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Abstract 24 

 The emergence of providing care to diseased conspecifics must have been a turning point 25 

during the evolution of hominin sociality. On a population level, such care may have minimized 26 

the costs of socially transmitted diseases at a time of increasing social complexity, although 27 

individual care-givers would have potentially incurred increased transmission risks while 28 

providing care. We propose that care-giving likely originated within kin networks where the 29 

costs of providing care may have been balanced by fitness increases obtained through caring for 30 

ill kin. We test a novel theory of hominin cognitive evolution in which disease may have selected 31 

for the cognitive ability to recognize when a conspecific is infected. Moreover, because diseases 32 

may produce symptoms that are likely detectable via the perceptual-cognitive pathways integral 33 

to social cognition, we suggest that disease recognition and social cognition may have evolved 34 

together. We use agent-based modeling to test 1) under what conditions disease can select for 35 

increasing disease recognition and care-giving among kin, 2) whether the strength of selection 36 

varies according to the disease’s characteristics, 3) whether providing care produces greater 37 

selection for cognition than an avoidance strategy, and 4) whether care-giving alters the 38 

progression of the disease through the population. We compare the selection created by diseases 39 

with different fatality rates (i.e., similar to Ebola, Crimean-Congo hemorrhagic fever, measles, 40 

and scabies) under conditions where agents provide care to kin and under conditions where they 41 

avoid infected kin. The greatest selection was produced by the measles-like disease which had 42 

lower risks to the care-giver and a prevalence that was low enough that it did not disrupt the 43 

population’s kin networks. When care-giving and avoidance strategies were compared, we found 44 

that care-giving reduced the severity of the disease outbreaks and subsequent population crashes. 45 

The greatest selection for increased cognitive abilities occurred early in the model runs when the 46 
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outbreaks and population crashes were most severe. Therefore, we conclude that over the course 47 

of human evolution, repeated introductions of novel diseases into naïve populations could have 48 

produced sustained selection for increased disease recognition and care-giving behavior, leading 49 

to the evolution of increased cognition, social complexity, and, eventually, medical care in 50 

humans. Finally, we lay out predictions derived from our disease recognition hypothesis of 51 

hominin cognitive evolution that we encourage paleoanthropologists, bioarchaeologists, 52 

primatologists, and paleogeneticists to test. 53 

 54 

Key words: agent-based model, disease transmission, cooperation, hominin evolution, social 55 

complexity, kin selection 56 
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Introduction 67 

 Exposure to disease is a major cost of sociality (McCabe et al. 2015; Nunn and Altizer 2006; 68 

Rifkin et al. 2012). Despite this, hominins have evolved extraordinary social complexity 69 

(Tomasello 2014), including a strikingly social way of mitigating the effects of socially 70 

transmitted diseases—we provide care to diseased individuals. Such care hinges on the ability to 71 

recognize disease in others. Currently, the cognitive basis of this ability is not well understood.  72 

In this paper, we present the novel hypothesis that the ability to recognize disease may have 73 

evolved together with social cognition in hominins. 74 

 A synthesis of paleoanthropological, ethnographic, and host-parasite research suggests that 75 

increasing social complexity during the origin of Homo dramatically increased disease risk, i.e., 76 

(Harper and Armelagos 2013; McCabe et al. 2015; Rifkin et al. 2012; Sugiyama 2004). Thus, 77 

part of the selection for increasing cognitive abilities in Homo may have been selection to 78 

accurately assess the disease risk presented by interaction partners. We integrate findings from 79 

the literature on hominin social structure, hominin disease ecology, disease recognition in 80 

nonhuman animals, and human social cognition. Based on these data, we create an agent-based 81 

model to examine under what conditions increased cognition and care-giving could have evolved 82 

in the hominin lineage. Using our results, we create predictions deriving from our novel disease 83 

recognition hypothesis of hominin cognitive evolution that can be tested by paleoanthropologists, 84 

paleogenticists, bioarchaeologists, and primatologists. 85 

 86 

Broadening social networks between hominin subgroups 87 

 Across birds and mammals, larger communities show greater levels of contagious parasites, 88 

environmentally transmitted parasites, and vector-borne parasites (Rifkin et al. 2012). Though 89 
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network modularity (sub-grouping) may reduce the transmission risks in large communities 90 

where many dyads do not interact (Griffin and Nunn 2012), hominin networks appear to have 91 

connected spatially distant subgroups, facilitating transmission within a fission-fusion, multi-92 

level society (Grove et al. 2012; Hill et al. 2011).  93 

 Hominin community sizes have been reconstructed as having expanded over time, from ~50 94 

in apes and small-brained australopiths to 100-120 in late H. erectus and H. heidelbergensis to 95 

120-150 in H. neandertalensis and H. sapiens (Aiello and Dunbar 1993; Dunbar 1998; Gamble 96 

et al. 2011; Grove et al. 2012; Layton et al. 2012). This is believed to have produced an increase, 97 

not only in social network size, but also in complexity (Grove et al. 2012). As hominins 98 

dispersed towards northern latitudes and community sizes increased, the home-range 99 

requirements for sustaining them would have also increased (Grove et al. 2012). This produced 100 

communities whose daily nutritional needs were too large to be fulfilled in the amount of space a 101 

cohesive group could cover each day (Grove et al. 2012). The result is thought to have been the 102 

evolution of a multi-level fission-fusion system in which larger communities subdivide, rather 103 

than foraging cohesively (Grove et al. 2012). This would have enabled large communities of 104 

hominins to forage across greater areas and expand into new habitats, yet still obtain the benefits 105 

of a large social network, such as information transfer, social learning, and cooperation (Grove et 106 

al. 2012; Layton et al. 2012). Thus, even though mean population density decreased over time as 107 

hominins dispersed northward, overall community size and social network size likely increased 108 

(Grove et al. 2012; Layton et al. 2012). 109 

 Community size estimates for modern hunter-gatherers range from 125 to a few thousand 110 

(Layton et al. 2012). The extensiveness of human social networks was documented in a study 111 

showing that while chimpanzee males typically only interact with about 20 other males, a 112 
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modern male hunter-gather may watch over 300 other men make tools (Hill et al. 2014). The 113 

evolution of such long-distance social networks linking different subgroups (Hill et al. 2014) 114 

may have prevented the reduction in disease risk that might otherwise be expected to have 115 

occurred as hominin density decreased, i.e., (Armelagos et al. 2005). Hominins’ extensive, 116 

community-wide social networks would have facilitated widespread pathogen transmission, 117 

including any novel pathogens acquired as hominins spread into new habitats (McCabe et al. 118 

2015). 119 

 120 

Increasing connectedness within groups 121 

 Simultaneously with the expansion of networks connecting subgroups, the complexity of 122 

networks within the subgroups also likely increased with the evolution of cooperative breeding 123 

during the origin of Homo. Early Homo fossil assemblages show an increased number of 124 

immature relative to mature individuals compared to australopith assemblages (Tobias 2006), 125 

suggesting shortened interbirth intervals, increasing energetic demands on reproducing females, 126 

and a shift towards cooperative breeding (Aiello and Key 2002). Ethnographic work supports 127 

this view of humans as cooperative breeders, revealing greatly expanded social networks that 128 

include multiple providers (hunting males, post-reproductive females) for females and young 129 

(Hawkes 2003; Hill et al. 2009; Hrdy 2009). This contrasts with chimpanzees in which the young 130 

are solely dependent upon their mothers (Burkart et al. 2009). Collectively, these studies suggest 131 

that as community size increased during the origin of Homo, so did the complexity of the social 132 

networks linking both greater numbers of individuals and different demographics (e.g., young 133 

dependents, post-reproductive females, hunting males). The close cooperation, interdependence, 134 
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and density of social networks within cooperatively breeding hominin groups would have 135 

facilitated the spread of diseases within these groups (McCabe et al. 2015). 136 

 137 

Hominin Disease Ecology  138 

 The shift to larger networks linking subgroups within a larger community and greater 139 

connectedness within cooperatively breeding groups is believed to have selected for enhanced 140 

social cognition (e.g., prosociality, shared-intentionality, theory of mind) which facilitated 141 

prolonged, close interactions among individuals and promoted social learning, cooperation, 142 

technological advances and cumulative culture (Burkart et al. 2014; Byrne and Bates 2007; 143 

Herrmann et al. 2007; Tomasello et al. 2005; van Schaik et al. 2012; Whiten 2000). However, 144 

such intense, close proximity interactions would have also facilitated disease transmission 145 

(McCabe et al. 2015). Recent work in genetics and evolutionary medicine indicates that 146 

hominins harbored numerous pathogens before the advent of agriculture and animal 147 

domestication (Harper and Armelagos 2013). This includes endoparasitic worms (Hoberg et al. 148 

2001; Hurtado et al. 2008), lice (Harper and Armelagos 2013), tuberculosis (Stone et al. 2009), 149 

typhoid fever (Harper and Armelagos 2013), whooping cough (Harper and Armelagos 2013), 150 

and viruses, e.g., herpes viruses, Epstein Barr virus (Harper and Armelagos 2013). Thus, 151 

hominins were likely under strong selection to assess the disease status of others.  152 

 153 

Disease recognition in animals and humans 154 

 Comparative evidence suggests that disease recognition may have been present in early 155 

hominins (citations below).  Several species with relatively low social complexity have been 156 

documented to recognize disease, often either avoiding diseased conspecifics or taking advantage 157 
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of sick and weakened competitors, e.g., social lobsters (Behringer et al. 2006), pipefish 158 

(Rosenqvist and Johansson 1995), bullfrog tadpoles (Kiesecker et al. 1999), rodents (Kavaliers et 159 

al. 1997), house finches (Bouwman and Hawley 2010; Zylberberg et al. 2012), but see (Nunn 160 

2003). While the underlying cognitive processes are not well understood, these studies suggest 161 

that recognition is based on diverse symptoms including olfactory/chemical cues (Kavaliers et al. 162 

1997; Kiesecker et al. 1999), visual detection of spots (Rosenqvist and Johansson 1995), and 163 

behavioral changes including lethargy and feather fluffing (Bouwman and Hawley 2010; 164 

Zylberberg et al. 2012). Though the amount of cognitive processing required to detect disease 165 

may differ by symptom type, the wide array of cues and recognition in multiple species suggests 166 

that some simple form of disease recognition could have been basal in hominins.  167 

 Infectious pathogens can cause noticeable symptoms that could potentially be detected via 168 

the perceptual-cognitive pathways that are integral to social cognition in primates. Subtle 169 

differences perceived in conspecific faces (Leopold and Rhodes 2010; Sartori et al. 2011), voices 170 

(Belin 2006; Belin et al. 2004), and movement/gait (Loula et al. 2005; Peterman et al. 2014; 171 

Sartori et al. 2011) may enable, not only the decoding of conspecifics’ identities, emotions, and 172 

intentions, but also facilitate the detection of disease. This could include changes in facial 173 

coloration and texture due to fever, rashes, or nasal discharge, changes in vocalizations due to 174 

coughing, nasal discharge or reduced lung capacity, and changes in movement/gait due to 175 

weakness, lethargy, or signs of pain (Chapman et al. 2005; Fink and Matts 2008; Hart 1988). 176 

Thus, if the detection of social information and disease involve the same perceptual-cognitive 177 

pathways, then disease circulating within hominin populations may have selected for increased 178 

cognitive capacities and care-giving.  179 
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 Importantly, such disease recognition would not require individuals to have an abstract 180 

concept of disease. Following the well-accepted definition of cognition as information 181 

processing, e.g., seminal book: (Neisser 1967), recent publications: (Byrne and Bates 2007; 182 

Deaner et al. 2006; Fernandes et al. 2014; Herrmann et al. 2007; Lee 2007; Reader et al. 2011; 183 

Woodley et al. 2015),  the cognitive aspect would be processing the proximate cues that 184 

distinguish healthy individuals from diseased individuals (changes in appearance, behavior, etc.). 185 

Selection for such disease recognition would operate at the ultimate level of causation (Sherman 186 

1988; Tinbergen 1963), favoring individuals who were able to discriminate who was healthy and 187 

who was not. Those who avoided infectious individuals or provided care to ill kin would increase 188 

their reproductive fitness. Similarly to how kin recognition can operate without individuals 189 

having an abstract concept of kin (Rendall 2004), disease recognition could operate without a 190 

concept of disease. 191 

 192 

Care-giving among animals and humans 193 

 The literature contains numerous reports of striking cases of social care given by animals, 194 

including dolphins that cooperatively supported a dying conspecific who could no longer swim 195 

(Park et al. 2013), an elephant that attempted to lift a collapsed and dying conspecific to her feet 196 

(Douglas-Hamilton et al. 2006), primates that groom, stand watch over, and/or chase others away 197 

from dying group members (Anderson et al. 2010; Bezerra et al. 2014; Nakamichi et al. 1996), 198 

and an otter group that provisioned an elderly female (Davenport 2010). Though very interesting, 199 

these reports do not provide evidence of widespread long-term care which would be expected to 200 

have a more significant selective influence on a species’ evolution.  201 
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 Some of the best opportunities for systematically investigating care-giving in animals have 202 

come from studies of populations with high prevalences of severe injuries (Beamish and O'Riain 203 

2014; Byrne and Stokes 2002; Stokes and Byrne 2006) or congenital disabilities (Turner et al. 204 

2014). These studies generally suggest that, instead of relying on social care, severely injured or 205 

disabled individuals survive by adapting and making adjustments themselves, rather than 206 

receiving accommodation or assistance (Beamish and O'Riain 2014; Byrne and Stokes 2002; 207 

Stokes and Byrne 2006; Turner et al. 2014). The exception to this is social grooming (Dittus and 208 

Ratnayeke 1989). Wound cleaning has been shown to be an important mechanism for avoiding 209 

infections and it is widespread in animals (Dittus and Ratnayeke 1989; Hart 2011). Thus wound 210 

cleaning may have been a basal form of social care in hominins. 211 

 In addition, evidence from modern foraging, hunting, and horticultural peoples, suggests that 212 

provisioning people who are ill or injured is important in reducing the mortality rate (Sugiyama 213 

2004). For example, Sugiyama (2004) found that over 50% of individuals reported at least one 214 

time in their lives when they were incapacitated and could not forage for at least a month. During 215 

such times, provisioning was critical to their survival (Sugiyama 2004). Based on this evidence, 216 

we expect that hominins could have significantly reduced the mortality arising from disease and 217 

infection-related injuries through provisioning (Sugiyama 2004) and wound cleaning (Dittus and 218 

Ratnayeke 1989). Additionally, food sharing networks of hunting males also served as 219 

provisioning networks during times of illness (Gurven et al. 2000; Sugiyama 2004; Sugiyama 220 

and Chacon 2000), suggesting that the evolution of social care may have co-evolved with 221 

cooperative breeding. 222 

 223 

Care-giving in the fossil record 224 



 Kessler et al. 11 

 

Fossil evidence of hominins surviving illness, injuries, and disabilities goes back nearly 2 225 

million years to include fossils from H. erectus, H. heidelbergensis, H. neandertalensis, and H. 226 

sapiens. While the following discussion is not exhaustive, it does illustrate the variety of 227 

conditions hominins survived, the time depth of the fossil record, and the taxa included. Below 228 

we follow, when possible, the taxonomic classifications provided in Grove et al. (2012). In H. 229 

erectus this includes: premortem loss of all but one tooth in the 1.77 mya cranium and mandible 230 

from Dmanisi (D3444 and D3900 (Lordkipanidze et al. 2005; Lordkipanidze et al. 2006)), 231 

possible hypervitaminosis A in the 1.6 mya KNM-ER 1808 (Walker et al. 1982), evidence of a 232 

herniated disc in the 1.5-1.6 mya Nariokotome boy KNM-WT 15000 (Grove et al. 2012; 233 

Haeusler et al. 2013; Schiess et al. 2014), and a healed cranial lesion caused by trauma or 234 

burning in the 0.6 mya Hulu 1 cranuim, also called Nanjing 1 and Tangshan 1 (Shang and 235 

Trinkaus 2008; Wu et al. 2011). Among H. heidelbergensis this includes craniosynostosis and 236 

neurocranial deformities in a 0.53 mya immature, cranium 14, who survived for at least 237 

approximately 5 years (Gracia et al. 2009), a 0.53 mya adult male pelvis and lumbar spine, SH 238 

Pelvis 1, showing lesions and degeneration possibly resulting from lumbar kyphotic deformity, 239 

spondylolisthesis, and Baastrup disease (Bonmati et al. 2010), and a squamous temporal lesion 240 

that shows healing on the 0.35 mya Broken Hill cranium Kabwe 1 (Grove et al. 2012; McBrearty 241 

and Brooks 2000; Montgomery et al. 1994). For Neandertals this includes Aubesier 11, dated to 242 

at least 0.17 mya, which shows significant tooth loss and alveolar lesions (Lebel and Trinkaus 243 

2002; Lebel et al. 2001) and Shanidar 1 dated at 73-40 kya who lost much of his right arm, may 244 

have been blind on one side, and suffered from hyperostotic disease (Crubezy and Trinkaus 245 

1992; Hublin 2009). H. sapiens individuals that survived severe conditions include: a child, 246 

Qafzeh 12 dated to approximate 0.095 mya, who showed signs of hydrocephaly and survived 247 
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until about 3 years old (Tillier et al. 2001), an older child Qafzeh 11, also dated to 0.95 mya, that 248 

had a healed cranial fracture (Coqueugniot et al. 2014), and an adult female, Dolní Vĕstonice 3, 249 

dated to approximately 0.027 mya, who sustained a severe injury to her face that might have 250 

interfered with eating (Trinkaus et al. 2006; Trinkaus and Jelinek 1997).  251 

While all of these individuals might have benefited from care, comparative evidence with 252 

nonhuman primates suggests that care is not necessary (DeGusta 2002, 2003; Dettwyler 1991). 253 

Studies of wild baboons and great apes show that primates frequently survive even when a hand 254 

or foot is maimed or severed, e.g., in snares (Beamish and O'Riain 2014; Byrne and Stokes 2002; 255 

Munn 2006; Stokes and Byrne 2006). Though these animals may show changes to their activity 256 

budgets (Beamish and O'Riain 2014), altered locomotion patterns (Munn 2006), and reduced 257 

feeding efficiency (Byrne and Stokes 2002; Stokes and Byrne 2006), survival appears to be high, 258 

with some groups having as many as ~20% of their members permanently disabled (Munn 259 

2006). Extensive tooth loss also appears to be survivable. Apes and other primates have been 260 

observed to survive antemortem tooth loss comparable to that observed in the fossil record 261 

(Cuozzo and Sauther 2004; DeGusta 2002). Degusta (2002) provides a review of cases in which 262 

chimpanzees were observed to survive with tooth loss similar to Aubersier 11 and Cuozzo and 263 

Sauther (2004) reported that tooth loss is common among ring-tailed lemurs, with one individual 264 

surviving with 80% tooth loss. Overall the evidence from the fossil record and animal studies 265 

indicate that while various fossils have clearly survived severe health conditions, it is very 266 

difficult to rule out the possibility that they may have survived without care (DeGusta 2002, 267 

2003; Dettwyler 1991). 268 

 269 

The modeling approach 270 
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 It is currently not possible to determine when extensive social care evolved in the human 271 

lineage, but it is possible to consider how it might have evolved and what conditions might have 272 

selected for it. We expect that, because kinship is a fundamental property of primate (including 273 

human) social networks (Silk 2009), providing care to the diseased may have originated along 274 

kin networks. Hamilton’s rule of inclusive fitness (Hamilton 1964) predicts that individuals will 275 

act altruistically when: (benefit to the recipient)*(relatedness to recipient) > (costs to the altruist). 276 

Thus, individuals could increase their own reproductive fitness in two ways: 1) by avoiding ill 277 

individuals, particularly nonkin, and 2) by providing care to ill kin who, upon recovery, would 278 

reproduce. Whether the fitness benefits are greater when individuals avoid ill conspecifics or 279 

provide care (thus risking becoming infected) will depend upon the benefits, the degree of 280 

relatedness, and the costs.  281 

 We use agent-based modeling to test a varying intensity of disease scenarios and quantify 282 

selection pressures for increased cognition and care-giving. Agent-based models provide 283 

powerful, quantitative insights into disease transmission, including predicting the impact of 284 

current/future outbreaks and planning intervention/prevention strategies, e.g., influenza (Guo et 285 

al. 2015), Ebola (Merler et al. 2015). We take the innovative approach of applying these 286 

techniques to reconstruct the potential impact of disease on hominin evolution.  287 

 A modeling approach is valuable because, while our knowledge is increasing, i.e.,(Harper 288 

and Armelagos 2013), we do not have sufficiently detailed data concerning how/when disease 289 

load changed during hominin evolution to be able to test whether the evolution of care-giving co-290 

occurred with increasing cognitive abilities, social complexity and disease risk. Therefore, we 291 

use agent-based modeling to examine under which conditions disease could select for increased 292 

cognition and care-giving. We hypothesize that 1) disease will produce care-giving among kin 293 
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and an increase in average population intelligence, that 2) varying disease characteristics will 294 

produce variation in the strength of selection, and that 3) care-giving will produce greater 295 

selection for cognition than an avoidance strategy. 296 

 297 

Material and methods 298 

Study design 299 

We created two models for comparison. The first (Model 1: Care-giving model) simulates 300 

disease transmission in a population of hominins who give care (The ODD description is in 301 

Appendix A at the end of the paper. The code is available in supplementary file 1). In order to 302 

more fully explore the model and how care-giving may alter the progression of disease through 303 

the population, we then created a control model (Model 2: Avoidance only) similar to the first 304 

except that agents avoid diseased kin and provide no care. (The ODD description is in Appendix 305 

B at the end of the paper. The code is available in supplementary file 2). 306 

  307 

Model 1: Care-giving model  308 

Disease characteristics 309 

We programmed an SIS model (susceptible – infected – susceptible) in Netlogo 5.0.5 (Railsback 310 

and Grimm 2011; Wilensky 1999). We created four hypothetical diseases with case fatality rates 311 

modeled after Ebola [2014 outbreak: 70% (Aylward et al. 2014; WHO 2014a), Crimean-Congo 312 

hemorrhagic fever (40% (WHO 2013), CCHF, hereafter), measles (~10% (WHO 2014b)), and a 313 

low risk comparison, such as scabies (fatality rate set at 1%, though scabies is generally not fatal 314 

(WHO 2015)]. We did not attempt to precisely simulate the natural history of these diseases. 315 
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Rather, these diseases were chosen to represent a range of fatality rates occurring in socially 316 

transmitted diseases. 317 

 318 

Optimizing the disease transmission rates 319 

Because transmission rates have complex relationships with virulence and host density (e.g., 320 

trade-off hypothesis (Alizon et al. 2009)), we screened possible transmission rates to determine 321 

what would be optimal for persistence of these diseases in this population. For the Ebola-like, 322 

CCHF-like, and measles-like diseases, we ran the model 1000 times in Netlogo’s 323 

BehaviorSpace, varying the probability of transmission from 10-100% by increments of 10. For 324 

the scabies-like disease, we ran the model 1000 times varying the probability of transmission 325 

from 1% to 98.5% by increments of 2.5. The inclusion of lower transmission values for the 326 

scabies-like disease is based on literature showing that less virulent diseases tend propagate 327 

slower, e.g., (Alizon et al. 2009; Ewald 1993). Then, for each disease, we selected the runs which 328 

had both healthy and diseased individuals after 100 time steps. We averaged the probability of 329 

transmission across those successful runs to obtain a transmission rate that is optimal for each 330 

respective disease: Ebola-like 78%, CCHF-like 33%, measles-like 10%, scabies-like 2%. The 331 

higher transmission rates in the diseases with higher fatality rates is consistent with the 332 

relationship between virulence and transmission documented in the literature (Alizon et al. 333 

2009).  334 

 335 

Determining the probability of recovery after care 336 

We expect that the earliest forms of social care given by hominins would have been 337 

assistance with hygiene, including keeping wounds, sores, and topical infections clean as in 338 
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nonhuman primates (Dittus and Ratnayeke 1989), provisioning those who are too ill to forage 339 

with food and water (Sugiyama 2004), and watching over individuals who may be too ill to 340 

themselves be vigilant against predators (Anderson et al. 2010; Bezerra et al. 2014; Nakamichi et 341 

al. 1996). None of these forms of care requires medical knowledge, yet evidence from nonhuman 342 

primates (Dittus and Ratnayeke 1989) and human foraging groups (Sugiyama 2004) suggests 343 

that they are effective at reducing mortality rates.  344 

It is difficult to estimate how effective each of these care-giving techniques would be for 345 

each of our hypothetical diseases. In nature, the more incapacitated the individual is and the 346 

longer the recovery takes, the greater the chances that the individual would succumb to 347 

dehydration, starvation, or predation unless care is given. Because we did not wish to bias the 348 

effectiveness of the care towards the more severe diseases, we set the probability of recovery 349 

after care at 0.5 for all diseases. This reflects an equal chance of recovery and failure to recover. 350 

 351 

The population 352 

The landscape is a 40 x 40 cell grid that wraps horizontally and vertically. Each cell 353 

represents 5 km2, making the landscape 200 km2. This is within the confidence intervals of the 354 

space requirements calculated for a community of H. erectus, H. heidelbergensis, H. 355 

neandertalensis, and H. sapiens using a gas model in Grove et al. (2012). Table 1 summarizes 356 

the group sizes, densities, and space requirements presented in Grove et al. (2012). 357 

[Table 1] 358 

The carrying capacity of the landscape is set at 200. Two hundred was chosen because it is 359 

large enough to encompass the group sizes predicted for hominins based on cranial capacities, 360 

brain volumes, and neocortex ratios of fossil hominins [Table 1, (Aiello and Dunbar 1993; 361 
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Gamble et al. 2011; Grove et al. 2012)], but is generally smaller than community sizes reported 362 

for modern humans, e.g., (Hill et al. 2014; Layton et al. 2012). We set the carrying capacity 363 

above the calculated community sizes for hominins, e.g., ~150 or smaller (Aiello and Dunbar 364 

1993; Dunbar 1998; Gamble et al. 2011; Grove et al. 2012), to allow for the event that the actual 365 

community sizes of the model populations would likely be lower than the carrying capacity. 366 

 367 

Initialization 368 

The program is initialized with 10 agents randomly placed on the landscape. Each agent is 369 

randomly assigned an intelligence score (0-1). In the model the intelligence score is the 370 

likelihood of an agent correctly identifying the disease status of another agent. We refer to it as 371 

intelligence because we expect that the ability to recognize disease is related to a more general 372 

ability for efficient information processing, including social information, e.g., (Byrne and Bates 373 

2007; Deaner et al. 2006; Fernandes et al. 2014; Herrmann et al. 2007; Lee 2007; Reader et al. 374 

2011; Woodley et al. 2015). As the population grows, each offspring’s intelligence is drawn 375 

from a normal distribution with the parent’s intelligence as the mean and a standard deviation of 376 

0.15. 377 

 378 

Population growth and genetic structure 379 

 The population grows at each time step of the model when healthy agents reproduce 380 

according to the formula: [(1 - (number of agents / carrying-capacity)) * number of healthy 381 

agents]. Reproduction occurs asexually. Offspring are placed within a radius of 3 of the parent, 382 

producing spatial clustering of kin as is consistent with human and nonhuman primate groups 383 

(Chapais and Berman 2004; Hatchwell 2010; Hill et al. 2011; Silk 2009).  384 
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Relatedness is tracked by links between agents with the links containing the relatedness 385 

value. Parent-offspring relationships receive relatedness values of 0.5 and offspring inherit the 386 

links of the parent but with ½ the relatedness value. Because offspring inherit the links of the 387 

parent, sibling relationships are included in the model with a relatedness value 0.25. To prevent 388 

the model from becoming too computationally intensive, patrilineal relationships and matrilineal 389 

relationships beyond a relatedness of 0.25 were not modeled. This decision is supported by 390 

findings showing that kin recognition occurs most reliably for close matrilineal kin identified via 391 

familiarity, e.g., (Chapais and Berman 2004; Chapais et al. 1997). The population represents a 392 

single, kin structured community with multiple matrilines. Space displays the contact structure 393 

between agents and random movement simulates mixing within the population.  394 

 395 

Space 396 

With a carrying capacity of 200 individuals and a landscape of 200 km2, our model has a 397 

maximum population density of 1 individual / km2, which is within the confidence intervals 398 

calculated for H. habilis and H. erectus [Table 1, (Grove et al. 2012)]. However, the purpose of 399 

our model is not to attempt to reconstruct a particular hominin species or population. We made 400 

this decision because the population densities and number of levels of fissioning have been 401 

reconstructed to vary dramatically even within species, depending upon the habitat quality and 402 

latitude (Atkinson et al. 2008; Grove et al. 2012; Powell et al. 2009).  Instead, hominin societies 403 

are conceptualized as more generic fission-fusion communities in which subsets of individuals 404 

are out of contact with other subsets of individuals (Grove et al. 2012; Layton et al. 2012). This 405 

is represented in our model by the restrictions created by the movement, care-giving, and 406 

infection radii. The care-giving radius (5) and infection radius (5) are equal to reflect that agents 407 
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who are close enough to give care are also close enough to become infected. Similarly, agents 408 

who avoid infectious kin by moving away will also be moving away from potential care-givers 409 

should they themselves become infected. These radii of 5 represent 25 km2 and are in the upper 410 

range of the distance that modern hunter-gatherers travel from camp when they will return to 411 

camp later the same day (Grove et al. 2012; Layton et al. 2012). 412 

 413 

Disease and care-giving   414 

After four time steps of the model, 25 agents are randomly infected with one of the diseases. 415 

This is approximately 16% of the population and reliably seeded the disease into the population 416 

without increasing to 100% prevalence. 417 

Healthy agents evaluate the relatedness and disease status of other agents within a radius 418 

equivalent to 5 grid cells. The infection radius is also set at 5, thus any healthy agent that can 419 

provide care, is also close enough to be infected.  420 

Kin are accurately recognized and the accuracy of disease recognition is a function of the 421 

agent’s intelligence. A random number between 0-1 is drawn. If the number is below the agent’s 422 

intelligence value, the disease status is correctly recognized. Otherwise, the agent’s disease status 423 

is incorrectly recognized (healthy kin are classified as diseased or diseased kin are classified as 424 

healthy). These individuals make up the group the agent perceives to be its diseased kin 425 

(perceived diseased kin). Whether the error is a false positive (healthy kin classified as diseased) 426 

or a false negative (diseased kin classified as healthy) is determined by the disease status of the 427 

kin agent. Thus, the likelihoods of false positive and false negative errors are functions of disease 428 

prevalence. As the proportion of diseased agents increases, false positives decrease and false 429 

negatives increase.  430 
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Agents randomly select one of their perceived diseased kin and decide whether to provide 431 

care based on a modification of Hamilton’s rule, which predicts altruism when: (relatedness 432 

between the recipient and altruist)*(benefit to the recipient)>(cost to the altruist) (Hamilton 433 

1964). We adapted this formula so that agents provide care when: (relatedness between the care-434 

giver and the recipient)*(probability of recovery after care) > (probability of transmission to 435 

care-giver)*(probability of infection being fatal). If the inequality is fulfilled (thus care is given) 436 

and the recipient was in fact diseased (not just perceived to be diseased), a random number 437 

between 0 and 1 is generated and if it is below the probability of recovery, the diseased 438 

individual recovers. If the random number was above the probability of recovery, the recipient 439 

remains diseased. A new random number is drawn for the care-giver and if it is below the 440 

probability of transmission to the care-giver, then the care-giver is infected. If the recipient was 441 

erroneously categorized as diseased, but is actually healthy (a false positive error), there is no 442 

change in the disease statuses of the recipient or the care-giver. It is worth noting that when a 443 

false negative error occurs (diseased kin are classified as healthy), the agent that made the error 444 

does not incur a cost that is explicitly coded into the model. However, the agent does potentially 445 

incur emergent costs through the interactions between agents. This may occur in two ways: a) if 446 

that diseased kin agent dies (later in the model run), this reduces the kin network available to 447 

give care, simulating a loss of inclusive fitness to the agent that failed to recognize the disease in 448 

its kin, and b) the presence of diseased kin in the population increases the risk that others will 449 

become infected, including the agent that failed to recognize the disease in its kin.    450 

If healthy agents have no perceived diseased kin, they move to a grid cell with no other 451 

agents on it within a radius of 8. If no empty cells are available, the agent does nothing. A 452 

movement radius of 8 represents 40 km2. This is the median daily total travel distance used by 453 
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Grove et al. (2012) to calculate hominin area requirements and it is based on data compiled from 454 

modern hunter-gathers, e.g., (Layton et al. 2012). 455 

 456 

Avoidance of infectious individuals 457 

If the randomly selected recipient (from the agent’s perceived diseased kin) does not fulfill 458 

the inequality for receiving care, the agent moves to a grid cell with no other agents on it within a 459 

radius of 8. This can occur due to a low relatedness with the recipient of care, high costs of 460 

exposure to the disease, or a low likelihood of recipient recovery. Under these conditions, the 461 

agent avoids the diseased individual instead of providing care. Note that nonkin do not receive 462 

care, thus if no perceived diseased kin are within the care-giving radius, the agent moves.  463 

Because the care-giving radius and the infection radius are set at 5 and this is less than the 464 

movement radius (8), agents that do not provide care can move out of the infection radius. The 465 

effectiveness of movement as a disease avoidance strategy is based on chance and the density of 466 

infected individuals. By chance the healthy agent may move to a grid cell that is outside of the 467 

infection radius of the diseased agent. However, as the density of infected agents increases, so 468 

does the likelihood that the healthy agent will move to a grid cell that is within the infection 469 

radius of another diseased agent. This reflects the difficulties of avoiding exposure at when there 470 

is a high density of infectious individuals in the population. 471 

If no empty cells are available, the agent does nothing.  472 

 473 

Mortality and disease transmission 474 

The model generates a random number for each diseased agent. If the number is below the 475 

probability of fatality, that agent dies. All healthy agents have a probability of becoming infected 476 
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from any infected agent within a radius of 5 grid cells, based on the probability of transmission. 477 

Five grid cells represent the upper range of the daily travel radius for modern hunter-gatherers 478 

(25 km2) (Grove et al. 2012; Layton et al. 2012). A random number (0-1) is drawn for each 479 

healthy agent in danger of infection. If the number is below the probability of transmission, the 480 

agent is infected. If an agent is in danger of infection from more than one diseased agent, the 481 

process is repeated for each infectious agent in 5 grid cells.  482 

 483 

Model analysis 484 

We ran the model 2000 times for 100 time steps for each disease. We considered runs to be 485 

successfully completed when both the disease and population had persisted (defined as ≥ 1 486 

diseased agent and ≥ 1 healthy agent at 100 time steps). The first 1000 successfully completed 487 

runs were divided into 10 groups of 100. We calculated average population size, average disease 488 

prevalence, average percentage of diseased individuals who received care (percent care), and 489 

average population intelligence at each time step across the 100 runs. This created an n of 10 490 

average runs for which we made curves depicting the changes in each of these output variables 491 

for the four diseases we considered. We used the 10 averages in the subsequent statistical tests 492 

instead of the original 1000 runs to avoid inflating our sample size, and thus the power of our 493 

tests (Railsback and Grimm 2011). 494 

 495 

Statistics 496 

We compared the endpoints of the curves by comparing the output variables (average 497 

population size, average disease prevalence, and average percent care) across the diseases at time 498 

step 100 using one-way ANOVAs (n=10 average runs/disease). We calculated the change in 499 
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average population intelligence between the first and 100th time step, tested whether the 500 

differences were different from zero using one-sample T-tests, and whether these differences 501 

varied across disease types using a one-way ANOVA. We calculated maximum slopes for the 502 

curves of the average percent care and the average population intelligence using grofit (Kahm et 503 

al. 2010) in R 2.13.1 (RCoreTeam 2011) and RStudio 0.98.1062 (RStudio 2014). We tested 504 

whether the slopes differed across disease types using a one-way ANOVA. Some violations of 505 

normality and equal variances existed (Supplementary files 3 and 4). One-way t-tests were 506 

bootstrapped with 1000 samples for robusticity to non-normality and 95% bias corrected 507 

accelerated confidence intervals were calculated (Field 2013). Though one-way ANOVAs are 508 

generally robust to such violations when groups have equal sample sizes, when variances were 509 

unequal, we used the Brown-Forsythe F-ratio. Alpha was set at 0.05 and multiple comparisons 510 

across disease types were Bonferroni corrected when variances were equal and Tamhane T2 511 

corrected when they were unequal. Statistical tests were run in SPSS Statistics 22 or 23 unless 512 

otherwise stated.  513 

 514 

Model 2: Control model – Avoidance only 515 

Following the initial analysis of the care-giving model (Model 1), we programmed a control 516 

(Model 2: Avoidance only) to further explore how care-giving may have altered the progression 517 

of disease through hominin populations. This model used the same population and diseases, but 518 

differed in two ways. First, agents who have perceived diseased kin avoid them instead of 519 

providing care. All agents with perceived diseased kin move randomly to an empty grid cell 520 

within a radius of 8. Second, if the agent has no perceived diseased kin or there are no empty 521 

grid cells within a radius of 8, the agent does not move. This differs from the care-giving model 522 
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in which agents with no diseased kin also move to an empty grid cell within 8. (Because agents 523 

that give care do not move, this was necessary in the care-giving model to ensure movement 524 

within the population.) We made this second change to the avoidance model to be conservative 525 

with respect to our expectation that only care-giving will produce intelligence changes. This 526 

second change increased selection on avoidance behavior because in Model 2 (Avoidance only) 527 

the only opportunity agents have to move is when they are avoiding diseased kin. 528 

 529 

Model analysis and statistics 530 

We used the same procedure as above to create 10 average runs for each output variable for 531 

each disease. We conducted one-sample T-tests to determine whether the difference in average 532 

population intelligence between the first and 100th time steps were significantly different from 533 

zero for the scabies-like, measles-like, CCHF-like, and Ebola-like diseases. We used two sample 534 

T-tests to determine whether the population size, prevalence, and intelligence at the 100th time 535 

steps differed between models 1 and 2. Some violations of normality and equal variances existed 536 

(Supplementary files 3 and 4). T-tests were bootstrapped with 1000 samples for robusticity to 537 

non-normality and 95% bias corrected accelerated confidence intervals were calculated (Field 538 

2013).  When Levene’s test showed violations of the assumptions of equal variances, we report 539 

results calculated without assuming equal variances (Field 2013). Alpha was set at 0.05. 540 

 541 

Analysis of the intelligence curves produced by Model 1 (Care-giving) 542 

 We analyzed the trajectories of the intelligence curves of the 10 average runs for each 543 

disease using linear mixed-models run in R 3.2.4 (RCoreTeam 2015) using the nlme package. 544 

We use this approach to relate infection prevalence to changes in mean intelligence, while taking 545 
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into account population size. We test for an interaction between prevalence and population size 546 

on changes to mean intelligence by including interaction term in the model: prevalence * 547 

population size. As the data are longitudinal (i.e., time series) we allow for autocorrelated errors 548 

using an ARMA process, incorporate time as a fixed effect, and use the averaged simulation run 549 

as the random effect. We check for issues of multicollinearity using variation inflation factor, 550 

and check the residuals of the models for non-normality, heteroscedasticity, and autocorrelation. 551 

(model: change in mean intelligence ~ time + prevalence*population size + random intercept).  552 

In order to keep the paper focused on the evolution of increasing average population intelligence, 553 

we did not conduct this analysis on the Model 2 curves, which showed either no increase or a 554 

decrease in average intelligence.  555 

 556 

Results 557 

Model 1: Care-giving model 558 

After 100 time steps the four diseases produced significantly different population sizes, disease 559 

prevalence, percentages of the diseased who received care, and average population intelligences 560 

(Tables 2-3, Fig. 1).  561 

 562 

[Table 2] 563 

[Table 3] 564 

[Figure 1] 565 

 566 

The Ebola-like disease, unlike the other three, produced no care-giving and no change in 567 

average population intelligence (Table 4, Fig. 1).  568 
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 569 

[Table 4] 570 

 571 

Both the Crimean-Congo hemorrhagic fever-like (CCHF-like) and measles-like diseases 572 

show initial increases in both care-giving and intelligence followed by a plateau (Fig. 1). The 573 

CCHF-like disease produced a care-giving rate of 4.7%, a final intelligence level of 0.62, and a 574 

12% net change in intelligence. Of the four diseases, the measles-like disease produced the 575 

highest rate of care-giving (6.7%) and the highest average population intelligence (0.71) at the 576 

final time step. This was generated by the greatest maximum slopes for care-giving and 577 

intelligence changes and the greatest net change in intelligence over time (21%). The scabies-like 578 

disease showed a strikingly different pattern. As prevalence steadily increased, because the 579 

fatality rate was low, care-giving decreased. Infected individuals did not provide care and rarely 580 

died, meaning that the number of healthy individuals able to provide care decreased. This 581 

produced a negative slope for care-giving, though low increases in average population 582 

intelligence were still observed (care-giving rate: 1.4%, final average population intelligence: 583 

0.53, net intelligence change: 3%, Tables 2-3).  584 

 585 

Model 2: Control model – Avoidance only 586 

The model two results revealed two important findings. First, an avoidance strategy did not 587 

result in an increase in average population intelligence (Tables 5 and 6). The net change in 588 

intelligence overtime was not significantly different from zero under the scabies-like and 589 

measles-like conditions (Table 5). Under the CCHF-like and Ebola-like conditions the average 590 

population intelligence decreased significantly (Table 5). 591 
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[Table 5] 592 

[Table 6] 593 

Second, a visual inspection of Figures 2-4 shows that the progression of the diseases through 594 

the population differed under Model 1 (care-giving) and Model 2 (avoidance only). Descriptive 595 

statistics are provided in Supplementary file 5. For the scabies-like and measles-like diseases, 596 

when agents gave care the final population sizes were higher and the final prevalences were 597 

lower (Fig. 2 & 3, Table 6). A visual inspection of Fig. 3b reveals that when agents give care, the 598 

“boom and bust” cycle of disease outbreaks in the population was reduced with prevalence 599 

increasing and decreasing less dramatically. For the CCHF-like disease, the final population 600 

sizes differed however prevalence did not differ (Table 6). An inspection of Fig. 3c shows that 601 

the cycle of outbreaks was very similar in the care-giving and avoidance conditions. For the 602 

Ebola-like disease, final population size and final prevalence did not differ in the care-giving and 603 

avoidance conditions. 604 

[Fig. 2] 605 

[Fig. 3] 606 

[Fig. 4] 607 

 608 

Analysis of the intelligence curves produced by Model 1 (care-giving) 609 

For each of the scabies-like, measles-like, and CCHF-like diseases, time was negatively 610 

related to changes in intelligence (Table 7). Thus, the largest increases occurred early in the run 611 

with smaller increases occurring later. In the case of the Ebola-like disease, intelligence did not 612 

change, thus there was no relationship between time and changes in mean intelligence. 613 
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For the scabies-like disease, VIF scores indicated high collinearity between dependent 614 

variables (VIF scores >100). When we dropped population size from the analysis, VIF scores fell 615 

below 7. In this reduced analysis, changes in intelligence were positively related with prevalence 616 

(Table 7, Fig. 5).  617 

For the measles-like disease, changes in intelligence were positively related with both 618 

prevalence and population size with the greatest increases in intelligence occurring at larger 619 

population sizes and high prevalences (Fig. 6). For the CCHF-like disease, the proportion of the 620 

variation explained by the analysis (marginal R2 = 0.15) was reduced compared to the measles-621 

like (marginal R2 = 0.57) and scabies-like (marginal R2 = 0.47) diseases. However, similar to the 622 

measles-like disease, an interaction effect between prevalence and population size was present, 623 

indicating that at low prevalences, changes in intelligence were negatively related to population 624 

size, but at higher prevalences, they were positively related with population size (Fig. 7). Thus 625 

the greatest changes in intelligence occurred at low prevalences and low population sizes or high 626 

prevalences and high population sizes. 627 

No relationships between time, prevalence or population size were found for the Ebola-like 628 

disease because the Ebola-like disease produced no changes in intelligence (Tables 5 and 7, Fig. 629 

8). 630 

[Table 7] 631 

[Fig. 5] 632 

[Fig. 6] 633 

[Fig. 7] 634 

[Fig. 8] 635 

 636 
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Discussion 637 

General discussion 638 

Our findings suggest that the evolution of care-giving may have created a profound shift 639 

in how hominins evolved in the presence of their pathogens. The avoidance approach (Model 2) 640 

likely represents the basal condition, under which disease either does not select for or against 641 

increasing cognitive abilities (high prevalence, low fatality diseases) or selects against it (low 642 

prevalence, high fatality diseases). In contrast, under the care-giving condition (Model 1), care-643 

giving not only selected for increasing cognitive abilities, but also altered and controlled the 644 

progression of some of the diseases throughout the population. We discuss both models and their 645 

implications in detail below. 646 

 647 

Model 1 648 

Our results from Model 1 suggest that disease circulating among kin can select for care-649 

giving among kin and greater cognitive abilities. Furthermore, the diseases produced selection of 650 

varying strengths, with higher care-giving rates producing greater increases in average 651 

population intelligence. 652 

The findings are relevant to the evolution of care-giving in hominins as they suggest that not 653 

all diseases produce care-giving behavior. The high fatality and transmission rates of the Ebola-654 

like disease, when applied to Hamilton’s rule (Hamilton 1964), generated costs that were greater 655 

than the benefits of care-giving, even to close relatives, thus, all agents avoided ill kin, rather 656 

than providing care. Such diseases are not likely to have facilitated the evolution of care-giving 657 

or increased social cognition. The CCHF-like disease had intermediate probabilities of fatality 658 

and transmission, leading to care-giving only to close kin (parents and offspring: r=0.5), and not 659 
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to more distant relatives like grandparents, grandchildren, or siblings (r=0.25) who were avoided 660 

when ill. This produced substantial care-giving behavior and selection for increasing 661 

intelligence, but the selection was weaker than for the measles-like disease, where care was 662 

given to both close and more distant relatives. The scabies-like disease, while it produced care-663 

giving for both close and more distant relatives, produced only low rates of care-giving and 664 

correspondingly weak selection for increasing intelligence. These effects result from the very 665 

low fatality rate of the scabies-like disease; the population size appears to have been regulated 666 

largely by the carrying capacity set in the model (i.e., habitat supports 200 individuals) rather 667 

than by the disease. Therefore, as disease prevalence increased, there was a lack of healthy 668 

individuals who could provide care to their diseased kin, leading to a low rate of care-giving, 669 

lower population turnover, and lower increases in average population intelligence. Overall, these 670 

simulations suggest that diseases that are most likely to have led to the evolution of care-giving 671 

in the human lineage were those with low costs to caregivers which persisted at a prevalence low 672 

enough not to disrupt the kin networks along which care was provided. Although only healthy 673 

agents could give care and reproduce in our model, high rates of costly care-giving may not be 674 

expected if kin have sublethal diseases that do not reduce their reproductive success.  675 

It is noteworthy that for all three diseases that produced care-giving, the final rate of care-676 

giving was low, with a maximum of 6.7% of the diseased receiving care under measles-like 677 

conditions. Furthermore, a recovery rate of only 50% after care suggests that over the course of 678 

hominin evolution even low rates of relatively ineffective care may have been sufficient to select 679 

for increasing intelligence and disease recognition. We expect that the first forms of care-giving 680 

among hominins would have included assistance with hygiene, such as cleaning of wounds and 681 

topical infections (Dittus and Ratnayeke 1989) and provisioning with food and water (Sugiyama 682 
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2004). These mechanisms would not have required an understanding of disease processes and 683 

could have piggybacked on basal social grooming behaviors observed in nonhuman primates 684 

(Dittus and Ratnayeke 1989) and communal provisioning behaviors that may have evolved 685 

during the evolution of cooperative breeding (Burkart et al. 2009; Gurven et al. 2000; Hawkes 686 

2003; Hill et al. 2009; Hrdy 2009; Sugiyama 2004; Sugiyama and Chacon 2000). 687 

 688 

Model 2 689 

The Model 2 results demonstrate that avoidance alone does not select for greater cognitive 690 

abilities. Avoidance produced no net change in average population intelligence in the scabies-691 

like and measles-like conditions and a decrease in average population intelligence in for the 692 

CCHF-like and Ebola-like diseases. The scabies-like and measles-like diseases produced higher 693 

population sizes and disease prevalences above 50%, thus an agent who moves away from 694 

infected kin is likely to encounter other infected individuals. This results in a lack of selection for 695 

disease recognition and avoidance. In contrast, the CCHF-like and Ebola-like diseases produced 696 

lower population sizes and prevalences below 50%, thus an agent who avoids infected kin is less 697 

likely to encounter other infected agents. This results in selection to isolate oneself. The most 698 

efficient way for agents to isolate themselves in a population with a prevalence under 50%, is to 699 

miscategorize healthy individuals as ill, thus triggering avoidance. Because lower intelligence 700 

agents have less accurate disease recognition, this produces selection to decrease intelligence. 701 

These findings are relevant for species that do not give care. It suggests that avoidance of 702 

high prevalence, low fatality diseases is likely to be an ineffective strategy. As a result these 703 

diseases do not exert selection for or against cognitive abilities under an avoidance only 704 
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paradigm. In contrast, avoidance is an effective strategy against low prevalence, high fatality 705 

diseases producing selection for avoidance behavior and selection against sociality. 706 

 707 

Implications of care-giving 708 

A comparison of the results from Model 1 (care-giving model) with Model 2 (avoidance 709 

model) indicates that care-giving alters the progression of the disease through the population. For 710 

the scabies-like and measles-like diseases, care-giving resulted in significantly higher population 711 

sizes and lower prevalences than an avoidance only strategy. Thus for these diseases, which are 712 

the two diseases for which care was given to both close and distant kin (r=0.5 and r=0.25, 713 

respectively), care-giving served to control the disease in the population.  714 

Two of the diseases, the measles-like and the CCHF-like diseases, show distinct cycles of 715 

disease outbreaks and population crashes (“boom and bust” dynamic, Fig. 2-3). The lack of 716 

congruence between the relatively constant slope of the intelligence curves (Fig. 4) and the 717 

boom-bust oscillations of population size and prevalence, is a reflection of the fact that selection 718 

on intelligence is occurring throughout the boom-bust cycle and not intermittently only when 719 

specific conditions are met (e.g., a particular population size or prevalence). This dynamic is 720 

quantified through the interaction term of the mixed model analysis in which intelligence 721 

increases are the result of complex interactions between prevalence and population size. Because 722 

the two diseases progress differently through the population, they also exert selection on 723 

intelligence in slightly different ways. The measles-like disease produces one oscillation of the 724 

boom-bust outbreak cycle of population and prevalence peaks and crashes; the CCHF-like 725 

disease produces multiple, more rapid oscillations. 726 
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The measles-like disease shows a very pronounced “bust” phase early in the run. Population 727 

size is high when the disease is first introduced (Fig. 2B, Model 1 curve). This produces a high 728 

rate of care-giving and strong selection for intelligence (left panel, Fig. 6B). As the prevalence 729 

increases (Fig. 3B, Model 1 curve), low intelligence matrilines recognize diseased kin less 730 

accurately, and provide less successful care, causing them to succumb to the disease. This 731 

produces a decrease in population size and an increase in average population intelligence (Fig. 732 

4B, Model 1 curve). At high prevalences, selection for intelligence is maintained regardless of 733 

the population size (right panel, Fig. 6B). Intelligence plateaus about half way through the run 734 

when the population size rebounds slightly but remains low and prevalence decreases slightly 735 

from its earlier peak and remains moderate. With a low population size, intermediate prevalence, 736 

and a decreased rate of care-giving (Fig. 1B, measles-like curve), the population maintains the 737 

higher intelligence, but does not continue to increase it (change in intelligence approaches 0 in 738 

left side of middle panel, Fig. 6B).  Intelligence plateaus as the boom-bust outbreak oscillations 739 

cease. 740 

The CCHF-like disease produces a very pronounced boom-bust cycle with several peaks and 741 

crashes in population size and prevalence. Selection for increasing intelligence occurs both 742 

during low population sizes and low prevalences (left panel, Fig. 7B) and during high population 743 

size and high prevalences (right panel, Fig. 7B). When the boom-bust dynamic stops about 744 

halfway through the run and the population stabilizes at intermediate population sizes and 745 

prevalences, intelligence plateaus (Figs. 2C, 3C, 4C Model 1 curves and middle panel, Fig. 7B). 746 

  Interestingly, when the population infected with the measles-like disease engages in care-747 

giving, it experiences less pronounced oscillations of the “boom and bust” outbreak cycle (Fig. 748 

3) indicating that care-giving serves to control the spread of the disease through the population. 749 
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Because of the higher risks of providing care under the CCHF-like conditions, only close kin 750 

(r=0.5) receive care. This lower level of care is less effective at controlling the spread of the 751 

disease, perhaps suggesting that a certain threshold must be achieved in order to disrupt the 752 

boom-bust outbreak cycle (boom-bust dynamics: (Keeling and Grenfell 1997)). Alternatively, 753 

the higher fatality rate and more rapid transmission of the CCHF-like diseases produces faster 754 

outbreak cycles, which may make it more difficult for care-giving to disrupt the boom-bust 755 

outbreak cycle even though it still selects for increasing cognitive abilities. 756 

For both the measles-like and CCHF-like diseases, the most pronounced outbreaks occur 757 

early in the model run, which is also when the greatest increases in intelligence are occurring 758 

(Fig. 6A and 7A). In the second half of the run, when the boom-bust dynamic is less pronounced, 759 

intelligence plateaus. This suggests that over the course of human evolution, sustained increases 760 

in intelligence may have occurred through repeated introductions of novel diseases into naïve 761 

populations. The greatest selection would have occurred shortly after the introduction when the 762 

disease was spreading and care-giving behavior had not yet managed to reduce the size of the 763 

outbreaks and subsequent population crashes. 764 

 765 

Significance for human evolution 766 

Our model was parameterized based upon group sizes, spatial scales, and population 767 

densities derived from the fossil record and modern foraging peoples (Grove et al. 2012; Layton 768 

et al. 2012). Our goal was not to recreate a particular hominin population, but to explore the 769 

effects of different disease characteristics on the evolution of care-giving and increased cognition 770 

in a population with hominin characteristics.  771 
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We created an SIS model (susceptible-infected-susceptible) where recovered individuals are 772 

just as susceptible as those who were never infected. However, for many diseases, recovered 773 

individuals are temporarily or permanently immune to re-infection, potentially increasing their 774 

ability to provide care. We expect that immunity would increase the rate of care-giving. Diseases 775 

likely to select for care-giving among kin may be diseases which frequently infect children and 776 

then convey lifetime immunity. Under this scenario, adults who survived to reproduce would 777 

have extensive knowledge of the disease’s symptoms, making recognition likely, and the 778 

immunity to enable them to provide effective care. Several well-known childhood diseases  that 779 

follow this pattern (e.g., measles, smallpox) have been dated to the origins of agriculture, animal 780 

domestication, and the subsequent population increases (Harper and Armelagos 2013). However, 781 

as more genetic studies are conducted, increasing numbers of pathogens are showing pre-782 

agricultural origins, including some that were previously believed to be post-agricultural (e.g., 783 

tapeworms, TB (Harper and Armelagos 2013; Hoberg et al. 2001; Hurtado et al. 2008; Stone et 784 

al. 2009). Tapeworms, TB, typhoid fever, whooping cough, and Epstein Barr virus, among 785 

others, have been shown to predate agriculture (Harper and Armelagos 2013; Hoberg et al. 2001; 786 

Hurtado et al. 2008; Stone et al. 2009), suggesting that ancestral hominins harbored significant 787 

numbers of infectious diseases. Based on our models, diseases with low risks to care-givers, high 788 

inclusive fitness pay-offs for care-givers, and prevalences low enough not to disrupt the kin 789 

networks along which care could be given would have exerted the strongest selection for 790 

increased cognition. Through repeated introductions of novel diseases over millions of years, 791 

such diseases could have selected for accurate disease recognition, increased care-giving among 792 

kin, and produced the social and cognitive origins of human medical care.  793 

 794 
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A novel hypothesis of human cognitive evolution and future directions 795 

Our novel hypothesis of primate, including human cognitive evolution, is not mutually 796 

exclusive with the social brain hypothesis (Dunbar 1998). As social species evolved the 797 

cognitive capacities for social cognition, such as processing information gleaned from faces 798 

(Leopold and Rhodes 2010; Sartori et al. 2011), voices (Belin 2006; Belin et al. 2004), and 799 

movement patterns (Loula et al. 2005; Peterman et al. 2014; Sartori et al. 2011), they may have 800 

also obtained the ability to use this information to recognize disease symptoms. They could 801 

detect changes in facial coloration and texture due to fever or rashes, changes in vocalizations 802 

due to coughing, nasal discharge or reduced lung capacity, and changes in movement/gait due to 803 

weakness, lethargy, or signs of pain (Chapman et al. 2005; Fink and Matts 2008; Hart 1988). The 804 

proximate mechanisms are relatively simple in that they do not require individuals to have an 805 

abstract concept of “disease.” Instead, individuals that are able to accurately recognize disease 806 

would have increased fitness due to being able to avoid infectious individuals or provide care to 807 

kin. Though studies of disease recognition in nonhuman animals are relatively rare, several 808 

species do appear to recognize the health status of conspecifics, i.e., social lobsters (Behringer et 809 

al. 2006), pipefish (Rosenqvist and Johansson 1995), bullfrog tadpoles (Kiesecker et al. 1999), 810 

rodents (Kavaliers et al. 1997), house finches (Bouwman and Hawley 2010; Zylberberg et al. 811 

2012), but see (Nunn 2003). 812 

We predict that as hominin social complexity increased, i.e., group sizes, social network 813 

sizes, frequencies of cooperation and social learning, etc. (Aiello and Dunbar 1993; Burkart et al. 814 

2014; Burkart et al. 2009; Dunbar 1998; Gamble et al. 2011; Grove et al. 2012; Layton et al. 815 

2012; Tomasello 2014), hominins would have substantially increased their risk of disease 816 

transmission, producing heightened selection for disease recognition and care-giving. We make 817 
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several predictions that enable paleoanthropologists, archaeologists, primatologists, human 818 

ecologists, geneticists and immunologists to test our novel hypothesis of human cognitive 819 

evolution: 820 

1) Humans and nonhuman primates have very similar disease profiles in that we share many 821 

of the same diseases with viral, bacterial, and gastrointestinal parasitic zoonoses 822 

occurring from nonhuman primates to humans and vice versa (Chapman et al. 2005; 823 

Jones et al. 2008; Lloyd-Smith et al. 2009; Wolfe et al. 2007). However, what has 824 

received very little attention is how humans and nonhuman primates may differ in the 825 

expression of disease symptoms. Humans, relative to nonhuman primates have much less 826 

body hair. Though our nakedness may reduce ectoparasite load (Pagel and Bodmer 2003; 827 

Weiss 2007), it also provides a visually unobstructed surface for displaying rashes, 828 

lesions, swelling, and inflammation, and bruising. Humans, relative to nonhuman 829 

primates, also have white scaleras around their eyes, a signal that has been argued to 830 

draw attention to gaze direction (Kobayashi and Kohshima 2001; Tomasello et al. 2007), 831 

but also turns a dramatic “bloodshot” red when we are under emotional stress or ill 832 

(Provine et al. 2011). Prediction 1: If humans have been selected to solicit care from 833 

others, they should display exaggerated signals of ill health, relative to nonhuman 834 

primates experiencing the same disease and degree of morbidity/mortality. 835 

2) It is becoming increasingly possible to date the origins of many diseases afflicting 836 

humans i.e., (Harper and Armelagos 2013; Stone et al. 2009). As more accurate dates are 837 

obtained for more diseases, it will be possible to examine whether hominin populations 838 

carried an increased disease load as they increased in social complexity. Social 839 

complexity could be operationalized in the fossil record through the brain size – group 840 
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size relationship (Aiello and Dunbar 1993; Dunbar 1998; Gamble et al. 2011; Grove et al. 841 

2012; Layton et al. 2012), through evidence of increased behavioral and technological 842 

complexity in the archaeological record (Gowlett et al. 2012; Shultz et al. 2012), or 843 

through fossil evidence for the shift to cooperative breeding (Aiello and Key 2002; Shultz 844 

et al. 2012). Prediction 1: If larger hominin communities sustained greater disease loads, 845 

then periods of rapidly increasing community sizes (operationalized with expanding 846 

brain sizes (Aiello and Dunbar 1993; Dunbar 1998; Gamble et al. 2011; Grove et al. 847 

2012)) should coincide with the evolution of diseases new to hominins. Prediction 2: If 848 

social learning/cooperation lead to increased disease transmission (McCabe et al. 2015), 849 

then increasing behavioral/technological complexity in the archaeological record 850 

(Gamble et al. 2011; Gowlett et al. 2012; Shultz et al. 2012) should coincide with the 851 

evolution of diseases new to hominins. Prediction 3: If cooperatively breeding increased 852 

disease transmission, then evidence for cooperative breeding in the fossil record (Aiello 853 

and Key 2002; Shultz et al. 2012) should coincide with the evolution of diseases new to 854 

hominins, particularly those that afflict children. These predictions are not mutually 855 

exclusive. According to the results of our model, we would expect a high proportion of 856 

these diseases to present low costs and high fitness payoffs to care-givers and persist at 857 

prevalences that are low enough not to disrupt the kin networks along which care is 858 

provided. Possibilities include infections that leave survivors immune. 859 

3) An additional avenue for examining the role of disease during the evolution of human 860 

social complexity would be through cross-species comparisons of immune investment. If 861 

hominins have experienced an unusually high rate of disease exposure, either through 862 

their extensive social networks or through providing care to diseased kin, they may have 863 
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invested heavily in immune defenses. Recent work on introgression between 864 

anatomically modern humans (AMH) and neandertals has proposed that one of the major 865 

advantages may have been the acquisition of novel immune genes from neandertals as 866 

AMH expanded northward into novel environments and encountered novel pathogens 867 

(Houldcroft and Underdown 2016). Prior studies indicate that there are cross-species 868 

differences in immune investment according to mating system (but not group size or 869 

density in primates) (Nunn et al. 2000), the risk of environmentally transmitted parasites 870 

and injuries due to predator attacks in anthropoids (Semple et al. 2002), coloniality in 871 

birds (Moller et al. 2001), and cooperative breeding in birds (Spottiswoode 2008). 872 

Prediction 1: If hominins’ increased social complexity required them to invest heavily in 873 

immune defenses, the human immune system should show similar adaptations to other 874 

species that have extremely large social networks and high interaction rates. Prediction 875 

2: If the evolution of cooperative breeding required hominins to invest heavily in immune 876 

defenses, then the human immune system should show similar adaptations to other 877 

cooperatively breeding species. Prediction 3: If the evolution of providing care to 878 

diseased conspecifics required hominins to invest heavily in immune defenses, the human 879 

immune system should show adaptations that are either extreme or unusual. (These 880 

predictions are not mutually exclusive). While many of the earlier studies were done with 881 

white blood cell counts, i.e., (Nunn et al. 2000), the field of ecological immunology is 882 

growing rapidly with new techniques being continually developed (Downs et al. 2014; 883 

Larsen et al. 2014). This should make it increasingly possible to parse out how different 884 

selective forces may have acted on different elements of a species’ immune system. 885 

 886 
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Conclusions 887 

Our model indicates that disease circulating amongst kin groups can select for care-giving 888 

among kin and greater cognitive abilities. Moreover, the characteristics of the diseases can 889 

generate different strengths of selection. Diseases with lower costs and higher pay offs produced 890 

stronger selection, yielding higher care-giving rates and greater increases in average population 891 

intelligence.  892 

When a care-giving strategy was compared with an avoidance only strategy, the care-giving 893 

strategy controlled the transmission of the disease through the population by reducing the 894 

severity of disease outbreaks and population crashes. Because this cycle of outbreaks and 895 

population crashes was associated with the most rapid increases in intelligence, we propose that 896 

the repeated introduction of novel diseases into naïve populations may have led to sustained 897 

selection for increasing disease recognition and cognitive abilities throughout human evolution. 898 

Moreover, the unique ability of hominins to control the spread of disease through care-giving 899 

behaviors may have facilitated increased social complexity, and ultimately lead to the evolution 900 

of medical care in humans. Finally, we set out predictions derived from our disease recognition 901 

hypothesis of hominin cognitive evolution that can be tested by paleoanthropologists, 902 

archaeologists, geneticists, and primatologists. 903 
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 1193 

Tables 1194 

Table 1. Summary data calculated from the hominin dataset presented in Appendix Table A1 of Grove et al. (2012). Values and 1195 

confidence intervals are medians calculated from the published dataset. To keep our terminology consistent, we refer to 1196 

community size where Grove et al. (2012) refers to group size. 1197 

    Community Size Population Density (I/km2) Area Required (km2) 

Genus Species Lower CI Median Upper CI Lower CI Median Upper CI Lower CI Median Upper CI 

Homo Early Homo 43.249 56.276 71.402 0.366 0.584 0.802 51.529 92.525 188.043 

Homo habilis 46.8415 60.476 76.2795 0.577 0.822 1.068 43.8705 73.56 132.306 

Homo erectus 66.43 83.158 102.406 0.545 0.785 1.025 70.289 113.994 200.766 

Homo heidelbergensis 70.9845 88.389 108.389 0.3 0.514 0.728 94.736 164.6655 339.368 

Homo neanderthalensis 72.622 90.266 110.5325 0.196 0.407 0.618 116.066 217.395 536.199 

Homo sapiens 78.763 97.292 118.541 0.196 0.407 0.618 127.537 240.876 613.916 

 1198 

 1199 
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Table 2. Means and standard deviations for each disease for the final population size, final disease prevalence, final percent care, final 1200 

average population intelligence, the net intelligence change between time steps 1 and 100 (Intel Change), the maximum slope 1201 

for percent care, and the maximum slope for average population intelligence from Model 1 (Care-giving). 1202 

 1203 

Disease Pop. Size Prevalence 

(%) 

Percent 

Care 

Intelligence Intel Change Slope Care Slope Intel 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Scabies 184.07 0.77 84.78 0.42 1.37 0.11 0.53 0.01 0.03 <0.01 -0.00006 0.00003 0.0006 0.00007 

Measles 133.64 2.02 70.15 0.76 6.74 0.43 0.71 0.01 0.21 0.01 0.00053 0.00006 0.0043 0.00032 

CCHF 120.96 3.47 33.63 1.75 4.73 0.50 0.62 0.01 0.12 0.02 0.00022 0.00005 0.0025 0.00042 

Ebola 157.24 3.25 10.32 0.51 --- --- 0.50 0.01 0.00 0.01 --- --- 0.0003 0.00020 

 1204 

 1205 

Table 3. One-way ANOVAs showing significant differences across disease types for the final population size, final disease 1206 

prevalence, final percent care, final average population intelligence, the net intelligence change between time steps 1 and 100, 1207 

the maximum slope for percent care, and the maximum slope for average population intelligence for Model 1 (Care-giving). 1208 



 Kessler et al. 52 

 

All multiple comparisons between disease types were significant, thus only the smallest mean difference and corresponding p-1209 

value are shown per test. 1210 

 1211 

Test F-statistic Df P Smallest Mean Difference P 

Final Pop. Size 1131.78BF 3, 24.47 <0.001 ≥ 12.68T <0.001 

Final Prevalence 11,275.24BF 3, 15.24 <0.001 ≥ 0.15T < 0.001 

Final Percent Care 492.03BF 2, 18.61 <0.001 ≥ 0.02T <0.001 

Final Intelligence 579.51UC 3, 36 <0.001 ≥ 0.03B <0.001 

Intelligence Change 464.463BF 3, 23.13 <0.001 ≥ 0.03T <0.001 

Max. Slope Percent Care 377.10UC 2, 27 <0.001 ≥0.0003B <0.001 

Max. Slope Intelligence 421.732BF 3, 21.61 <0.001 ≥ 0.0002T ≤0.03 

UC F-statistic, uncorrected 1212 

BF Brown-Forsythe F-statistic 1213 

B Bonferroni correction for multiple comparisons 1214 

TTamhane’s T2 test for multiple comparisons 1215 

 1216 

 1217 
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Table 4. One-sample T-tests on the Model 1 results showing that the difference in average population intelligence between the first 1218 

and 100th time steps were significantly different from zero for the scabies-like, measles-like, CCHF-like diseases, but not for 1219 

the Ebola-like disease. Significant p-values are bolded 1220 

 1221 

Test T Df P CI: Lower CI: Upper 

Scabies-like 22.18 9 <0.001 0.028 0.033 

Measles-like 44.78 9 <0.001 0.196 0.216 

CCHF-like 19.36 9 <0.001 0.111 0.137 

Ebola-like -0.824 9 0.431 -0.010 0.005 

 1222 

 1223 

Table 5. One-sample T-tests on the Model 2 results showing that the difference in average population intelligence between the first 1224 

and 100th time steps were significantly different from zero for the CCHF-like and Ebola-like diseases, but not for the scabies-1225 

like and measles-like diseases. Significant p-values are bolded. 1226 

 1227 

Test T Df P CI: Lower CI: Upper 
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Scabies-like -.997 9 0.352 -0.005 0.001 

Measles-like -1.292 9 0.236 -0.025 0.005 

CCHF-like -24.000 9 0.001 -0.160 -0.138 

Ebola-like -58.939 9 0.001 -0.216 -0.200 

 1228 

Table 6. Two-sample T-tests comparing population size, prevalence, and mean intelligence values at the 100th time step for each 1229 

disease under Model 1 (care-giving) versus Model 2 (avoidance) conditions. When Levene’s test indicated that the variances 1230 

are unequal, we report the T values, degrees of freedom (df), p-values, and confidence intervals calculated without assuming 1231 

equal variances (Field 2013). Significant p-values are bolded. 1232 

 1233 

Disease Variable T Df P CI: Lower CI: Upper 

Scabies-like Pop. Size 43.178 11.011 0.001 28.833 31.344 

Prevalence -49.675 18 0.001 -0.105 -0.096 

Intelligence 7.786 18 0.001 0.031 0.052 

Measles-like Pop. Size 9.669 18 0.001 9.621 14.569 

 Prevalence -3.000 18 0.016 -0.029 -0.007 
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 Intelligence 30.699 11.148 0.001 0.205 0.233 

CCHF-like Pop. Size -3.165 18 0.003 -5.906 -1.296 

 Prevalence 0.740 18 0.464 -0.007 0.015 

 Intelligence 37.944 18 0.001 0.254 0.282 

Ebola-like Pop. Size -0.024 14.171 0.982 -3.696 3.923 

Prevalence 0.305 18 0.748 -0.004 0.005 

Intelligence 46.049 18 0.001 0.200 0.218 

 1234 

Table 7. Mixed-model analyses run on the Model 1 (care-giving) results examining the effects of prevalence, population size and the 1235 

interaction between the two on intelligence changes for each disease.  r2m measures how much variation in mean intelligence 1236 

can be explained by the fixed effects (time+prevalence*population size). β values are standardized regression coefficients. SE 1237 

is the standard error and df is the degrees of freedom. 1238 

Disease Analysis r2m* Variable Β SE df t p 

Scabies-

like* 

Prevalence 0.468 Intercept -0.002 0.034 888 -0.055 0.956 

Time 
-1.084 0.086 888 

-

12.641 <0.001 

Prevalence 0.460 0.085 888 5.411 <0.001 

Measles- Prevalence 0.565 Intercept -0.065 0.075 946 -0.871 0.384 
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like Time -0.585 0.076 946 -7.650 <0.001 

Population Size 0.291 0.063 946 4.590 <0.001 

Prevalence 0.431 0.046 946 9.276 <0.001 

Population 

Size*Prevalence -0.143 0.021 946 -6.713 <0.001 

CCHF-

like 

Prevalence 0.146 Intercept 0.039 0.050 946 0.785 0.433 

Time -0.400 0.051 946 -7.848 <0.001 

Population Size 0.052 0.051 946 1.014 0.311 

Prevalence -0.104 0.052 946 -2.023 0.043 

Population 

Size*Prevalence 0.060 0.020 946 3.023 0.003 

Ebola-

like 

Prevalence 0.001 Intercept 0.008 0.039 946 0.218 0.827 

Time -0.010 0.039 946 -0.247 0.805 

Population Size -0.043 0.049 946 -0.873 0.383 

Prevalence 0.002 0.073 946 0.031 0.976 

Population 

Size*Prevalence 0.013 0.022 946 0.571 0.568 

*r2c values were the same as r2m. r2c measures how much variation is explained by the whole model (including the random effect of 1239 

simulation run). That the two measures were the same indicates that there were no systematic differences between runs of a given 1240 

disease. 1241 

 1242 
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Figure legends 1243 

Figure 1. Changes over time in disease prevalence (A), percentage of diseased individuals who received care (B), and average 1244 

population intelligence (C). For each disease the 10 average runs have been averaged within each time step. The Ebola-like, 1245 

CCHF-like, measles-like, and scabies-like diseases are shown in red circles, green squares, black Xs, and blue triangles, 1246 

respectively. Approximately every fourth time step is shown. Error bars are +/- two standard deviations. Fig. 1B does not show 1247 

the Ebola-like disease because no care was given. 1248 

 1249 

Figure 2. Changes in population size over time produced by Model 1 (Care-giving) and Model 2 (Avoidance only) in the scabies-like 1250 

(A), measles-like (B), CCHF-like (C), and Ebola-like (D) diseases. Models 1 and 2 are shown in red circles and blue triangles, 1251 

respectively. Only even numbered time steps are shown. Error bars are +/- two standard deviations. 1252 

 1253 

Figure 3. Changes in prevalence over time produced by Model 1 (Care-giving) and Model 2 (Avoidance only) in the scabies-like (A), 1254 

measles-like (B), CCHF-like (C), and Ebola-like (D) diseases. Models 1 and 2 are shown in red circles and blue triangles, 1255 

respectively. Only even numbered time steps are shown. Error bars are +/- two standard deviations. 1256 

 1257 
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Figure 4. Changes in average population intelligence over time produced by Model 1 (Care-giving) and Model 2 (Avoidance only) in 1258 

the scabies-like (A), measles-like (B), CCHF-like (C), and Ebola-like (D) diseases. Models 1 and 2 are shown in red circles 1259 

and blue triangles, respectively. Only even numbered time steps are shown. Error bars are +/- two standard deviations. 1260 

 1261 

Figure 5. Graphs showing the results of the analyses exploring the effects of prevalence on the change in intelligence for the scabies-1262 

like disease. Change in intelligence was calculated as the mean intelligence in a given time step minus the mean intelligence in 1263 

the previous time step. (A) Change in intelligence is negatively correlated with time and (B) positively correlated with 1264 

prevalence (Table 7).  1265 

 1266 

Figure 6. Graphs showing the results of the analyses exploring the effects of prevalence, population size, and their interactions on the 1267 

change in intelligence for the measles-like disease. Change in intelligence was calculated as the mean intelligence in a given 1268 

time step minus the mean intelligence in the previous time step. (A) Change in intelligence is negatively correlated with time 1269 

(Table 7). (B) Interaction effects between population size and prevalence (“Prev”). Population size is on the X axis with data 1270 

points represented by the small black lines. The difference in intelligence is shown on the Y axis. The prevalences shown 1271 

represent the range of prevalences experienced by the population (see Figure 1A). The greatest positive selection on 1272 

intelligence occurred when prevalence and population size are high. Population size has a large effect when prevalence is low 1273 

(left panel of B) and a small effect when prevalence is high (right panel of B). 1274 
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 1275 

Figure 7. Graphs showing the results of the analyses exploring the effects of prevalence, population size, and their interactions on the 1276 

change in intelligence for the CCHF-like disease. Change in intelligence was calculated as the mean intelligence in a given 1277 

time step minus the mean intelligence in the previous time step. (A) Change in intelligence is negatively correlated with time 1278 

(Table 7). (B) Interaction effects between population size and prevalence. Population size is on the X axis with data points 1279 

represented by the small black lines.  The difference in intelligence is shown on the Y axis. The prevalences shown represent 1280 

the range of prevalences experienced by the population (see Figure 1A). The greatest increases in average population 1281 

intelligence occurred at low population sizes and low prevalences (B, left panel) and at high population sizes and high 1282 

prevalences (B, right panel).  1283 

 1284 

Figure 8. Graphs showing the results of the analyses exploring the effects of prevalence, population size, and their interactions on 1285 

change in intelligence for the Ebola-like disease. Change in intelligence was calculated as the mean intelligence in a given time 1286 

step minus the mean intelligence in the previous time step. (A) No significant change in intelligence over time. (B) Potential 1287 

interaction effects between population size and prevalence. Population size is on the X axis with data points represented by the 1288 

small black lines. The difference in intelligence is shown on the Y axis. The prevalences shown represent the range of 1289 

prevalences experienced by the population (see Figure 1A). Because intelligence does not change over time, there are no 1290 

significant correlations with prevalence, population size or the interaction of the two (Table 7).  1291 
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Appendix A. ODD Protocol for Selection to Outsmart the Germs in Netlogo (Model 1: Care-giving) 1292 

 1293 

Purpose 1294 

The purpose of this model is to test 1) under what conditions disease can select for increasing disease recognition and care-giving 1295 

among kin and 2) whether the strength of selection varies according to the disease’s characteristics. We compare the selection 1296 

produced by diseases with fatality rates similar to Ebola, Crimean-Congo hemorrhagic fever, measles, and scabies. 1297 

 1298 

Entities, state variables and scales 1299 

This model consists of three entities: the landscape, agents moving on the landscape, and links between agents. The landscape is a 40 1300 

x 40 cell grid that wraps horizontally and vertically. The model space simulates individuals moving and interacting on a landscape. 1301 

The grid cells do not have any variables of their own.  1302 

 1303 

The following global variables can be user-adjusted via the interface: 1304 

1) Carrying-capacity: maximum number of agents on the landscape 1305 

2) Prob-fatality: the probability that a diseased agent will die (0-1). 1306 

3) Prob-transmission: the probability that an agent within the transmission radius will become infected (0-1) 1307 

4) Prob-recovery: the probability that an agent will recover from the disease after receiving care (help), coded as 0-1 1308 
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5) Num-matrilines: the number of unrelated agents created at set-up. 1309 

6) Initial-prevalence: the number of agents who are randomly infected in the fifth time step 1310 

 1311 

Agents have the following state variables:  1312 

1) Disease?: a true/false variable determining the agent’s disease status 1313 

2) Intelligence: the probability that an agent will correct identify the disease status of another agent (0-1) 1314 

 1315 

Links represent relatedness between two agents. Links have one variable, r, which represents the matrilineal relatedness between the 1316 

linked agents. Links representing parent-offspring relationships (r = 0.5) are colored white. Links representing matrilineal 1317 

siblings/grandparents (r = 0.25) are colored red. 1318 

 1319 

Simulations last for 100 time steps. Agents reproduce at the beginning of each time step, but because no maximum life span is set, the 1320 

time steps do not translate directly into generations or years. 1321 

 1322 

Process overview and scheduling 1323 

Each time step, the following sequences occur: 1324 

1) The model initializes by setting a list of global tracking variables to 0 or false [see submodel initialize for details].  1325 
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2) The population repopulates at each time step when healthy agents reproduce [see submodel repopulate for details].  1326 

3) Each agent’s links are reduced to only links with an r greater than or equal to 0.25. Links with r=0.5 and r=0.25 are white and 1327 

red, respectively. 1328 

4) The model checks whether it is running time step 5. If so, a number of agents equal to the value of initial-prevalence are 1329 

randomly infected with the disease. Those agents change their color to be 3 shades darker. If the current time step is not the 1330 

fifth, this procedure is skipped. 1331 

5) Agents evaluate the disease status of nearby agents with an accuracy that is based on their intelligence score. Each agent 1332 

maintains a list of the other agents it believes to be its’ diseased kin [variable: diseased-kin, see submodel assess-neighbors2 1333 

for details].  1334 

6) The model updates the values for the global tracking variables: total-turtles and total-disease.  (Note: The program language 1335 

refers to agents as “turtles,” thus the variables “total-turtles” is the total number of agents.) 1336 

7) Healthy agents randomly select an agent they believe to be diseased kin (from variable: diseased-kin) and decide whether or 1337 

not to provide care based on a modification of Hamilton’s rule of inclusive fitness (Hamilton 1964). See submodel help for 1338 

details.  1339 

8) The model updates following global tracking variables: total-helped, total-correct-helped, total-incorrect-helped. 1340 

9) The model generates a random number for each diseased agent. If that number is below the probability of the disease being 1341 

fatal, that agent dies. 1342 
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10) Healthy agents who are near diseased agents become infected according to the probability of transmission [see submodel infect 1343 

for details].  1344 

11) The model outputs the following values for the current time step: total-turtles, total-diseased, and population average for 1345 

intelligence. If the number of time steps is greater than four, the model also outputs, total-correct-helped.   1346 

 1347 

 1348 

Design concepts 1349 

Emergence: Over time, because higher intelligence individuals will direct their care-giving more accurately to kin who are actually 1350 

diseased, higher intelligence matrilines reproduce faster than lower intelligence matrilines. Higher average population intelligence 1351 

emerges.   1352 

Adaptive behavior: Agents receive an intelligence value based on that of their parent. They do not adapt over their lifetimes. 1353 

Objectives: Agents’ objective is to maximize their own fitness by either providing care to or avoiding diseased kin. They decide what 1354 

alternative to perform based on a modification of Hamilton’s rule of inclusive fitness [see submodel help]. 1355 

Learning: Agents do not learn from their mistakes. 1356 

Prediction: Agents explicitly calculate the potential costs and benefits when deciding whether to give care or avoid ill kin based on 1357 

Hamilton’s rule [see submodel help]. 1358 
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Sensing: Agents know their own disease status, the disease characteristics (probability of fatality, probability of transmission, and 1359 

probability of recovery after care), and their relatedness to all other agents (link variable: r). The accuracy with which they sense the 1360 

disease status of their kin is based on their intelligence score (which they do not sense). Agents do not sense when they make 1361 

mistakes.  1362 

Interaction: Individuals interact directly by infecting and providing care to others. They also interact indirectly because when they 1363 

provide care to a sick individual who recovers, they reduce the danger of infection for all other agents within the infection radius of 1364 

that individual.  1365 

Stochasticity: Disease parameters are represented as likelihoods in order to incorporate the uncertainty of disease transmission and 1366 

mortality. 1367 

Collectives: Matrilines are collectives of agents deriving from the same matriline (with a relatedness depth of r≥0.25). Agents less 1368 

related than r=0.25 do not recognize each other as kin and will not provide care to each other.  1369 

Observation: For model testing, the following variables are output: total-turtles (total agents), total-diseased, total-correct-helped and 1370 

population average for intelligence. The hypotheses stated in the purpose are tested by comparing these variables under diseases with 1371 

different characteristics (probability of fatality and probability of transmission). 1372 

 1373 

Initialization 1374 
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The program is initialized in set-up with a number of agents equal to num-matrilines. Agents are randomly placed on the grid. Each of 1375 

these agents is randomly assigned an intelligence value ranging from 0 to 1. The carrying capacity of the landscape is set at the value 1376 

of the variable carrying-capacity.  1377 

 1378 

Input 1379 

The user does not need to input additional files.  1380 

 1381 

Submodels 1382 

Initialize: The model initializes by having a set of global tracking variables set to 0/false [see submodel initialize for details]. In 1383 

addition each agent sets several of its’ own tracking variables to zero. These variables are used later to calculate and store values that 1384 

will be output at the end of each time step. 1385 

 1386 

Global tracking variables: 1387 

a. Total-turtles: total number of agents  on the landscape (referred to as turtles in Netlogo’s programming language) 1388 

b. Total-disease: total number of agents who are diseased 1389 

c. Total-helped: total number of agents that have received care in the current time step 1390 

d. Total-correct-helped: total number of agents who received care in the current time step who were in fact diseased 1391 
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 1392 

Agent tracking variables: 1393 

a. Helped?: a true/false variable indicating whether the agent has received care in the current time step 1394 

b. Correct-helped?: a true/false variable indicating whether the agent has received care when it was diseased in the 1395 

current time step 1396 

c. Diseased-kin: a set of agents that the current agent believes to be its diseased kin in the current time step 1397 

 1398 

Repopulate: The population grows at each time step of the model when healthy agents reproduce according to the formula: [(1 - 1399 

(number of agents / carrying-capacity)) * number of healthy agents]. Reproduction occurs asexually. Offspring are placed within a 1400 

radius of 3 of the parent. Each offspring’s intelligence is drawn from a normal distribution with the parent’s intelligence as the mean 1401 

and a standard deviation of 0.15. Matrilineal relatedness is tracked by links between agents with the links containing the relatedness 1402 

value. Parent-offspring relationships receive relatedness values of 0.5 and offspring inherit the links of the parent but with ½ the 1403 

relatedness value. Patrilineal relatedness is not included in the model.   1404 

 1405 

Assess-neighbors2: All healthy agents evaluate the relatedness and disease status of other agents within a radius equivalent to 5 grid 1406 

cells. Kin are accurately recognized and the accuracy of disease recognition is a function of the agent’s intelligence. A random number 1407 

between 0-1 is drawn. If the number is below the agent’s intelligence value, the disease status is correctly recognized. Otherwise, the 1408 
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agent’s disease status is incorrectly recognized (healthy kin are classified as diseased or diseased kin are classified as healthy). These 1409 

individuals make up the group the agent believes are its diseased kin (variable: diseased-kin). 1410 

 1411 

Help: Healthy agents randomly select an agent they believe to be diseased kin (variable: diseased-kin) and decide whether or not to 1412 

provide care based on a modification of Hamilton’s rule of inclusive fitness which predicts altruism when the relatedness between the 1413 

recipient and altruist * benefit to the recipient > the cost to the altruist (Hamilton 1964). We adapted this formula so that agents 1414 

provide care when the relatedness between the care-giver and the recipient * probability of recovery after care > the probability of 1415 

transmission to the care-giver * probability of an infection being fatal. If the inequality is fulfilled (thus care is given) and the recipient 1416 

was in fact diseased (not just perceived to be diseased), a random number between 0 and 1 is generated and if it is below the 1417 

probability of recovery, the diseased individual recovers. If the random number was above the probability of recovery, the recipient 1418 

remains diseased. A new random number is drawn for the care-giver and if it is below the probability of transmission to the care-giver, 1419 

then the care-giver is infected. If the recipient was erroneously categorized as diseased, but is actually healthy, there is no change in 1420 

the disease statuses of the recipient or the care-giver. If healthy agents have no perceived diseased kin or the randomly selected 1421 

recipient does not fulfill the inequality for receiving care, the agent can attempt to avoid the diseased agent by moving to a grid cell 1422 

with no other agents on it within a radius of 8. If no empty cells are available, the agent does nothing. 1423 

 1424 
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Infect: All healthy agents have a probability of becoming infected from any infected agent within a radius of 5 grid cells, based on the 1425 

probability of transmission. A random number between 0 and 1 is drawn for each of the healthy agents in danger of infection. If the 1426 

number is below the probability of transmission, the agent is infected. If an agent is in danger of infection from more than one 1427 

diseased agent, the process is repeated for each infectious agent in the 5 grid cell radius. 1428 

 1429 

Model implementation 1430 

Note that the model contains the submodel Avoid, but that Avoid is commented out. In the Avoidance Model (Model 2) the submodel 1431 

Help is replaced by Avoid.   1432 

 1433 

The model is implemented in Netlogo 5.0 and can be run using the buttons on the interface or through the BehaviorSpace tool.  1434 

 1435 

If run through the interface buttons, the model continues beyond 100 time steps.  1436 

 1437 

If run in BehaviorSpace, enter 1 for the number of runs to be conducted in parallel (BehaviorSpace/Run Options window). This will 1438 

prevent data from data from multiple runs being intermixed in the output files. 1439 

 1440 

References 1441 
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Appendix B. ODD Protocol for the Model 2: Control model – Avoidance only 1446 

 1447 

Purpose 1448 

The purpose of this model is to test 1) whether an avoidance response to diseased conspecifics can select for increasing intelligence 1449 

and 2) whether the strength of selection varies according to the disease’s characteristics. We compare the selection produced by 1450 

diseases with fatality rates similar to Ebola, Crimean-Congo hemorrhagic fever, measles, and scabies. The data produced by this 1451 

model will be used for comparison with the data produced by Model 1. 1452 

 1453 

Entities, state variables and scales 1454 

Same as Model 1 1455 

 1456 

Process overview and scheduling 1457 

Same as Model 1, except for number 7. 1458 

7) Healthy agents run the submodel avoid. If they have agents they believe to be diseased kin and there are empty patches within 1459 

a radius of 8, the agent randomly selects and moves to one of those patches. See submodel avoid for details.  1460 

 1461 

Design concepts 1462 
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Same as Model 1 unless discussed below: 1463 

Emergence: Agents do not provide care, so unlike model 1, higher intelligence is not expected to emerge.   1464 

Objectives: Agents’ objectives are to maximize their own fitness by avoiding diseased kin. [see submodel avoid]. 1465 

Prediction: Agents do not calculate the potential costs and benefits when deciding whether to avoid ill kin. All kin perceived as ill are 1466 

avoided. [see submodel avoid]. 1467 

Interaction: Individuals interact directly by infecting others. They also interact indirectly because when avoiding ill kin, they occupy 1468 

an open patch which reduces the number of open patches available for other agents to move to.  1469 

Observation: For model testing, the following variables are output: total-turtles (total agents), total-diseased, total-correct-helped and 1470 

population average for intelligence. The hypotheses stated in the purpose are tested by comparing these variables across models 1471 

(model 1 vs. model 2) within each disease.  1472 

 1473 

Initialization 1474 

Same as Model 1 1475 

 1476 

Input 1477 

Same as Model 1  1478 

 1479 
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Submodels 1480 

Same as Model 1 unless described below 1481 

 1482 

Help: The submodel help does not run in Model 2. It is replaced by the submodel avoid. 1483 

Avoid: Healthy agents assess whether they have diseased kin (kin they believe to be diseased). Agents who have none exit the 1484 

submodel. Agent who have diseased kin assess whether there are any patches without agents within a radius of 8. If there are, the 1485 

agent randomly selects one of those patches and moves to it. 1486 

 1487 

Model implementation 1488 

Same as Model 1 1489 

 1490 

 1491 
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