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Abstract In this paper we establish some algebraic properties of special L-values attached to
Siegel modular forms of half-integral weight, often called metaplectic modular forms. These
results are motivated by some “exercises” left by Shimura to the reader in his marvellous
book “Arithmeticity in the Theory of Automorphic Forms”.

1 Introduction

This paper is the continuation of our earlier work [1], concerning special L-values attached to
Siegel modular forms. In the previous work we considered Siegel modular forms of integral
weight, and in this paper we consider the half-integral weight situation. As we mentioned in
our previous paper, the origin of these two works is the work of Shimura on the algebraicity
of these special L-values (both in integral and half-integral situation). Indeed, Shimura, in
his admirable book “Arithmeticity in the Theory of Automorphic Forms” [10], establishes
various algebraicity results of these special L-values. These results are established over an
algebraic closure of Q (see for example Theorem 6.1 below), and Shimura leaves it as an
“exercise” to the reader to establish more accurate results (i.e. exact field of definition and
a Galois reciprocity law, see [10, p. 239, Remark 28.13]). We believe that it is important to
have these results documented in the literature and this is exactly the goal of this and our
previous work. Our main results are Theorems 6.2 and 6.4 below, which rely in turn to the
definition of some particular automoprhic periods (see Theorem 5.2). The structure of this
paper is very similar to the previous one [1], and for this reason we have shortened quite a lot
of proofs which are similar to the previous work. However there are a few technical points
that need to be settled differently than in the previous paper. We finally mention that similar
questions can be considered for Hermitian modular forms, and we refer to our paper [2] for
more on this.
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Notation Our main reference is the book of Shimura [10], and hence we have adopted most
of the notation used there. There is only a few notational differences, perhaps the one worth
emphasizing, is that we use the L notation for our functions (L-functions) where in [10] the
zeta notation, Z , is used.

2 Siegel modular forms

In this section we introduce the notion of a Siegel modular form of integral and half-integral
weight both from a classical and adelic point of view. This section is very similar to the
corresponding one in our previous paper [1]. We follow closely the book of Shimura [10,
Chapter I].

For a positive integer n ∈ N we define the matrix ηn :=
(

0 −In
In 0

)
and for any commu-

tative ring A with an identity the group Spn(A):={α ∈ GL2n(A)|tαηnα = ηn}. The group
Spn(R) acts on the Siegel upper half space Hn :={z ∈ Mn(C)| tz = z, Im(z) > 0},

α · z := (aαz + bα)(cαz + dα)−1, α =
(
aα bα

cα dα

)
∈ Spn(R),

where ∗α is an n × n matrix.
Let now F be a totally real field of degree d , discriminant DF and we denote by O its

ring of integers. We write ∞ for the set of archimedean places of F , f for the finite ones and
we set G := Spn(F). We write GA for the adelic group and we decompose GA = GfG∞
where G∞ := ∏

v∈∞ Gv and Gf := ∏′
v∈f Gv . For a fractional ideal b and an integral idealc

of F we define the subgroup of GA,

D[b−1, bc] := {
x ∈ GA|ax ≺ Ov, bx ≺ b−1

v , cx ≺ bcv, dx ≺ Ov,∀v ∈ f
}
,

where we use the notation “≺” of Shimura, x ≺ I meaning that the v-component of x
is a matrix with entries in the fractional ideal I . Strong approximation for G implies that
GA = GqD[b−1, bc] for any b, c and q ∈ Gf . We define �q(b, c) := G ∩ qD[b−1, bc]q−1.

We denote by MA the adelized metaplectic group, and write p : MA → GA for the
canonical projection to GA. Further we write Cθ for the theta group defined for example in
[10, Appendix A2.3] and �θ = G ∩ Cθ . We note that D[b−1, bc] ⊂ Cθ if b−1 ⊂ 2d−1 and
bc ⊂ 2d.

For an element σ ∈ �θ and z ∈ Hwewrite hσ (z) for the 1/2-weight factor of automorphy
as defined for example in [10, Theorem6.8]. For a k ∈ 1

2Zwe define the factor of automorphy

jσ (z)k :=
{
det (cσ z + dσ )k, k ∈ Z, σ ∈ G,

hσ (z) jσ (z)[k], k /∈ Z, σ ∈ �θ .

Given a Hecke character ψ of F of conductor dividing cwe define a character on D[b−1, bc]
by ψ(x) = ∏

v|c ψv(det (dx )v) and a character, which we still denote by ψ , on �q by

ψ(γ ) := ψ(q−1γ q).
We now write Zd := ∏

v∈∞ Z and H := ∏
v∈∞ Hn . Elements k ∈ 1

2Z
d will be called

weights, if k ∈ Zd or k = (kv) ∈ 1
2Z

d and kv ∈ Z + 1
2 for all v, in which case we say that

k is a half-integral weight. For a function f : H → C and a weight k ∈ Zd (resp. k ∈ 1
2Z

d

and half-integral), we define,

( f |kα)(z) := jα(z)−k f (αz), z ∈ H.
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for α ∈ G (resp. α ∈ �θ ). Here we write z = (zv)v∈∞ with zv ∈ Hn and α ∈ G∞ and define
jα(z)−k := ∏

v jαv (zv)
kv .

Let now � be group of the form �q , q ∈ Gf as above and ψ a Hecke character. Moreover
we fix a weight k ∈ 1

2Z
d , and in the half-integral case we will be also assuming that � ⊆ �θ .

Then we define,

Definition 2.1 A function f : H → C is called a Siegel modular form of weight k (or often
called a metaplectic modular form if k is half-integral) for the congruence subgroup � and
Nebentypus ψ if

(1) f is holomorphic,
(2) f |kγ = ψ(γ ) f for all γ ∈ �,
(3) f is holomorphic at cusps.

The last condition is needed only if F = Q and n = 1, which is then the usual condition of
elliptic modular forms being holomorphic at cusps. The above defined space we will denote
it by Mk(�,ψ).

For any γ ∈ G, we define pγ (z) = 1 if k ∈ Zd and pγ (z) to be any branch of the square
root of jγ (z)u if k is half-integral, where we write u = (1, . . . , 1) ∈ Zd . Then we have a
Fourier expansion of the form (see [10, pp. 33 and 73])

pγ (z)−1( f |[k]γ )(z) =
∑
s∈S

c(s, γ ; f )e∞(sz),

where S a lattice in S+ := {s ∈ Mn(F)|s = ts, sv ≥ 0, ∀v ∈ ∞}, and e∞(x) =
exp(2π i

∑
v tr(xv)). An f is called a cusp form if c(s, γ ; f ) = 0 for any γ ∈ G and s

with det (s) = 0. The space of cusp forms we will be denoted by Sk(�,ψ). For a subfield
L of C we will be writing Mk(�,ψ, L) (resp. Sk(�,ψ, L) for the subspace of Mk(�,ψ)

(resp. Sk(�,ψ)) whose Fourier expansion at infinity (i.e. γ = 1 above) has coefficients in L .
Finally we note that for an element σ ∈ Gal(Q/Q) we may define (see [10, pp. 35 and 73]
an action on Mk(�,ψ,Q) by acting on the Fourier coefficients of the expansion at infinity.

We now turn to the adelic Siegel modular forms. We refer the reader to [9, Chapter II]
and [10, pp. 166–167] for details. For a weight k ∈ 1

2Z
d , we set GA = GA, and p = 1 if k is

integral and GA = MA, and p as above, if k is half-integral. Then

Definition 2.2 ([10, p. 166]) A function f : GA → C is called adelic Siegel modular form
of weight k if

(1) f(αxw) = ψ(w) j kw∞(i)f(x) for α ∈ G, w ∈ p−1(D) with w∞(i) = i,
(2) For every p ∈ Gf there exists f p ∈ Mk(�

p, ψ), where � p:=G ∩ pDp−1, such that
f(py) = ( f p|k y)(i) for every y ∈ G∞.

Here i := (i In, . . . , i In) ∈ H. We write Mk(D, ψ) for this space. Strong approximation
theorem for Spn gives Mk(D, ψ) ∼= Mk(�

q , ψ) for any q ∈ Gf , where in the half-integral
case we assume that �q ⊂ �θ . We define the space of automorphic cusp form Sk(D, ψ)

to be the subspace of Mk(D, ψ) that is in bijection with Sk(�q , ψ) for any q ∈ Gf in the
above bijection. Using the above bijection we also define Mk(D, ψ, L) for any subfield L
of C and an action of Gal(Q/Q) on Mk(D, ψ,Q).

Finally for q ∈ GLn(F)A and s ∈ S+A we set xq,s :=
(
q stq−1

0 tq−1

)
and obtain an adelic

q-expansion (see [10, pp. 167–168]),

f(xq,s) = det (q∞)[k]|det (q)|k−[k]∞
∑
τ∈S+

c(τ, q; f)e∞(itqτq)eA(τ s),
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where for the definition of eA to [10, p. 127], and in the case of half-integral we view xq,s

in MA using the canonical lift PA ↪→ MA of the adelic Siegel parabolic PA. Finally, in the
half-integral weight situation, we set μ(τ, q; f) := |det (q)|1/2F c(τ, q; f).

3 A reciprocity law on Eisenstein series

In this section we recall a theorem proved in [1] concerning the action of the absolute
Galois group on some Siegel type Eisenstein series. We start by fixing some notation. Let
k ∈ 1

2Z
d be a weight and let b be a fractional ideal and c an integral ideal of F . Further we

consider a Hecke character χ of F with infinity type χ∞(x) = x [k]∞ |x∞|[k] and of conductor
dividing c. Moreover in case that k is half-integral we assume that b and c are such that
D[b−1, bc] ⊂ D[2d−1, 2d].

We write EA(x, s):=EA(x, s;χ, c), x ∈ GA, s ∈ C, and E∗
A
(x, s) for the two adelic

Eisenstein series of Siegel type defined as in [10, pp. 131–132]. Moreover we define,

DA(x, s) = E∗
A
(x, s) ×

{
Lc(2s, χ)

∏[n/2]
i=1 Lc(4s − 2i, χ2), k ∈ Zd ;∏[(n+1)/2]

i=1 Lc(4s − 2i − 1, χ2), k /∈ Zd ; ,

and write D(z, s; k, χ, c) for the corresponding to DA(x, s) classical Siegel modular form.
For a number field W we follow the notation in [10] and write N r

k (W ) for the space of
W -rational nearly holomorphic forms of weight k (for the meaning of r we refer to [10]).
The theorem below is due to Shimura [10, Theorem 17.9].

Theorem 3.1 (Shimura) Let  be the Galois closure of F over Q and let k ∈ 1
2Z

d be a
weight with kv ≥ (n + 1)/2 for all v ∈ ∞ and kv − kv′ ∈ 2Z for every v, v′ ∈ ∞. Let
μ ∈ 1

2Z with n + 1− kv ≤ μ ≤ kv and |μ − n+1
2 | + n+1

2 − kv ∈ 2Z for all v ∈ ∞. Exclude
the cases

(1) μ = (n + 2)/2, F = Q and χ2 = 1,
(2) μ = 0, c = O and χ = 1,
(3) 0 < μ ≤ n/2, c = O and χ2 = 1.

Then D(z, μ/2; k, χ, c) belongs to πβN r
k (Qab), where r = (n/2)(k−|μ− (n+1)/2|u−

n+1
2 u) except in the case where n = 1, μ = 2, F = Q, χ = 1 and n > 1, μ = (n + 3)/2,

F = Q, χ2 = 1. In these two case we have r = n(k − μ + 2)/2. Moreover we have that
β = (n/2)

∑
v∈∞(kv + μ) − de where

e =
{ [(n + 1)2/4] − μ, if 2μ + n ∈ 2Z and μ ≥ λ;[

n2/4
]
, otherwise.

In [1, Theorem 3] we have proved the following reciprocity laws of the action of the Galois
group Gal(Q/) on Eisenstein series, extending previous results of Feit [4]. Below g(·) is
a Gauss sum (see [1] for the normalization), and C is a fixed primitive 8th root of unity.

Theorem 3.2 Let k ∈ 1
2Z

d with kv ≥ (n + 1)/2 for every v ∈ ∞. Let μ ∈ 1
2Z such that

n + 1− kv ≤ μ ≤ kv and |μ − (n + 1)/2| + (n + 1)/2− kv ∈ 2Z for all v ∈ ∞. Then with
a β ∈ N as in Theorem 3.1 we have

π−βD(z, μ/2; k, χ, c) ∈ N r
k (Qab),
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and for every σ ∈ Gal(Qab/) we have(
π−βD(z, μ/2; k, χ, c)

ω(χ)

)σ

= π−βD(z, μ/2; k, χσ , c)

ω(χσ )
,

where ω(χ) is given as follows:

(1) if k ∈ Zd , μ ≥ (n + 1)/2:

ω(χ) = in|p|g(χ)iμd+2μ[n/2]−[n/2]([n/2]+1)d D−b(n)
F g(χ2[n/2]),

where p:= (k−μu)
2 and b(n) = 0 if [n/2] odd and 1/2 otherwise.

(2) if k ∈ Zd , μ < (n + 1)/2:

ω(χ) = in|p|g(χ)ni−dnνD−nμ+3n(n+1)/4
F ,

where ν:=n + 1 − μ and p:= k−νu
2 .

(3) if k /∈ Zd and μ ≥ (n + 1)/2:

(a) if n is even

ω(χ) = in|p|g(χφ)ni−dnkCDnk/2+3n(n+1)/4
F ,

(b) if n is odd

ω(χ) = in|p|g(χφ)ni−dnkC |DF |nμ/2+3n(n+1)/4g(χ)D1/2
F (2i)−(μ−n)db([n/2]),

where p:= (k−μu)
2 and b(m) = id if m is m is odd and 1 otherwise and

(4) if k /∈ Zd and μ < (n + 1)/2:

ω(χ) = in|p|g(χφ)ni−dnνCD−n(n+1−ν)+3n(n+1)/4
F ,

where ν := n + 1 − μ and p := k−νu
2 .

The character φ in (iii) and (iv) above is induced by the character on �θ defined as hγ (z)2 =
φ(γ ) jγ (z)u (see also the few lines in the proof of [10, Theorem 10.7]). In particular we have
that

π−βD(z, μ/2; k, χ, c)

ω(χ)
∈ N r

k ((χ)),

where (χ) is the finite extension of  obtained by adjoining the values of the character χ .

4 The L-function attached to a metaplectic modular form and the
Rankin–Selberg method

In this section we collect various results of Shimura on the L-functions associated to half-
integral weight Siegel modular forms and the Rankin–Selberg method. Everything in this
section is from the works of Shimura [7,8,10]. For notation not introduced in this section we
refer to [10].

From now on, until the end of the paper, k will always denote a half-integral weight. We
fix a fractional ideal b and an integral ideal c. We write C = D[b−1, bc], with the usual
assumption on b and c. For an integral ideal a we write T (a) for the Hecke operator acting
on half-integral Siegel modular forms as defined by Shimura in [10, p. 175] or [7].
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We consider an 0 �= f ∈ Sk(C, ψ) with f|T (a) = λ(a)f with λ(a) ∈ C for all integral
ideals a. For a Hecke character χ of F of conductor fχ Shimura shows (see for example [10,
Chapter V]) that the function (defined for Re(s) >> 0),(

n∏
i=1

Lc(2s + 1 − 2i, χ)

) ∑
a

λ(a)χ∗(a)N (a)−s ,

has an Euler product, which we denote by Z(s, f, χ) = ∏
p Zp(χ

∗(p)N (p)−s), where χ∗
denotes the corresponding to χ ideal class character. We will consider another L-function
denoted by L(s, f, χ) and defined as

L(s, f, χ):=
∏
p

Zp

(
χ∗(p)(ψ/ψc)(πp)N (p)−s) , (4.1)

where πp is a uniformizer of the prime ideal p.
For τ ∈ S+ ∩ GLn(F) and r ∈ GLn(F)f we define the Dirichlet series,

Dr,τ (s, f, χ):=
∑

x∈B/E

ψ(det (r x))χ(det (x))c(τ, r x; f)|det (x)|s−n−1
F ,

where B = GLn(F)f ∩∏
v∈f Mn(Ov) and E = ∏

v∈f GLn(Ov). By Theorem [10, Theorem
21.4] (and the notation there for b, μ(·),Lτ , gv), we have the Andrianov type identity,

(ψ/ψc)(det (r))
−2Dr,τ (s, f, χ)�c

(
2s − n

4

) ∏
v∈b

gv(χ(ψ/ψc)(πv)|πv|s)

= L(s, f, χ)
∑

L<M∈Lτ

μ(M/L)(ψ2
c /ψ)(det (y))χ(det (tr ty−1)O)|det (tr ty−1|sFc(τ, y; f),

(4.2)

where for an integral ideal a we write

�a(s) =
{
La(2s, ρτψχ)

∏n/2
i=1 La(4s − 2i, ψ2χ2), if n is odd;∏(n+1)/2

i=1 La(4s − 2i + 1, ψ2χ2), if n is even.

We now write t ′ ∈ Zd for the sign

(ψχ)∞(x) = x−t ′∞ |x∞|t ′ ,
and define μ ∈ Zd by the conditions 0 ≤ μv ≤ 1 for all v ∈ ∞ and μ − [k] − t ′ ∈ 2Zd . We
moreover define the weight l := μ + (n/2)u, and write θχ ∈ Ml(C ′, χ−1ρτ ) for the theta
series associated to the data (χ−1, μ, τ, r) in [10, Proposition A3.19], where ρτ is the Hecke

character of F corresponding to the extension F(c
1
2 )/F with c := (−1)[n/2]det (2τ). After

writing C ′ = D[b′−1
, b′c′]}, we define e := b + b′. Then we have (see [8, pp. 342–343]),

Theorem 4.1 (Shimura)

(4π)−n(su+(k+l)/2)(
√
DF N (e)−1)n(n+1)/2

∏
v∈∞

�n(s + (kv + lv)/2)

Dr,τ (2s + 3n/2 + 1; f, χ)

= β(s)
∫
F

f (z)θχ (z)E(z, s̄ + (n + 1)/2, k − l, ψχρτ , �′)δ(z)kdz,

where β(s) := |det (r)|−2s−n/2
F det (τ )(k+μ+nu/2)/2+su , �′ := G ∩ D[e−1, eh], with h =

e−1(bc ∩ b′c′), and F = H/�′.
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In particular using the Eq. 4.2 we obtain

Theorem 4.2 (Shimura)

ψ/ψc)
2((det (r))L(s, f, χ)

∏
v∈∞

�n

(
s − n − 1 + kv + μv

2

)

×
∑

L<M∈Lτ

μ(M/L)(ψ2
c /ψ)(det (y))χ(det (tr ty−1))|det (tr ty−1)|sFc(τ, y; f)

=
(
D−1/2

F N (e)
)n(n+1)/2

(4π)nds
′+ n

2

∑
v(kv+μv+n/2)det (τ )s

′u+ k+μ+n/2u
2 |det (r)|n+1−s

F

×
∏
v∈b

gv((ψ/ψc)(πv)χ(πv)|πv|s)(�c/�h)((2s − n)/4)vol(F)

< f, θχ D((2s − n)/4)>,

where s′ = (2s − 3n − 2)/4, and D(s) = �h(s)E(z, s̄; k − l, ρτψχ, �), and

< f, θχ D((2s − n)/4)> = vol(F)−1
∫
F

f (z)θχ (z)D(z, (2s − n)/4)δ(z)kdz.

In particular there exists (τ, r) with c(τ, r; f) �= 0 such that

L(s, f, χ)
∏
v∈∞

�n

(
s − n − 1 + kv + μv

2

)
ψc(det (r))c(τ, r; f)

=
(
D−1/2

F N (e)
)n(n+1)/2

(4π)nds
′+ n

2

∑
v(kv+μv+n/2)det (τ )s

′u+ k+μ+n/2u
2 |det (r)|n+1−2s

F

×
∏
v∈b

gv((ψ/ψc)(πv)χ(πv)|πv|s)(�c/�h)((2s − n)/4)vol(F)

< f, θχ D((2s − n)/4)>. (4.3)

5 Petersson inner products and periods

In this section we define some archimedean periods that we will use to normalize the special
values of the function L(s, f, ψ). We start by proving a lemma with respect to the action of
“good” Hecke operator T (a), relative to the group C = D[b−1, bc]. Here “good” means that
a is prime to c.

Lemma 5.1 The Hecke operators T (a), preserve Mk(C, ψ,W ), if W contains the values
of ψ .

Proof Following Shimura in [7, p. 44] we consider the formal Dirichlet series f|I:= ∑
a[a]f|T (a) (Our notation here is slightly different from the one of Shimura). For a τ ∈ S+ and

q ∈ GLn(F)f Shimura shows in (p. 46, loc. cit.) that

c(τ, q; f|I) =
∑
g,h

ψc(det (h
−1g))|det (g)|−n−1

A
c(τ, qh−1g; f)α′(th−1tqτqh−1)[det (gh)O].

For the notation we refer to Shimura’s paper. The point which is important here is that by
Proposition 4.1 in (loc. cit.) we have that α′(·) is a rational formal Dirichlet series (i.e. has
coefficients in Q). In particular by the equation above we conclude that the c(τ, q; f|T (a)),
which is obtained by equating the [a] coefficient in the formal Dirichlet series, is a Q(ψ)

linear combination of the Fourier coefficients of f . Hence we conclude the lemma. ��
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In the followingwewrite<·, ·> for the adelic Petersson inner product (see for example [9]
for the definition) and we denote by Sk(Q) the space of weight k cusp forms with algebraic
Fourier coefficients and of any congruence subgroup.

Theorem 5.2 Let f ∈ Sk(C, ψ) be an eigenform for all the good Hecke operators of C. Let
 be the Galois closure of F overQ and write� for extension of generated by the Fourier
coefficients of f and their complex conjugation . Assume m0:=minv(kv) > [3n/2 + 1] + 2.
Then there exists a period�f ∈ C× and a finite extension L of such that for any g ∈ Sk(Q)

we have (
<f, g>

�f

)σ

= <fσ , gσ ′
>

�fσ
,

for all σ ∈ Gal(Q/L), where σ ′ = ρσρ. Moreover �f depends only on the eigenvalues of
f and we have <f,f>

�f
∈ (L�)×.

Remark 5.3 We make the following two remarks,

(1) Our proof is using ideas from a result of Sturm [11, Theorem 3], and of Shimura [10,
Theorem 28.5]. We have similar theorems in the integral weight situation [1]. The proof
is very similar to integral weight situation considered in [1], and hence we will not
reproduce all the long calculations again, but only what is needed to have a logical flow
and we simply refer to our previous work for the details. Perhaps the differences that
deserve special mention are (a) the fact that we need to establish the Galois invariance
of the trace map for half-integral Siegel modular forms (see Lemma 5.4 below), and (b)
the slightly larger extension L .

(2) Indeed the number field L in the statement of the theorem, depends only the eigenspace

V := {g ∈ Sk(C, ψ)|g|T (a) = λf (a)g (a, c) = 1},
where {λf (a)} are the eigenvalues of f , with respect to the good Hecke operators. L is
the composition of  with quadratic extensions ofQ and a rough estimation shows that
[L;] ≤ 2�−1 where � is the dimension of V .

Proof As in [1] we pick a half integer σ0 so that 3n/2+1 < σ0 < m0 andm0 −σ0 /∈ 2Z and
defineμ ∈ Zd by the conditions 0 ≤ μv ≤ 1 and σ0−kv+μv ∈ 2Z for all v ∈ ∞. Our choice
of σ0 implies in particular that there exists an v ∈ ∞ so that μv �= 0. We put t ′ := μ − k.
We now pick a quadratic character χ of F so that (ψχ)∞(x) = xt

′
∞|x∞|−t ′ and of conductor

f such that c|f (see [1] for the existence of such an χ) and we define l := μ + (n/2)u and
ν = σ0 − (n/2). Then ν ≥ (n + 1)/2 and 0 ≤ k − l − νu ∈ 2Zd . We consider the theta
series θχ with respect to our choices of χ and μ, and by our choices we note that θχ is a cusp
form, since μ �= 0 (see [10]). By Theorem 4.2 we have

L(σ0, f, χ)
∏
v∈∞

�n

(
σ0 − n − 1 + kv + μv

2

)
(ψ/ψc)

2(det (r))

×
∑

L<M∈Lτ

μ(M/L)(ψ2
c /ψ)(det (y))χ(det (tr ty−1))|det (tr ty−1)|σ0F c(τ, y; f)

=
(
D−1/2

F N (e)
)n(n+1)/2

(4π)nds
′
0+ n

2

∑
v(kv+μv+n/2)det (τ )s

′
0u+ k+μ+n/2u

2 |det (r)|n+1−σ0
F

×
∏
v∈b

gv((ψ/ψc)(πv)χ(πv)|πv|σ0)(�c/�h)(ν/2)vol(F)< f, θχ D(ν/2, ρτψχ)>,

where s′
0 = (2σ0 − 3n − 2)/4.
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We write δ for the rational part of
∏

v∈∞ �n(
σ0−n−1+kv+μv

2 )

vol(F)
and define β ∈ N so that

π−βD(ν/2) ∈ N p
k−l(Qab) with p = k−l−νu

2 . We set γ :=n(
∑

v
kv−lv−ν

2 − kv) + dε −
n

∑
v(s

′
0 + kv +μv + n/2)−β, where ε = n2/4 if n even and (n2 − 1)/4 otherwise. Similar

to [1] we define,

B(χ,ψ, τ, r, f) := δ|det (r)|n+1−σ0∞ (ψ/ψc)
2(det (r))

×
∑

L<M∈Lτ

μ(M/L)(ψ2
c /ψ)(det (y))χ(det (tr ty−1))|det (tr ty−1)|σ0F c(τ, y; f),

and

C(χ,ψ, τ, r) := (N (e))n(n+1)/2
∏
v∈b

gv((ψ/ψc)(πv)χ(πv)|πv|σ0)(�c/�h)(ν/2).

We now claim that for every σ ∈ Gal(Q/) we have that

B(χ,ψ, τ, r, f)σ = B(χσ , ψσ , τ, r, fσ ) and C(χ,ψ, τ, r)σ = C(χσ , ψσ , τ, r).

For C(χ,ψ, τ, r) this is easy to see, since σ0 + 1
2 is an integer, and hence our claim follows

by looking at the definition of gv in [10, p. 128]. However for B(χ,ψ, τ, r, f) we need to
justify it since σ0 ∈ Z + 1

2 . For this we rewrite

B(χ,ψ, τ, r, f) = δ|det (r)|n+1
F (ψ/ψc)

2(det (r))

×
∑

L<M∈Lτ

μ(M/L)(ψ2
c /ψ)(det (y))

χ(det (tr ty−1))|det (ty−1)|σ0+
1
2

F |det (ty−1)|−
1
2

F c(τ, y; f).

We recall that μ(τ, y; f) = |det (ty−1)|−
1
2

F c(τ, y; f), and by [10, Lemma 23.14] we have that
μ(τ, y; f)σ = μ(τ, y; fσ ), from which the claim follows.

Writing Tr�
�′ : Sk(�′, ψ) → Sk(�,ψ) for the usual trace operator attached to the groups

�′ ≤ �, and using the properties of the inner product we obatin

<f, θχ D(ν/2, ρτψχ)> = <f, p(θχ D(ν/2, ρτψχ))> = <f, Tr�
�′(p(θχ D(ν/2, ρτψχ)))>,

where p : Rp
k → Sk is Shimura’s holomorphic projection operators [10, Proposition

15.6]. Moreover, since θχπ−βD(ν/2) ∈ N p
k (Qab), we may consider the action of

σ ∈ Gal(Qab/). Then

p(θχπ−βD(ν/2, ρτψχ))σ = p(θσ
χ (π−βD(ν/2, ρτψχ))σ ),

and

Tr�
�′(θχπ−βD(ν/2, ρτψχ))σ = Tr�

�′(θσ
χ D(ν/2, ρτψχ)σ ),

using an equivariant property of the trace, which will be shown below in Lemma 5.4. Now,
for any given f ∈ V , there exists (τ, r) such that

B(χ,ψ, τ, r, f) = δψ(det (r))c(τ, r; f) �= 0,

and we writeG for the set of pairs (τ, r) for which such an f exists. In particular for such an
(τ, r), we have (see [1] for details) that

<f, θχπ−βD(ν/2, ρτψχ)> �= 0, and C(χ,ψ, τ, r) �= 0.
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Th. Bouganis

We now define gτ,r ∈ Sk(�′, ψ;Qab) by

gτ,r = Tr�
�′

(
p(θχπ−βD(ν/2, ρτψχ))

)
,

and define the space W to be the space generated by gτ,r for (τ, r) ∈ G. We now claim that
there exists an �f ∈ C× such that any f ∈ V and any gτ,r

(
<f, gτ,r>

�f

)σ

= <fσ , gσ ′
τ,r>

�fσ
,

where σ ′ = ρσρ, and σ ∈ Gal(Q/(
√
det (τ ))).

The case of n even This case is similar to the case of n odd in the integral weight situation,
which we considered in our previous work [1]. We do not reproduce the whole calculations
but we refer the reader to that article. The only difference is that now we have to take the
element σ to fix (

√
det (τ )). The same calculations (there we take ε = 1) show that we can

define:

�f :=
(
g(ψ)

n
g(φ)

n
R̄
)−1

Dn(n+1)/4
F πγ L(σ0, f, χ),

where

R := in|p|i−dnνCD
n
2 (

∑
v kv−μv− n

2 )+3n(n+1)/4
F

The case of n odd This case is the samewith the case of n even in the integral weight situation.
We set:

�f := (
g(ψ)g(χ)R(ψ)

)−1
B(n)4−n(

∑
v s

′
0u+ kv+μv+ n

2
2 )Dn(n+1)/4

F πγ L(σ0, f, χ)

where B(n) = id if [n/2] is odd and 1 otherwise. Moreover

R(ψ) := in|p|(i)νd

D1/2
F

(∏[n/2]
i=1 (i)(2ν−2i)d

)
g(ψ

2[n/2]
)

Db(n)
F

,

where b(n) is defined as in Theorem 3.2.
As in [1] it can be shown that the C span (of the projections) of gτ,r with (τ, r) ∈ G is

equal to V . Since V is a finite dimensional space, we need only finitely many gτ,r . We define
L to be a minimal extension of  such that L contains

√
det (τ ) for a set of gτ,r spanning

V . Since gτ,r ∈ Sk(Q) we have that the Q-span is equal to V(Q). We can now establish the
theorem for any g ∈ V(Q) since after writing g = ∑

j c jgτ j ,r j ,V ∈ V(Q), where gτ j ,r j ,V is

the projection of gτ j ,r j to V , we have for all σ ∈ Gal(Q/L) that,

(
<f, g>

�f

)σ

=
∑
j

c j
σ

⎛
⎝<fσ , gσ ′

τ j ,r j ,V>

�fσ

⎞
⎠ = <fσ , gσ ′

>

�fσ
.

We now take any g ∈ Sk(�,ψ;Q). Since the good Hecke operators act semisimply, we have
Sk(C, ψ) = V ⊕U , for some vector spaceU preserved by the action of the Hecke operators.
We write g = g1 + g2 with g1 ∈ V and g2 ∈ U . Then we have that

(
<f, g>

�f

)σ

=
(

<f, g1>
�f

)σ

= <fσ , gσ ′
1 >

�fσ
= <fσ , gσ ′

>

�fσ
,
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On special L-values attached to metaplectic modular forms

where the first and the last equality follows from the fact that<f, g> = 0 and<fσ , gσ ′
> = 0

for g ∈ U . By Lemma 5.1 it is enough to prove this for g an eigenform for all the good Hecke
operators with a system of eigenvalues different from that of f’s. That is, there exists an ideal
a with (a, c) = 1 so that T (a)f = λf (a)f and T (a)g = λg(a)g such that λf (a) �= λg(a). By

[10, Lemma 23.14] we have that T (a)fσ = λf (a)
σ (N (a)

1
2 )σ

N (a)
1
2

fσ , and similarly for g. But then

we have

λf (a)
σ N (a

1
2 )σ

N (a)
1
2

<fσ , gσ ′
> = <T (a)fσ , gσ ′

> =

<fσ , T (a)gσ ′
> = <fσ , λg(a)

σ ′ N (a
1
2 )σ

′

N (a)
1
2

gσ ′
> = <fσ , gσ ′

>λg(a)
σ N (a

1
2 )σ

N (a)
1
2

and hence we conclude that<fσ , gσ ′
> = 0. Here we have used the facts that the good Hecke

operators are self adjoint with respect to the Petersson inner product, and that their Hecke
eigenvalues are totally real (for both facts see [10, Lemma 23.15]).

Finally taking g equal to f we obtain that �f is equal to <f, f> up to a non-zero element
�L . ��

In order to complete the proof we need to establish the result on the Galois equivariance
of the trace operator. We will need the theta series θ(z):= ∑

a∈On e∞(taza/2) ∈ M 1
2 u

(Q).
Note that this is the series θF defined in [10, p. 39, equation 6.16] by taking in the equation
there, using Shimura’s notation, u = 0 and λ the characteristic function of On ⊂ Fn . Note
in particular that since we are taking u = 0 we have that φF = θF . In particular Theorem
6.8 in (loc. cit) gives the properties of the series θ .

The following lemma is an extension of a result of Sturm in [11, Lemma 11] to the
half-integral weight situation. The following proof is an extension of our previous proof [1,
Lemma 8]. The key difference is the use of the theta series θ to go from the half-integral
weight situation to the integral weight situation.

Lemma 5.4 For any f ∈ Sk(�′, ψ;Qab)

Tr�
�′,ψ ( f )σ = Tr�

�′,ψσ ( f σ ), σ ∈ Gal(Qab/).

Proof In the proof of this lemma we will make use of Shimura’s reciprocity law of the action
of GA to the space of integral weight Siegel modular forms. We will use the notation as in
[10, Theorem 10.2].

Since k /∈ Zd , we have that θ f ∈ Mk′ , with k′ = k + 1
2 ∈ Zd and of Nebentypus ψφ,

where φ is as in Theorem 3.2. Moreover for any σ ∈ Gal(Q/Q) we have that (θ f )σ = θ f σ

since θ has Fourier expansionwith coefficients inQ.Wemoreover observe that θTr�
�′,ψ ( f ) =

Tr�
�′,ψφ

(θ f ) sicne we have θ | 1
2 u

γ = θ for all γ ∈ � ⊆ �θ .

Thanks to the strong approximation for Spn(F) we may work adelically. We write D
and D′ for the corresponding to � and �′ adelic groups (i.e. � = G ∩ D). We fix elements
{gi } ⊂ Df so that D = ⋃

D′gi . For t ∈ Z×
f corresponding to σ |Qab we note that

(
In 0
0 t−1 In

)
gi

(
In 0
0 t In

)
∈ Spn(A)f ,
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Th. Bouganis

and hence by strong approximation we can find elements ui ∈ D′ with f |ui = f (i.e.
ψ(ui ) = 1), φ(ui ) = 1, and wi ∈ Spn(F) so that(

In 0
0 t−1 In

)
gi

(
In 0
0 t In

)
= uiwi .

As in [1] we can show that since the gi ’s form a set of representatives of the classes of D′ in

D, the same holds for

(
In 0
0 t−1 In

)
gi

(
In 0
0 t In

)
, and hence also for wi since ui ∈ D′. We

now consider the elements (ı(t), σ ), (wi , id), (gi , id) ∈ G+ × Gal(Q/Q). Then we have

(θTr�
�′,ψσ ( f σ ))σ

−1 =
(∑

i

ψφ(gi )
σ θ f σ |gi

)σ−1

=
∑
i

ψφ(gi )(θ f )|
(
(ı(t), σ )(gi , 1)(ı(t

−1), σ−1)
) =

∑
i

φψ(gi )(θ f )|(uiwi , 1)

=
∑
i

ψφ(gi )(θ f )|wi =
∑
i

(ψφ)(wi )(θ f )|wi = θ
∑
i

ψ(wi ) f |wi = θTr�
�′,ψ f.

So we conclude that θTr�
�′,ψσ ( f σ ))σ

−1 = θTr�
�′,ψ f . But θ is a non-zero divisor (see [10,

p. 74]. Hence we conclude the lemma. ��

6 Algebraicity results

In this section we present various results regarding special values of the function L(s, f, χ),
with f ∈ Sk(C, ψ), C = D[b−1, bc], and an eigenform for all Hecke operators. We recall
that we have also considered the function Z(s, f, χ). For a comparison between the two we
refer to [1] where the similar situation of the integral weight case is discussed.

For completeness we start by recalling the result of Shimura [10, Theorem 28.8] regarding
algebraicity of special values. We take an 0 �= f ∈ Sk(C;Q), where

C = {x ∈ D[b−1, bc]|ax − 1 ≺ c}.
We assume that f is an eigenform for all Hecke operators T (a) and we note that the T (qm)’s
are trivial for primes q and m ∈ N such that q|c.
Theorem 6.1 [10, Theorem 28.8] With notation as above define m0:=min{kv|v ∈ ∞} and
assume m0 > (3n/2) + 1. Let χ be a character of F such that χ∞(x) = xt∞|x∞|−t with
t ∈ Zd . Set μv :=0 if [kv] − tv ∈ 2Z and μv = 1 if [kv] − tv /∈ 2Z. Let σ0 ∈ 1

2Z such that

(1) 2n + 1 − kv + μv ≤ σ0 ≤ kv − μv ,
(2) σ0 − kv + μv ∈ 2Z for every v ∈ ∞ if σ0 > n,
(3) σ0 − 1 + kv − μv ∈ 2Z for every v ∈ ∞ if σ0 ≤ n.

We exclude the cases

(1) σ0 = n + 3/2, F = Q, χ2 = 1 and [k] − t ∈ 2Z,
(2) 0<σ0 ≤ n, c = O, χ2 = 1 and the conductor of χ is O.

Then,

Z(σ0, f, χ)

<f, f>
∈ πn(

∑
v kv)+d(nσ0−n2)Q.
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On special L-values attached to metaplectic modular forms

We now take f ∈ Sk(C, ψ;Q) with C of the form D[b−1, bc] (i.e. the standard setting in
this paper). We are interested in special values of L(s, f, χ) for a Hecke character χ of F of
conductor f.

Theorem 6.2 Let f ∈ Sk(C, ψ;Q) be an eigenform for all Hecke operators. Let χ be a
character of F such that χ∞(x) = xt∞|x∞|−t with t ∈ Zd . Define t ′ ∈ Zd by (ψχ)∞(x) =
xt

′
∞|x∞|t ′ . Set μv :=0 if [kv] − t ′v ∈ 2Z and μv = 1 if [kv] − t ′v /∈ 2Z. Assume that m0 >

[3n/2 + 1] + 2 and either

(1) there exists v, v′ ∈ ∞ such that kv �= kv′ , or
(2) μ �= 0.

Let σ0 ∈ 1
2Z be such that

(1) 2n + 1 − kv + μv ≤ σ0 ≤ kv − μv for all v ∈ ∞,
(2) |σ0 − n − 1

2 | + n + 1
2 − k + μ ∈ 2Zd .

(3) if n is odd, and σ0 = n/2+ i for i = 0, . . . n/2, i ∈ N or if n is even and σ0 = n−1
2 + i ,

i = 1, . . . , (n+1)/2, then we assume that in Theorem 4.2 we have that�c(s)/�h(s) =
1.

We exclude the cases

(1) σ0 = n + 3
2 , F = Q, χ2 = 1, and [k] − t ∈ 2Z,

(2) σ0 = n
2 , c = O, n is odd and there is no (τ, r) that satisfy our assumption such that

ρτ �= 1 and χψ = 1,
(3) n/2 < σ0 ≤ n, c = O and (ψχ)2 = 1.

Let W be a number field so that f, fρ ∈ Sk(W ) and L ⊂ W, where  is the Galois closure
of F in Q, and L is as in Theorem 5.2.

If we write W:=W (χψ) for the extension of W obtained by adjoining the values of the
character χψ then,

L(σ0, f, χ)

πβDn(n+1)/4
F imω(χψ)ρ<f, f>

∈ W,

where β = πn(
∑

v kv)+d(nσ0−n2)), and m = d if [n/2] is odd and 0 otherwise, and ω(·) is
defined by using the Theorem 3.2 as follows

(1) for σ0 > n and n odd, ω(·) is as in Theorem 3.2 (i),
(2) for σ0 > n and n even, ω(·) is as in Theorem 3.2 (iii) (a),
(3) for σ0 ≤ n and n odd, ω(·) is as in Theorem 3.2 (ii),
(4) for σ0 ≤ n and n even, ω(·) is as in Theorem 3.2 (iv).

Remark 6.3 We refer to [1, p. 171] for explicit conditions so that �c(s)/�h(s) = 1, in
Theorem 4.2.

Proof The proof of this theorem is very similar to Theorem 11 in [1]. We will be applying
4.2 for a proper choice of (τ, r). The Gamma factors that appear in Theorem 4.2 force us to
take σ0 > 2n − kv + μv for all v ∈ ∞, which is the lower bound appearing in the theorem.
With ν:=σ0 − n

2 , β ∈ N so that π−βD( v
2 ) ∈ Nk−l(Qab), and γ as in Theorem 5.2 we

obtain for some α ∈ Q×,

πγ L(σ0, f, χ)ψc(det (r))c(τ, r; f) = D−n(n+1)/4
F det (τ )s

′
0u+ k+μ+ n

2 u
2 |det (r)|n+1−σ0

F

×α
∏
v∈b

gv((ψ/ψc)(πv)χ(πv)|πv|σ0)(�c/�h)((2σ0 − n)/4)< f, θχ (π−βD(ν/2))>.
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As in [1], conditions (i) and (ii) are imposed so that the Eisenstein series D( ν
2 ) of weight

k − μ − n
2 for ν = σ0 − n

2 are nearly holomorphic (see Theorem 3.1), and (iii) is imposed so

that �c
�h

(2σ0 − n)/4) does not contribute a pole. Finally the various exclusion follows from

various cases where the Eisenstein series D( ν
2 ) is not nearly holomorphic.

Wenownote that θχ ∈ Ml(W) andπ−βD(ν/2) ∈ N r
k−l(WQab)where r = (k−l−νu)/2

if ν > (n + 1)/2 and r = (k − l − (n + 1 − ν)u)/2 otherwise.
Now we set P:=Dn(n+1)/4

F imω(εχψ) where ω(·) is defined as in the statement of the
theorem. Then by Theorem 3.2 we have that

det (τ )s
′
0u+ k+μ+ n

2 u
2 π−β P−1D(ν/2) ∈ N r

k−l(W).

Indeed, since L is defined to be an extension of obtained by adjoining
√
det(τ ) so that gτ,r ′

(with the notation of Theorem 5.2), form a basis, we can pick our τ so that c(τ, r) �= 0 from
the ones in the basis consisting by gτ,r ′ . As it is shown in Shimura in [10, Theorem 20.9],
after finding a pair (τ, q) so that c(τ, q) �= 0 we can modify q to get the pair (τ, r) with the

desired properties. We set a:=det (τ )s
′
0u+ k+μ+ n

2 u
2 π−β P−1. In case whereμ �= 0 we have that

θχ D(ν/2) ∈ Rk , the space of cuspidal nearly holomorphic modular, and then we can use the
operator p : Rk → Sk of [10, Proposition 15.6] to conclude that there exists q ∈ Sk(W) so
that<f, θχaD(ν/2)> = <f, q>. Then by Theorem 5.2we have that < f,q>

< f, f > ∈ W . In the other
case, that is of k not being a parallel weight we can use [10, Lemma 15.8], to conclude that
there exists a q ∈ Mk(W ) as before. Moreover k not being parallel implies that Mk = Sk
(see for example [9, Proposition 10.6 (3)]). Hence we can use Theorem 5.2 to conclude the
proof. ��

We now obtain also some results towards reciprocity laws.

Theorem 6.4 With notation and assumptions as above we have that A(σ0, f, χ)σ =
A(σ0, fσ , χσ ) for all σ ∈ Gal(Q/L), where

A(σ0, f, χ):= L(σ0, f, χ)

πn(
∑

v kv)+deDn(n+1)/4
F imω(χψ)ρ�f

∈ Q.

Proof The proof is similar to Theorem 12 in [1]. We first consider the case where μ �= 0.
Then we have that θχ ∈ Sl . We recall that for σ ∈ Gal(Q/) we write σ ′ = ρσρ. Then
θσ ′
χ = θχσ , as it follows from the explicit Fourier expansion of θχ (see [1] for details).
Moreover arguing as in the theorem above and using the reciprocity laws for Eisenstein
series in Theorem 3.2 we have that

⎛
⎝π−βDn(n+1)/4

F det (τ )s
′
0u+ k+μ+ n

2 u
2 D(ν/2, ψχρτ )

ω(ψχ)

⎞
⎠

σ ′

= π−βDn(n+1)/4
F det (τ )s

′
0u+ k+μ+ n

2 u
2 D(ν/2, ψσ χσ )

ω(εψσ χσ )
, σ ∈ Gal(Q/L),

Since θχ D(ν/2, εψσ χσ ρτ ) ∈ Rk , setting q:=p
(
θχ D(ν/2, εψσ χσ ρτ )

) ∈ Sk , we have

< f, θχ D(ν/2, εψχρτ )> = < f, q> and qσ = p
(
θσ
χ D(ν/2, εψχρτ )

σ
)

for all σ ∈
Gal(Q/L). In particular, by Theorem 5.2 we have that
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⎛
⎝Dn(n+1)/4

F det (τ )s
′
0u+ k+μ+ n

2 u
2 < f, θχπ−βD(ν/2, ψχρτ )>

ω(ψχ)ρ�f

⎞
⎠

σ

= Dn(n+1)/4
F det (τ )s

′
0u+ k+μ+ n

2 u
2 < f σ , θχσ π−βD(ν/2, ψσ χσ ρτ )>

ω(ψσ χσ )ρ�fσ
,

from which we conclude the proof of the theorem. For the other case we use, as in the
previous theorem, the result of Shimura [10, Lemma 15.8] to conclude theta there exist
q ∈ Mk(W ) = Sk(W ) so that

Dn(n+1)/4
F det (τ )s

′
0u+ k+μ+ n

2 u
2 <f, θχπ−βD(ν/2, ψχρτ )>

ω(ψχ)ρ�f
= <f, q>

�f
.

For the reciprocity we use Proposition 14.13 in [10] to conclude that the above equation is
Galois equivariant. Indeed the result of Shimura gives that the space of nearly holomorphic
Siegelmodular forms has an rational basis and it is finite dimensional thanks to [10, Lemma
14.3]. So the map of Lemma 15.8 of [10] is equivariant over . ��

We conlcude this paper by making a few remarks. In [1] we were able, thanks to a result
of Harris [5] on the rationality of Eisenstein series, to establish results withoutμ �= 0 or non-
parallel weight. Of course we had to assume that the critical value is in the range of absolute
convergence, since only then one can employ the result of Harris. However in our situation
the results of Harris in [5] cannot be applied since half-integral weight modular forms cannot
be understood using Shimura varieties. In our forthcomingwork [3] we address this questions
and obtain results in this direction. We also mention a recent work of Mercuri [6], where he
obtains results in the case of μ = 0 (in the notation of Theorem 6.2 above) when F = Q and
n is odd.

We mention that there is yet another integral expression of the L-values of half-integral
Siegel modular forms, namely the doubling method (see [10]). The two methods are not
equivalent and we refer to the last section of [1], where the integral weight case is discussed,
for a discussion of how the two methods compare.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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