seed the
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following correspondence holds:

ALP(ΣT) (S,M)

Cluster variables ←→ Lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips

Dupont and Palesi’s quasi-cluster algebras were an effort of extending
the work of Fomin, Shapiro and Thurston [4] by discovering a cluster struc-
ture on non-orientable surfaces. Their setup has seeds consisting of quasi-
triangulations, so the current method of generating the algebra demands
directly keeping track of flips on the surface. The above theorem places
the structure in the realms of LP algebras, providing a purely combinatorial
description of the mutation process.

The paper is organised as follows. We begin by recalling the construction
of LP algebras and quasi-cluster algebras in chapters 2 and 3, respectively.
Chapter 4 makes up the bulk of the paper and is devoted to linking these two
structures. Firstly we make a small alteration to the definition of a quasi-
cluster algebra as suggested by Pylyavskyy in private communication [16].
This change is in keeping with the flavour of cluster algebras and only alters
the cluster structure - the underlying ring is not affected by it. Next, by
considering the (orientable) double cover of the marked surface (S,M) we
restrict our attention to the quasi-triangulations that lift to triangulations,
and we consider their adjacency quivers. By using the anti-symmetric prop-
erty of these quivers we show that LP mutation agrees with quasi-cluster
mutation when mutating amongst this type of quasi-triangulation. From
here, through a case by case check, we show LP and quasi-cluster mutation
agree everywhere.
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2 Laurent phenomenon algebras

This chapter follows the work of Lam and Pylyavskyy [13].

Let R be a unique factorisation domain over Z and let F be the rational
field in n ≥ 1 independent variables over the field of fractions Frac(R).

A Laurent phenomenon (LP) seed in F is a pair (x,F) satisfying the
following conditions:

• x = {x1, . . . , xn} is a transcendence basis for F over Frac(R).

• F = {F1, . . . , Fn} is a collection of irreducible polynomials inR[x1, . . . , xn]
such that for each i ∈ {1, . . . , n}, Fi /∈ {x1, . . . , xn}; and Fi does not
depend on xi .

Just as in cluster algebras, x is called the cluster and x1, . . . , xn the
cluster variables. F1, . . . , Fn are called the exchange polynomials.

Recall that a cluster algebra seed of geometric type (x, B) consists of
a cluster x = {x1, . . . , xn} and an m × n integer matrix B = (bij) whose
top n× n submatrix is skew-symmetrizable. We can recode this matrix into
binomials defined by FB

j :=
∏

bij>0 x
bij
i +

∏
bij<0 x

−bij
i , so there is a strong

similarity between the definition of cluster algebra and LP seeds. The key
difference being that for LP our exchange relations can be polynomial, not
just binomial. However, unlike in cluster algebras, these polynomials are
required to be irreducible.

To obtain an LP algebra from our seed we imitate the construction of
cluster algebras. Namely, we introduce a notion of mutation of seeds. Our
LP algebra will then be defined as the ring generated by all the cluster
variables we obtain throughout the mutation process. Before we present the
rules of mutation we first need to introduce the idea of normalising exchange
polynomials and clarify notation.

Notation:

• Let F,G be Laurent polynomials in the variables x1, . . . xn. We de-
note by F |xj←G the expression obtained by substituting xj in F by the
Laurent polynomial G.

• If F is a Laurent polynomial involving a variable x then we write x ∈ F .
Likewise, x /∈ F indicates that F does not involve x.
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Definition 2.1. Given F = {F1, . . . , Fn} then for each j ∈ {1, . . . , n} we

define F̂j :=
Fj

x
a1
1 ...xa

j−1
j−1 x

aj+1
j+1 ...xann

where ak ∈ Z≥0 is maximal such that F ak
k

divides Fj|xk←Fk
x

, as an element of R[x1, . . . , xk−1, x
−1, xk+1, . . . , xn]. The

Laurent polynomials of F̂ := {F̂1, . . . , F̂n} are called the normalised ex-
change polynomials .

Example 2.2. Consider the following exchange polynomials in Z[a, b, c]

Fa = b+ 1, Fb = a+ c, Fc = (b+ 1)2 + a2b.

Since a appears in both Fb and Fc then F̂a = Fa (see Lemma 2.4). Similarly,
F̂b = Fb. As c ∈ Fb then b /∈ Fc

F̂c
. However, 2 is the maximal power of Fa that

divides Fc|a←Fa
x

, so F̂c = Fc

a2
.

Definition 2.3. Let (x,F) be a seed and i ∈ {1, . . . , n}. We define a new
seed µi(x,F) := ({x′1, . . . , x′n}, {F ′1, . . . , F ′n}). Here x′j = xj for j 6= i and

x′i = F̂i/xi. The exchange polynomials change as follows:

• If xi /∈ Fj then F ′j := Fj.

• If xi ∈ Fj then F ′j is obtained by following the 3 step process outlined
below.

(Step 1) Define Gj := Fj|
xi←

F̂i|xj←0

x′
i

(Step 2) Define Hj := (Gj with all common factors with F̂i|xj←0 di-

vided out). I.e. we have gcd(Hj, F̂i|xj←0) = 1.

(Step 3) LetM be the unique monic Laurent monomial inR[x′±11 , . . . , x′±1n ]
such that F ′j := HjM ∈ R[x′1, . . . , x

′
n] and is not divisible by any

of the variables x′1, . . . , x
′
n.

The new seed µi(x,F) is called the mutation of (x,F) in direction i.
It is important to note that because of Step 2 the new exchange polynomials
are only defined up to a unit in R.

It is certainly not clear a priori that µi(x,F) will be a valid LP seed
due to the irreducibility requirement of the new exchange polynomials. Fur-
thermore, due to the expression F̂i|xj←0 appearing in Step 1 it may not be
apparent that the process is even well defined. These issues are resolved by
the following two lemmas.
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Lemma 2.4 (Proposition 2.7, [13]). xi ∈ Fj =⇒ xj /∈ Fi

F̂i
. In particular,

xi ∈ Fj implies that F̂i|xj←0 is well defined.

Lemma 2.5 (Proposition 2.15, [13]). F ′j is irreducible in R[x′1, . . . , x
′
n] for

all j ∈ {1, . . . , n}. In particular, µi(x,F) is a valid LP seed.

Example 2.6. We will perform mutation µa at a on the LP seed

({a, b, c}, {Fa = b+ 1, Fb = a+ c, Fc = (b+ 1)2 + a2b}).

Recall from Example 2.2 that F̂a = Fa. Both Fb and Fc depend on a so we
are required to apply the 3 step process on each of them. We shall denote the

new variable a′ := F̂a

a
by d.

Gb = Fb|
a← F̂a|b←0

d

= Fb|a← 1
d

=
1

d
+ c.

Nothing happens at Step 2 since F̂a|b←0 = 1. Multiplying by the monomial d
gives us our new exchange polynomial F ′b = 1 + cd.

Gc = Fc|
a← F̂a|c←0

d

= Fc|a← b+1
d

= (b+ 1)2 +
(b+ 1)2b

d2
.

Following Step 2 we divide Gc by any of its common factors with F̂a|c←0 =
b+ 1. This leaves us with Hc = 1 + b

d2
. Finally, multiplying by the monomial

d2 gives us our new exchange polynomial F ′c = d2 + b.
Hence, our new LP seed is

({d, b, c}, {Fd = b+ 1, Fb = 1 + cd, Fc = d2 + b}).

Recall that mutation in cluster algebras is an involution. In the LP
setting, because mutation of exchange polynomials is only defined up to a
unit in R, it is clear we can’t say precisely the same thing for LP mutation.
Nevertheless, we do have the following analogue.

Proposition 2.7 (Proposition 2.16, [13]). If (x′,F′) is obtained from (x,F)
by mutation at i, then (x,F) can be obtained from (x′,F′) by mutation at i.
It is in this sense that LP mutation is an involution.

Definition 2.8. A Laurent phenomenon algebra (A,S) consists of a
collection of seeds S, and a subring A ⊂ F that is generated by all the
cluster variables appearing in the seeds of S. The collection of seeds must
be connected and closed under mutation. More formally, S is required to
satisfy the following conditions:
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• Any two seeds in S are connected by a sequence of LP mutations.

• ∀ (x,F) ∈ S ∀i ∈ {1, . . . , n} there is a seed (x′,F′) ∈ S that can be
obtained by mutating (x,F) at i.

Definition 2.9 (Subsection 3.6, [13]). The cluster complex ∆LP (A) of an
LP algebra A is the simplicial complex with the ground set being the cluster
variables of A, and the maximal simplices being the clusters.

Definition 2.10 (Subsection 3.6, [13]). The exchange graph of an LP
algebra A is the graph whose vertices correspond to the clusters of A. Two
vertices are connected by an edge if their corresponding clusters differ by a
single mutation.

3 Quasi-cluster algebras

This chapter follows the work of Dupont and Palesi [2].

Let S be a compact 2-dimensional manifold with boundary ∂S 6= ∅. Fix
a finite set M of marked points in ∂S such that each boundary component
contains at least one marked point. The tuple (S,M) is called a bordered
surface. We wish to exclude cases where (S,M) does not admit a triangu-
lation. As such, we do not allow (S,M) to be a monogon, digon or a triangle.

Remark: Note that the definition is almost identical to that given in [4].
The differences here are that punctures are forbidden, and now S can be
non-orientable. We omit punctured surfaces from the outset because their
associated (quasi)-cluster structure has no LP structure. We conclude Chap-
ter 4 by discussing why this is the case.

To imitate the construction of cluster algebras arising from orientable
surfaces we must first agree on which curves will form our notion of ’trian-
gulation’.

Definition 3.1. An arc of (S,M) is a simple curve in S connecting two
(not necessarily distinct) marked points of M .

Definition 3.2. A simple closed curve in S is said to be two-sided if it
admits a regular neighbourhood which is orientable. Otherwise, it is said to
be one-sided.

Definition 3.3. A quasi-arc is either an arc or a one-sided closed curve.
Throughout this paper we shall always consider quasi-arcs up to isotopy. Let
A⊗(S,M) denote the set of all quasi-arcs (considered up to isotopy).
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Recall that a closed non-orientable surface is homeomorphic to the con-
nected sum of k projective planes RP 2. Such a surface is said to have (non-
orientable) genus k. A cross-cap is a cylinder where antipodal points on
one of the boundary components are identified. In particular, note that a
cross-cap is homeomorphic to RP 2 with an open disk removed. An illus-
tration of a cross cap in given in Figure 1 - throughout this paper we shall
always represent it in this way. For pictorial convenience we use the following
alternative description: A compact non-orientable surface of genus k (with
boundary) is homeomorphic to a sphere where more than k open disks are
removed, and k of them have been replaced with cross-caps.

Figure 1: A picture of a crosscap together with a one-sided closed curve.

Definition 3.4. Two quasi-arcs of (S,M) are called compatible if there
exists representatives in their respective isotopy classes that do not intersect
in the interior of S.

Definition 3.5. A quasi-triangulation of (S,M) is a maximal collection
of pairwise compatible quasi-arcs of (S,M).

Remark: After putting a hyperbolic metric on (S,M) we need only ever con-
sider the geodesic representatives of quasi-arcs due to the fact that quasi-arcs
are compatible if and only if their geodesic representatives do not intersect.

Proposition 3.6 (Proposition 2.4, [2]). Let T be a quasi-triangulation of
(S,M). Then for any γ ∈ T there exists a unique γ′ ∈ A⊗(S,M) such that
γ′ 6= γ and µγ(T ) := T \ {γ} ∪ γ′ is a quasi-triangulation.

Here µγ(T ) is called the quasi-mutation of T in direction γ, and γ′ is
called the flip of γ with respect to T. The flip graph of a bordered surface
(S,M) is the graph with vertices corresponding to quasi-triangulations and
edges corresponding to flips.

Proposition 3.7 (Prop. 2.12, [2]). The flip graph of (S,M) is connected.
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Note that Propositions 3.6 and 3.7 tell us that the number of quasi-arcs
in a quasi-triangulation is an invariant of (S,M) - this number is called the
rank of (S,M).

We now introduce the notion of a seed of a bordered surface (S,M).

Quasi-seeds and mutation.

Suppose (S,M) is a bordered surface of rank n and let b1, . . . , bm consist
of all the boundary segments of (S,M). Denote F as the rational field of
functions in n+m independent variables over Q.

A quasi-seed of a bordered surface (S,M) in F is a pair (x, T ) such
that:

• T is a quasi-triangulation of (S,M).

• x := {xγ|γ ∈ T} is algebraically independent in F over ZP := Z[xb1 , . . . , xbm ].

We call x the quasi-cluster of (x, T ) and the variables themselves are
called quasi-cluster variables.

To define a (quasi)-cluster structure on (S,M) we shall consider the deco-
rated Teichmüller space, T̃ (S,M), as introduced by Penner [15]. An element
of T̃ (S,M) consists of a complete finite-area hyperbolic structure of constant
curvature −1 on S \M together with a collection of horocycles, one around
each marked point. Fixing a decorated hyperbolic structure σ ∈ T̃ (S,M),
Dupont and Palesi [2] defined the notion of the hyperbolic length, λσ(γ), of a
quasi-arc γ in (S,M). More explicitly, this measures the length of γ between
the horocycles at its endpoints. The lambda length, λ(γ), of a quasi-arc γ is
the evaluation map on T̃ (S,M) sending decorated hyperbolic structures σ
to λσ(γ). They proved the following result about lambda lengths in a fixed
quasi-triangulation.

Theorem 3.8 (Theorem 4.2, [2]). For any quasi-triangulation T with quasi
and boundary arcs γ1, . . . , γn+b there exists a homeomorphism

ΛT : T̃ (S,M) −→ Rn+b
>0

σ 7→ (λσ(γ1), . . . , λσ(γn+b))
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As a consequence they show that the lambda lengths of quasi-arcs and
boundary arcs in a triangulation can be viewed as algebraically independent
variables and we have a canonical isomorphism

Q({λ(γ)|γ ∈ T ∪B(S,M)}) ∼= F .

They define a (quasi)-cluster structure by calculating how these lambda
lengths are related under flips. We provide these precise relations below in
Definition 3.9. Note that instead of working with lambda lengths we shall
instead always consider their corresponding elements in F .

Definition 3.9. Given γ ∈ T we define quasi-mutation of (x, T ) in di-
rection γ to be the pair µγ(x, T ) := (x′, T ′) where T ′ := µγ(T ) and
x′ := x \ {xγ} ∪ {xγ′}. The new variable xγ′ depends on the combinato-
rial type of flip being performed. We list below the possible flips and their
corresponding variable exchange relations, which were computed in [2].

(1). γ is an arc separating two different triangles.

γ γ′

b

c

d

a

b

c

d

a

xγxγ′ = xaxc + xbxd

(2). γ is enclosed by an arc a bounding a Möbius strip with one marked
point.

γ

a

γ′

a

xγxγ′ = xa

(3). γ encloses a one-sided closed curve c.
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γ
γ′

ba

c

c
ba

xγxγ′ = (xa + xb)
2 + x2cxaxb

Let (x, T ) be a seed of (S,M). If we label the quasi-cluster variables of x
1, . . . , n then we can consider the labelled n-regular tree Tn generated by this
seed through mutations. Each vertex in Tn has n incident vertices labelled
1, . . . , n. Vertices represent seeds and the edges correspond to mutation. In
particular, the label of the edge indicates which direction the seed is being
mutated in.

Let X be the set of all quasi-cluster variables appearing in the seeds of
Tn. A(x,T )(S,M) := ZP[X ] is the quasi-cluster algebra of the seed (x, T ).

The definition of a quasi-cluster algebra depends on the choice of the
initial seed. However, if we choose a different initial seed the resulting quasi-
cluster algebra will be isomorphic to A(x,T )(S,M). As such, it makes sense
to talk about the quasi-cluster algebra of (S,M).

4 Connecting LP algebras and quasi-cluster

algebras

4.1 Adjusting the definition of quasi-cluster algebras.

Recall that an LP seed must consist of irreducible polynomials. As a
consequence it can be seen that, in their current form, quasi-cluster algebras
can not be realised as LP algebras.
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aa′ = b(x + y)

a′
yx

b

yx a

b

Figure 2: An example of a quasi-triangulation with a reducible exchange
polynomial.

Figure 2 shows that in the triangulation on the left the exchange poly-
nomial associated to the arc a is Fa = b(x + y), which is not irreducible in
Z[x, y, a, b]. To establish a connection between quasi-cluster algebras and LP
algebras we therefore propose a small change to the quasi-arcs considered and
to their compatibility relations. This alteration was suggested by Pylyavskyy
in private communication [16]. We shall see that the new definition is very
natural - it mimics how the problem of punctured surfaces was resolved in [4]
via tagged triangulations.

Note that in Figure 2 we are abusing notation by denoting the variable
corresponding to an arc, by the arc itself. We shall adopt this practice from
here onwards.

Definition 4.1. [New definition of quasi-arcs]. A quasi-arc is a one-sided
closed curve or an arc that does not bound a Möbius strip, M1, with one
marked point on the boundary.

To each arc γ bounding a Möbius strip with one marked point, Mγ
1 , we

associate the two quasi-arcs of Mγ
1 . Namely, we associate the arc αγ and the

one-sided curve βγ compatible with Mγ
1 , see Figure 3.

γ

βγ

αγ

Figure 3: The unique quasi-arcs αγ and βγ compatible with the Möbius strip,
Mγ

1 , cut out by an arc γ.
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Definition 4.2. [New definition of compatibility]. We say that two quasi
arcs α, β are compatible if they don’t intersect or if α and β are the two
quasi-arcs of Mγ

1 for some arc γ. I.e, {α, β} = {αγ, βγ} for some arc γ
bounding a Möbius strip Mγ

1 as in Figure 3.

As is usual, a quasi-triangulation is a maximal collection of pair-
wise compatible quasi-arcs. It is easily seen that under these new defi-
nitions Proposition 3.6 remains true. Namely, every quasi-arc in a quasi-
triangulation can be uniquely flipped.

To get a cluster structure on this new definition we imitate precisely what
is done in Section 3 by describing how the lengths of quasi-arcs are related.
We list below the possible types of flips and their corresponding exchange
relations. Note that these relations can be directly obtained from those given
in Section 3.

(1). γ is an arc separating two different triangles which doesn’t flip to a
one-sided closed curve.

γ γ′

b

c

d

a

b

c

d

a

γγ′ = ac + bd

(2). γ is an arc that flips to a one-sided closed curve, or vice verca.

γγ′ = a + b

γ′
ba

c

ba γ

c

(3). γ is an arc intersecting a one-sided close curve c.
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γ

ba
c γ′

ba

c

γγ′ = (a+b)2+c2ab
c2

Recall that for our old version of quasi-cluster algebras Figure 2 showed
that for any bordered non-orientable surface (S,M) (of rank greater than 1)
there exists quasi-triangulations containing reducible exchange polynomials.
However, now, instead of γ flipping to an arc bounding M1, it flips to a one-
side closed curve. As such, the old exchange polynomial Fγ = b(x + y) has
changed to the irreducible polynomial Fγ = x+ y.

Definition 4.3. The quasi-arc complex ∆⊗(S,M) of a bordered surface
(S,M) is the simplicial complex with the ground set being the quasi-arcs of
(S,M), and the maximal simplices being the quasi-triangulations.

Definition 4.4. The exchange graph E⊗(S,M) of a bordered surface
(S,M) is the graph whose vertices correspond to the quasi-triangulations
of (S,M). Two vertices are connected by an edge if their corresponding
quasi-triangulations differ by a single flip.

We shall now restrict our attention to quasi-triangulations not containing
any one-sided closed curves. Such a quasi-triangulation will be referred to as
a triangulation. Furthermore, if γ is an arc in a triangulation T and µγ(T )
is also a triangulation then we call γ triangulation-mutable, or t-mutable
for short.

4.2 The double cover and anti-symmetric quivers.

Let (S,M) be a bordered surface. We construct an orientable double
cover of (S,M) as follows. First consider the orientable surface S̃ obtained
by replacing each cross-cap with a cylinder, see Figure 4.
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. . . . . .

. . . . . .

S S̃

. . . . . .

. . . . . .

Figure 4: Here we draw the non-orientable surface S and the surface S̃
obtained by replacing each cross-cap with a cylinder. Note that the small
circles represent boundary components.

We obtain the orientable double cover (S,M) of (S,M) by taking two
copies of S̃ and glueing each newly joined cylinder in the first copy, with
a half twist, to the corresponding cylinder in the second copy. I.e, we are
glueing each cylinder in the first copy along their antipodal points in the
second copy, see Figure 5. If S is orientable then the double cover is two
disjoint copies of (S,M). In this case we endow the two disjoint copies
with alternate orientations - this is to ensure its adjacency quiver is anti-
symmetric, see Definition 4.6.

. . . . . .

. . . . . .

Glue along half
twist to obtain
double cover

(S,M)

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Figure 5: We glue two copies of S̃ along the boundaries of the newly adjoined
cylinders.

Due to Dupont and Palesi we have the following proposition.

Proposition 4.5 ( [2]). Let T be a triangulation of (S,M). Then T lifts to
a triangulation T of the orientable double cover (S,M). Moreover, let i be a
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t-mutable arc in T and, by abuse of notation, denote by i and ĩ the two arcs
i lifts to in T . Then µi ◦ µĩ(T ) = µĩ ◦ µi(T ) = µi(T ).

Furthermore, note that if i and j are arcs of a triangle ∆ in T , and
j follows i in ∆ under the agreed orientation of (S,M), then ĩ follows j̃
in the twin triangle ∆̃. Hence in the quiver QT associated to T we have

that i → j ⇐⇒ j̃ → ĩ. Here we adopt the notation that ˜̃i = i for any
i ∈ {1, . . . , n}, and we shall use it throughout this paper.

Finally, note that there is no arrow i→ ĩ in QT as this would imply the
existence of an anti-self-folded triangle in T , which is forbidden under our
new definition, see Figure 6.

i

ĩ

ĩ

ĩi

Figure 6: An anti-self-folded triangle; which is forbidden by the new defini-
tion.

These two observations motivate the following definition.

Definition 4.6. A quiver Q on vertices 1, . . . , n, 1̃, . . . , ñ is called anti-
symmetric if:

• For any i, j ∈ {1, . . . , n, 1̃, . . . , ñ} we have i→ j ⇐⇒ j̃ → ĩ.

• For any i ∈ {1, . . . , n, 1̃, . . . , ñ} there are no arrows i→ ĩ.

4.3 Mutation of anti-symmetric quivers as LP muta-
tion.

We shall now briefly leave the environment of triangulations and move to
the more general setting of anti-symmetric quivers. In particular, we shall
establish a connection between mutation of these quivers and LP-mutation.
Recall that a quiver Q can be equivalently encoded as a skew-symmetric
matrix B = (bij). In what follows we shall interchange between the two
viewpoints.

Given an anti-symmetric quiver Q = (bij) we may assign an exchange
polynomial to each pair of vertices (j, j̃) of Q.
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FQ
j :=

∏
bij+bĩj>0

x
bij+bĩj
i +

∏
bij+bĩj<0

x
−(bij+bĩj)
i

As a result we arrive at the seed ΣQ := ({x1, . . . , xn}, {FQ
1 , . . . , F

Q
n })

associated to Q. Of course, this may not be a valid LP seed due to the
requirement of irreducibility. We won’t always get irreducibility, but, as
the proposition below demonstrates, there are plenty of cases where Q does
provide a valid LP seed.

Proposition 4.7. If gcd(b1j + b1̃j, . . . , bnj + bñj) = 1 then Fj is irreducible
in Z[x1, . . . , xn].

Proof. The proof is identical to that of Lemma 4.1 in [13].

Note that if we want double mutation of our quiver to correspond to LP
mutation then it is necessary for us to have F̂i = Fi ∀i ∈ {1, . . . , n}. This
is because the exchange polynomials of the arcs in the triangulations are
polynomials (not strictly Laurent polynomials), so the normalisation process
needs to be vacuous.

Proposition 4.8. Suppose ΣQ is a valid LP seed and F̂i = Fi ∀i ∈ {1, . . . , n}.
Let i be a vertex in Q such that there is no path a → i → ã for any vertex
a ∈ {1, . . . , n, 1̃, . . . , ñ}. Then mutation at i and ĩ in Q corresponds to LP

mutation of ΣQ at i. I.e, ({x1, . . . , F
Q
i

xi
, . . . , xn}, {F µi◦µĩ(Q)

1 , . . . , F
µi◦µĩ(Q)
n }) =

µi({x1, . . . , xn}, {FQ
1 , . . . , F

Q
n }).

Proof. Let j ∈ {1, . . . , n}. We will split the proof into two parts depending
on whether xi /∈ FQ

j or xi ∈ FQ
j .

Case 1: xi /∈ FQ
j .

If xi /∈ FQ
j then LP mutation at i does not alter the exchange polynomial

FQ
j . I.e, (FQ

j )′ = FQ
j . Therefore for quiver mutation to coincide with LP

mutation we require that F
µi◦µĩ(Q)
j = FQ

j . It suffices to show that

b′kj + b′
k̃j

:= (µi ◦ µĩ(Q))kj + (µi ◦ µĩ(Q))k̃j = bkj + bk̃j ∀k ∈ {1, . . . , n}.

Below we check this holds when k = i and k 6= i. Note that xi /∈ FQ
j =⇒

bij + bĩj = 0.

• (k = i) b′ij + b′
ĩj

= −bij − bĩj = 0 = bij + bĩj.
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• (k 6= i) Firstly note that because mutation at i and ĩ are independent
of one another we have

b′kj := (µi ◦ µĩ(Q))kj = (µi(Q))kj + (µĩ(Q))kj − bkj =

bkj + [−bki]+bij + bki[bij]+ + [−bkĩ]+bĩj + bkĩ[bĩj]+.

Now, by applying the fact that bij = −bĩj we obtain the following.

b′kj + b′
k̃j

= bkj + bk̃j + bij([−bki]+ − [−bkĩ]+ + [−bk̃i]+ − [−bk̃ĩ]+)+

[−bij]+(bkĩ + bk̃ĩ) + [bij]+(bki + bk̃i)
by anti-symmetry

=

bkj + bk̃j + bij([−bki]+ − [bk̃i]+ + [−bk̃i]+ − [bki]+)+

[−bij]+(−bk̃i − bki) + [bij]+(bki + bk̃i).

Using the fact that [a]+ − [−a]+ = a we see that

b′kj + b′
k̃j

= bkj + bk̃j.

So indeed, F
µi◦µĩ(Q)
j = FQ

j = (FQ
j )′ in the case xi /∈ FQ

j .

Case 2: xi ∈ FQ
j .

If xi ∈ FQ
j then w.l.o.g we shall assume bij + bĩj > 0 and bij > 0. By

skew symmetry we have bji < 0. Also, bj̃i ≤ 0 follows from bij > 0 and the
assumption that there is no path a→ i→ ã. From this we get the following:

FQ
i |xj←0 =

∏
bki+bk̃i>0

x
bki+bk̃i
k

From here we see (Step 1) of LP mutation gives us:

GQ
j =

( ∏
bkj+b

k̃j
>0

k 6=i

x
bkj+bk̃j
k

)(∏
bki+bk̃i>0 x

bki+bk̃i
k

x′i

)bij+bĩj

+
∏

bkj+bk̃j<0

x
−(bkj+bk̃j)
k
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We make the observation that since FQ
i |xj←0 is a monomial then (Step

2) of LP mutation can be incorporated into (Step 3). Therefore to obtain
(FQ

j )′ we are left with the task of finding a monic Laurent monomial M

such that (FQ
j )′ := MGQ

j ∈ Z[x′1, . . . , x
′
n] and is not divisible by any x′k. We

shall determine the exponents of the variables xk (k 6= i) and x′i in (FQ
j )′ by

splitting the task into four subcases. For each case we check the exponent

agrees with the one in the exchange polynomial F
µĩ◦µi(Q)
j obtained via quiver

mutation.

Subcase 1: bki + bk̃i ≤ 0.

This means there is no xk term in FQ
i |xj←0. So the xk exponent remains

unchanged from LP mutation. That being so, for LP mutation to agree with
double quiver mutation we require that b′kj+b

′
k̃j

= bkj+bk̃j. Since bki+bk̃i ≤ 0

and there is no path a→ i→ ã then bki, bk̃i ≤ 0. So b′kj = bkj, b
′
k̃j

= bk̃j, and

we therefore have agreement.

Subcase 2: bki + bk̃i > 0 and bkj + bk̃j ≥ 0.

This means we get an xk term in the first monomial of GQ
j , and it has

exponent bkj + bk̃j + (bki + bk̃i)(bij + bĩj). To determine what happens with
quiver mutation recall our assumption that bij > 0. Since there is no path
a → i → ã for any vertex a of Q, then bij, bij̃ ≥ 0. Likewise, because
bki + bk̃i > 0, we get bki, bk̃i ≥ 0. Hence for quiver mutation we obtain

b′kj = bkj + bkibij − bjĩbĩk
b′
k̃j

= bk̃j + bk̃ibij − bjĩbĩk̃.
Using anti-symmetry and skew-symmetry we see

b′kj + b′
k̃j

= bkj + bk̃j + (bki + bk̃i)(bij + bĩj) > 0

.
Consequently, LP and quiver mutation coincide for subcase 2.

Subcase 3: bki + bk̃i > 0 and bkj + bk̃j ≤ 0.

This means there will be an xk term in both monomials of GQ
j and after

dividing out by an appropriate power of xk, we are left with xk having expo-
nent bkj + bk̃j + (bki + bk̃i)(bij + bĩj) in (FQ

j )′. The variable xk appears in the

left or right monomial of (FQ
j )′ depending on whether (bki + bk̃i)(bij + bĩj) ≥
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−(bkj + bk̃j) or (bki + bk̃i)(bij + bĩj) ≤ −(bkj + bk̃j), respectively. Just as in
case 2 we observe that double mutating the quiver Q yields

b′kj + b′
k̃j

= bkj + bk̃j + (bki + bk̃i)(bij + bĩj).

Thus showing LP mutation agrees with double quiver mutation for subcase 3.

Subcase 4: The variable x′i.

In (FQ
j )′ the variable x′i appears in the right monomial with exponent

bij + bĩj. This agrees with quiver mutation since b′ij + b′
ĩj

= −(bij + bĩj) < 0.

Therefore F
µi◦µĩ(Q)
j = (FQ

j )′ in the case xi ∈ FQ
j . This concludes the

proof of the proposition.

4.4 Triangulations and their LP structure.

We turn our attention back to triangulations of (S,M) and show they slot
into an LP structure. We achieve this by proving the adjacency quiver QT

satisfies the conditions demanded in Proposition 4.8, for each triangulation
T of (S,M). Of course, we must also show that the exchange polynomials

F
QT
1 , . . . , F

QT
n are the exchange polynomials of their corresponding arcs in T ;

this is settled by Lemma 4.10. Note that, for triangulations of (S,M) to slot
into an LP structure, Proposition 4.8 requires that for each triangulation T
of our bordered surface we have:

• If i is a t-mutable arc in T then there is no path k → i→ k̃ in QT for
any vertex k.

• The exchange polynomials F
QT
1 , . . . , F

QT
n associated to T are irreducible.

• FQT
i = F̂

QT
i for each exchange polynomial associated to T .

The first two conditions are verified by Lemma 4.9 and Lemma 4.11,
respectively. The majority of this subsection is spent proving the third con-
dition. We achieve this by first showing the property is equivalent to the
exchange polynomials of T being distinct, see Lemma 4.12. From here, via
Lemmas 4.13, 4.15, 4.16, 4.17, 4.18, we discover all bordered surfaces that
emit triangulations producing non-distinct exchange polynomials. In the in-
terest of maximal generality we allow the possibility that boundary segments
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do not receive variables; in which case the boundary segment is instead al-
located the constant value 1, and the corresponding vertex in the adjacency
quiver is deleted.

Lemma 4.9. For a triangulation T of (S,M) there are vertices i, k of QT

with k → i → k̃ if and only if T contains the Möbius strip with two marked
points, M2, with i being the non t-mutable arc of M2. See Figure 8 below.

Proof. To prove this lemma we reconstruct (part of) the surface (S,M) using
blocks. Namely, we use the quiver Q to determine the adjacency of triangles
in T . By anti-symmetry note that k → i → k̃ implies there is the path
i ← k → ĩ. As a consequence there must be the quadrilateral (i, a, ĩ, b̃)
with diagonal k for some a and b̃ not equal to {i, ĩ, k, k̃}, see Figure 7. By
antisymmetry we also have the quadrilateral (b, i, ã, ĩ) with diagonal k̃.

↔i k ĩ

k

ĩ

i

a

b̃

Figure 7: If i← k → ĩ is a sub quiver of an adjacency quiver then the surface
must have the local configuration shown on the right.

Glueing these two quadrilaterals together, according to their labels, yields
the cylinder shown in Figure 8. Taking the Z2-quotient of this leaves us with
the Möbius strip M2 which is also depicted in Figure 8.

←→ ←→

a b

ã b̃

i

ĩ

k

k̃

ba

i

k̃ k

ĩ

b̃ ã

i

k
a b

Figure 8: A triangulation of the Möbius strip M2; its lifted triangulation;
and the adjacency quiver of its lifted triangulation.
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Lemma 4.10. Let T be a triangulation of (S,M) and QT the corresponding
anti-symmetric quiver arising from the lifted triangulation T . Then the ex-

change polynomials {FQT
1 , . . . , F

QT
n } coincide with the exchange polynomials

of the arcs in T they are associated with.

Proof. Let (i, ĩ) be a twin pair of vertices in QT and consider the associ-

ated exchange polynomial F
QT
i . If there is no path k → i → k̃ for any

vertex k in QT then, by Lemma 4.9, all arcs will flip to arcs. Moreover,

F
QT
i :=

∏
bki>0 x

bki
k +

∏
bki<0 x

−bki
k (with the identification xk = xk̃) so from

the standard theory of cluster algebras from surfaces we see F
QT
i describes

how the length of the arc i changes under a flip. If there is a path k → i→ k̃
then, by Lemma 4.9, locally the arc i will be contained in the triangula-
tion of M2 shown in Figure 8. In particular, it has the exchange polynomial

F
QT
i = xa+xb which does indeed describe how the length of the arc i changes

under a flip.

For a seed coming from an anti-symmetric quiverQ we noted that the seed
may not be a valid LP seed due to potential reducibility of the exchange poly-
nomials. However, as shown by the following lemma, for an anti-symmetric
quiver arising from a triangulation of (S,M) we always get irreducibility.

Lemma 4.11. Let T be a triangulation of (S,M). Then F
QT
j is irreducible in

ZP[x1, . . . , xn] for any j. In particular, ΣQT
:= ({x1, . . . , xn}, {FQT

1 , . . . , F
QT
n })

is a valid LP seed.

Proof. The quiver QT coming from the lifted triangulation T can have at
most 2 ingoing and 2 outgoing arrows at any one vertex. Hence, gcd(b1j +
b1̃j, . . . , bmj + bm̃j) ∈ {1, 2,∞}.

If gcd is 1 then Proposition 4.7 yields the irreducibility of F
QT
j .

If gcd is ∞ then bij + bĩj = 0 for all i. So F
QT
j = 2, which is irreducible.

If gcd is 2 then due to there being at most 2 ingoing and 2 outgoing

arrows at j the only possibilities for F
QT
j are x2i + 1 and x2i + x2k, which are

both irreducible.

Recall that the goal of this subsection has been to show triangulations fit
into an LP structure by invoking Proposition 4.8. To accomplish this we are
left to prove that F̂i = Fi for each Fi in ΣQT

. By the following lemma we
may equivalently prove that the exchange polynomials in each seed ΣQT

are
distinct.

Lemma 4.12. Let T be a triangulation, ΣQT
its associated LP seed, and

i ∈ {1, . . . , n}. Then F̂i = Fi if and only if Fi 6= Fj for any j 6= i.
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Proof. If F̂i = Fi then, by definition of normalisation, for any j 6= i we
have Fj does not divide Fi|xj←Fj

x

. Hence Fj does not divide Fi and so, in

particular, Fi 6= Fj.

Conversely, if F̂i 6= Fi then there exists j 6= i such that Fj divides Fi|xj←Fj
x

,

which forces xi /∈ Fj. Suppose for a contradiction that xj ∈ Fi. This implies
the existence of a path i → j → ĩ. By Proposition 4.9 and Figure 8 we
see Fj = xa + xb and Fi = x2j + xaxb. However, this contradicts Fj dividing

Fi|xj←Fj
x

=
F 2
j

x2
+xaxb. Hence xj /∈ Fi and Fj divides Fi|xj←Fj

x

= Fi. Moreover,

since Fi is irreducible then Fi = Fj.

We now list several lemmas to help discover the heterogeneity of the
exchange polynomials in ΣQT

.

Lemma 4.13. If Fi = Fj then there are no arrows between i and j in Q.

Proof. Since xi /∈ Fi then xi /∈ Fj. As such, bij + bĩj = 0. Likewise, bji+ bj̃i =
0. Finally, since bij = −bji and bĩj = bj̃i, then, as required, bij = 0.

Definition 4.14. Let Q be a quiver and V a set of vertices of Q. We say
R is the V -restriction of Q if R consists of all arrows of Q with a head or
tail in V .

Lemma 4.15. Suppose R is the {i, j}-restriction of Q with FQ
i = FQ

j . Then
the {i, j}-restriction of µĩ ◦ µi(R) is the {i, j}-restriction of µĩ ◦ µi(Q) where

F
µĩ◦µi(Q)
i = F

µĩ◦µi(Q)
j . In particular, if R is the {i, j}-restriction of a quiver

arising from (S,M) with exchange polynomials Fi = Fj, then so is the {i,j}-
restriction of µĩ ◦ µi(R).

Proof. By Lemma 4.13 there are no arrows between i and j so performing
mutation at i and ĩ in R and taking the {i, j}-restriction is the same as
reversing all arrows at i and ĩ in R. Hence the {i, j}-restriction of µĩ ◦ µi(R)
is the {i, j}-restriction of µĩ ◦µi(Q). Moreover, the new ith and jth exchange
polynomials remain unchanged, so are still equal.

Lemma 4.16. Suppose Fi = Fj for some i 6= j; xk /∈ Fi for some k; and i
and k are adjacent arcs in T . Then (S,M) is either the Möbius strip M4 or
the Klein bottle with one boundary component and two marked points, where
neither surface has been allocated boundary variables.
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Proof. Under the conditions of the lemma, before cancelling 2-cycles, we
must have one of the following subquivers in our adjacency quiver Q:

i k

(1)

ik k̃

(2)

If the subquiver (1) is in Q then we must have one of the configurations
shown in Figure 9. In either situation, after gluing, we obtain a punctured
surface. Since we have forbidden punctures then this subquiver cannot arise
from any of our triangulations.

i

k

i

i

k

ior k

i

kor

Figure 9: The three configurations which produce the subquiver (1).

If the subquiver (2) is in Q then by Lemma 4.9 we must have the following
local picture shown on the left of Figure 10. Note that b cannot equal a or
ã because this would give rise to a punctured surface - the twice punctured
projective space RP 2 or the once punctured Klein bottle, respectively.

Moreover, a and b cannot both be boundary segments as then there is
no label j in the triangulation. Without loss of generality, suppose a is not
a boundary component. As a consequence, there is an arrow a → i. Since
Fi = Fj, using Lemma 4.15, we may assume the existence of an arrow a→ j.
Hence we arrive at the picture shown on the right of Figure 10.

ba

i

k̃ k

ĩ

b̃ ã

j

ba

i

k̃ k

ĩ

b̃ ã

Figure 10: On the right we illustrate the effect on the local configuration of
the surface when there is an arrow a→ j in Q.
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If b is doesn’t receive a variable then there is no arrow i→ b, and we are
in one of two possible scenarios: There is a path m̃ → j → m for some m,
or j is connected to only a. If there is a path m̃ → j → m then by Lemma
4.9 our surface must have the configuration shown on the left of Figure 11.
Taking the Z2-quotient of this yields the Klein bottle with one boundary
component and 2 marked points. Alternatively, if j is connected to only a
then the arc j is the diagonal of a square with three unlabelled boundary
segments and fourth side a. And we obtain the surface shown on the right
of Figure 11. Taking the Z2-quotient of this yields the Möbius strip with 4
marked points.

ba

i

k̃ k

ĩ

b̃ ã

j

j̃m̃ m

ã

ba

i

k̃ k

ĩ

b̃ ã

j

Figure 11: We depict the resulting surfaces when there is either: a path
m̃→ j → m; or j is connected only to the vertex a.

If b does receive a variable then there is an arrow i → b in Q. As such,
since Fi = Fj, there is either an arrow j → b or an arrow j → b̃. However,
an arrow j → b gives rise to a punctured surface, which is forbidden. An
arrow j → b̃ gives rise to the configurations shown in Figure 12. In both
cases, taking the Z2-quotient again yields the Klein bottle with one boundary
component and two marked points.

ba

i

k̃ k

ĩ

b̃ ã

j

b̃

ba

i

k̃ k

ĩ

b̃ ã

j

b̃

Figure 12: The two possibilities of the surface when there is an arrow j → b̃.
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Lemma 4.17. If Fi = Fj then the quiver Q cannot contain either of the

subquivers k̃ ← i→ k or i
2−→ k, for any vertex k of Q.

Proof. If k̃ ← i → k is a subquiver of Q then antisymmetry implies the
existence of the path i→ k → ĩ. Therefore, by Lemma 4.9, we have the sub
triangulation shown in Figure 13. Since Fi = Fj then there must be an arrow
j → k or j → k̃. However, any triangle with side k or k̃ also has a side i or ĩ.
This forces an arrow between i and j or i and j̃, contradicting Lemma 4.13.

If i
2−→ k is a subquiver of Q then since Fi = Fj, without loss of generality,

i
2−→ k

2←− j is a subquiver of Q. However, this contradicts the fact that
any vertex in Q can have at most 2 incoming arrows.

k

ĩ i

k̃

b̃ ã

Figure 13: The local configuration of the surface when there is a path k̃ ←
i→ k.

Lemma 4.18. Let T be a triangulation and ΣQT
its associated LP seed.

Then F̂i = Fi for any i ∈ {1, . . . , n}.

Proof. By Lemma 4.12 it suffices to show that Fj 6= Fi for any j 6= i. Now,
if Fi = Fj for some j, by Lemma 4.13 we know there are no arrows between
i and j. Due to Lemma 4.17 we also know there are no arrows of weight
greater than 1 in the {i, j}-restriction of Q. Furthermore, by Lemma 4.16
and Lemma 4.17 if i (or j) is connected to both k and k̃ for some vertex k in
Q, then the corresponding surface must be either the Möbius strip M4 or the
Klein bottle with one boundary component and two marked points, where
neither surface has been allocated boundary variables. Having dealt with
these cases, from here on we may therefore assume i and j are connected to
at most one of k and k̃ for any vertex k in Q. After reversing all arrows at i
if needed, i and j will locally have the same quiver up to exchanging a and
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ã. I.e. If i← k (or i→ k) then j ← k (j → k) or j ← k̃ (j → k̃).

To determine the remaining surfaces which emit triangulations with Fi =
Fj we will split our task into four cases depending on whether i and j are
connected to precisely 1, 2, 3 or 4 vertices. After exchanging the roles of j
and j̃ if necessary, we may assume there are arrows i ← a and j ← a for
some fixed vertex a. Furthermore, note that in the quivers we draw we only
include arrows between i and j. For each of these quivers R we are asking
which triangulations T of (S,M) have the property that the {i, j}-restriction
of QT is R.

Case 1: i and j are connected to precisely one vertex.

The only such quiver for this case is i ← a → j. Since i and j are
not connected to any other vertex, the arcs i and j are the diagonals of
quadrilaterals with three boundary segments and fourth side a. This yields
the 6-gon shown in Figure 14.

i a j

Figure 14: The 6-gon without boundary variables - the only surface emitting
a triangulation whose adjacency quiver has the {i, j}-restriction i← a→ j.

Case 2: i and j are connected to precisely two vertices.

The possible subquivers for this case are listed in Figure 15.

1 2 3 4

i

a b

j

i

a b

b̃

j

i

a b

j

i

a b

b̃

j

Figure 15: The list of the possible {i, j}-restriction quivers when i and j are
connected to precisely two vertices, and Fi = Fj.
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For each of the subquivers listed in Figure 15 we present below the possible
triangulations/surfaces that produce them. To elaborate, we use the quiver
to determine the conceivable adjacencies of triangles in the triangulation,
and this is how the surface is reconstructed.

1

or or or

i

a b

j

b
i

a

j
b

b

b
j

a

i i
b

a

j
b

i
b

a

b
j

or or or

b
i

a

j
b̃

b

b̃
j

a

i i
b

a

j
b̃

i
b

a

b̃
j

2

i

a b

b̃

j

3

I

a

i

j

b

b
i

a b

j
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4

I

a

i

j

b̃

b
i

a b

b̃

j

Figure 16: Upon gluing and taking Z2-quotients, the (unpunctured) surfaces
we obtain in Case 2 are: The cylinder with 2 marked points on each boundary
component, and the Möbius strip M4.

For each of these Case 2 quivers we list the surfaces obtained after glueing
and taking the Z2-quotient.~k1 The first and fourth give the cylinder with two marked points on each

boundary component; the second and third give the once punctured
square.~k2 All produce the Möbius strip with four marked points.~k3 The cylinder with two marked points on each boundary component.~k4 The Möbius strip with four marked points.

Case 3: i and j are connected to precisely three vertices.

The possible subquivers for this case are listed in Figure 17. Here we are
using the fact that there cannot be more than two incoming/outgoing arrows
at any given vertex.

1 2 3 4

i

j

a b c

i

j

a b c

c̃

i

j

a b c

b̃

i

j

a b c

c̃b̃

Figure 17: The list of the possible {i, j}-restriction quivers when i and j are
connected to precisely three vertices, and Fi = Fj.
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Note that it suffices to check only subquivers 1, 2 and 3 since 4 is equiva-
lent to 3 after swapping the roles of a and b and using anti-symmetry. Below
we present the possible surfaces producing the subquivers 1, 2 and 3.

b

or or or

c
i

a

j
c

c

c
j

a

i i
c

a

j
c

i
c

a

c
j

b b

bb b

b b

b

i

j

a b c

1

2

i

j

a b c

c̃
or or or

c
i

a

j
c̃

c

c̃
j

a

i i
c

a

j
c̃

i
c

a

c̃
j

b b

bb b

b b

b

or or or

c
i

a

j
c

c

c
j

a

i i
c

a

j
c

i
c

a

c
j

b b

b̃b̃ b̃

b b

b̃

3

i

j

a b c

b̃

Figure 18: Upon gluing and taking Z2-quotients, the (unpunctured) surfaces
we obtain in Case 3 are: The torus and Klein bottle, both with 1 boundary
component and 2 marked points.

30



For each of these Case 3 quivers we list the surfaces obtained after glueing
and taking the Z2-quotient.

~k1 The first and fourth give the torus with one boundary component and
two marked points; the second and third produce the twice punctured
digon.

~k2 The first and fourth give the Klein bottle with one boundary compo-
nent and two marked points; the second and third produce the once
punctured Möbius strip with two marked points.

~k3 The first and fourth both produce the Klein bottle with one boundary
component and two marked points; the second and third give rise to
the once punctured Möbius strip with two marked points.

Case 4: i and j are connected to precisely four vertices.

Being connected to four vertices the arc i will be the diagonal of a square
with sides a, b, c and d. The arc j will therefore be the diagonal of a square
with sides possessing labels from the set {a, ã, b, b̃, c, c̃, d, d̃}. After gluing and
taking the Z2-quotient then, if this procedure creates a surface, it will be a
closed surface. However, we have forbidden punctured surfaces so none of
our permitted surfaces satisfy Case 4.

In summary, the only unpunctured surfaces emitting triangulations pro-
ducing non-distinct exchange polynomials are: the 6-gon; the Möbius strip
with four marked points; the cylinder with two marked points on each bound-
ary component; and the torus and the Klein bottle, both with one boundary
component and two marked points. It is important to note that these sur-
faces only produce non-distinct exchange polynomials when their boundary
segments receive no variables. In this paper we only consider unpunctured
surfaces receiving boundary variables, therefore, any triangulation of our sur-
faces will yield a distinct collection of exchange polynomials.

Proposition 4.19. Let i be a t-mutable arc in a triangulation T of (S,M).
Then flipping i in T corresponds to LP mutation at i of the associated seed

ΣQT
:= ({x1, . . . , xn}, {FQT

1 , . . . , F
QT
n }).

Proof. By Lemmas 4.10 and 4.18 we obtain that LP and quasi-cluster mu-
tation agree on the level of variable change. Moreover, Lemma 4.9 tells us
that if i is a t-mutable arc in T then there is no path a → i → ã in QT for
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any vertex a. Lemmas 4.11 and 4.18 confirm that ΣQT
is a valid seed and

F
QT
j = F̂

QT
j for each exchange polynomial of ΣQT

. Therefore we may invoke

Proposition 4.5 to verify that double mutation at i and ĩ in QT coincides with
LP mutation at i, for each t-mutable arc i in T . Finally, since Proposition
4.5 tells us that double mutation at i and ĩ corresponds to flipping the arc i
in T , then the proof is complete.

Remark: Note that the LP seed {(a, 1 + b), (b, a+ c), (c, 1 + b)} in Example
4.7, [13] fails to agree with cluster algebra mutation because it arises from
the 6-gon without any boundary variables. We present more of a discussion
about this in Subsection 4.6.

4.5 Proof of the main theorem.

Theorem 4.20. Let (S,M) be an unpunctured (orientable or non-orientable)
marked surface. Then the LP cluster complex ∆LP (S,M) is isomorphic to
the quasi-arc complex ∆⊗(S,M), and the exchange graph of ALP (S,M) is
isomorphic to E⊗(S,M).

More explicitly, let T be a quasi-triangulation of (S,M) and ΣT its asso-
ciated LP seed. Then in the LP algebra ALP (ΣT ) generated by this seed the
following correspondence holds:

ALP(ΣT) (S,M)

Cluster variables ←→ Lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips

Proof. By Proposition 4.19 all that is left to show is that LP mutation coin-
cides with quasi-cluster mutation when:

(a) we flip an arc in a triangulation to a one-sided closed curve.

(b) we flip quasi-arcs in quasi-triangulations containing a one-sided closed
curve.

Case (a).

To resolve case (a) it suffices to show that flipping the arc a in Figure 19
agrees with LP mutation at a of the associated seed.
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LP mutation at a produces the exchange polynomials:

F ′a = Fa F ′b = (c+ d)2 + a′2cd F ′c = dy + a′bw F ′d = cz + a′bx.

A simple computation produces the associated normalised exchange poly-
nomials, which are recorded below. These normalised polynomials do in-
deed describe how lengths of quasi-arcs in the flipped quasi-triangulation
exchange, so case (a) has been verified.

F̂ ′a = Fa F̂ ′b = (c+d)2+a′2cd
a′2

F̂ ′c = dy + a′bw F̂ ′d = cz + a′bx

Fa = c + d

Fb = a2 + cd

Fc = ay + bw

Fd = az + bx

w x

y z

c d

a

b

Figure 19: A triangulation together with the associated exchange polynomi-
als.

Case (b).

We split the task of verifying case (b) into four subcases:

1. Flipping a quasi-arc that is not enclosed in a region containing a one-
sided closed curve.

2. Flipping b, c or d in the triangulation on the left of Figure 20.

3. Flipping a in the middle triangulation of Figure 20.

4. Flipping b, d or y in the triangulation on the right of Figure 20.
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Figure 20: The three types of (local) configurations that contain a one-sided
closed curve.

Subcase 1: Here LP mutation and surface flips coincide due to Proposition
4.19 and Case (a).

Subcase 2: To verify that LP mutation and surface flips coincide for this
case, it suffices to check mutation at b and c.

The exchange polynomials corresponding to the left triangulation in Fig-
ure 20 are:

Fa = c+ d Fb = (c+ d)2 + a2cd Fc = dy + abw Fd = cz + abx.

Mutating at b produces the following exchange polynomials:

F ′a = Fa F ′b = Fb F ′c = ab′y + dw F ′d = ab′z + cx.

If instead we mutate at c we obtain the following exchange polynomials:

F ′a = y + c′ F ′b = (y + c′)2 + a2yc′ F ′c = Fc F ′d = wz + xc′.

The normalised versions of both of these sets of polynomials describe
how lengths of quasi-arcs transform in their respective quasi-triangulations,
so this completes subcase 2.

Subcases 3 and 4 hold analogous to case (a) and subcase 2(b), respectively.

4.6 Punctured surfaces.

We confess now that we have omitted punctured surfaces throughout this
paper on account of their failure to emit an LP structure that encompasses
the cluster structure already established (on orientable surfaces) in [4]. The
reason why the flip/length structure of a punctured surface cannot be imi-
tated by an LP structure is simple; if a surface is punctured then it emits
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a tagged triangulation containing two (distinct) arcs whose plain versions
coincide. These two arcs have identical exchange polynomials, so by Lemma
4.12 the normalised exchange polynomials differ from the exchange polyno-
mials. This ensures the LP structure and the quasi-cluster structure will not
coincide.

Recall that when the boundary segments receive no variables the 6-gon
and the cylinder C2,2 have the same cluster structure as the punctured tri-
angle and the twice punctured monogon, respectively - see Figure 21. From
the comments made above we instantly get confirmation of the fact obtained
in the proof of Lemma 4.18, that in the absence of boundary variables, there
is no LP algebra producing the cluster structure of the 6-gon or the cylinder
C2,2. One might be tempted to believe the torus with one boundary compo-
nent and two marked points follows suit, and shares its cluster structure with
a punctured surface, however, the work of Bucher, Yakimov [1] and Gu [11]
tells us that this is not the case.
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6-gon Once punctured triangle.

Cylinder with two

marked points on each

boundary component.

Twice punctured

monogon.

Figure 21: Here we list all orientable bordered surfaces which share their clus-
ter algebra structure with a punctured surface. For each of these bordered
surfaces we provide the punctured surface possessing the same cluster struc-
ture. In each case we present triangulations emitting matching adjacency
quivers.
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