Quantum Science and Technology

PAPER « OPEN ACCESS Related content

. . . - Quantum error correction for beginners
Protecting quantum memories using coherent Simon 3 Devit, Wilam 3 Munro and Kae

. Nemoto
parlty CheCk COdeS - Quantum error correction in crossbar

architectures

. . . . Jonas Helsen, Mark Steudtner, Menno
To cite this article: Joschka Roffe et al 2018 Quantum Sci. Technol. 3 035010 Veldhorst et al.

- Simulating the performance of a distance-
3 surface code in a linear ion trap
Colin J Trout, Muyuan Li, Mauricio

) . . Gutiérrez et al.
View the article online for updates and enhancements.

This content was downloaded from IP address 129.234.39.154 on 07/06/2018 at 09:20

https://doi.org/10.1088/2058-9565/aac64e
http://iopscience.iop.org/article/10.1088/0034-4885/76/7/076001
http://iopscience.iop.org/article/10.1088/2058-9565/aab8b0
http://iopscience.iop.org/article/10.1088/2058-9565/aab8b0
http://iopscience.iop.org/article/10.1088/1367-2630/aab341
http://iopscience.iop.org/article/10.1088/1367-2630/aab341

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
20 December 2017

REVISED
8 May2018

ACCEPTED FOR PUBLICATION
21 May2018

PUBLISHED
6June 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Quantum Sci. Technol. 3 (2018) 035010 https://doi.org/10.1088/2058-9565/aac64e

Quantum Science and Technology

PAPER

Protecting quantum memories using coherent parity check codes

Joschka Roffe @ , David Headley, Nicholas Chancellor @ , Dominic Horsman® and VivKendon

Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, South Road, Durham DH1 3LE, United
Kingdom

E-mail: joshua.roffe@durham.ac.uk

Keywords: quantum computing, quantum error correction, quantum memory, IBM quantum experience, coherent parity check check
(CPC) codes, native gate compilation, automated code discovery

Abstract

Coherent parity check (CPC) codes are a new framework for the construction of quantum error
correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure
involving successive rounds of bit and phase parity checks, supplemented by cross-checks to fix the
code distance. In this paper, we provide a detailed introduction to CPC codes using conventional
quantum circuit notation. We demonstrate the implementation of a CPC code on real hardware, by
designinga [[4, 2, 2]] detection code for the IBM 5Q superconducting qubit device. Whilst the
individual gate-error rates on the IBM device are too high to realise a fault tolerant quantum detection
code, our results show that the syndrome information from a full encode—decode cycle of the [[4, 2, 2]]
CPC code can be used to increase the output state fidelity by post-selection. Following this, we
generalise CPC codes to other quantum technologies by showing that their structure allows them to be
efficiently compiled using any experimentally realistic native two-qubit gate. We introduce a three-
stage CPC design process for the construction of hardware-optimised quantum memories. As a proof-
of-concept example, we apply our design process to an idealised linear seven-qubit ion trap. In the first
stage of the process, we use exhaustive search methods to find a large set of [[7, 3, 3]] codes that saturate
the quantum Hamming bound for seven qubits. We then optimise over the discovered set of codes to
meet the hardware and layout demands of the ion trap device. We also discuss how the CPC design
process will generalise to larger-scale codes and other qubit technologies.

1. Introduction

Quantum computing experiments have now matured to the extent to which we can realistically expect to see a
medium-scale circuit-model device within the next decade [1, 2]. It is hoped these near-future quantum
computers will be sufficient for simple algorithms, possibly beyond what can be solved classically. However, the
fulfilment of these aims will usually depend upon the efficacy of the adopted quantum error correction (QEC)
code and the ease with which it can be compiled onto the chosen quantum technology platform.

Recently, Chancellor et al [3] introduced the coherent parity check (CPC) framework as a toolset for the
construction of a versatile new class of QEC codes. CPC codes have a canonical structure that allows any
sequence of parity checks to be performed on a quantum register without risk of inducing decoherence. This is
in contrast to most traditional QEC protocols, where the choice of parity checks is limited to stabilisers of the
encoded quantum data. The freedom in the choice of parity checks therefore affords the CPC framework
multiple advantages over conventional QEC.

In the original CPC paper [3], graphical methods based on the ZX calculus [4, 5] were used to give a
construction for re-purposing general classical error correction codes for QEC. This opens the possibility of
constructing QEC codes inspired by highly-optimised classical codes, such as low density parity check codes [6].
Furthermore, as the CPC formalism allows for complete freedom in the choice of parity checks, new CPC codes
can be discovered numerically, either via brute-force or more sophisticated search techniques.

©2018 IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/aac64e
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
mailto:joshua.roffe@durham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aac64e&domain=pdf&date_stamp=2018-06-06
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aac64e&domain=pdf&date_stamp=2018-06-06
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

In this work, we demonstrate a further feature of CPC codes with regards to their implementation on
physical hardware. In a theoretical setting, QEC codes are usually formulated in terms of idealised controlled-
not (CNOT) gates. However, the native two-qubit entangling gates provided by various qubit technologies are
usually of a different form. Consequently, one of the challenges in realising quantum codes is developing
efficient methods by which QEC circuits can be realised using the native interaction of the chosen experiment.
Here, we show that the symmetric structure of CPC codes enables efficient mapping from the theoretical
representation of the code to the hardware-compiled. In particular we show that CPC codes can be implemented
with any realistic maximally entangling Clifford native gate, meaning they will be suitable for deployment across
abroad range of quantum hardware.

As a simple first example on real hardware, we implementa [[n = 4,k = 2,d = 2]] CPC quantum code on
the IBM Q five-qubit superconducting device (where we have adopted the usual convention whereby n
represents the number of physical qubits, k the number of data qubits and d the code distance) [2]. We
demonstrate that, for a simple known input state, a version of the [[4, 2, 2]] circuit can be compiled to
accommodate the connectivity constraints of the IBM chip. By analysing the experimental data using quantum
state tomography, we show that the [[4, 2, 2]] code’s syndrome information can be used to improve the fidelity of
the output state by post-selection.

There is currently no preferred qubit technology and the first quantum computers will likely be hybrid
devices that interface multiple qubit types [7, 8]. In order to realise their full potential, these hybrid schemes will
require tailor-made QEC strategies. To this end, we outline a three-stage CPC design process for the
construction of hardware-optimised QEC memories.

As a proof-of-concept example, we demonstrate the use of the CPC design process in creating a quantum
code for a seven-qubit linear ion trap. In the first stage of this process, we show that exhaustive search techniques
can be used to discover alarge set of [[7, 3, 3]] CPC codes. These [[7, 3, 3]] codes have the highest possible
information density for a non-degenerate QEC code, as dictated by the quantum Hamming bound [9].

The second stage of the code design process involves implementing strategies to select the best CPC code
from the discovered set. For the purposes of the ion trap device, we seek to identify the circuits in which the total
two-qubit gate count is minimised. This involves consideration of the additional SWAP interactions that must be
introduced to mediate interactions between spatially separated qubits.

The final hardware optimisation we consider in the CPC design process is compilation of CPC codes with a
device’s native two-qubit gate. For the ion trap under consideration, we assume the native interaction is of the
form of a maximally entangling symmetrised phase (SP) gate [10]. A CNOT interaction can be implemented from
an SP gate, but this requires addition of local single-qubit gates which increases the code overhead. As an
example of the native gate compilation, we demonstrate that for many of the [[7, 3, 3]] CPC circuits, constructive
simplifications can be applied to reduce the total number of local corrections required.

The [[7, 3, 3]] CPC codes outlined in this paper should be adaptable to many existing ion trap experiments
[11-14]. The ability to encode three data qubits in a seven-qubit trap would mark an improvement over the
current most widely adopted protocol for quantum memories, the surface code, which requires a minimum of
13 qubits per encoded data qubit [15, 16]. There have been many proposals for quantum codes promising high
encoding densities [17-21]. The CPC construction provides a framework to allow for the automated discovery
of high-density codes which are optimised for the requirements of the chosen experiment. Note, however, that
the specific CPC code implementations presented in this work are not yet fault tolerant and that making them
such will result in additional overhead. As this work covers quantum memories, we do not include discussion of
encoded computation. Steps towards developing fault tolerant CPC gates are outlined in [3], and this remains an
interesting area for future work.

The paper is structured as follows. In section 2, we give a detailed introduction to the CPC framework, and
explain how it can be used to construct full QEC codes. This is followed, in section 3, by the presentation of
experimental results obtained by running a simple CPC detection code on the IBM Q quantum computer. In
section 4, we provide an overview of the ion trap hardware for quantum computing. In section 5, we
demonstrate that the fundamental structure of CPC codes allow them to be efficiently compiled using a wide
range of native gates. Section 6 describes the CPC design process and how it can be used to construct hardware-
optimised [[7, 3, 3]] codes for the ion trap device. Finally, in section 7, we discuss possible improvements to the
CPC design process and how it might be applied in the discovery of larger quantum codes.

2.CPC codes

The signature feature of CPC codes is the ability to implement QEC routines with any sequence of parity checks.
This is possible due to a fail-safe code structure that ensures syndrome measurements cannot decohere the
register. This freedom in the choice of parity checks gives the CPC framework multiple advantages over

2

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

FError Parity Check
—_—A— —— |
W)y A IR
Encoder V), E P
0)r 7L — —

0), — H] i H—F

Figure 1. Circuit illustrating the structure of a traditional stabiliser code. A quantum data register |[¢))p = |¢4,%4, ... 14, is entangled
with redundancy qubits [0)z =]0,,0,, ... 0,,,} via an encoding operation to create a logical qubit |1)); . After encoding, a parity check P
can be performed on the register to determine whether an error has occurred. The result of this parity check is measured via an
auxillary qubit A, which is prepared in the conjugate basis by Hadamard gates H. The slashed wires denote that |¢)) and |0)g are
multi-qubit registers. The measurement operator at the end of the wire for qubit A represents a measurement in the computational
basis.

traditional QEC techniques. First, it is possible to directly translate the parity checking sequences from classical
codes into a CPC code, which allows the derivation of dense QEC codes that encode multiple data qubits per
logical block. Second, the CPC framework does not require quantum data to be initially redundantly encoded.
Third, the space of possible CPC codes can be searched numerically, meaning code discovery can be automated.
In this section, we outline the tools of the CPC framework, starting with the fundamental CPC gadget. This
gadget has a symmetric encode-error-decode structure that amounts to an extended measurement of the identity
operator. We prove that the CPC gadget is inherently non-disturbing and can be implemented using any parity
checking sequence. Following this, we demonstrate how multiple CPC gadgets can be combined to form QEC
codes. Finally, we introduce the automated search techniques that will be used in the CPC code design process.

2.1. Traditional QEC
Before beginning our presentation of the CPC framework, we briefly outline the key concepts and shortcomings
of conventional stabiliser QEC codes. This will provide a point-of-reference with which to compare CPC codes.

The circuit in figure 1 shows the basic structure of a traditional stabiliser code. A register of data qubits, |¢)p,
is entangled with a number of blank redundancy qubits, |0)z, via an encoding operation to create a logical qubit
|1} At this stage, the data previously stored solely in |1} is distributed across the combined Hilbert space of
data and redundancy qubits [22].

Once the quantum information has been encoded as alogical qubit, errors can be detected by making parity
measurements. In practice, this is achieved via the construction shown to the right of the circuit in figure 1. A
parity check P is applied to the logical qubit, and the result copied to an auxillary qubit A, which is prepared in
the conjugate basis by Hadamard gates H. Note that a parity check P is a product of Pauli operators and has
eigenvalues £1 (for the definition of the Pauli group, consult appendix A). The auxillary qubit is then measured
to yield a syndrome. For a well chosen parity check, this syndrome measurement provides information about
whether the logical qubit has been subject to an error.

It has been shown that QEC codes based on the above construction can achieve arbitrarily low logical error
rates, provided certain threshold conditions are met by qubits at the physical level [23]. However, constructing
efficient codes with this approach is difficult owing to limitations on the type of parity check that can
implemented. In order to ensure that the syndrome measurement of qubit A does not decohere the encoded
quantum information, the parity check must stabilise the logical qubit. Formally [24], we can write this
requirement as follows

PeS (D

where the stabiliser S = (K, ..., K,,) is a sub-group of the Pauli group G defined by
S= {Kl | Ki |w>L = (+1)|w>L’ [Kia I<]] =0, Ki = _]l: v (l,])} S g’ (2)

where K{; j, are the elements of the stabiliser group and |¢); is the logical codeword. The challenges of
constructing traditional stabiliser quantum codes are therefore twofold. First, an appropriate encoding
operation must be built to create the logical qubit. Second, a compatible set of stabiliser parity checks needs to be
discovered so that errors can be checked without compromising the encoded quantum data. As a result of these
challenges, the majority of existing QEC codes are limited to the simplest case in which only a single qubit is
encoded per logical block. Such [[#, 1, d]] codes can be considered quantum analogues of the most basic classical
repetition codes, and incur high overheads in terms of the number of redundancy qubits necessary to achieve the
desired error suppression rate.

I0OP Publishing Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

Wait stage

Iw>D7%7> E P :

Encoder, Ugpye Decoder, Ugec

Figure 2. The fundamental CPC gadget illustrating the symmetric encode-error-decode structure. The parity qubit p is prepared in the
conjugate basis by Hadamard gates, H. Encode stage: a parity check P, controlled by the parity qubit, is applied to the multi-qubit
register [¢))p = |¥g, Y, ... Ya,) and the result is copied to the parity qubit. The parity qubit is kept coherent throughout the wait stage,
during which an error E can occur on the register. Decode stage: the register is disentangled from the parity qubit via the application of
the unitary inverse of the first parity check . The final syndrome measurement of qubit p tells us whether the results of the two
parity checks differ. For appropriately chosen parity checks, this information can be used to detect errors. The slashed wire denotes
that |4)p is a multi-qubit register.

R e I I I

Figure 3. To prove the non-disturbing nature of the fundamental CPC gadget, it is useful to rearrange the circuit by moving the error
operator E through the first parity check P. Following this rewrite, the controlled parity check operators are adjacent and cancel. In
this form, the CPC gadget can be viewed as a measurement of the ®(E, P) = %1, operator on the data register. The value of the final
syndrome measurement depends only upon whether Ecommutes with P. The slashed wire denotes that |1))p is a multi-qubit register.

=]

2.2. The fundamental CPC gadget

The fundamental CPC gadget, shown in figure 2, is the building block upon which all CPC codes are based [3].
The basic premise behind the CPC gadget is that the parity of the quantum register is never explicitly measured.
Instead, parity information is stored coherently as quantum data and compared over time. This is made possible
by the gadget’s symmetric encode-error-decode structure.

The CPC gadget takes a multi-qubit register |1)p and a parity qubit p, prepared in the state |0),,, as its input.
The action of the encode stage of the gadget, labelled UL, in figure 2, is to apply the parity operator P to the
register and record the outcome in parity qubit p. Rather than measuring the syndrome immediately, the parity
qubit is kept coherent during a wait stage in which the register is potentially subject to an error E. Note that we
are not yet considering errors that occur on the parity qubit. In section 2.5, we outline how multiple CPC gadgets
can be combined to allow for error detection on the combined system of register and parity qubits.

Following the wait stage, the parity qubit is disentangled from the register via a decoder operation, labelled
Ugec in figure 2, which is the unitary inverse of the encoder. The encoder applies the parity operator P to the
register and the decoder applies its inverse 7. The final syndrome measurement of parity qubit p tells us
whether the results of these two parity checks differ. For an appropriately chosen parity check, this syndrome
information can indicate whether an error occurred during the wait stage.

To prove its error detection capabilities, it is convenient to rearrange the circuit for the CPC gadget into the
form shown in figure 3. This rewrite is achieved by moving the error operator E through the parity check
operator P. Both the error gate and the parity check gate are Pauli group operations. A property of the Pauli
group is that its elements either commute or anti-commute with one another. Consequently, the effect of
pushing the error operator to the front of the circuit is to introduce a global phase ®(E, P) on the register which
is controlled by the parity qubit. This global phase is dependent upon both the parity check and the error
operator, and is defined as follows,

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

(+Dlp, if [E,P] =0

(—=D1p, if [E, P] = 0, 3)

P, P) = {
where 1, is the identity operator on the data register and the commutator is given by [E, P] = E+P — P+ E.
Note that, after the rewrite, the controlled parity check operators are adjacent to each other and cancel. The full
mathematical action of the CPC circuit Ucpc, can now be expressed as follows,

Ucec |[9)p|0), = A + (B, P)E [¢)pl0), + A — P(E, P)E [¢)p|1),- (4)

Using the definition of the global phase operator ®(E, P) given in equation (3), the output of the CPC gadget
simplifies to

E |[¢)pl0),, if [E, Pl =0

5
E|¥)p|1),, if [E, P] = 0. 5

Ucec |¥)p10), = {

From the above we can see that eventual syndrome measurement of parity qubit p depends only upon whether
P commutes with E. If no error occurs during the wait stage, then E = 1 and the syndrome is measured
deterministically as ‘0’. Likewise, if an error does occur, but it commutes with the parity operator, [E, P] = 0,
then the syndrome is also ‘0’. Finally, if the error anti-commutes with the parity check, [E, P] = 0, then the
syndrome is measured as ‘1’. A quantum error detection protocol can therefore be constructed from the CPC
gadget by selecting a parity check that anti-commutes with the error to be identified. In the following
subsections, we will show that CPC gadgets can be combined to create full QEC codes which can detect and
localise multiple error types simultaneously.

The CPC gadget can be thought of as an extended measurement of the 1, operator on the data register,
where the sign depends upon the commutation relation between P and E. As the 1, operator is trivially non-
disturbing for all quantum states, there is no need for CPC codes to encode quantum information as logical
qubits. Furthermore, it is clear from the output of the CPC gadget in equation (5), that the quantum data register
is completely disentangled from the parity qubit prior to syndrome measurement. As a result, the only
requirement on the parity checks is that they are Pauli group operators

Peg. (6)

Recall from equation (1), that for traditional codes, the choice of parity checks is limited to the set of stabilisers of
the encoded logical qubits. The CPC framework lifts this restriction.

It should be noted that, as the encoders and decoders consists entirely of Clifford operations, CPC codes
form a class of stabiliser codes. A detailed explanation of the correspondence between CPC codes and stabiliser
codes can be found in Chancellor et al [3]. The specific strength of the CPC framework lies in the fact that the
symmetric encode-error-decode structure provides a general method for creating a stabiliser code using any
sequence of parity checks.

2.3. A CPC gadget for detecting bit flips

We now provide specific examples of CPC gadgets to detect bit flips and phase flips on a two-qubit data register
|¢4p). Following this, we describe how the two types of CPC gadget can be combined to create a [[4, 2, 2]]
detection code.

In order to design a CPC gadget that will detect single bit flips on the register |145), we need a parity check
that anti-commutes with the errors in the set & = {X,, Xg}. Setting Py = Z4 Zg satisfies this requirement to
give the bit-flip CPC gadget depicted in figure 4. Note that X and Z are Pauli operators which are defined in
appendix A. Itis useful to rewrite the circuit in figure 4 in terms of CNOT gates using the gate substitution defined
by the following matrix equation

nglz = (]l% ® qu) : CNOTglz ‘ (]lql ® qu)’ ™

where CZ is a controlled-Z gate and g, and g, are the input qubits. The resultant circuit is shown in figure 5. In
this form, the operation of the CPC gadget can easily be visualised by considering the propagation of errors
through the decoder. A CNOT gate will propagate a bit-flip error from the control qubit q; to the target g, as
follows,

CNOTH « (Xy, ® 1) * CNOT] = X, @ X.. (®)

Implementing the above propagation rule, the red and blue arrows in figure 5 depict the possible detection
pathways for bit-errors from the wait stage to the parity check qubit.

2.4. A CPC gadget for detecting phase flips
A CPC gadget that detects errors from the set £; = {Z,, Zp} can be obtained using a parity check of the form
Pup = XaXp. Figure 6 depicts the phase-flip CPC gadget expressed in terms of the conjugate-propagator gate

5

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

: Z : : Z :
[Yap) | E|:
B

e o e o
"""""" Encoder ~ Decoder

Figure 4. A CPC gadget for detecting single bit flips on a two-qubit data register |¢/45). The gadget returns a ‘0’ syndrome measurement
if there is no errorand a ‘1” if a bit flip occurs during the wait stage.

0, it [

Encoder Decoder

Figure 5. Right: the bit-flip CPC gadget rewritten using the circuit rewrite rule to the left. Expressing the gadget in this form allows for

easy visualisation of the propagation of errors from the wait stage to the parity check measurement. The red and blue arrows show the
two possible bit-flip propagation pathways.

Encoder Decoder

Figure 6. A phase-flip CPC gadget. Phase flips on the register |14 15) can be detected by setting P = X, Xg. In the above-right, we have
expressed the phase-flip gadget in terms of conjugate-propagator gates, which are defined in the box to the left. The conjugate-

propagator gates are symmetric gates which are designed to copy Z errors from one qubit to another. The red and blue arrows depict
the possible propagation pathways for Z errors from the wait stage to the parity check measurement.

Al givenby
Ag, = (1, © Hy) * ONOTE + (1, © Hy).)

The conjugate-propagator gate is a symmetric two-qubit operator with the following propagation rule for Z
errors

A+ (Zg @ 1) A — Zy ® X, (10)
Phase-flip errors in the wait stage are copied to the parity qubit via a conjugate-propagator gate which converts

the Zerror to an X error that can be detected in the computational basis. Figure 6 depicts the possible error
propagation pathways for errors in the phase-flip CPC gadget.

6

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

X-checks Z-checks
a & —
YA p)
L * >
E|: T
7+ >
0),, ——&—6 T ¢
0),, _ _ =u o
Encoder Decoder

Figure 7. The circuit formed by combining the bit-flip CPC gadget to the phase-flip CPC gadget. This circuit can detect both Xand Z
errors on qubits A, Band p,. However, a phase-flip error on qubit p; will propagate errors to the register without triggering a
syndrome, as shown by the blue arrows. This propagation loophole can be closed through the addition of cross-check operators.

X-checks Z-checks
L f = N—>
|11Z}AB>
L >
Cross-checks T
oD O—D ;
Encoder Decoder

Figure 8. The [[4, 4, 2]] CPC quantum detection code, formed by combining the bit-flip and phase-flip gadgets. The addition of cross-
check operators ensures that errors do not propagate from the parity qubits to the register in an undetectable way.

2.5.The [[4,2,2]] error detection code

We now show how the bit-flip and phase-flip CPC gadgets can be combined to form a full quantum error detection
code. Figure 7 shows the CPC circuit formed by combining the bit-flip gadget with the phase-flip gadget. By
considering the error propagation rules outlined in the previous subsections, it can be verified that this circuit will
detect errors which occur on the register qubits |1,), but not errors which occur the parity qubits p; and p,. We
now show how the code can be modified to enable error detection across all four of the qubits.

The blue arrows in figure 7 show that a phase-flip error on the first parity qubit p, will propagate errors to the
register in an undetectable way. Fortunately, a detection pathway can be created by applying a conjugate-
propagator gate between the parity qubits at the end of the decoder (from now on, we will refer to these
additional gates as ‘cross-checks’). As shown by the orange arrows in figure 8, this cross-check propagates the
phase-error to the parity check qubit p, and converts it to an X error that can be picked up by a computational
basis measurement. With the addition of the cross-check, the circuit becomes a fully functional [[4, 2, 2]]
quantum error detection code. The single-qubit error syndromes are given in table 1, and demonstrate the code
can detect the occurrence of X, Yand Z errors on any of the 4 qubits.

Asthe [[4,2,2]] code is a detection code, the syndromes do not give us enough information to pinpoint
which qubit the error occurred on. The construction of full error correcting CPC codes, that can both identify
and localise errors, will be outlined in the next section.

2.6. The canonical form of CPC codes

The [[4, 2, 2]] quantum error detection code illustrates the basic principles behind the operation of a CPC code.
The encoder is constructed by combining a bit-flip CPC gadget with a phase-flip CPC gadget. Under this
canonical ordering, errors on the parity qubits are identifiable via the addition of the cross-check operators. A
compact way of representing CPC codes is in terms of adjacency matrices which describe the connectivity

7

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

0)p .w W. /f\:

Figure 9. The canonical form of CPC codes, showing the symmetric encode-error-decode structure. Inan [[n, k, d]] CPC code the
qubits are split into two distinct types: k data qubits, [¢))p = [¢)p;¥p, ...), and n — kparity qubits, [0)p = [0,,0p,...0,). The
encoder involves successive rounds of cross-checks (green), bit-checks (blue) and phase-checks (red). The decoder is simply the
unitary inverse of the encoder.

Table 1. The syndrome table for the [[4, 2, 2]]
quantum error detection code. If no errors
occur, the code returns a ‘00’ syndrome. Ifa
single X, Y or Zerror occurs on any of the four
qubits, anon-zero syndrome is returned.

Error Syndrome
1 0P10P2
Xas X XP]’ ZPz 11’10172
Zns Z Zpp X, Opy1p,
Yar Y, Vo ¥, Ly 1p,

between the register and parity qubits. For example, the adjacency matrices for the [[4, 2, 2]] code are

[p1] [p2] [p1] [p2] [p1] [p2]
mb:[A](l 0)’ mp:[A]<0 1)’ m, — [pl](o 1)’ (11)
BIN1 0 BI\ 0 1 pa\ o 0

where m;, represents the bit-checks, 1, the phase-checks and m, the cross-checks. For the bit-flip and phase-flip
adjacency matrices, r1;, and m1,, the rows refer to the data qubits and the columns the parity qubits. Looking at the
bit-flip matrix, we can see that both register qubits connect to parity qubit p; via CNOT gates in accordance with the
circuitin figure 8. Likewise, matrix mp tells us that both register qubits are connected to parity qubit p, via
conjugate-propagator gates. Finally, from matrix m,, we see that there is a single cross-check between parity qubits
p1 and p,. The cross-checks result in a matrix that is always symmetric. We follow [3] in representing this as an
upper triangular matrix, so that the number of non-zero entries corresponds to the number of two-qubit gates.

We are now in a position to extend the CPC framework to enable the description of more general codes. The
canonical form of an [[, k, d]] CPC code is shown in figure 9. Such codes have k data qubits,
|)p = |¥p, YD, ¥p,),and m = n — kparity qubits, [0)p = [0,,0, ...0,). As with the detection schemes
described previously, the encode stage of a general CPC code involves successive rounds of cross-checks, bit-
checks and then phase-checks. The sequence of gates within each stage of the encoder can be compactly
described in terms of adjacency matrices of the form

(p] [p] [--1 [p,] pl Ip,] L1 bl
[Dl] bll blZ bl [Dl] hll]’112 hlm
my, = Dol | b1 by bom , My = Dol | by hay oo haw
LI 0 Lod] e e et P
[Dd\bu b .. bim DA\ he o
(12)
(] Il Ll Ip]
(o] 0 q - Cm
[p,] 0 0 Qm
Me= 1.3
b
[p(,,"71>] 0 0 Com—1)ym
b, Lo o . 0

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

where b,, h.,, ¢, are binary values. As mentioned previously, for simplicity, the cross-check matrix m, is always

represented as an upper triangular matrix.

2.7.Numerical CPC code discovery

We have now outlined the canonical structure of CPC codes, and shown how they can be represented in terms of
three adjacency matrices. The CPC framework removes the need to start out by redundantly encoding quantum
data, and allows QEC protocols to be implemented with any parity check. As such, the CPC framework
essentially reduces the task of deriving QEC codes to a classical decoding problem.

Anew [[n, k,d = ?]] CPC circuit can be generated simply by selecting a random instance of the adjacency
matrices for an n-qubit code with k data qubits. The symmetric encode-error-decode structure of the CPC code will
ensure that the random sequence of parity checks this set of adjacency matrices represents does not decohere the
register. The only task necessary to verify whether the circuit represents a working CPC code is to measure the code
distance d. This can be done by testing the circuits with all of the errors in the chosen error model. If each error
produces a unique syndrome, then the code distance isd > 3, and the circuit represents a working CPC code.

In this paper we only consider quantum memories. As a result, the codes under consideration are Clifford
circuits. The code distance can therefore be efficiently verified for small-distance codes using a stabiliser
simulator such as [25, 26]. Alternatively, we have developed an algorithm specifically for calculating the
syndromes of CPC codes, which is based on error propagation rules outlined in sections 2.3 and 2.4. This
algorithm is described in appendix C, and can be implemented in less than 200 lines of Python code.

3.Implementation of the [[4, 2, 2]] code on the IBM 5Q device

As asimple first experimental example of a CPC code, we now consider the compilation and execution of a [[4, 2,
2]] quantum detection code on a superconducting qubit device. The IBM 5Q is a small-scale quantum
computer, built and maintained by IBM Quantum [2]. The device has five programmable superconducting
transmon qubits, and is accessible to the public via the Internet. In [27], the IBM 5Q was shown to allow fault
tolerant preparation of codewords for a [[4, 2, 2]] code. It has also been demonstrated, in [28], that certain [[4, 2,
2]] encoded operations on the IBM 5Q have a lower error rate than the equivalent operation on the device’s raw
qubits. Here, we implement a complete encode—decode cycle of a [[4, 2, 2]] CPC quantum memory using the
IBM 5Q. Our aim is to demonstrate that the fidelity of the code’s output state can be improved by post-selection.

3.1. Experimental overview and conditions for success

Our experiment on the IBM 5Q encodes a single input state |4 5) = |+405) usinga [[4, 2, 2]] CPC quantum memory
of the type described in section 2.5. The | +4 0p) state is an easy-to-prepare quantum state that is susceptible to both bit-
and phase-flip errors, and therefore provides a suitable test of the [[4, 2, 2]] CPC code as a quantum memory.

Ultimately, the condition for success for a quantum code is to test whether the encoded protocol has alower
logical error rate than the equivalent circuit before encoding. In the case of quantum memory, the circuit that is
encoded is simply an extended identity operation. The usefulness of the [[4, 2, 2]] code could therefore be
assessed by comparing the fidelity of the encoded output to the equivalent output of an unprotected two-qubit
data register. However, the gate-error rates on the IBM 5Q hardware are too high for such a comparison to yield
apositive result. This problem is compounded by the fact that the IBM hardware limits the experiment to a
single encode—decode cycle, meaning certain regions of the [[4, 2, 2]] circuit—before the encoder and after the
decoder—are left unprotected. Consequently, the aim of the experiment presented here is restricted to
demonstrating that, whilst not suppressing the logical error rate, the [[4, 2, 2]] CPC code does detect errors. We
now describe the method by which this is achieved.

The compiled [[4, 2,2]] CPC code is run multiple times with the input state |145) = |+405) on the IBM 5Q
hardware. At the end of each CPC code cycle, the parity qubits are measured to provide a syndrome designed to
indicate if an error has occurred. An approximation to the output state of the register is reconstructed from the
experimental data using quantum state tomography. The quality of this output is quantified by calculating its
fidelity relative to the input state |44 0g). In this experiment we compare the output fidelity of the [[4, 2, 2]]
protocol before and after post-selection. In the former, the syndrome information is ignored, whereas in the
latter it is used to determine which experimental runs are discarded during post-selection. The condition for
success is that the post-selection should improve the output fidelity. If this is the case, it will demonstrate that the
[[4,2,2]] CPC code s detecting errors and produces useful syndrome information.

3.2. Compilinga [[4, 2, 2]] CPC circuit onto the IBM 5Q
Our experiment is run on the IBMQX4 version of the IBM 5Q, the technical details for which can be found in
[29]. Figure 10 depicts the ‘bow tie’ layout of the chip. The arrows represent the allowed CNOT operations

9

I0OP Publishing Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

/7

/\

Figure 10. The connectivity map of the IBMQX4 version of the IBM 5Q quantum computer illustrating the ‘bow tie’ layout. The
arrows indicate the allowed CNOT operations and their preferred directions.

S

H

) . g
L = L-1Ed
(a) (b) c)

Figure 11. (a) The direction of a CNOT operation on the IBMQX4 can be reversed via the addition of Hadamard gates to the inputs and
outputs. (b) The conjugate-propagator gate expressed in terms of a CNOT gate. (c) Realisation of a SWAP gate using three CNOT
operations.

—

between qubits. The direction of the arrow indicates the preferred CNOT direction, but the operation can be
reversed via the circuit transformation shown in figure 11(a).

The [[4, 2, 2]] code, as depicted in figure 8, has two data qubits {A, B} and two parity qubits {p;, p,}. In this
experiment, the code qubits are mapped onto the physical qubits of the IBMQX4 device as follows:

{A — Qs, B— Qo p; — Qu, p, — Qi}. Theinput state becomes |1u5) = |[+)q, ® |0)q,, and the resultant
circuit is shown in figure 12(a). The two conjugate-propagator gates marked in red are not possible on the
IBMQX4, as there is no connectivity between qubits Q; and Q (see figure 10). The [[4, 2, 2]] CPC circuit must
therefore be modified to accommodate this hardware constraint.

The first step in compiling the [[4, 2, 2]] circuit for the IBMQX4 is to rearrange the gates into the order
shown in figure 12(b). This is a departure from the canonical form of CPC codes outlined in section 2.6.
However, it can easily be checked that the modified circuit remains a functional [[4, 2, 2]] CPC code capable of
detecting single X and Z errors on any of the qubits during the wait-stage.

In the rearranged form of the circuit in figure 12(b), and when the input state is [1up) = |+)g, ® [0)q,» it
can be seen that the action of the gates highlighted in green is the identity. The green gates can therefore be
omitted from the circuit without affecting the function of the quantum memory. Following this simplification,
the only operation that remains prohibited by the IMBQX4’s connectivity constraints is the red conjugate-
propagator gate between Q; and Q; in the decoder. One way of resolving this problem is to perform a SWAP
operation between Q, and Q;, as shown in figure 12(c). The SWAP gate exchanges the positions of the p; and p,
parity check qubits, enabling the red conjugate-propagator gate to be performed via a nearest-neighbour
interaction. A SWAP gate is achieved via the application of three CNOT gates (see figure 11(c)), and is therefore an
expensive operation that should be used sparingly. In section 6, we explore how the CPC code design process can
be used to minimise the SWAP gate count when compiling larger codes onto quantum hardware.

3.3. A note on fault tolerance for the [[4, 2, 2]] circuit
So far, we have considered a simplified model of CPC code operation in which it is assumed errors only occur
during the wait-stage between the encoder and the decoder. However, we have observed that the error rates for
CNOT operations and readout on the IBMQX4 are of the order 10~ (daily calibration data can be obtained from
the IBM Q website [2]). This realistically means that any quantum code must be designed to detect errors that
occur at any point in the circuit. To this end, figure 12(d) shows the IMBQX4-compiled [[4, 2, 2]] circuit under a
more general error model.

Fault tolerant circuit construction ordinarily necessitates the introduction of additional qubits [30-32].
However, in this particular instance of the [[4, 2, 2]] CPC code with aknown |+)q, ® |0)q, input, it can be

10

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

A ’+>Q3 L —
B: |O>QO
E

P [0)gs S—& S— -

P2 [0)g L—l _ﬂ—L -
(a)

A) o] @

B: |0>QO

E

Pt [0)gy B & = =

D2 - ‘O>Q1 o L L L
(b)

At [+)gs | T

B: |O>Q0 T T

: I

e 0)g & & s =

b2 |O>Q1 L] L @:
(c)

A:

B:

b1

b2
(@)

Figure 12. Steps for compiling the [[4, 2, 2]] CPC quantum memory onto the IBMQX4 chip. (a) The [[4, 2, 2]] CPC code with a

[Yup) = |+405) input mapped onto the IMBQX4 chip. The red conjugate-propagator gates are not possible according to the
connectivity map for the IBMQX4 shown in figure 10. (b) A modified version of the [[4, 2, 2]] circuit in which the order of gates in the
encoder and decoder has be rearranged. In this new form, the circuit can be simplified by noting that the action of the gates marked in
green is the identity. (c) A SWAP gate can be added to the [[4, 2, 2]] circuit to exchange the p; and p, parity qubits. This allows the
‘illegal’ operation marked in red in the decoder to be performed via a nearest-neighbour interaction. (d) When running the [[4, 2, 2]]
code on areal device, it can no longer be assumed that errors occur only in the wait-stage between the encoder and decoder. For the

[[4, 2, 2]] circuit in question, a single-qubit fault E after any gate will not propagate a multi-qubit error to the register without triggering
asyndrome.

verified that a single fault at any of the locations marked on figure 12(d) will not propagate a multi-qubit error to
the register without triggering a syndrome. The circuit can therefore be considered to have been hardened
against single-qubit errors in the encode and decode stages of the circuit. It should be noted, however, that this
does not extend the circuit to full fault tolerance when implemented on the IBMQX4 chip. State preparation and
measurement errors are not accounted for, nor is the [[4, 2, 2]] code capable of detecting correlated two-qubit
errors that might occur after a CNOT gate. Another issue is that the circuit allows certain single-qubit errors to
propagate to the register in an undetectable way. It is not currently possible to measure, then reset a qubit on the
IBMQX4 via the public API. As a result, our implementation is restricted to a single encode—decode cycle,
meaning the undetected single-qubit errors will reduce the output fidelity. However, as outlined in [3], CPC
codes can be expressed in terms of stabiliser codes. Adopting this approach allows CPC codes to be implemented

11

I0OP Publishing Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

Table 2. Quality metrics for the reconstructed density matrices before and
after post-selection. The fidelity is calculated relative to the target density
matrix o which is defined in equation (13). The yield is the proportion of
shots per batch that are retained during the post-selection process. The
errors are calculated as one standard deviation of a single run value
consisting of 8192 experimental shots.

Purity, P(p) Fidelity, F(p) Yield
Before post-selection, gy, 0.52 £ 0.02 0.62 + 0.03 100%
After post-selection, P, 0.74 £ 0.03 0.75 £ 0.04 (54 £ 2)%

no. runs: 154 batches of 8192 shots

using existing syndrome extraction techniques, and enables errors to be decoded over multiple cycles. Assuming
access to hardware that allows qubit reset, CPC codes implemented in this way would be tolerant of the single-
qubit errors that propagate to the register.

3.4. Experimental data reconstruction methods

The IBM Quantum Information Software Kit (QISKIT) [33] was used to prepare the [[4, 2, 2]] experiment for
quantum state tomography on the output qubits Qy and Q5. QISKIT quantum tomography tools were used to
create a set of nine circuits from the original [[4, 2, 2]] circuit (depicted in figure 12(c)), each of which was
designed to measure the output qubits Qg and Qs in a different measurement basis from the list { XX, XY, XZ, YX,
YY,YZ,ZX, ZY, ZZ}. These quantum tomography circuits were then run multiple times to create a distribution
of results that could be used reconstruct an approximation to the density matrix of the output state. The QISKIT
method used for state reconstruction from the experimental data was the fast maximum likelihood method for
quantum tomography, a description of which can be found in [34].

The quantum tomography circuits for the [[4, 2, 2]] memory were run in batches of 8192 shots. After each
batch, the QISKIT maximum likelihood method was used to reconstruct the density matrix p;, of the directly-
decoded output before post-selection. The syndrome qubits were then inspected to determine which of the shots
in the batch should be discarded during post-selection. State reconstruction was then performed again on the
reduced set to obtain a post-selected density matrix p,,.. The quality of the directly-decoded and post-selected
output state for each batch was quantified by calculating the fidelity, F(p) = (Tr [/ p'/20p'/? 1)*,where o is the
target density matrix. For the chosen input state |¢ug) = |+)q, ® |0)q,, the target density matrix is given by

S =
(=R

(13)

S =
o o o O
S =
o O O O

The purity of the density matrices, defined by P(p) = Tr [p?], was also calculated to provide a coherence
measure for the output states.

3.5. Experimental results

The[[4, 2,2]] CPC quantum memory circuit, depicted in figure 12(c), was run on the IBMQX4 device between
the 25th and 27th November 2017. A summary of the experimental results for state purity, fidelity and yield can
be found in table 2. Error bars were calculated as one standard deviation of a single run value consisting of 8192
experimental executions of the quantum tomography circuit set. The standard error of the mean over all 154
runs was too small to be visible on our plots. Calibration data for the device on each of the three days of the
experiment can be found in appendix D.

A total of 154 batches of 8192 shots were run over the course of the experiment. Figure 13 shows a plot of the
real components of the elements of 7, and p,; averaged across the 154 batches. It is immediately clear that the
post-selected density matrix p,, better preserves the four target elements, which we identify as the non-zero
elements in the target state o given by equation (13). The bar-chart in figure 14 shows these target elements in
isolation, from which it is apparent that post-selection has the biggest impact in preserving the strength of the
off-diagonal coherences. This can also be seen when comparing the purity values, shown in table 2, for p,; and
Dys- The directly-decoded density matrix g, hasa purity of P(p,,) = 0.52 & 0.02, implying it represents a near-
fully mixed classical ensemble with a purity of 0.5. In contrast, the post-selected density matrix p,, has a purity of
P(p,) = 0.74 + 0.03, suggesting it has undergone only partial decoherence.

12

I0OP Publishing Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

T 0.5

Hl Before post-selection, pgq
B After post-selection, p,s

S
&
/]0
N fog)
RN AN Jop) V @
N NS \\/\) 0) " &
%‘b’

Basig Stateg

Figure 13. Plot of the real components of the density matrices p,, and p,, corresponding to the experimental output state before and

after post-selection.

IE Before post-selection, pgq
B After post-selection, pps

|00) (00| |00)(01] |10) (00| [10)(10]
Target elements for o = | + 0)(+0|

Figure 14. Plot of the target elements for pqand p,,. The target elements are the non-zero elements in the density matrix o given in

equation (13).

The fidelities of 7, and p, relative to the target state are F(p,,) = 0.62 & 0.03and F(p,,) = 0.75 + 0.04
respectively. The fidelity of the post-selected state is therefore greater than the directly-decoded state with a
confidence level of three standard deviations. From this we can conclude that the [[4, 2, 2]] quantum memory
produces useful syndrome information for protectinga [1y5) = |+403) state. A consideration, however, is that
the average yield (the proportion of results retained after post-selection) was (54 £ 2)% averaged over the 154

batches.

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

3.6. Summary of IBM 5Q experiment

The results of our experiment with the IBMQX4 device show that the syndrome information produced by a

[[4, 2, 2]] CPC quantum memory can be used to improve the fidelity and purity of the code output. The [[4, 2, 2]]
CPC code is one the simplest quantum memories, and as such, it was possible to compile the circuit for the

IBM QX4 device by inspection. In the following sections, we outline a CPC design process that provides
automated methods for compiling and optimising more complex CPC codes onto quantum hardware. As an
example, we demonstrate the utility of the CPC design process in the compilation of a custom quantum memory
for an idealised seven-qubit ion trap device.

4. Overview of ion trap hardware for quantum computing

Ion traps are considered one the leading platforms for quantum computation. Ion-based qubits have long
coherence times, and can be read out with near 100% efficiency [35]. It has also been proposed that multiple ion
trap cells could be networked via auxillary qubit systems to create larger hybrid quantum computers [7]. In such
ahybrid networked architecture, good QEC codes will be vital to ensure the quantum data in each ion trap is
protected.

In this paper, we provide an illustrative example of how the CPC design process can be used to create a
bespoke QEC code for a specificion trap device. We consider a linear ion trap with seven application qubits. This
scheme has been chosen because several existing ion trap experiments have a similar size and layout [11-14].

We assume that arbitrary single-qubit operations can be performed on any of the ions in the register. It is in
principle possible to implement interactions between spatially separated qubits, for example, by exploiting the
collective vibrational modes of the ions as a quantum bus [36]. In practice, however, the fidelity of two-qubit
interactions decreases with separation [37]. For this reason, in our idealised model ion trap, two-qubit gates are
limited to nearest-neighbour interactions.

Under nearest-neighbour constraints, interactions between spatially separated qubits are achieved by
performing SWAP operations to move quantum information around the trap. These SWAP operations can be
realised either by physically shuttling qubits between zones of the trap [38], or by synthesising SWAP gates from
CNOT interactions [37]. In the CPC design process, we show how CPC codes can be compiled with SWAP gates to
allow for implementation with only nearest-neighbour interactions.

We assume that our idealised ion trap has a two-qubit entangling gate that gives rise to a unitary of the form

1 0 0 O

T 2l 0 ™0 0
U=exp|-i—[Z® Z]t) = eimt/2 . , (14)

p(2 0 0 e 0

0 O 0 1

where tis a tuning parameter. Such interactions can be realised via geometric phase gate procedures [36, 39, 40].
In this paper, we consider the SP gate, which is one of the simplest possible maximally entangling gates that arises
from the above ion trap unitary [10]. The SP native gate is realised by setting the tuning parameter in

equation (14) to tsp = 1/2. Up to a global phase, the gate can then be described as a matrix, F, of the form

F = , (15)

S O = O
o = O O
— O O O

1
0
0
0

where g, and g, are the input qubits to the gate. In section 5, we explicitly show how a [[4, 2, 2]] detection code
can be efficiently compiled with the SP native gate of equation (15). Building on this example, we then
demonstrate how efficient compilation is in principle possible for any experimentally realistic maximally
entangling native gate.

5. Compiling CPC codes with any realistic maximally entangling Clifford gate

In our discussion of the CPC framework so far, quantum codes have been expressed in terms of CNOT and
conjugate-propagator gates. This allows for intuitive visualisation of the propagation of errors through the
decoder, and simplifies the calculation of syndrome tables via the techniques described in sections 2.3 and 2.4.
However, in practice, the native two-qubit entangling interaction of a given experiment will be of a different
form. Asaresult, when compiling a CPC code, additional operations are required to allow CNOT and conjugate-
propagator gates to be synthesised from the native interaction. If the native interaction is maximally entangling,
this will involve the addition of single-qubit corrections. In this section, we show that the symmetric

14

I0OP Publishing Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

Figure 15. (a) A CNOT gate expressed in terms of the SP native gate, which is represented by the connected blue pentagons. The matrix
form of the SP native gate is given in equation (15). (b) A conjugate-propagator gate expressed in terms of the SP native gate. (c) Both
the phase gate P and the SP native gate are represented as diagonal matrices in the computational basis. As a result, the P gate can be
moved freely through the SP native gate.

encode-error-decode structure of the CPC framework enables efficient QEC code compilation with a broad range
of native gates.

5.1. Compiling the [[4, 2, 2]] CPC detection with an ion trap native gate

Here we show that the [[4, 2, 2]] CPC detection code, introduced in section 2.5, can be efficiently compiled with
an ion trap native gate. For the purposes of this example, we adopt an ion trap with a SP native gate as introduced
in equation (15) in section 4. The SP native gate can be transformed into a CNOT via the application of local
unitary operations to its inputs and outputs. A possible mapping, in matrix equation form, is given by

CNOTH = (I, @ Hy) * (B, @ By) * Ff + (I, ® Hy), (16)

where F} ’11 is the matrix representation of the SP gate defined in equation (14), and Pis a phase gate defined as
P= dlag(l —1). Realising a CNOT gate on ion trap hardware, via the above mapping, requires the application of
the native gate combined with four single-qubit gates, as shown in figure 15(a). Likewise, figure 15(b) shows how
the conjugate-propagator gate can be constructed from the native gate via the addition of six single-qubit
operations. We will see that, when the native gates are compiled into a CPC circuit, constructive simplifications
become possible to reduce the total number of single-qubit gates required.

Figure 16 illustrates the steps involved in the compilation and simplification of the [[4, 2, 2]] CPC code with
the SP native gate. The un-compiled circuit, expressed in terms of CNOT and conjugate-propagator gates, is
shown in figure 16(a). The first step of compilation involves substituting the CNOT and conjugate-propagator
gates with the SP native interaction, via the circuit rewrites rules defined in figure 15. The resultant circuit is
shown in figure 16(b).

Now that the circuit is written in terms of the native gate, circuit simplifications can be applied to reduce the
single-qubit gate count. In figure 16(b), pairs of H gates that cancel to the identity are labelled in red. In the
encoder, the H gates labelled in blue are paired with their counterparts from the decoder. We can now exploit the
symmetry of the CPC code to further reduce the gate count. The effect of the blue H gates around the wait-stage
is to transform X errors into Z errors and vice versa, as described by the following matrix transformations

H(E=X)H=H+-X-H=2Z,
H-(E=2)-H=H-Z+-H=X, (17)

where E represents the error that occurs in the wait stage. The [[4, 2, 2]] code can detect both X and Z errors, as shown
in syndrome table 1 in section 2.5. As a result, the blue H gates do not change the errors into a form that cannot be
detected. The blue H gates can therefore be discarded without affecting the operation of the [[4, 2, 2]] code.

Figure 16(c) shows the compiled [[4, 2, 2]] code following the removal of the unnecessary H gates. Notice
that both the P gate and the SP gate are described by diagonal matrices in the computational basis. As a result, we
have the freedom to move P gates through the SP native gate as shown in figure 15(c). Two P gates combine to
form a Z gate as follows P « P = Z.In thecircuitin figure 16(c), pairs of P gates are highlighted in red. As Z gates
are diagonal in the computational basis, they can also be moved through the SP gates.

In the circuit in figure 16(d), the Z gates and blue P gates have been pushed to the centre of the circuit. In the
event that no error occurs, these P gates combine to form a Z error via the relation Z = P + P. However, the
locations of these errors are known, and they can therefore be accounted for in post-processing. If an error does
occur, the effect of symmetric P gates about the wait stage, E, is to transform X errors into Y errors and vice versa,
as described by the following matrix transformation rules

P (E=X)*P=P+X+P= (-7,
P-(E=Y)*P=P-Y+-P=(-0X, (18)

15

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

s e
=
s o

T@ 1
Pl i

HHA
H|®|PIHHH] _“'

Figure 16. Compiling the [[4, 2, 2]] detection code with the SP native gate. (a) The un-compiled [[4, 2, 2]] CPC error detection code
expressed in terms of CNOT and conjugate-propagator gates. (b) The compiled circuit prior to simplification. Note that parts of the
decoder have been hidden to save space. The pairs of Hadamards, labelled red, cancel to the identity. The blue H gates can also be
discarded without affecting the operation of the code. (¢) The circuit following removal of the H gates. The pairs of red P gates
combine to form Z gates. (d) The Z gates and blue P gates can be moved freely through the SP gates to the centre of the circuit. Due to
their symmetry about the error window, the Pand Z gates can be omitted from the code. The green P gates do not affect circuit
operation and are also discarded. (¢) The compiled [[4, 2, 2]] CPC detection code following circuit simplication. Only four single-
qubit gates remain in the encoder.

where the (—1i) global phase does not affect the syndrome measurement. These transformations are
unproblematic as the [[4, 2, 2]] code can detect both X and Y errors (see syndrome table 1). As the effect of the
blue P gates can be described in terms of single-qubit Clifford operations on the output, they can be removed
from the circuit and accounted for in post-processing. There are also P gates highlighted in green, located on the
register qubits at the beginning and end of each error cycle. These gates occur before the first round of CPC
checks, and can therefore be removed from the circuit without affecting the final syndrome readout. Finally, the
Z gates located symmetrically about the wait-stage introduce a global phase to the errors. This global phase does
not affect the propagation of errors through the circuit, meaning the Z gates can be removed. It should be noted
that the above simplifications will result in a modified syndrome table. However, the no-error case will remain
unique meaning the function of the code is maintained.

16

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

The final simplified form of [[4, 2, 2]] CPC code compiled with the SP native gate is shown in figure 16(e).
The single-qubit gate count in the encoder has been lowered from 26 gates in the original compiled circuit
(figure 16(b)), to 4 gates in final circuit (figure 16(e)).

5.2.Requirements for CPC gates
We have now shown that the [[4, 2, 2]] code can be efficiently compiled with the SP native gate. Most of the
single-qubit corrections can be eliminated, either by direct cancellation between adjacent Hadamards, or by
moving P gates through the circuit. We now show that efficient CPC code translation, from the idealised cCNOT
version to the hardware-compiled version, is possible for a range of native gate types. We begin by outlining the
general requirements for two-qubit gates in a CPC circuit.

In a CPC code, the role of two-qubit interaction gates is to distribute error information from the register to
the parity qubits. For example, CNOT gates propagate bit-errors from their control to target via the rule in
equation (8). More generally, we require that the two-qubit CPC gate, (21, has the ability to change the weight of

an error operator, Eé ®1,, such that
1 2

Qf + (By ®@1,)+ () = (E] ® Ey), (19)

where q; and g, are the control and target qubits respectively, and E"”*are non-identity elements of the single-
qubit Pauli group. As both E’ ® 1, and E/] ® E, K are Pauli group operators, we see that Q% mustbea Clifford
gate (for an overview of the Cllfford group see appendlx B). CPC quantum memories can be described entirely in
terms of Clifford gates, as their operations are restricted to manipulating stabiliser states. This allows for efficient
classical simulation. For an example of such a simulation, see the CPC syndrome calculation algorithm we
outline in appendix C.

Another way of thinking about the CPC interaction gates is in terms of entanglement. In equation (19), it can
be seen that the general CPC gate de-localises error information from the control to the target, suggesting the
operation has the potential to entangle states. Furthermore, we know that elements of the two-qubit stabiliser
states are either maximally entangled or separable. Any Clifford entangling gate that maps between these states,
and therefore any CPC interaction, is a maximally entangling operation.

We have now established that CPC gates must be maximally entangling Clifford operations. However, many
experiments will have native gates that do not satisfy these requirements. For example, several qubit technologies
have a native interaction of the form +/SWAP [41], which is only partially entangling. In these circumstances,
multiple applications of the native gate, in addition to local operations, are required to synthesise the desired
maximally entangling behaviour. It is typically the case that quantum computing experiments will have different
error rates for single-qubit and two-qubit gates [42]. Circuit compilation strategies should therefore aim to
minimise the gate type with the highest error rate. In the case of ion traps, for example, the two-qubit gates have
lower fidelities than single-qubit gates [11, 43].

5.3. Circuit simplification with any maximally entangling Clifford gate

We will now outline general CPC circuit simplification procedures for maximally entangling Clifford gates. It
can be shown that all Clifford entangling gates are local Clifford equivalent to either the CZ or the CZ-SWAP
interaction. With this knowledge, we can write all maximally entangling Clifford gates in terms of a central
kernel, containing either a CZ or CZ-SWAP interaction, supplemented by local Clifford gates (see figure 17(a)).

The single-qubit Clifford group is generated by Pand H gates. Any native gate can therefore be constructed
from its by kernel via the addition of local gates generated from combinations of Pand H. The P gates can be
trivially pushed through the cz kernel. Likewise, it is possible to push P gates through the Cz-SwAP kernels,
although the effect of the SWAP gate must be taken into account.

In section 6.3 we demonstrated the compilation of a CPC code using the SP native gate, which is local
Clifford equivalent to a CZ gate. The exact transformation from CZ kernel to SP gate is shown in figure 17(b). As
the local operations in this case consist of P'gates, we have the freedom move P gates through the SP native gate.
Hadamard gates H, however, restrict movement, but in many cases will cancel when the native gate is compiled
into a CPCcircuit.

The general procedure for compiling a CPC code with a given native gate can now be written as follows. First,
eliminate any unnecessary H gates by identifying cancellations between adjacent CPC gates. Second, determine
the behaviour when P gates are pushed through the native gate. As all maximally entangling Clifford gates have
either a CZ or CZ-SWAP kernel, it is often possible to trivially move P gates through each block of the encoder.
Once these simplifications rules have been established, they can be applied systematically to substantially reduce
the CPC circuit gate count.

17

I0OP Publishing Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

T-EEE -0
D] —
(a) (b)

Figure 17. Left: a general maximally entangling Clifford native gate (red triangles) can be expressed in terms of a kernel supplemented by
local corrections on its inputs and outputs. The kernel will always be of the form CZ or CZ-SWAP. The local corrections, {4, B, C, D}, are
single-qubit Clifford gates and can expressed as products of H and P gates. Right: the SP native gate expressed in terms of its CZ kernel.

[PuI9y]

6. The CPC code design process

The first generation of quantum computers will be limited in size to no more than a couple of hundred qubits
[1, 2]. In this section, we outline a design process for constructing hardware-optimised quantum codes with the
CPC framework. By maximising the encoding density, such bespoke CPC codes will help early quantum
computers realise their full potential.

To illustrate our design process, the quantum device we consider is the seven-qubit linear ion trap which was
introduced in section 4. Our CPC design process is split into three stages. (1) CPC code discovery: numerical
search techniques are used to find CPC codes that maximise the quantum encoding density for a seven-qubit
register. (2) Hardware optimisation: the best CPC codes from the discovered set are identified by analysing
which ones have the lowest two-qubit count when implemented on a linear nearest-neighbour architecture.

(3) Native gate compilation: further optimisations are made by identifying CPC circuits with efficient
translations from the CNOT version of the code to the native gate version, using the circuit simplification
strategies outlined in section 5.

6.1. Stage 1: CPC code discovery
The idealised ion trap we are considering has seven application qubits. We assume that during the wait stage the
ion trap qubits are subject to a biased depolarising noise channel of the form

€lpl = A = p = p. = pL)p + pXpX + 2p.p, YPY + p,ZpZ, (20)

where p is the single-qubit density matrix, and p, and p, are the probabilities of X and Z errors respectively. This
error model assumes the ion trap has independent error mechanisms for X and Z errors, but Yerrors occur only
as a result of successive single-qubit errors of the form XZand ZX'. Similar error models have recently been
considered in [44, 45]. For the purposes of our ion trap model, we assume that the error probabilities p, and p,
are low enough that the probability of Yerrors becomes negligibly small. The effective error model can then be
written as

Elpl = (1 = p. — p)p + pXpX + p,ZpZ. 21)

Under the above error model for the idle ion trap qubits, the CPC quantum memory only needs to correct X and
Z errors. We choose this noise model for our proof-of-concept outline of the CPC design process, as it
corresponds to the simplest possible non-classical error model. Our aim is to discover non-degenerate quantum
codes which produce a unique syndrome for single X and Z errors on any of the seven qubits in the trap.

The maximum possible encoding density of a non-degenerate QEC code is constrained by the quantum
Hamming bound, which states that an [[#, k, d]] code must satisfy the following inequality

@02\
ijywﬁsﬂ, (22)
=0 \J
where |£] is the size of the single-qubit error set [9]. As we are considering only X and Z errors in the generic ion
trap under the error model described by equation (21), the size of the error set is |£] = 2. Under this error model,
the quantum Hamming bound tells us that the maximum number of data qubits that can be encoded in 7
physical qubits is k., = 3. The optimal 7 qubit CPC code will therefore be of the form [[n = 7,k = 3,d = 3]].
Note that the code distance is d = 3, indicating that these [[7, 3, 3]] codes will be able to correct one error per
CPCcycle.

An advantage of the CPC framework lies in the fact that new instances of such optimal codes can be
discovered numerically, either using brute-force or more sophisticated optimisation techniques [3]. We now
demonstrate these strategies in practice, by showing how optimal [[7, 3, 3]] CPC codes can be discovered via
exhaustive search.

Note that the ion trap we consider is an idealised proof-of-concept model, and does not correspond to a specific ion trap experiment.

18

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

60000 -

scovered

% 40000 A

1

Codes D

20000 1

14 16 18 20 22
CPC Gate Count

Figure 18. A histogram showingall of the [[7, 3, 3]] CPC codes discovered in stage 1 of the CPC design process, binned by encoder
length. The CPC gate count is the combined total of CNOT and conjugate-propagator gates in the encoder. The median length, marked
inred, is 18. In comparison, the shortest [[7, 3, 3]] circuits have a CPC gate count of 14.

A[[7,3,3]] CPCcode has k = 3 data qubitsand n — k = 4 parity qubits. The adjacency matrices therefore
have the form

b by biz b i hy his b
my =|by by by byl mp = hoy hyy has sl
bs1 b3y bsz big hs1 hsy hss hsg
0 ax as ay
0 0 o3 o4
_ , 23
"o 0 0 e (23)
00 0 O

where by, h.,, ¢, are binary values. New CPC circuits can be made by generating different instances of these
matrices. The single-qubit error syndrome table for each code can be calculated efficiently using a stabiliser
simulator or the algorithm we describe in appendix C. If the set of syndromes is unique, the respective matrices
representavalid [[7, 3, 3]] code.

The number of possible combinations of the adjacency matrices for CPC circuits of type [[7, 3,d = ?]]is 2°°.
By an exhaustive search, we have discovered that 306, 480 of these permutations (0.03% of the search space) are
working [[7, 3, 3]] codes. These codes have distance d = 3, and produce unique syndromes for all single-qubit X
and Z errors across the seven qubits. Of the discovered set, there are 2190 symmetry-inequivalent codes that
cannot be transformed from one to another by rearranging the qubit order. However, some symmetry-
equivalent code permutations are more amenable to circuit optimisation than others. We will therefore
continue to consider the entire set of 306, 480 codes in the CPC design process.

Now thataset of [[7, 3, 3]] circuits has been found, the next stages in the CPC design process involves
analysis to determine which one of the 306, 480 codes is best suited for implementation on the ion trap device.
Figure 18 shows a histogram of the discovered [[7, 3, 3]] codes, binned by the combined number of CNOT gates
and conjugate-propagator gates in their encoder. This quantity will be referred to as the CPC gate count, and can
be determined by counting the number of non-zero entries across the three adjacency matrices.

In ion trap hardware, inter-qubit operations are typically the most expensive gate type in terms of their
potential to introduce errors [11, 43]. As aresult, the CPC circuits with the lowest CPC gate count are most
desirable. In the set of [[7, 3, 3]] codes, the shortest circuit encoders have 14 CPC gates. This is a 22% reduction in
circuit depth compared to the median gate count of 18. The number of [[7, 3, 3]] circuits with the minimum
encoder depth of 14 is 864 of which 245 are symmetry inequivalent. Further work is therefore necessary to
narrow down the code set, and find the optimum quantum memory for the ion trap device.

The encoder length statistics for the [[7, 3, 3]] CPC codes are summarised in table 3. Note that in this simple
first analysis, we have not accounted for any of the constraints imposed by the ion trap’s nearest-neighbour
requirement for two-qubit operations. In the next section, we outline how the [[7, 3, 3]] codes can be compiled
in such a setting through the introduction of additional SWAP gates.

The results in this section demonstrate that the CPC framework provides constructive tools for discovery of
optimal [[7, 3, 3]] codes that saturate the quantum Hamming bound. Furthermore, the search was performed
using a simple brute-force technique that requires only a basic knowledge of the CPC code structure to
implement. The Python script used to perform the code search is approximately 200 lines long, and required
approximately 4 days to run on a CPU clocked at 3.2 GHz with 8Gb of RAM.

19

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

Linear ion-trap schematic

111111, . At -

Data qubits Parity Qubits >
pP1

(a) (b)

Figure 19. (a) A schematic of the seven-qubit linear ion trap. Three of the qubits have been labelled as data qubits and four as parity
qubits as required by the [[7, 3, 3]] code. Itis assumed that entangling gates can only be performed between nearest-neighbour qubits.
(b) A CNOT gate between spatially separated qubits can be implemented using only nearest-neighbour interactions through the
addition of SWAP gates.

Table 3. Summary of the exhaustive search for [[7, 3, 3]] CPC codes. The number of CPC gates is defined as
the combined total of CNOT + conjugate-propagator gates in the encoder. The depth reduction is calculated
as the percentage decrease in the encoder length of the smallest circuit relative to the median.

Encoder gate length (number of CPC gates)

Mininum Median Depth reduction
14 (864 discovered) 18 22%

Size of[[7, 3,d = ?]] search space: 1.07 X 10° circuits
Number of [[7, 3, 3]] codes discovered: 306, 480 (0.03% of search space)
Number of symmetry-inequivalent [[7, 3, 3]] codes: 2190

6.2. Stage 2: Hardware optimisation

The second stage of the CPC design process involves selecting codes to meet the demands of the chosen quantum
hardware and its qubit layout. Figure 19(a) shows the idealised model ion trap under consideration, labelled with
3 data qubits and 4 parity qubits as required by the [[7, 3, 3]] code. Under the restriction of nearest-neighbour
connectivity, interactions between spatially separated qubits can still be realised by performing SWAP operations.
For example, interacting qubit B with p; would first require a SWAP gate between qubits Band C, or qubits Cand
p1- Circuits with fewer long range interactions will require fewer SWAP gates, and will therefore have a reduced
two-qubit gate count.

There are a number of strategies for calculating the sequences of SWAP operations required to compile a CPC
circuit on a nearest-neighbour architecture. Here we adopt a simple approach in which qubits are always
swapped in the upwards direction. As an example of this, in figure 19(b), qubit p, is swapped upwards, instead of
qubit B being swapped downwards. More advanced SWAP compilation strategies, that combine upwards and
downwards moves, can yield circuits with lower SWAP counts. However, such analysis is computationally
expensive, and can impose a bottleneck in the CPC design process. By restricting our approach to upwards SWAP
moves only, an exhaustive search of the [[7, 3, 3]] CPC codes remains possible.

Figure 20 shows the histogram of the SWAP compiled [[7, 3, 3]] codes distributed by the total two-qubit gate
count (CPC gates + SWAP gates). The optimum [[7, 3, 3]] CPC code with the shortest encoder is shown in
figure 21(b). The encoder for this circuit includes 14 CPC gates, and requires an additional 13 SWAP operations
to be implemented on a linear, nearest-neighbour architecture. The depth of the encoder, in terms of the
number of two-qubit gates, is therefore 27. For comparison, the un-compilied version of this [[7, 3, 3]] code is
shown in figure 21(a).

The results of two-qubit gate count analysis for the [[7, 3, 3]] codes, following compilation onto the nearest-
neighbour hardware, are summarised in table 4. The optimum circuit has an encoder length of 27, compared to
the median of 51, a 47% reduction in circuit gate count. Only one CPC code was discovered with the minimum
encoder length. The CPC circuit optimisation, with regards to qubit layout, can therefore be considered
complete.

6.3. Stage 3: Native gate compilation

The ion trap under consideration has a native gate that resembles the SP gate introduced in section 4. The final
stage of the CPC design process involves systematically applying the SP simplification procedures described in
section 5.1 to each of the 306, 480 discovered CPC codes. The compilation efficiency of a given code can be
quantified by counting the number of local gates that remain in the simplified circuit. The optimal code for the
ion trap device is then identified as the circuit with the shortest total encoder length, defined by

20

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

—
1SN

000

10000

[

5000

Codes Discovered

30 40 50 60 70
Two-qubit gate count (CPC gates + SWAP gates)

Figure 20. The distribution of [[7, 3, 3]] CPC codes binned by two-qubit gate count after compilation onto a nearest-neighbour
architecture. The total gate count is defined as the number of CPC gates + SWAP gates in the encode stage of the circuit.

(I] N e
[V aBc) e e
RIS
10),,, Db E Db
10)p, & e = ee O
10)ps O e = G
10),,, = s o @ e
(a)
|YaBc) b =

Van)
N>

Py
@
Pan)
N
=

p3 :I
pa d
(b)

Figure 21. Circuit diagrams demonstrating SWAP gate compilation for a nearest-neighbour architecture. (a) The [[7, 3, 3]] code with
the smallest two-qubit gate count prior to the addition of SWAP gates. (b) The encoder for the same circuit, with SWAP gates included.

"

Table 4. Summary of the gate-count statistics for the set of [[7, 3, 3]] codes following the SWAP gate
compilation. The two-qubit gate count is defined as the number of CPC gates + SWAP gates. The
depth reduction is the percentage decrease in gate count of the smallest circuit relative to the median.

Encoder gate length (number of two-qubit gates)

Mininum Median Depth reduction
27 (1 discovered) 51 47%
Optimum code:

Encoder length = 27 gates; no. CPC gates = 14; no. SWAP gates = 13

Lcpc = | CPC| + | SWAP| + | LOCAL, (24)

where | CPC]|is the CPC gate count, | SWAP| is the SWAP gate count and | LOCAL]| is the local gate count.

21

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

10,
10,
10) s

)

Figure 22. The native gate compiled form of the [[7, 3, 3]] CPC with the lowest total gate count. Note that the SWAP operations have
been omitted to save space.

Table 5. Summary of the local gate count for the [[7, 3,
3]] following compilation with the SP native gate.

Local gate count (number of single-qubit gates)

Mininum Median

Before simplification 72 (1 discovered) 92
After simplification 7 (1 discovered) 10
% change 90% 89%

Table 5 summarises the simplification statistics for the local gate counts when the [[7, 3, 3]] CPC codes are
compiled with the SP native gate. Without applying any simplifications, the median local gate count is 92. After
applying the simplification routine, the median is 10, an 89% reduction in gate count.

The compiled [[7, 3, 3]] CPC circuit with the lowest local gate count after simplification is shown in figure 22.
This circuit is compiled from the CPC code with the lowest two-qubit gate count, as discovered in the last
subsection and depicted in figure 21. We can therefore identify the compiled [[7, 3, 3]] code in figure 22 as the
optimum code for our device with a total gate count of Lcpc = 34. For comparison, the median total gate count
across all 306,480 CPC codes was Lcpc = 61. The total reduction in circuit depth for the optimised circuit
relative to the median is therefore 44%. Note that it will not always be the case that the circuit with the lowest
two-qubit gate count will also be the circuit that compiles most efficiently. For this reason, the entire discovered
setof [[7, 3, 3]] CPC codes were considered in stage 3 of the design process, rather than restricting the analysis to
the single code identified in stage 2.

7. Outlook and conclusion

In this work, we assessed the real-world functionality of CPC codes by implementing full encode—decode cycles
ofa[[4,2,2]] quantum error detection code on the IBM 5Q quantum computer. We then explored the utility of
the CPC framework in deriving larger quantum codes. In particular, we illustrated a design process for the
automated discovery and optimisation of CPC codes by applying it to a seven-qubit ion trap device. In the first
stage of the design process, exhaustive code-search methods were used to find [[7, 3, 3]] CPC codes that saturate
the quantum Hamming bound for seven qubits. These circuits were then modified through the addition of SWAP
gates to allow them to be implemented on a nearest-neighbour architecture. Finally, the circuits were compiled
with a SP native gate. At the end of the design process, the optimum hardware-ready code with the lowest gate
count of Lcpc = 34 was identified.

The design process outlined for ion traps will be adaptable to other qubit technologies. In section 5 we
demonstrated that the symmetric encode-error-decode structure of CPC codes allows for efficient compilation
with any realistic maximally entangling Clifford gate. This result means that simplification routines, similar to
those seen with the ion trap SP gate, will be possible for a broad range of native gates from different quantum
experiments.

The final circuit in the outline of the CPC design process, drawn in figure 22, shows the best CPC code in
terms of total gate count. Here it was assumed, however, that each gate type—CPC, SWAP and local—are equal

22

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

in terms of the overhead they impose on the code implementation. In practice, however, some types of
operations will be more expensive than others. For example, in an ion trap setting, it is typically the case that two-
qubit interactions have a lower fidelity than single-qubit operations [11, 43]. When implementing the CPC
design process, such considerations should be taken into account for choosing the optimum code for the given
device. For example, each CPC code could be assigned a weighted total gate count, R cpc, given by

Rcpc = 1l CPC| + 72|sSWAP| + 73| LOCAL], (25)

where | CPC|, |SWAP|and | LOCAL|are the counts for CPC gates, SWAP gates and local gates respectively. The
count for each gate type is weighted by a penalty strength v which is based on the gate count.

In the code discovery stage of the CPC design process for the ion trap device, the aim was to find working [[7, 3,
3]] codes that saturate the quantum Hamming bound for seven qubits. This involved calculating the code distance
for all possible permutations of [[7, 3, d = ?]] CPC codes, a total of 2°° circuits. Using the syndrome calculation
algorithm outlined in appendix C, it was possible to exhaustively analyse all the circuits in less than a week on a
desktop computer. In total, the search yielded 306, 480 working [[7, 3, 3]] codes (0.03% of the search space).

For a CPC code with 4 data qubits, the quantum Hamming bound tells us that the optimal CPC code is of
type [[9, 4, 3]]. However, there are 2% permutations of this circuits of the form [[9, 4, d = ?]], whichisan
impractical search space for exhaustive methods. In the original CPC paper, it was shown that [[9, 4, 3]] codes
can be discovered simply by randomised search [3]. In future work, more sophisticated techniques, such as
simulated annealing or parallel tempering, could be employed to more efficiently search for CPC codes.

When searching for large CPC codes, the number of circuits in the search space could be reduced by
considering hardware constraints in advance. For example, for a nearest-neighbour device, each circuit
permutation could be assigned a score on the basis of how many long range interactions it contains. The code
distance would then only be measured for the circuits with fewer long range interactions. Another optimisation
parameter that could be considered is the weight of the code’s stabilisers, a parameter that is useful to minimise
when constructing fault tolerant circuits. Exhaustive and random search strategies for quantum code discovery
have also been studied in [18, 46]. The particular strength of the CPC framework is that the symmetric encode-
error-decode structure ensures the search is constrained to a space of non-disturbing codes. Investigating
whether optimised CPC search strategies provide a higher density of good codes compared to other code-search
techniques would be an interesting area for future research.

Another feature of the CPC framework is that any classical code can be re-purposed for the bit and phase
checking stages of the code. If such an approach is adopted, only the space of cross-checks needs to be searched
in order to obtain a CPC code with fixed distance. Owing to the demands of modern high-density
communication networks, classical error correction protocols such as low density parity check and turbo codes
have been extensively optimised [6, 47]. At large scales, these codes can be decoded in real time at close to the
theoretical maximum rate for information transfer along a noisy channel given by the Shannon limit [48]. The
tools of the CPC framework could help construct quantum versions of low density parity check and turbo codes.
A presentation of the CPC framework in terms of classical factor graph notation can be found in [49].

An important direction for future work is to investigate ways of making CPC circuits fault tolerant. For most
quantum computing architectures, it is not realistic to assume that the encode and decode stages will be fault-
free, or that errors will only occur within a specified wait-stage. In section 3 it was shown that a specific
implementation of a [[4, 2, 2]] CPC detection code can be specially hardened against single-qubit errors
occuring after any multi-qubit gate in the encoder or decoder. However, further work is required to develop
methods for extending general CPC codes to full fault tolerance. Of particular interest are recent studies into
fault tolerant computing using flag checks, which have a similar construction to CPC parity checks [32, 50].

The CPC framework lifts many of the restrictions that have hindered the development of traditional QEC
codes. In particular, CPC codes have a canonical structure that allows any sequence of parity checks to be
performed on a quantum register without risk of decohering the encoded information. The process of deriving
CPC codes is therefore reduced to a classical decoding problem, allowing for code discovery via numerical
search. This opens up the possibility of constructing custom QEC protocols to meet the hardware and layout
demands of a specific quantum computing experiment.

Acknowledgements

Joschka Roffe was supported by a Durham Doctoral Studentship (Faculty of Science). Nicholas Chancellor,
Dominic Horsman and Viv Kendon were supported by EPSRC (grant ref: EP/L022303/1). We acknowledge use
of the IBM Quantum Experience for this work. The views expressed are those of the authors and do not reflect
the official policy or position of IBM or the IBM Quantum Experience team. The quantum circuits in this paper
were drawn using the QPIC package by Thomas Draper and Samuel Kutin [51].

23

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

Appendix A. The Pauli group

The Pauli group on a single-qubit, Gi, is defined as the set of Pauli operators
Gy = {£1, +il, +X, +iX, +Y, +iY, +Z, +i7}, (A1)

where the £1 and =i terms are included to ensure G, is closed under multiplication and thus forms a legitimate
group [52]. In matrix form, the four Pauli operators are given by

G0) 0 60

The general Pauli group, G, consists of the set of all operators that are formed from tensor products of the
matrices in G;. For example, the operator

IX®I1I®Yed (A3)

is an element of the four-qubit Pauli group. Note that for simplicity, in the context of quantum computing, the
above operator would usually be expressed as X,Y,. The identity operators are omitted, and the remaining
elements are subscripted with the label of the qubit they act on.

The elements of the Pauli group have eigenvalues -1, +i}. Another useful property of the Pauli group is that
its elements either commute or anti-commute with one another.

Appendix B. The Clifford group and stabiliser states

The Clifford group C is defined as the set of operators that normalise the Pauli group such that
Us+Pi+Ul=P, Uc€C (P,P}eGV{ij} (B4)

where Uc € CisaClifford operator and Py are elements of the Pauli group. Clifford gates, C, are generated by the
set of three gates (CNOT, H, P),suchthat C = (CNOT, H, P)[53]. Likewise, single-qubit Clifford gates, C;, are
generated by the set (H, P), suchthat C, = (H, P).

The stabiliser states are all the quantum states that can be reached from a blank register, | O>®N ,viathe
application of Clifford gates and computational basis measurements. Quantum circuits consisting only of
Clifford gates acting on stabiliser states can be efficiently classically simulated. The proof of this is given by the
Gottesman—Knill theorem [54]. Although the Clifford group is not a universal quantum gate set, it is sufficient
for simulating many QEC circuits and all the quantum memories described in this paper.

Appendix C. Efficient calculation of CPC code syndrome table

In addition to providing a compact way to describe CPC codes, the adjacency matrix representation can be
leveraged to create a simple algorithm for calculating syndrome tables, bypassing the need to perform a full
stabiliser simulation. We will begin our presentation of this algorithm by considering errors on the data qubits,
which are represented in terms of the row vectors E; ,and E; .. For example, in the [[4, 2, 2]] detection code,
depicted in figure 8, a bit-flip error on qubit A would have the form E; , = (1, 0). Likewise, a phase-flip on qubit
Bwouldbegivenby E; , = (0, 1).

Ina CPC code X and Z errors on the data qubits are propagated to the parity qubits via gate sequences
described by the adjacency matrices m;, and m,, respectively. The syndromes resulting from this propagation can
be calculated by multiplying the error vector by its corresponding adjacency matrix modulo 2. For example, the
syndrome for a bit-flip error on qubit A of the [[4, 2, 2]] code is given by

Sax = Egx-mpy=(1 O)G 8) = ((1)) (C5)

The bit-flip error information is propagated to the parity qubit bya CNOT, and the column vector on the right gives the
subsequent measurement outcomes of the parity qubits p1 and p2. Our expression therefore tells us that error on the
data qubit A produces the syndrome ‘10’, a result in agreement with the values given in table 1 in section 2.5. Similarly,
the syndromes for phase-flip errors on the data qubits can be computed with the expression S,;, = Eg, - 11,.

We now need a method for calculating the syndromes for errors occurring on the parity qubits. Again, we
represent X and Z errors in terms of two row vectors E,, , and E,, .. In the case of bit-flip errors, the syndrome is
simply givenby S,, . = E,, .. This is the case as the bit-flip errors commute through the conjugate-propagator
gates and the CNOT targets, and will therefore propagate directly to the end of the circuit. The final error type to
consider are phase flips on the parity qubits.

24

I0OP Publishing Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

X—
.I\
Register qubits {
A
: ‘ —
A
o S——2 S pD)
Parity qubits {
7 < . :)

Figure C1. The [[4, 2, 2]] code decoder depicting the different propagation pathways for Z errors on the second parity qubit.

Figure C1 depicts the propagation of such an error through the decoder of the [[4, 2, 2]] code. To calculate
the syndromes, there are two propagation pathways to be considered. Figure C1 shows that Z errors can be
propagated to the register by the phase-check conjugate-propagator gates, after which they can be considered as
bit-errors. These bit-flip errors are then propagated to the register, as illustrated by the orange arrows in figure
C1. This propagation pathway can be represented mathematically by the expression E,, , - m pT - my. Note that
we have taken the transpose of the phase-check matrix as we are propagating information from the parity bits to
register. The second pathway to be considered for phase-flip errors on the parity qubits, is the propagation due to
the cross-check operators. As the cross-check operators can act both ways, this pathway is described by the
expression E,, , - (m, + mI). Combining both error propagation pathways, the syndrome expression for
phase-flip errors on the parity qubitsis S, , = E,, ; - mpT ~my + Ep; - (me + ch), where all addition and
multiplication is performed modulo 2. The full syndrome equation can now be written by summing the
contributions 4y, Sy 2, Sp,cand S, , to give

S=(Egx-my+Eg, -my+Eyx +Ep;- mPT ~my + E, ;- (m + mCT)) mod 2. (C6)

The above equation allows the syndromes for a given error circuit to be calculated in time O(*). It would be
interesting to investigate how this algorithm relates to other efficient stabiliser simulators such as [25, 26].

Appendix D. IMBQX4 calibration data

The experiment on the IBMQX4 outlined in section 3 was run over three days on 25th November 2017, 26th
November and 27th November 2017. The calibration data for each of these days can be found below:

{Date: 11-25-2017,

Single-qubit errorrates (10"=3):
{©0:0.94,01:0.60,02:1.12,03:1.37,04:1.80},
Readouterrorrates(10A72):
{00:4.10,01:5.70, Q2:4.00, Q3:3.30,04:5.10},
Two-qubit error rates (10"—2) :
{CX1_0:1.88,CxX2_0:2.09,CxX3_2:1.97,CX2_1:4.28,CX3_4:2.15,CX2_4:3.89}}
{Date:11-26-2017,

Single-qubit errorrates (10"—=3) :
{00:0.86,Q1:0.69,02:1.12,03:1.89,04:2.06},

Readout errorrates (10"—2) :
{00:4.10,Q1:4.10,02:4.30,Q03:5.30,0Q04:7.10},
Two—qubiterrorrates(10A72):
{CxX1_0:2.31,CX2_0:2.22,CX3_2:2.18,CX2_1:4.80,CX3_4:2.43,CX2_4:3.93}}
{Date: 11-27-2017,

Single—qubiterrorrates(10A73):
{00:0.77,01:0.43,02:1.20,0Q03:1.72,04:1.89},

Readout errorrates (10"—2) :
{00:3.70,Q1:4.90,02:4.20,Q03:5.30,Q4:5.80},
Two-qubiterror rates (10"—2) :
{CX1_0:2.01,CxX2_0:1.93,CX3_2:2.75,CX2_1:4.47,CX3_4:2.28,CX2_4:4.13}}

25

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

ORCIDiDs

Joschka Roffe @ https:/orcid.org/0000-0001-9202-1156
Nicholas Chancellor @ https:/orcid.org/0000-0002-1293-0761
Dominic Horsman @ https:/orcid.org/0000-0003-4965-0584
VivKendon @ https://orcid.org/0000-0002-6551-3056

References

[1] Networked Quantum Information Technologies (NQIT) project 2017 https://ngit.ox.ac.uk/
[2] IBM Quantum Experience 2017 https://quantumexperience.ng.bluemix.net/qx/community
[3] Chancellor N, Kissinger A, Roffe], Zohren S and Horsman D 2016 Coherent parity check construction for quantum error correction
arXiv:1611.08012
[4] Coecke Band Duncan R 2011 Interacting quantum observables: categorical algebra and diagrammatics New J. Phys. 13 043016
[5] Coecke B and Kissinger A 2017 Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning
(Cambridge: Cambridge University Press)
[6] MacKay D] Cand Neal RM 1996 Near Shannon limit performance of low density parity check codes Electron. Lett. 32 1645
[7] Nickerson N, Li Y and Benjamin S 2013 Topological quantum computing with a very noisy network and local error rates approaching
one percent Nat. Commun. 41756
[8] Proctor T and Kendon V 2016 Hybrid quantum computing with ancillas Contemp. Phys. 57 459
[9] Gottesman D 1996 Class of quantum error-correcting codes saturating the quantum Hamming bound Phys. Rev. A 54 1862
[10] Ballance C 2014 High-fidelity quantum logic in Ca* PhD Thesis Oxford University
[11] Ballance CJ, Harty T P, Linke N M, Sepiol M A and Lucas D M 2016 High-fidelity quantum logic gates using trapped-ion hyperfine
qubits Phys. Rev. Lett. 117 060504
[12] RandallJ, Weidt S, Standing E D, Lake K, Webster S C, Murgia D F, Navickas T, Roth K and Hensinger W K 2015 Efficient preparation
and detection of microwave dressed-state qubits and qutrits with trapped ions Phys. Rev. A91 012322
[13] Debnath S, Linke N M, Figgatt C, Landsman K A, Wright Kand Monroe C 2016 Demonstration of a small programmable quantum
computer with atomic qubits Nature 536 63
[14] BrandlM Fetal2016 Cryogenic setup for trapped ion quantum computing Rev. Sci. Instrum. 87 113103
[15] Horsman C, Fowler A, Devitt S and Van Meter R 2012 Surface code quantum computing by lattice surgery New J. Phys. 14 123011
[16] Fowler A G, Mariantoni M, Martinis] M and Cleland A N 2012 Surface codes: towards practical large-scale quantum computation
Phys. Rev. A 86032324
[17] TillichJ-P and Zemor G 2014 Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the
blocklength IEEE Trans. Inf. Theory 60 1193
[18] Brown W and Fawzi O 2013 Short random circuits define good quantum error correcting codes 2013 IEEE Int. Symp. on Information
Theory (Piscataway, NJ: IEEE) 34650
[19] BravyiS and Hastings M B 2014 Homological product codes Proc. 46th Annual ACM Symp. on Theory of Computing, STOC 14 (New
York: ACM) p 273
[20] Breuckmann N P and Terhal B M 2016 Constructions and noise threshold of hyperbolic surface codes IEEE Trans. Inf. Theory 62 3731
[21] Audoux Band Couvreur A 2015 On tensor products of CSS codes arXiv:1512.07081
[22] Shor P 1995 Scheme for reducing decoherence in quantum computer memory Phys. Rev. A 52 R2493
[23] Gottesman D 1997 Stabilizer codes and quantum error correction PhD Thesis Caltech https://thesis.library.caltech.edu,/2900,/2/
THESIS.pdf
[24] DevittSJ, Munro W J and Nemoto K 2013 Quantum error correction for beginners Rep. Prog. Phys. 76 076001
[25] Aaronson Sand Gottesman D 2004 Improved simulation of stabilizer circuits Phys. Rev. A70 052328
[26] Anders S and Briegel H 2006 Fast simulation of stabilizer circuits using a graph-state representation Phys. Rev. A73 022334
[27] Takita M, Cross AW, Cércoles A D, Chow] M and Gambetta] M 2017 Experimental demonstration of fault-tolerant state preparation
with superconducting qubits Phys. Rev. Lett. 119 180501
[28] Vuillot C2017 Error detection is already helpful on the IBM 5Q chip arXiv:1705.08957
[29] 5-qubitbackend: IBM Q team, IBMQX4’ https://github.com/QISKit/ibmgx-backend-information /blob/master/backends/
ibmqx4/README.md
[30] Shor P 1996 Fault-tolerant quantum computation Proc. 37th Conf. on Foundations of Computer Science JEEE Computer Society Press)
[31] Steane A M 1997 Active stabilization, quantum computation, and quantum state synthesis Phys. Rev. Lett. 78 2252
[32] Chao R and Reichardt B W 2017 Quantum error correction with only two extra qubits arXiv:1705.02329
[33] IBM, Quantum Information Softare Kit www.qiskit.org
[34] Smolin] A, Gambetta] M and Smith G 2012 Efficient method for computing the maximum-likelihood quantum state from
measurements with additive Gaussian noise Phys. Rev. Lett. 108 070502
[35] ActonM, Brickman K-A, Haljan P C, Lee P], Deslauriers L and Monroe C 2006 Near-perfect simultaneous measurement of a qubit
register Quantum Inf. Comput. 6 465
[36] CiracJIand Zoller P 1995 Quantum computations with cold trapped ions Phys. Rev. Lett. 74 4091
[37] TanTR, Gaebler JP,Lin Y, Wan Y, Bowler R, Leibfried D and Wineland D] 2015 Multi-element logic gates for trapped-ion qubits
Nature528 380
[38] Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L-M and Kim J 2014 Large-scale modular quantum-computer
architecture with atomic memory and photonic interconnects Phys. Rev. A 89 022317
[39] Leibfried D et al 2003 Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate Nature 422 412
[40] Serensen A and Melmer K 1999 Quantum computation with ions in thermal motion Phys. Rev. Lett. 82 1971
[41] Loss D and DiVincenzo D P 1998 Quantum computation with quantum dots Phys. Rev. A 57 120
[42] Linke N M, Maslov D, Roetteler M, Debnath S, Figgatt C, Landsman K A, Wright K and Monroe C 2017 Experimental comparison of
two quantum computing architectures Proc. Natl Acad. Sci. 114 3305
[43] Harty T P, Allcock D T C, Ballance CJ, Guidoni L, Janacek H A, Linke N M, Stacey D N and Lucas D M 2014 High-fidelity preparation,
gates, memory, and readout of a trapped-ion quantum bit Phys. Rev. Lett. 113 220501

26

https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://nqit.ox.ac.uk/
https://quantumexperience.ng.bluemix.net/qx/community
http://arxiv.org/abs/1611.08012
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1049/el:19961141
https://doi.org/10.1038/ncomms2773
https://doi.org/10.1080/00107514.2016.1152700
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevA.91.012322
https://doi.org/10.1038/nature18648
https://doi.org/10.1063/1.4966970
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/ISIT.2013.6620245
https://doi.org/10.1109/ISIT.2013.6620245
https://doi.org/10.1109/ISIT.2013.6620245
https://doi.org/10.1145/2591796.2591870
https://doi.org/10.1109/TIT.2016.2555700
http://arxiv.org/abs/1512.07081
https://doi.org/10.1103/PhysRevA.52.R2493
https://thesis.library.caltech.edu/2900/2/THESIS.pdf
https://thesis.library.caltech.edu/2900/2/THESIS.pdf
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.73.022334
https://doi.org/10.1103/PhysRevLett.119.180501
http://arxiv.org/abs/1705.08957
https://github.com/QISKit/ibmqx-backend-information/blob/master/backends/ibmqx4/README.md
https://github.com/QISKit/ibmqx-backend-information/blob/master/backends/ibmqx4/README.md
https://doi.org/10.1103/PhysRevLett.78.2252
http://arxiv.org/abs/1705.02329
http://www.qiskit.org
https://doi.org/10.1103/PhysRevLett.108.070502
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1038/nature16186
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1038/nature01492
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1103/PhysRevLett.113.220501

10P Publishing

Quantum Sci. Technol. 3(2018) 035010 J Roffe et al

[44] Robertson A, Granade C, Bartlett S D and Flammia S T 2017 Tailored codes for small quantum memories Phys. Rev. Appl. 8 064004

[45] Tuckett DK, Bartlett SD and Flammia S T 2018 Ultrahigh error threshold for surface codes with biased noise Phys. Rev. Lett. 120
050505

[46] Grassl M 2006 Searching for linear codes with large minimum distance Algorithms and Computation in Mathematics vol 19 (Heidelberg:
Springer)

[47] Berrou Cand Glavieux A 1996 Near optimum error correcting coding and decoding: turbo-codes IEEE Trans. Commun. 44 1261

[48] MacKay D 2003 Information Theory, Inference and Learning Algorithms (Cambridge: Cambridge University Press)

[49] Roffe], Zohren S, Horsman D and Chancellor N 2018 Quantum codes from classical graphical models arXiv:1804.07653

[50] Chamberland C and Beverland M E 2018 Flag fault-tolerant error correction with arbitrary distance codes Quantum 2 53

[51] Draper T and Kutin S QPIC: quantum circuit diagrams in latex https://github.com/qpic/qpic

[52] Nielsen M A and Chuang I L2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge
University Press)

[53] Gottesman D 1998 Theory of fault-tolerant quantum computation Phys. Rev. A57 127

[54] Gottesman D 1999 The Heisenberg representation of quantum computers Group22: Proc. XXII Int. Colloquium on Group Theoretical
Methods in Physics (Cambridge, MA: International Press) pp 32—43

27

https://doi.org/10.1103/PhysRevApplied.8.064004
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1109/26.539767
http://arxiv.org/abs/1804.07653
https://doi.org/10.22331/q-2018-02-08-53
https://github.com/qpic/qpic
https://doi.org/10.1103/PhysRevA.57.127

	1. Introduction
	2. CPC codes
	2.1. Traditional QEC
	2.2. The fundamental CPC gadget
	2.3. A CPC gadget for detecting bit flips
	2.4. A CPC gadget for detecting phase flips
	2.5. The [[4, 2, 2]] error detection code
	2.6. The canonical form of CPC codes
	2.7. Numerical CPC code discovery

	3. Implementation of the [[4, 2, 2]] code on the IBM 5Q device
	3.1. Experimental overview and conditions for success
	3.2. Compiling a [[4, 2, 2]] CPC circuit onto the IBM 5Q
	3.3. A note on fault tolerance for the [[4, 2, 2]] circuit
	3.4. Experimental data reconstruction methods
	3.5. Experimental results
	3.6. Summary of IBM 5Q experiment

	4. Overview of ion trap hardware for quantum computing
	5. Compiling CPC codes with any realistic maximally entangling Clifford gate
	5.1. Compiling the [[4, 2, 2]] CPC detection with an ion trap native gate
	5.2. Requirements for CPC gates
	5.3. Circuit simplification with any maximally entangling Clifford gate

	6. The CPC code design process
	6.1. Stage 1: CPC code discovery
	6.2. Stage 2: Hardware optimisation
	6.3. Stage 3: Native gate compilation

	7. Outlook and conclusion
	Acknowledgements
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	References

