1		
2		
3	1	RAPID COMMUNICATION
4 5		
6	2	MASS EXTINCTIONS OVER THE LAST 500 MYR: AN ASTRONOMICAL CAUSE?
7		
8	3	by ANATOLY D. ERLYKIN ⁺ , DAVID A.T. HARPER ^{*,3} , TERRY SLOAN ⁺ and ARNOLD W. WOLFENDALE ³
9 10	4	¹ Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia; erlykin@sci.lebedev.ru
10	5	² Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham DH1 3LE, UK; david.harper@durham.ac.uk
12	7	⁴ Department of Geology, Lund University, Solvegatan 12, SE-223 62 Lund, Sweden
13	8	⁵ Department of Physics, Durham University, Durham DH1 3LE, UK; a.w.wolfendale@durham.ac.uk
14	9	
15	10	Abstract: A Fourier analysis of the magnitudes and timing of the Phanerozoic mass extinctions (MEs)
16 17	10	demonstrates that many of the periodicities claimed in other analyses are not statistically significant
18	11	Mercover we show that the periodicities associated with assillations of the Solar System about the
19	12	Coloction plane are too imagular to give person pools in the Sourier period egreene. This loads us to
20	13	Galactic plane are too irregular to give narrow peaks in the Fourier periodograms. This leads us to
21	14	conclude that, apart from possibly a small number of major events, astronomical causes for MEs can
22	15	largely be ruled out.
23 24	16	Key words: mass extinctions, periodicity, astronomical processes. Phanerozoic
25	10	key words. mass extinctions, periodicity, astronomical processes, r hancrozoie
26	17	INTRODUCTION
27		
28	18	The cause (or causes) of mass extinctions (MEs) of marine and terrestrial biological genera
29 30	19	has been debated for many decades (see Hallam 2004) and there is, not surprisingly, an extensive
31	20	and impressive portfolio of research in this area (see for example, McLeod 2014, together with Bond
32	21	and Grasby 2017 for more recent reviews). Insofar as the problem is germane to understanding the
33	22	evolution of life on Earth, its solution is important.
34 35	•••	
36	23	The cause can either be firstly, astrophysical, such as the impact of asteroids, or secondly,
37	24	terrestrial, due to changes in habitat together with drama induced by climate change and plate
38	25	tectonic movements, or both. Our aim here is, specifically, to determine or not the astrophysical
39	26	influence on MEs and the Earth's ecosystems through deep time.
40 41	27	Periodicity in fossil range data in a loose sense, has been recognised for some time (Newell
42	27	1952) The initial guantification, however, of periodicity in marine mass extinctions (Paun and
43	20	Sonkocki 1092) prompted a range of actronomical evaluations. The Sun's escillation about a Solar
44	29	septosti 1982) prohibited a range of astronomical explanations. The suff s oscillation about a solar
45	50	plane (Schwartz and James 1984), Oschlation of the Solar System vertically about a galactic plane
46 47	31	(Rampino and Strother 1984), the presence of a distant Solar companion, Nemesis (Davis <i>et al.</i> 1984;
48	32	Whitmire and Jackson 1984), the existence of a tenth planet (Whitmire and Matese 1985), i.e.
49	33	beyond the orbit of Pluto, and periodic comet showers (Alvarez and Muller 1984). To these can be
50	34	added some earlier explanations, prior to the Raup and Sepkoski analysis, including periodic doses
51	35	of cosmic rays (CR) controlled by reversals in the Earth's magnetic field (Hatfield and Camp 1970)
52 53	36	and climate change based on fluctuating Solar energy and rhythms in mantle convection and
53 54	37	associated processes (Fischer 1977). The concept of periodicity, however, has not received universal
55	38	acceptance. In a critique of the flurry of astronomical papers, Hallam (1984) noted the many
56	39	terrestrial causes of mass extinction including climate and sea-level changes together with
57	40	volcanicity while emphasising the shortcomings of the Fossil Record at that time in providing an
58 50		
60		1

accurate time frame. Benton's (1993, 1995) updated analysis of the Fossil Record (Harland et al. 1967) indicated that only three of the ten peaks cited by Raup and Sepkoski (1984) were real mass extinctions and his data did not validate the other peaks. Many of these claims thus were dismissed due to inadequate data and poorly calibrated time scales (e.g. Patterson and Smith 1987). In a series of key studies Bambach (2006) and his colleagues (Bambach et al. 2004) re-evaluated the data, stating firstly there were only three major (or big) MEs in the Fossil Record (end Ordovician, end Permian and end Cretaceous) and secondly that ME events were not homogeneous, suggesting the lack of a common effect and causation. In addition palaeontological textbooks on both sides of the Atlantic (e.g. Benton and Harper 2009; Foote and Miller 2007) have paid scant attention to periodicity as a key pattern in the history of life. Thus the growing body of evidence suggested that each major ME was different and there was no common cause (e.g. Bambach et al. 2004; Bambach 2006; Brenchley and Harper 1998). Extinctions, moreover, were clearly episodic, a series of separate events, rather than periodic, occurring at regular intervals.

Within the last decade there has been a renewed interest in periodicity with better calibrated time-series data, larger databases of taxon-range information at the genus level and more sophisticated analytical techniques. Periodicities in fossil-range data have been re-established by a number of author groups predicting causality from coincident periodic processes, some astronomical. For example, Rohde and Muller (2005) demonstrated a 62 ±3-million-year cycle, which is particularly evident in the shorter-lived genera. More recently, Melott et al. (2010) similarly described a 62±3 myr cycle, associated with cosmic rays (CR); Melott and Bambach (2011a) noted a 62 myr cycle with the signal strength decreasing in time due to the accumulation of long-lived genera; Melott and Bambach (2011b) favoured periodic sea-level change or astronomical causes to explain that cycle; Melott et al. (2012) linked the biotic data to a 59.3±3 myr cycle in the strontium isotope record that may be associated with mantle or plate tectonic events; Melott and Bambach (2010) calculated a 27 myr cycle that ruled out the influence of the distant Nemesis; finally in a recalibrated dataset with reference to the most recent geological timescale (Gradstein and Ogg 2012), 27 and 62 myr cycles have been detected shifting in and out of phase (Melott and Bambach 2013,2014). The causes are unknown. In addition a 56-myr rhythm has been identified in sedimentary cycles during the Phanerozoic in North America (Meyers and Peters 2011) and developed in terms of marine biodiversity change and its relationship to ocean redox conditions and long-term sea-level fluctuations driven by plate tectonics (Hannisdal and Peters 2011). Two areas, however, have particularly enlivened the debate: Firstly, Rampino (2015) and Rampino and Caldeira (2015) have re-introduced the coincidence of asteroid craters with mass extinction events, noting a 26-30 myr cycle for extinctions and 31±5 myr for cratering. Secondly, this apparently matches the Sun's vertical oscillations through the galactic disc (32-42 myr) between crossings, invoking the influence of the mid-plane Oort Cloud and a dark matter disc, the latter providing a topical connection between the evolution of life, extinctions and events in space (Randall 2015). These studies suggest that both biological and geological evolution on Earth may be controlled by a periodicity in Galactic dynamics.

In order to investigate further the reality of periodicity and its relevance for the history of
life on Earth, we start by examining the time series of MEs from the work of Bambach (2006), Melott
and Bambach, (2011, 2013 and 2014) which gives the proportion, *P*, and age of each genus
extinction as shown in Figure 1. There are two widely used databases (see McLeod 2014). The muchupdated range distribution of families and genera initiated and established by the late Jack Sepkoski

Palaeontology

2		
3	85	(http://strata.geology.wisc.edu/jack/), and the occurrence database that forms the basis for the
4	86	Paleobiology Database (https://paleobiodb.org/#/). We have chosen to analyse the former, firstly
5	87	since both databases appeared to perform similarly in time-series analysis (Melott and Bambach
6	88	2014) and secondly through the kindness of Dr Richard Bambach that database, updated where
7 8	89	relevant particularly taking account of new absolute age constraints was made available to us. In
9	90	all there were 163 genus extinction events, with 147 if the large extinction neaks around 250 Ma
10	01	and \$470 Ma are excluded (see below). The distribution of <i>B</i> values is examined and forms the basis
11	91	for discussion. This is followed by a search for periodicities in the D record and also in 27 metaorite
12	92	for discussion. This is followed by a search for periodicities in the P-record and also in 57 meteorite
13 14	93	craters by Fourier analysis. The significances of the peaks in the Fourier periodograms are examined
14	94	in some detail and conclusions drawn.
16	05	Additional complementary and confirmatory analyses of more historic data sets provided by
17	95	Change Deters together with Debde and Miller, online supplementary material (see
18	90	Shahan Peters together with Rohue and Miller, Online supplementary material (see
19	97	http://www.annuaireviews.org/doi/suppi/10.1146/annurev.eartn.33.092203.122654) are noted
20	98	below and the details provided in Supplementary Material.
21	00	
22	99	ANALISIS OF THE GENUS EXTINCTION PROPORTIONS THROUGH TIME (P)
24	100	As is well known, the mean <i>P</i> -value increases with age in an approximately linear fashion (see Figure
25	101	1, solid (dashed) line excludes (includes) the large extinctions around 250 Ma and >470 Ma). Linear
26	102	fits give a reasonable representation of the data and these are adopted rather than more
27	103	complicated ones. There are, however, large deviations from the median line. Figures 2(a) and 2(b)
29	104	show the frequency distribution of ΔP , the displacement of the P-value from the two linear fits
30	105	shown in Figure 1. The solid smooth curves in Figures 2 show a maximum likelihood fit to the data of
31	106	a Gaussian distribution plus an exponential tail: a Gaussian being a natural curve to fit, not least
32	107	because it fits so well for negative delta-P values. Good fits were obtained with the value of the
33 34	108	Pearson test statistic $y^2 = 10.9$ for 13 degrees of freedom in Figure 2(a) and $y^2 = 18.4$ for 13
35	100	degrees of freedom in Figure 2(b). The data at ages beyond 470 Ma have very large positive and
36	109	degrees of freedom in Figure 2(b). The data at ages beyond 470 wa have very large positive and
37	110	negative fluctuations from the linear fit and therefore seem somewhat anomalous, perhaps
38	111	reflecting the instability and lack of resilience of the Cambrian ecosystem, its different composition
39	112	and structure (Bambach 1983, 1985; Bush and Bambach 2011). However, Figure 2(b) shows that if
40 41	113	the whole age range is fitted, similar results are obtained to those up to age 470 Ma in Figure 2(a)
42	114	with the exponential tail approximately doubled in amplitude mainly because of the addition of the
43	115	large ME values beyond 470 Ma. Hence we conclude that the data are well represented by a
44	116	Gaussian distribution and an exponential tail.
45		
46	117	The implication of such a Gaussian form at small values of ΔP is that each P-value is the resultant of

117 The implication of such a Gaussian form at small values of ΔP is that each *P*-value is the resultant of 118 smaller scale, i.e. less catastrophic events. For $\Delta P > 0.1$ the Gaussian component is negligible and 119 the exponential tail dominates; this strongly suggests contributions from mechanisms which caused 120 more catastrophic damage.

122 THE SEARCH FOR PERIODICITIES

123 Fourier analysis

Much has been written about Fourier analysis and the statistical methods used to judge the significance of any result. Omersbashich (2006) showed that, if a Gauss-Vanicek spectral analysis of the same data used by Melott (2010) to deduce the presence of their 62 myr peak, the peak disappears. This shows that manipulation of data can introduce biases. In this paper we adopt a simple approach which does not need binning, manipulation of the data to fill in gaps or interpolation to fixed time intervals. The avoidance of such data manipulation should lead to fewer biases in the analysis. However, to avoid generating spurious peaks in the Fourier analysis some detrending of the data is necessary. Here we adopt the simplest method of subtracting the appropriate trend line shown in Figure 1. Detrending by more complicated curves such as polynomials would only reduce the significance of any Fourier peaks and thereby may lead to valuable information being discarded.

136 The Fourier integrals for a particular angular frequency ω are deduced by simply averaging the 137 readings. Thus:

 $R(\omega) = \frac{2\Delta T}{N} \sum_{i=1}^{N} \Delta P_i \cos \omega t_i \text{ and } I(\omega) = \frac{2\Delta T}{N} \sum_{i=1}^{N} \Delta P_i \sin \omega t_i$

139 where ΔP_i is the deviation of the *P* value from the trend line of the event at age t_i , *N* is the total 140 number of events considered and ΔT is the total time range over which the sample of data is taken. 141 The absolute amplitude of the Fourier component with frequency ω is then given by

$$A(\omega) = \sqrt{(R(\omega)^2 + I(\omega)^2)}$$

142 In order to judge the significance of any observed peak, random values of the P_i and t_i were 143 generated and passed through the analysis programme. The process was repeated many times and 144 the significance of a peak in the data is judged by the number of occurrences of peaks from the 145 random distribution with greater amplitude and therefore significance than the one observed in the 146 data.

148 Periodicity in the time series of the P-values

There is a wealth of literature on claims for periodicities in the extinction records (see above), with
periodicities ranging from 13 to 64 myr (Bambach 2006). 27 myr is currently favoured, marginally,
but this is largely because the perceived frequency of the Solar System oscillating around the
Galactic Plane is of a similar magnitude (Bahcall and Bahcall 1985; Shaviv 2002a,b).

Figures 3(a-c) show periodograms from Fourier analyses of the genus extinction proportions with age from Bambach (2006) shown in Figure 1. Since the craters are only assigned unit weight, Figures 4(a-c) show for comparison similar periodograms of the extinctions with each given unit weight rather than weighted by the genus proportion, ΔP , as in Figure 3. The data are shown separately for the periods 1-250 myr and 270-470 myr which each correspond roughly to one orbit of the solar system around the Galaxy. Various peaks occur including peaks around a period near to 27 myr. To see if the large groups of extinctions around 260 Ma and 500 Ma affect the Fourier analyses they are excluded from Figures 3(b) and (c) and 4(b) and (c) but they are included in Figures 3(a) and 4(a). Comparison shows that the effects of these peaks on the Fourier analysis are insignificant. To check the statistical significance of the peaks in Figures 3 and 4, random genus proportions and

- 163 dates were passed through the analysis chain. The random events were generated with a
- 164 distribution of genus proportion of a similar shape to the data (Figure 2) about the trend line. The

Palaeontology

2		
3	165	process was repeated 1000 times. It was observed that 10% of the random extinction data had
4	166	peaks which were larger, i.e. more significant than those seen in the vicinity of 27 myr in Figures 3(a-
5	167	c) and 60% of those in Figures 4(a-c). These fractions show that the observed peaks in the data have
7	168	limited statistical significance. It is therefore plausible that the peaks are the results of statistical
8	169	fluctuations rather than a repetitive physical process for either the genus proportion (Figure 3) or
9	170	single events (Figure 4). Other factors which show that the 27 myr peak is unlikely to be related to an
10	171	astrophysical mechanism of any known kind are as follows:
12		
13	172	1. The peak in the region of 27 myr is present only for the interval 1-250 Ma in Figure 3(b). It has a
14	173	different character in time range 270-470 Ma in Figure 3(c). (Note that the time for the Solar System
15	174	(SS) to orbit the Galaxy is of order 250 myr). If the signal were real, the peak value should be similar
16 17	175	in each time range;
18	176	2. The wide range of other peaks at periods with no astrophysical significance means that the cluster
19 20	177	around 27 myr could be accidental and not related to a repetitive astrophysical source;
21	178	3. As shown elsewhere (e.g. Wolfendale and Wilkinson 1988), there is no evidence, nor theoretical
22	179	justification, for precise 'bursts' of asteroids or comets when the SS crosses the Galactic Plane;
24		
25	180	4. Similarly, Cosmic Ray (CR) effects are negligible insofar as changes in the CR intensity variation
26	181	over the 500 myr interval should be too small to produce MEs (Bailey et al. 1987; Shaviv, 2002a,b;
27 28	182	Sloan and Wolfendale 2008, 2013 and references therein).
29	183	As noted above two additional, albeit historical, data sets were also analysed (see Supplementary
30 31	184	Material for details). Fourier analyses of the Bambach dataset generated in detail herein and those
32	185	for the Rohde and Muller together with Peters data show large peaks at the following frequencies:
33	186	[24, 27, 38, 47 and 60 myr], [24.5, 27, 38, 48, 61 myr] and [25, 27, 38, 47 and 62 myr], respectively.
34	187	All three datasets display their major peaks with probabilities >10% that they occurred by chance,
35	188	and thus are not significant. Understandably, the heights of the peaks differ across the analyses,
36	189	but the shapes of the distributions (N> P vs P) are the same.
37	190	
38	101	
39 40	191	

The variability of the oscillation period of the Solar System

The Solar System (SS) in its orbital journey round the Galaxy oscillates above and below the Galactic plane. It encounters different concentrations of mass in this journey, e.g. it moves into and out of the spiral arms of the Galaxy. In consequence it is continually accelerating and decelerating. Hence its period and phase are rather variable. Phenomena which cause variations in period and phase from one oscillation to the next and, thereby 'jitter' in the periodicity, are listed as follows (the references in brackets refer to the source of data used to calculate the standard deviation in the period).

1. Stellar mass density varies from place to place by about 40% during the orbit of the SS leading to a 20% variation in period (Scheffer and Elasser 1992). (A simple model consisting of a uniform slab of matter shows that the oscillation period varies as the square root of the density in the Galactic plane);

2. Dark Matter. There are two effects. Firstly the effect on the total mass density and, secondly, the effect of discrete 'clumps' in deflecting the orbit. Insofar as the total mass of dark matter in clumps is probably about 10% of the total mass, the effect on the period is not negligible. Using data from Charbonnier et al. (2012) we estimate a 10% variation in the oscillation period of the SS about the Galactic plane from such clumps. In fact, the data referred to indicate a 'significant collision' every 50 myr. Furthermore, reference needs to be made to the thin disk of Dark Matter model of Randall and Reece (2014). Such a thin disk could cause further changes in the oscillation period of the SS about the Galactic plane as well as leading to several problems such as the effect on stellar dynamics. Taking these factors together it is estimated that the period of successive oscillations varies by at least $\pm 20\%$. Such variability in the period will influence any Fourier amplitude peak which is caused by a repetitive process such as repetitive crossings of the Galactic plane.

The sensitivity of the Fourier analysis to the variability of the sinusoidal period was investigated by passing through the analysis programme samples of events generated at random times with a pure sine wave distribution of genus proportions. The starting period of the sine wave was chosen to be 27 myr which was then varied by a fraction generated randomly between events. Figure 5 shows the results for a pure sine wave (upper panel) and as the period is varied (lower panels). The variations in period were chosen to be Gaussian distributed with standard deviations of 2%, 4% and 6% of 27 myr. It can be seen that the peak broadens and disappears to be less than the noise level if the variation of the period was generated with more than 5% of 27 myr. As explained above, any astronomical cause would be expected to have a larger variation in period and phase than this. The observed Fourier peak at 27 myr is therefore too distinct to be caused by repetitive crossings of the Galactic plane because of the variation in phase and period expected in the Galaxy. Figure 5 shows that astronomical processes with the expected variable periodicity cannot leave a discernible spectral peak; in which case the significance of peaks in extinctions is irrelevant to the search for astronomical causes.

From this we conclude that there is little evidence that MEs have an extra-terrestrial origin (apartfrom the Chicxulub asteroid noted below).

234 ANALYSIS OF THE CRATER AGES

The 37 ('meteroritic-') craters from Rampino (2015) and Rampino and Caldeira (2015) were Fourier analysed. These craters have relatively well-defined ages. The analysis shows that a peak in the Fourier amplitudes occurs at a period near 27 myr (see Figure 3d). Again to test the statistical significance of the peaks, 1000 groups of 37 random crater ages were passed through the Fourier analysis program. These showed that 39% of the random spectra had larger peaks, i.e. more significant peaks, than the one observed in the data. This shows that the peak has a high probability to be a statistical fluctuation and hence is not statistically significant. This indicates that the evidence that the peak has a repetitive astrophysical cause is statistically weak.

The quality of the data is degraded by many effects such as the rather strange groupings over very
short (few myr) intervals, the loss of craters which have disappeared under the oceans, those prior
to the Jurassic largely lost due to subduction processes, and the degradation of the craters due to

1		
2	246	long term weathering. The latter effect probably causes the very large differences in frequency of
4	247	detected craters from place to place over the land
5		
6 7	248	A search was made for a correlation between the P value for an extinction and the diameter, D, of
8	249	the nearest crater in time. No correlation could be found. Hence there seems to be no general
9	250	connection between craters and MEs (apart from Chicxulub 65 Ma). Neither is there a connection
10	251	between the distribution of the integral <i>P</i> -values $N(> P)$ vs <i>P</i> and that of bolide energies
11	252	(represented by $E = RD^4$) and the integral energy distribution ($N(> E)$ versus E). One would have
12	253	expected that P and E would be related if MEs and asteroid impacts were strongly correlated. Other
14	254	candidates such as the giant Wilkes Land Crater have been associated with the end Permian
15	255	extinction; but neither the age of that crater or its association with the Permian-Triassic events are
16	256	proven. Its location under the Antarctic ice (Weihaupt 2010) is a formidable barrier to any further
1/ 18	257	investigation at present.
19		
20	258	From this we conclude that there is little evidence from craters that there is a connection between
21	259	MEs and astronomical events.
22	260	
23 24	200	
25	261	CONCLUSIONS
26		
27	262	There is strong evidence that the frequency distribution of the probability of genus extinctions has
28	263	two components – a near-Gaussian distribution and a small exponential tail. The mean probability
30	264	has fallen with time. This is a consequence of the planet's increasing biodiversity, possibly populated
31	265	too by evolutionary-more-stable, longer-ranging species.
32	266	Based on the one event and the operatics of actoroid impacts (in the order of 10^{23} loules for a
33	200	major impact: see http://impact.oso.jc.ac.uk/impactEffects: Shulto at al. 2010) a case can be made
34 35	207	for the few events in the exponential tail being due to such impacts, although high energy torrestrial
36	200	For the few events in the exponential tail being due to such impacts, although high-energy terrestrial causes, such as those associated with velcanisity (in the order of 2 x 10^{21} loules for a major eruntion)
37	209	Plang 1084) or intense climate change (e.g. Ponton and Twitchett 2002; Harper et al. 2014; Einnegan
38	270	of a (2016) are equally as likely in the absence of any geological evidence of impact. The evidence
39 40	271	in the main Coursian region are likely to be due to many different sources for example thermal
41	272	In the main Gaussian region are likely to be due to many different causes, for example thermal
42	273	effects of terrestrial origin [e.g. those associated with climate fluctuations (e.g. Maynew <i>et al.</i> 2008,
43	274	2012) and plate tectonic processes, particularly the effects of Large Igneous Provinces (e.g. Bond and
44 45	275	Grasby 2017)].
45 46	276	We show that the evidence for periodicities in the extinction record, from Fourier analysis, is
47	277	statistically weak. Furthermore, we show that periodicity of the oscillation of the Solar System about
48	278	the Galactic plane is too variable to produce a parrow peak in such a Fourier analysis. Hence the
49	270	claim of such regular astronomical phenomena contributing to mass extinctions is not well founded
50 51	280	Instead terrestrial causes are favoured for the vast majority of MEs (see also McLeod 1998, 2005 and 2014)
52	281	Bond and Grasby 2017).
53	282	
54	202	
55	283	Acknowledgements. We thank Dr Alistair McGowan and an anonymous reviewer for their careful
50 57	284	and detailed comments that improved the manuscript. The latter suggested we should analyse a
58	285	couple of the more historic datasets, which we did. Dr Richard Bambach generously permitted use of
59		

1	
2	
3 ⊿	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 ⊿1	
42	
43	
44	
45	
40 47	
48	
49	
50	
51 52	
ວ∠ 53	
54	
55	
56	
57	
~ ×	

59 60

286 his updated database and engaged in robust discussions of our findings. Sloan, Erlykin and 287 Wolfendale are grateful to the Kohn Foundation for financial support. Harper acknowledges the 288 receipt of a research fellowship from the Leverhulme Trust and support from the Wenner-Gren 289 Foundation (Sweden). 290 291 REFERENCES 292 DATA ARCHIVING STATEMENT 293 Data for this study are available in the Dryad Digital Repository: 294 http://dx.doi.org/10.5061/dryad.xxxx 295 ALVAREZ, L. W., ALVAREZ, W., ASARO, F. and MICHEL, H. V. 1980. Extraterrestrial cause for the 296 Cretaceous-Tertiary extinction. Science, 208, 1095-1108. 297 ALVAREZ, W. and MULLER, R.A. 1984. Evidence for crater ages for periodic impacts on the Earth. 298 Nature, 308, 718-720. 299 BAHCALL, J.N. and BAHCALL, S. 1985. The Sun's motion perpendicular to the galactic plane. 300 Nature, 316, 706-708. 301 BAILEY, M.E., WILKINSON, D.A. and WOLFENDALE, A.W. 1987. Can episodic comet showers 302 explain the 30-myr cyclicity in the terrestrial record? Monthly Notices of the Royal 303 Astronomical Society, 227, 863-885. 304 BAMBACH, R.K. 1983. Ecospace utilization and guilds in marine communities through the 305 Phanerozoic. 719-746. In TEVESZ, M. and MCCALL, P. (eds.), Biotic Interactions in Recent 306 and Fossil Benthic Communities. Topics in Geobiology 3, Springer. 307 BAMBACH, R.K. 1985. Classes and adaptive variety: The ecology of diversification in marine 308 faunas through the Phanerozoic. 191-253. In VALENTINE, J.W. (ed.), Phanerozoic Diversity 309 Patterns: Profiles in Macroevolution. Princeton University Press. 310 BAMBACH, R.K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review Earth Planetary 311 Science, 34, 127-155. 312 BAMBACH, R.K., KNOLL, A.H. and WANG, S.C. 2004. Origination, extinction and mass depletions 313 of marine diversity. Paleobiology, 30, 522-542. 314 BENTON, M.J. 1993 (ed.). The fossil record 2. Palaeontological Association and Chapman and Hall, 315 London. 845 pp. 316 BENTON, M.J. 1995. Diversity and extinction in the history of life. *Science*, 268, 52-58. 317 BENTON, M.J. and HARPER, D.A.T. 2009. Introduction to paleobiology and the fossil record. John 318 Wiley and Sons. 342 pp. 319 BENTON, M.J. and TWITCHETT, R. 2003. How to kill (almost) all life: the end-Permian extinction 320 event. Trends in Ecology and Evolution, 18, 358-365. 321 BLONG, R.J. 1984. Volcanic hazards: A sourcebook on the effects of eruptions. Academic Press. 322 424 pp. 323 BOND, D.P.G. and GRASBY, S.E. 2017. On the causes of mass extinctions. Palaeogeography, 324 Palaeoclimatology, Palaeoecology xxx, xxx-xxx (in press). 325 BRENCHLEY, P.J. and HARPER, D.A.T. 1998. Palaeoecology: Ecosystems, environments and 326 evolution. CRC Press, Taylor and Francis. 402 pp. 327 BUSH, A.M. and BAMBACH, R.K. 2011. Paleoecologic megatrends in marine Metazoa. Annual 328 Review of Earth and Planetary Science, 39, 241-269.

1		
2	220	
3 ⊿	329	CHARBONNIER A., COMBET, C. and MAURIN, D. 2012. CLUMPY: A code for gamma ray signals
5	330	from dark matter structures. Computer Physics Communications, 183, 656–668.
6	331	DAVIS, M., HUT, P. and MULLER, R.A. 1984. Extinction of species by comet showers. <i>Nature</i> , 308,
7	332	715-717.
8	333	FINNEGAN, S., RASMUSSEN, C.M.Ø. and HARPER, D.A.T. 2016. Biogeographic and bathymetric
9	334	determinants of brachiopod extinction and survival during the Late Ordovician mass
10	335	extinction. Proceedings of the Royal Society B: Biological Sciences, 283(1829): 20160007.
12	336	FISCHER, A.G. 1977. Secular variations in the pelagic realm. Special Publication, Society of
13	337	Economic Palaeontoloaists and Mineraloaists, 25, 19-50.
14	338	FOOTE M and MILLER A L 2007 <i>Principles of Paleontology</i> 3 rd Edition W H Freeman and
15	339	Company 354 nn
16	240	COMPANY. 554 pp.
17	240	SKADSTEIN, F., OGG, J., SCHWITZ, W. and OGG, G. 2012. The Geologic Time Scale 2012. Elsevier.
18	341	HALLAM, A. 1984. The causes of mass extinctions. <i>Nature</i> , 308, 686-687.
19 20	342	HALLAM, A. 2004. Catastrophes and lesser calamities: The causes of mass extinctions. Oxford
20	343	University Press, Oxford. 274 pp.
22	344	HANNISDAL, B. and PETERS, S.E. Phanerozoic Earth system evolution and marine biodiversity.
23	345	Science, 334, 1121-1124.
24	346	HARLAND, W.B., HOLLAND, C.H., HOUSE, M.R., HUGHES, N.F., REYNOLDS, A.B., RUDWICK, M.J.S.,
25	347	SATTERWAITE, G.E., TARLO, L.B.H. and WILLEY, E.C. (eds) 1967. The Fossil Record: A
26	348	symposium with documentation. Geological Society, London. 827 pp.
27	349	HARPER, D.A.T., HAMMARLUND, E.U. and RASMUSSEN, C.M.Ø. 2014. End Ordovician extinctions
29	350	a coincidence of causes. Gondwang Research 25, 1294-1307
30	251	HATELELD C. R. and CAMP. M. I. 1970. Mass extinctions correlated with pariodic Galactic events
31	252	Relletin Coolegiest Sesiety of America, 21, 011, 014
32	352	Bulletin, Geological Society of America, 81, 911-914.
33	353	LASKAR, J. 2013. Is the Solar System stable? <i>Progress in Mathematical Physics</i> , 66, 239-270.
34 35	354	MACLEOD N 1998 Impacts and marine invertebrate extinctions <i>In</i> : GRADY M M HUTCHISON
36	355	R MCCALL G L H & ROTHERY D A (eds) Meteorites: Elux with Time and Impact Effects
37	256	Geological Society London Special Publications 140, 217, 246
38	550	
39	357	MACLEOD, N. 2005. Mass Extinction Causality: statistical assessment of multiple-cause scenarios.
40	358	Russian Journal of Geoloay and Geophysics, 9, 979–987.
41 12	359	MACLEOD N 2014 The geological extinction record: History data biases and testing I_n :
43	360	KELLER G and KERR A C (eds) Volcanism Impacts and Mass Extinctions: Causes and
44	261	Effects Coological Society of America Special Dapar EOE 1, 29
45	301	EJJECUS, GEOLOGICAL SOCIETY OF AMERICA Special Paper 505, 1–28,
46	362	MAYHEW, P.J., JENKINS, G.B. and BENTON, T.G. 2008. A long-term association between global
47	363	temperature and biodiversity, origination and extinction in the fossil record. Proceedings
48	364	<i>Royal Society</i> B, 275, 47-53.
49 50	365	MAYHEW, P.J., BELL, M.A., BENTON, T.G. and McGOWAN, A.J. 2012. Biodiversity tracks
51	366	temperature over time. Proceedings of the National Academy of Sciences, USA, 109, 15141-
52	367	
53	368	MELOTT, A.L. and BAMBACH, R.K. 2010. Nemesis reconsidered. <i>Monthly Notices of the Royal</i>
54	369	Astronomical Society, 407, 99-102.
55 50	370	MELOTT, A.L. and BAMBACH, R.K. 2011. A ubiquitous ~62-myr periodic fluctuation
วง 57	371	superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology, 37,
58	372	92-112.
59		
60		9

1 2

3	373	MELOTT, A.L. and BAMBACH, R.K. 2013. Do periodicities in extinction—with possible
4	374	astronomical connections—survive a revision of the Geological Timescale? The
5	375	Astrophysical Journal, 773, 6.
ю 7	376	MELOTT, A.L. and BAMBACH, R.K. 2014. Analysis of periodicity of extinction using the 2012
8	377	geological timescale. <i>Paleobiology</i> , 40, 177-196.
9	378	MELOTT, A.L., BAMBACH, R.K., PETERSEN, K.D. and MCARTHUR, J.M. 2012. An~ 60-Million-Year
10	379	periodicity is common to marine 87Sr/86Sr. Fossil biodiversity, and large-scale
11	380	sedimentation: What does the periodicity reflect? <i>Journal of Geology</i> , 120, 217-226
12	381	MELOTT, A.L., KREJCI, A.J., THOMAS, B.C., MEDVEDDEV, M.V., WILSON, G.W. and MURRAY, M.J.
14	382	2010. Atmospheric consequences of cosmic-ray variability in the extragalactic
15	383	shock model. Journal Geophysical Research, 115, E08002.
16 17	384	MEYERS, S.R. and PETERS, S.E. 2011. A 56 million year rhythm in North American sedimentation
18	385	during the Phanerozoic. Earth and Planetary Science Letters, 303, 174-180.
19 20	386	NEWELL, N.D. 1952. Periodicity in invertebrate evolution. <i>Journal of Paleontology</i> , 26, 371-385.
21	387	OMERBASHICH, M. 2006. Gauss-Vanícek Spectral Analysis of the Sepkoski Compendium: No New
22	388	Life Cycles. Computing in Science and Engineering, 8, 26-30.
23	389	PATTERSON, C. and SMITH, A.B. 1987. Is the periodicity of extinctions a taxonomic artefact?
25	390	Nature, 330, 248-251.
26	391	RAMPINO, M.R. 2015. Disc dark matter in the Galaxy and potential cycles of extraterrestrial
27	392	impacts, mass extinctions and geological events. Monthly Notices of the Royal
20 29 30	393	Astronomical Society, 448, 1816-1820.
31	394	RAMPINO, M.R. and CALDIERA, K. 2015. Periodic impact cratering and extinction events over the
32 33	395	last 260 million years. Monthly Notices Royal Astronomical Society, 454, 3480-3484.
34	396	RAMPINO, M.R. and STOTHERS, R.B. 1984. Terrestrial mass extinctions, cometary impacts and
35	397	the Sun's motion perpendicular to the galactic plane. <i>Nature</i> , 308, 709-712.
36 37	398	RANDALL, L. 2015. Dark matter and the dinosaurs. Harper Collins, New York. 432 pp.
38	200	
39	399	RANDALL, L. and REECE, M. 2014. Dark matter as a trigger for periodic comet impacts. <i>Physical</i>
40	400	Review Letters, 112, 161301.
41 42	401	RAUP, D.M. and SEPKOSKI, J.J. Jnr. 1982. Mass extinctions in the marine fossil record. Science,
43	402	215, 1501-1503.
44	403	RAUP, D.M. and SEPKOSKI, J.J. Jnr. 1984. Periodicity of extinctions in the geologic past.
45	404	Proceedings National Academy of Sciences, USA, 81, 801-805.
40 47	405	RAUP, D.M. and SEPKOSKI, J.J. Jnr. 1986. Periodic extinctions of families and genera. Science,
48	406	231, 833-836.
49	407	ROHDE, R. A. and MULLER, R.A. 2005. Cycles in fossil diversity. <i>Nature</i> , 434, 208-201.
50	408	SCHEFELER H. and ELASSER H. 1992. <i>Bay und Physik der Galaxis</i> . Wissenschaftsverlag.
51 52	409	Mannheim 642 nn
52 53	405	SCHWARTZ R D and IAMES P B 1984 Periodic mass extinctions and the Sun's oscillation about
54	410 /11	the galactic plane. Nature, 209, 712, 712
55	411	CHANNY ALL 2002a Cosmic Day Diffusion from the Colortic Crivel Arms, Juan Mathemites, and a
56	412	SHAVIV, N.J. 2002a. Cosmic Ray Dilitusion from the Galactic Spiral Arms, Iron Meteorites, and a
57	413	Possible Climatic Connection. <i>Physical Review Letters</i> , 89, 051102.
วช 59		
60		10

 SHAVIV, N.J. 2002b. The spiral structure of the Milky Way, cosmic rays and Ice Age epochs on Earth. <i>New Astronomy</i>, 8, 39-77. SHUTE, P. <i>et al.</i> 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous- Paleogene boundary. <i>Science</i>, 327, 1214-1218. SLOAN, T. and WOLFENDALE, A.W. 2008. Testing the proposed causal link between cosmic rays and cloud cover. <i>Environmental Research Letters</i>, 3, 024001. SLOAN, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 million years. <i>New Astronomy</i>, 25, 44-49. WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. <i>Lithosphere</i>, 2, 454-461. WHITMRE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? <i>Nature</i>, 308, 713-715. WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. <i>Nature</i>, 313, 36-38. WOLFENDALE, A.W. and WILKINSON, D.A. 1984. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. <i>In CLUBE</i>, S.V.M. (ed.). <i>Catastrophes and Evolution</i>. Cambridge University Press, Cambridge. University Press, Cambridge. The depth of the extinction or extinction proportion, <i>P</i>, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. <i>Figure 2</i>. Frequency distribution of the 'amplitude' of the probability of genus extinctions, AP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from 0.460 0-470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian Hat for alte data; (a) including all 163 extinctions (clerended by the linear fit to all data in figure 1), (b) for extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 crat	1		
3 111 SHAUY, N.J. 2020. The Synthesis building of the Minky Way, Cosinic Tays and the Age epochs on Paleogene boundary. Science, 327, 1214-1218. 416 SHULTE, P. et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous- Paleogene boundary. Science, 327, 1214-1218. 418 SLOAN, T. and WUEFENDALE, A.W. 2008. Testing the proposed causal link between cosmic rays and cloud cover. Environmental Research Letters, 3, 024001. 420 SLOAN, T. and WUEFENDALE, A.W. 2013 Cosmic rays and dimate change over the past 1000 million years. New Astronomy, 8, 395, 54.4-9. 421 WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. Lithosphere, 2, 454-461. 422 WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere, Lithosphere, 2, 454-461. 423 WHITMORE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? Nature, 308, 713-715. 424 Solar companion? Nature, 308, 713-715. 425 WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. Nature, 313, 36-38. 426 WOLFENDALE, A.W. and WLKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties, 231-239. In CluBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge University Press, Cambridge. 428 Jaineer 1. 431 The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to	2	111	SHAV/IV N L 2002b. The spiral structure of the Milky Way, seemic rays and log Age enough on
 SHULTE, P. et al. 2010. The Chickulub asteroid impact and mass extinction at the Cretaceous- Paleogene boundary. <i>Science</i>, 327, 1214-1218. SLOAN, T. and WOLFENDALE, A.W. 2008. Testing the proposed causal link between cosmic rays and cloud cover. <i>Environmental Research Letters</i>, 3, 024001. SLOAN, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 million years. <i>New Astronomy</i>, 25, 44-49. WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. <i>Lithosphere</i>, 2, 454-461. WHITMORE, D.P. and JACKSON, A.A. IV. 1984. <i>Are</i> periodic mass extinctions driven by a distant solar companion? <i>Nature</i>, 308, 713-715. WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. <i>Nature</i>, 313, 36-38. WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. In CLUBE, S.V.M. (ed.). <i>Catastrophes and Evolution</i>. Cambridge University Press, Cambridge. <i>Figure 1</i>. The depth of the extinction or extinction proportion, <i>P</i>, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. <i>Figure 2</i>. Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from-0.460 -470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian distribution plus an exponential at diacetribed in the text. The dashed curve show the individual contributions of the Gaussian and the exponential tail. <i>Figure 3</i> Fourier amplitude of the genus extinction ge of extinctions at around 260 Ma and more than 470 Ma have been excluded from (b) and (c). The data in figure 1), (b) for extinctions younger tha	4	414	Farth New Astronomy 8, 39-77
6 410 SHUELP. F. 0. 2010. The UnitAution aster of Unitpact and these Extinction at the CretateOds- Paleogene boundary. <i>Science</i> , 327, 1214-1218. 8 SLOAN, T. and WOLFENDALE, A.W. 2008. Testing the proposed causal link between cosmic rays and cloud cover. <i>Environmental Research Letters</i> , 3, 024001. 9 SLOAN, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 million years. <i>New Astronomy</i> , 25, 44-49. 10 420 421 WEIHAUPT, I.G. 2010. Gravity anomalies of the Antarctic lithosphere. <i>Lithosphere</i> , 2, 454-461. 11 421 423 WHITMORE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? <i>Nature</i> , 308, 713-715. 124 WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet shows and planet X. <i>Nature</i> , 313, 36-38. 125 WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic mass Extinctions: Some Astronomical Difficulties. 231-239. In CLUBE, S. V.M. (ed.). <i>Catastrophes and Evolution</i> . Cambridge 423 126 431 127 <i>Figure 1</i> . 128 <i>Figure 1</i> . 129 <i>Figure 1</i> . 131 The depth of the extinction or extinction proportion, <i>P</i> , of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. 132 <i>Figure 2</i> .	5	415	SHULTE D at al 2010. The Chievulub externid impact and mass extinction at the Crotacoous
 Fracegiere bolination, SJP, 114-1216. SLOAN, T. and WOLFENDALE, A.W. 2008. Testing the proposed causal link between cosmic rays and cloud cover. Environmental Research Letters, 3, 024001. SLOAN, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 million years. New Astronomy, 25, 44-9. WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. Lithosphere, 2, 454-461. WHITMORE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? Nature, 308, 713-715. WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. Nature, 313, 36-38. WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge University Press, Cambridge. Figure 1. The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. Figure 2. Frequency distribution of the 'amplitude' of the probability of genus extinctions, AP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian distribution plus an exponential tail described in the text. The dashed curves show the individual contributions of the Gaussian and the exponential tail. <i>Figure 3</i> Fourier amplitude of the genus extinction sa function of period for the extinction and crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each with unit wei	6	410	Deleggene boundary, Science 227, 1214, 1219
6 418 SLUAR, I. and WOLFENDALE, A.W. 2008. Testing the proposed causal link between dosinic rays 10 420 SLOAR, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 11 420 SLOAR, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 12 421 million years. New Astronomy, 25, 44-49. 13 422 WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. Lithosphere, 2, 454-461. 14 WHITMORE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? Nature, 308, 713-715. 16 426 WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. Nature, 313, 36-38. 17 426 WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge University Press, Cambridge. 24 429 25 430 26 Figure 1. 31 The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. 32 Figure 2. 33 Frequency distribution of the 'amplitude' of the probability of genus extinctions,	7	417	Paleogene boundary. <i>Science</i> , 327, 1214-1218.
419 and cloud cover. <i>Invironmental Research Letters</i> , 3, 024001. 420 SLOAN, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 421 million years. <i>New Astronomy</i> , 25, 44-49. 422 WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. <i>Lithosphere</i> , 2, 454-461. 423 WHITMORE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant 424 solar companion? <i>Nature</i> , 308, 713-715. 425 WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. <i>Nature</i> , 313, 36-38. 426 WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical 427 Difficulties. 231-239. <i>In</i> CLUBE, S.V.M. (ed.). <i>Catastrophes and Evolution</i> . Cambridge 428 University Press, Cambridge. 429 430 431 Figure 1. 432 Figure 1. 433 The depth of the extinction or extinction proportion, <i>P</i> , of the genus extinctions as a function of time 434 for the extinction or extinction proportion, <i>P</i> , of the genus extinctions, ΔP. By amplitude is 435 that for all the data referred to in the text. 436 figure 2. 57 Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. B	8	418	SLOAN, I. and WOLFENDALE, A.W. 2008. Testing the proposed causal link between cosmic rays
11 420 SLOAN, I. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000 12 421 million years. <i>New Astronomy</i> , 25, 44-49. 13 422 WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. <i>Lithosphere</i> , 2, 454-461. 14 424 solar companion? <i>Nature</i> , 308, 713-715. 15 425 WHITMORE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. <i>Nature</i> , 313, 36-38. 16 426 WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. <i>In</i> CUBE, S.V.M. (ed.). <i>Catastrophes and Evolution</i> . Cambridge 17 426 University Press, Cambridge. 28 430 27 Figure 1. 31 7 32 Figure 1. 33 The depth of the extinction or extinction proportion, <i>P</i> , of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. 343 Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian 343 Frequency distribution of the 'amplitude' of t	10	419	and cloud cover. Environmental Research Letters, 3, 024001.
12 million years. New Astronomy, 25, 44-49. 13 422 14 422 15 423 16 424 17 424 18 424 19 424 16 424 17 424 18 425 18 426 WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. Nature, 313, 36-38. 19 426 WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge 12 429 24 429 25 430 26 431 27 Figure 1. 31 The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line 38 437 438 Figure 2. 39 Figure 2. 31 438 439 Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is meant the ex	11	420	SLOAN, T. and WOLFENDALE, A.W. 2013 Cosmic rays and climate change over the past 1000
 422 WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. <i>Lithosphere</i>, <i>2</i>, 454-461. 423 WHITMORE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? <i>Nature</i>, 308, 713-715. 425 WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. <i>Nature</i>, 313, 36-38. 426 WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. <i>In</i> CLUBE, S.V.M. (ed.). <i>Catastrophes and Evolution</i>. Cambridge University Press, Cambridge. 427 431 433 The depth of the extinction or extinction proportion, <i>P</i>, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. 436 <i>Figure 2</i>. 437 Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian distribution go the Gaussian and the exponential tail. 442 <i>Figure 3</i> 443 Fourier amplitude of the genus extinction of period for the extinction and contributions of the Gaussian and the exponential tail. 444 <i>Figure 3</i> 445 Figure 3 446 Figure 3 447 443 Fourier amplitude of the genus extinctions at a function and trater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1). (b) for extinctions younger than 250 Ma, (c) for those at aroud 260 Ma and more than 470 Ma have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 1-460 Ma in Figure 1. 	12	421	million years. <i>New Astronomy</i> , 25, 44-49.
 WHITMORE, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? <i>Nature</i>, 308, 713-715. WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. <i>Nature</i>, 313, 36-38. WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. <i>In CLUBE</i>, S.V.M. (ed.). <i>Catastrophes and Evolution</i>. Cambridge University Press, Cambridge. Figure 1. The depth of the extinction or extinction proportion, <i>P</i>, of the genus extinctions as a function of time for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line that for all the data referred to in the text. <i>Figure 2</i>. Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from -0.460 0-470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian distributions of the Gaussian and the exponential tail. <i>Figure 3</i> Fourier amplitude of the genus extinction of period for the extinction and four the gaussian and the exponential tail. <i>Figure 3</i> Fourier amplitude of the genus extinction sa a function of period for the extinction and four the data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 1-460 Ma in Figure 1. 	13	422	WEIHAUPT, J.G. 2010. Gravity anomalies of the Antarctic lithosphere. <i>Lithosphere</i> , 2, 454-461.
11423With Hold, D.F. and JACSON, A.A. W. 1364. Are periodic mass extinctions differibly a distant12solar companion? Nature, 308, 713-715.1342514WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. Nature, 313, 36-38.1422615WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical1524716Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge162481724328University Press, Cambridge.2925204302743128Figure 1.304322953204332943429542043429204332043420542143322Figure 1.33The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time3443535that for all the data referred to in the text.363637Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data40415figure 33843739Frequency distribution puts an exponential tail414424425figure 3 <td>14 15</td> <td>172</td> <td>WHITMORE D.R. and IACKSONI, A.A. IV, 1984. Are periodic mass extinctions driven by a distant</td>	14 15	172	WHITMORE D.R. and IACKSONI, A.A. IV, 1984. Are periodic mass extinctions driven by a distant
424 Sular Companion Nature, 306, 713-715. WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. Nature, 313, 36-38. WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge University Press, Cambridge. 426 427 428 University Press, Cambridge. 429 430 7 431 7 432 7 433 7 434 607 the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line 435 436 437 438 439 430 431 432 433 434 60 r the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line 434 435 436 437 Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP . By amplitude is	16	425	whithwore, D.P. and JACKSON, A.A. IV. 1984. Are periodic mass extinctions driven by a distant
18425WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. Nature, 313, 36-38.19426WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical21427Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge22428University Press, Cambridge.24429429254304312643043227431728433729433730432 <i>Figure 1.</i> 3133734433735434for the extinction or extinction proportion, P, of the genus extinctions as a function of time36436 <i>Figure 2.</i> 377Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is39438meant the excursion from the linear fits in Figure 1. (a) for the data from-0.460.0-470 Ma (b) for data410distribution plus an exponential tail described in the text. The dashed curves show the individual424429435Fligure 3446443447Fourier amplitude of the genus extinction genus of the assian and the exponential tail.448444444Fligure 3455444444Fourier amplitude of the genus extinction genus of the ast in figure 1.), (b) for <t< td=""><td>17</td><td>424</td><td>solar companion? <i>Nature</i>, 308, 713-715.</td></t<>	17	424	solar companion? <i>Nature</i> , 308, 713-715.
19WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical21427Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge23428University Press, Cambridge.244292543026431274312843229432294332943229433294322943329434294333050314333143332434433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time33433434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line435that for all the data referred to in the text.36figure 2.37Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data410distribution plus an exponential tail described in the text. The dashed curves show the individual421contributions of the Gaussian and the exponential tail.443Fourier amplitude of the genus extinction proportion as a function of period for the extinction and444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for445extinctions	18	425	WHITMIRE, D.P. and MATESE, J.J. 1985. Periodic comet showers and planet X. <i>Nature</i> , 313, 36-38.
20426WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical22427Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge23428University Press, Cambridge.2442925430264302743128432294322943229432204322043221728431294322943220432204322172243123432247303231433434for the extinction or extinction proportion, P, of the genus extinctions as a function of time33434435that for all the data referred to in the text.3643637738437437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38meant the excursion from the linear fits in Figure 1. (a) for the data from-0.460 0.470 Ma (b) for data40439439from 0.530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian440distribution plus an exponential tail described in the text.441contributions of the Gaussian and the exponential tail.442Figure 3443Fourier amplitude of the genus extinction propor	19		······································
21427Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge23428University Press, Cambridge.2442925430264302743128432294322943230432433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time31433434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line34435436Figure 2.37738437437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is39438439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian441439442440443contributions of the Gaussian and the exponential tail described in the text. The dashed curves show the individual444contributions of the genus extinction proportion as a function of period for the extinction and444444445Figure 3446444447443448444444444455extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each446with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma4564474481-460 Ma in Figure 1. <td>20</td> <td>426</td> <td>WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical</td>	20	426	WOLFENDALE, A.W. and WILKINSON, D.A. 1988. Periodic Mass Extinctions: Some Astronomical
23428University Press, Cambridge.24429254302643027431284322943230432433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time31433434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line34435436Figure 2.3738437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data40from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439424figure 3443Figure 3444Figure 3445442446444447Fourier amplitude of the genus extinction genotic detrended by the linear fit to all data in figure 1), (b) for448444444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for443extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each444with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma4481-460 Ma in Figure 1.4491-460 Ma in Figure 1.4491-460 Ma in Figure 1.	21	427	Difficulties. 231-239. In CLUBE, S.V.M. (ed.). Catastrophes and Evolution. Cambridge
24429254302743128432294322943229432304323143343450435434436604374354384364397439743074317432743374347435743674377438743974307.5043974307.5043143943274337434440435441441644274437444444445442446447443448444444445446446447443444444445445446446447448448449449440441442443444444445446447448449444444445446446 </td <td>23</td> <td>428</td> <td>University Press, Cambridge.</td>	23	428	University Press, Cambridge.
25 26 27 2843027 28 29 3043128 29 30432Figure 1.31 31 32 33433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time 434 435 43632 33 343433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time 434 435 43634 35 36436 437Figure 2.36 37 38 437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from-0-460-0-470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian 41 42 430 431434 441 441 442 442 443 443Figure 3447 443 443 444<	24	429	
262743129432Figure 1.3133The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time32433The depth of the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line34435that for all the data referred to in the text.36436Figure 2.37538437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is39438meant the excursion from the linear fits in Figure 1. (a) for the data from -0.460 0.470 Ma (b) for data40439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian42440distribution plus an exponential tail described in the text. The dashed curves show the individual43441contributions of the Gaussian and the exponential tail.444Figure 345442443Fourier amplitude of the genus extinction proportion as a function of period for the extinction and45444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for45extinctions younger than 250 Ma, (c) for those	25	430	
2743128432Figure 1.31433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time31433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time32434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line33435that for all the data referred to in the text.36436Figure 2.3738437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38meant the excursion from the linear fits in Figure 1. (a) for the data from-0-460 0-470 Ma (b) for data41439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian42440distribution plus an exponential tail described in the text. The dashed curves show the individual434contributions of the Gaussian and the exponential tail.444442Figure 3447443Fourier amplitude of the genus extinction proportion as a function of period for the extinction and450444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for451442Figure 34524434544444554454564454574464584474594	26		
432Figure 1.31433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time32433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time33434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line34435that for all the data referred to in the text.3636Figure 2.377Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is39438meant the excursion from the linear fits in Figure 1. (a) for the data from-0.460 0-470 Ma (b) for data40439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian42440distribution plus an exponential tail described in the text. The dashed curves show the individual441contributions of the Gaussian and the exponential tail.442Figure 3444Fugure 4443Fourier amplitude of the genus extinctions (detrended by the linear fit to all data in figure 1), (b) for445442Figure 3446with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma451444have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from	28	431	
30432Figure 1.31433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time32433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time33434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line34435that for all the data referred to in the text.36436Figure 2.3738Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38meant the excursion from the linear fits in Figure 1. (a) for the data from-0-460 0-470 Ma (b) for data40438meant the excursion from the linear fits in Figure 1. (a) for the data from-0-460 0-470 Ma (b) for data41439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian42distribution plus an exponential tail described in the text. The dashed curves show the individual431contributions of the Gaussian and the exponential tail.442Figure 3443Fourier amplitude of the genus extinction proportion as a function of period for the extinction and crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for444extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma445442have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from446	29	400	
31433The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time32434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line33435that for all the data referred to in the text.36436Figure 2.37738437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38436from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian42440distribution plus an exponential tail described in the text. The dashed curves show the individual437Fourier amplitude of the genus extinction proportion as a function of period for the extinction and441442442Figure 345544246444347443444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for456446451446452447453446454447455446456447457458458459459459450459451454452454453455454455455446455449	30	432	Figure 1.
32The formed and the extinction example of a statistic proportion by proportion by proportion of a galace analytic of the text and the dashed line33434for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line34435that for all the data referred to in the text.36436 <i>Figure 2</i> .373843738437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is39438meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data40439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian42440distribution plus an exponential tail described in the text. The dashed curves show the individual434441contributions of the Gaussian and the exponential tail.445442 <i>Figure 3</i> 47443Fourier amplitude of the genus extinction proportion as a function of period for the extinction and48444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for49extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each41with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma42have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from431-460 Ma in Figure 1.<	31	433	The depth of the extinction or extinction proportion, P, of the genus extinctions as a function of time
 Hor the extinction events. The solid line shows the linear fit up to dge fool the distribution the data end of the d	32	434	for the extinction events. The solid line shows the linear fit up to age 460 Ma and the dashed line
435Hart for an the data reference to in the text.36436Figure 2.3738437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is38437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is39438meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data40439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439distribution plus an exponential tail described in the text. The dashed curves show the individual43440contributions of the Gaussian and the exponential tail.44442Figure 346443Fourier amplitude of the genus extinction proportion as a function of period for the extinction and48444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for50445extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each51446with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma52447have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from54449	33 34	435	that for all the data referred to in the text
36436Figure 2.3738437Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is39438meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data40439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439distribution plus an exponential tail described in the text. The dashed curves show the individual42440distribution plus an exponential tail described in the text. The dashed curves show the individual43441contributions of the Gaussian and the exponential tail.44442Figure 346443Fourier amplitude of the genus extinction proportion as a function of period for the extinction and48444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for50445extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each51446with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma52447have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from53449	35	433	
 Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is meant the excursion from the linear fits in Figure 1. (a) for the data from -0.460 0-470 Ma (b) for data from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian distribution plus an exponential tail described in the text. The dashed curves show the individual contributions of the Gaussian and the exponential tail. <i>Figure 3</i> Fourier amplitude of the genus extinction proportion as a function of period for the extinction and crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 1-460 Ma in Figure 1. 	36	436	Figure 2.
 437 Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP. By amplitude is 438 meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data 439 from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian 440 distribution plus an exponential tail described in the text. The dashed curves show the individual 441 contributions of the Gaussian and the exponential tail. 442 443 444 45 442 444 45 442 46 47 443 444 45 444 45 442 46 47 443 48 444 49 444 45 444 45 46 47 48 49 44 44 45 44 45 46 47 48 49 44 45 44 45 46 47 48 49 44 45 44 45 46 47 48 49 44 49 40 40 41 41 42 43 44 44 45 44 45 44 46 47 43 44 44 45 44 45 44 46 47 48 49 49 44 44 45 44 46 47 48 49 49 40 40 41 41 41 42 44 44 45 44 45 44 46 47 48 49 49 49 40 40 41 41 41 42 44 45 44 45 44 46 47 47 48 49 <	37		
39438meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data40439from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian41439distribution plus an exponential tail described in the text. The dashed curves show the individual43441contributions of the Gaussian and the exponential tail.44442Figure 345442Figure 346444crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for49445extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each51446with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma524481-460 Ma in Figure 1.55449	38	437	Frequency distribution of the 'amplitude' of the probability of genus extinctions, ΔP . By amplitude is
 from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian distribution plus an exponential tail described in the text. The dashed curves show the individual contributions of the Gaussian and the exponential tail. <i>412</i> <i>424</i> <i>434</i> <i>442</i> <i>442</i> <i>443</i> <i>444</i> <li< td=""><td>39</td><td>438</td><td>meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data</td></li<>	39	438	meant the excursion from the linear fits in Figure 1. (a) for the data from 0-460 0-470 Ma (b) for data
 440 distribution plus an exponential tail described in the text. The dashed curves show the individual 43 441 contributions of the Gaussian and the exponential tail. 442 442 <i>Figure 3</i> 463 443 Fourier amplitude of the genus extinction proportion as a function of period for the extinction and 444 crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for 445 extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each 446 with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma 447 have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 448 1-460 Ma in Figure 1. 449 	40	439	from 0-530 Ma. The smooth solid curves shows the maximum likelihood fit of a Gaussian
 43 441 contributions of the Gaussian and the exponential tail. 442 <i>Figure 3</i> 443 Fourier amplitude of the genus extinction proportion as a function of period for the extinction and 444 crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for 445 extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each 51 446 with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma 52 447 have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 53 448 1-460 Ma in Figure 1. 54 55 56 	42	440	distribution plus an exponential tail described in the text. The dashed curves show the individual
 44 45 46 47 43 43 443 444 445 446 447 447 448 448 448 449 449 	43	441	contributions of the Gaussian and the exponential tail.
 <i>Figure 3</i> <i>Figure 3</i> <i>Fourier amplitude of the genus extinction proportion as a function of period for the extinction and</i> <i>crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for</i> <i>extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each</i> <i>with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma</i> <i>have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from</i> <i>1-460 Ma in Figure 1.</i> <i>449</i> 	44		
 Fourier amplitude of the genus extinction proportion as a function of period for the extinction and crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 1-460 Ma in Figure 1. 	45 46	442	Figure 3
 443 Fourier amplitude of the genus extinction proportion as a function of period for the extinction and 48 444 crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for 445 extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each 446 with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma 447 have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 448 1-460 Ma in Figure 1. 449 449 	40 47	442	Fourier amplitude of the genus extinction properties as a function of period for the extinction and
 444 Crater data; (a) including all 163 extinctions (detremeded by the linear fit to all data in figure 1), (b) for 50 50 51 51 52 54 55 56 	48	445	Fourier amplitude of the genus extinction proportion as a function of period for the extinction and
50445extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each51446with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma52447have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from534481-460 Ma in Figure 1.54449	49	444	crater data; (a) including all 163 extinctions (detrended by the linear fit to all data in figure 1), (b) for
 446 with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma 447 have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 448 1-460 Ma in Figure 1. 55 449 56 	50	445	extinctions younger than 250 Ma, (c) for those between ages 270-470 Ma, (d) for the 37 craters each
 447 have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from 448 1-460 Ma in Figure 1. 55 449 56 	51	446	with unit weight. Note the large groups of extinctions at around 260 Ma and more than 470 Ma
53 448 1-460 Ma in Figure 1. 54 55 449 56 56	52 53	447	have been excluded from (b) and (c). The data in (b) and (c) were detrended using the linear fit from
55 449 56	54	448	1-460 Ma in Figure 1.
56 449	55	110	
	56	449	
57	57		
50 50	58 50		
Ja	60		11
	60		11

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
34
25
30
30
37
38
39
40
41
42
43
44
15
46
40
47
48
49
50
51
52
53
54
55
55
30
5/
58
59

450 *Figure 4* Fourier analysis of the extinctions with each extinction given unit weight, for comparison451 with the crater data in Figure 3(d), rather than weighted by the genus proportion as in Figure 3.

452

1

453	Figure 5 Typical Fourier analyses of samples of 147 events generated as a pure sine wave distributed
454	as $P(t) = 0.04 \sin \omega t$. In the upper panel the value of ω is fixed to correspond to a period of 27
455	myr. The lower 3 panels come from analyses of samples of 147 events generated in the same way
456	except that the periods were varied between events by a random amount with Gaussian

457 distributions of standard deviation 0.02, 0.04 and 0.06 times 27 myr, as indicated.

0.4

Palaeontology

Supplementary Material

This supplementary material includes the analyses for two further time-series datasets from the Phanerozoic. Two older datasets (Peters together with Rohde and Muller, both abstracted from http://www.annualreviews.org/doi/suppl/10.1146/annurev.earth.33.092203.122654) were interrogated by Fourier analysis. The results are presented here. Figure 1 displays the proportion of extinctions through the Phanerozoic, minus background and with a best fit line, and secondly Figure 3 shows a Fourier analysis of the data for the Peters dataset. Similarly, Figure 4 displays the proportion of extinctions through the Phanerozoic, minus background and with a best fit line, and secondly Figure 5 shows a Fourier analysis of the data for the Peters dataset. Similarly, Figure 4 displays the proportion of extinctions through the Phanerozoic, minus background and with a best fit line, and secondly Figure 5 shows a Fourier analysis of the data for, this time, the Rohde and Muller dataset. As noted in the main text: Fourier analyses of the Bambach dataset generated in detail, discussed in main text, and those for the Rohde and Muller together with Peters data show large peaks at the following frequencies: [24, 27, 38, 47 and 60 myr], [24.5, 27, 38, 48, 61 myr] and [25, 27, 38, 47 and 62 myr], respectively. All three datasets display their major peaks with probabilities >10% that they occurred by chance, and thus are not significant. Understandably, the heights of the peaks differ across the analyses, but the shapes of the distributions (N> P vs P) are the same.

Figure 1. Proportion of extinctions through the Phanerozoic (based on plots of the Peters dataset).

Figure 2. Proportion of extinctions through the Phanerozoic, minus background, with a best fit line (based on plots of the Peters dataset).

Figure 3. Fourier analysis of the Peters dataset (see text for explanation).

Figure 4. Proportion of extinctions through the Phanerozoic, minus background, with a best fit line (based on plots of the Rohde-Muller dataset).

Figure 5. Fourier analysis of the Rohde-Muller dataset (see text for explanation).

