
Quantum Science and Technology

PAPER • OPEN ACCESS

Protecting quantum memories using coherent
parity check codes
To cite this article: Joschka Roffe et al 2018 Quantum Sci. Technol. 3 035010

View the article online for updates and enhancements.

Related content
Quantum error correction for beginners
Simon J Devitt, William J Munro and Kae
Nemoto

-

Quantum error correction in crossbar
architectures
Jonas Helsen, Mark Steudtner, Menno
Veldhorst et al.

-

Simulating the performance of a distance-
3 surface code in a linear ion trap
Colin J Trout, Muyuan Li, Mauricio
Gutiérrez et al.

-

This content was downloaded from IP address 129.234.39.154 on 07/06/2018 at 09:20

https://doi.org/10.1088/2058-9565/aac64e
http://iopscience.iop.org/article/10.1088/0034-4885/76/7/076001
http://iopscience.iop.org/article/10.1088/2058-9565/aab8b0
http://iopscience.iop.org/article/10.1088/2058-9565/aab8b0
http://iopscience.iop.org/article/10.1088/1367-2630/aab341
http://iopscience.iop.org/article/10.1088/1367-2630/aab341

QuantumSci. Technol. 3 (2018) 035010 https://doi.org/10.1088/2058-9565/aac64e

PAPER

Protecting quantummemories using coherent parity check codes

JoschkaRoffe , DavidHeadley, Nicholas Chancellor , DominicHorsman andVivKendon
JointQuantumCentre (JQC)Durham-Newcastle, Department of Physics, DurhamUniversity, South Road,DurhamDH1 3LE,United
Kingdom

E-mail: joshua.roffe@durham.ac.uk

Keywords: quantum computing, quantum error correction, quantummemory, IBMquantum experience, coherent parity check check
(CPC) codes, native gate compilation, automated code discovery

Abstract
Coherent parity check (CPC) codes are a new framework for the construction of quantumerror
correction codes that encodemultiple qubits per logical block. CPC codes have a canonical structure
involving successive rounds of bit and phase parity checks, supplemented by cross-checks tofix the
code distance. In this paper, we provide a detailed introduction toCPC codes using conventional
quantum circuit notation.We demonstrate the implementation of a CPC code on real hardware, by
designing a [[4, 2, 2]] detection code for the IBM5Q superconducting qubit device.Whilst the
individual gate-error rates on the IBMdevice are too high to realise a fault tolerant quantumdetection
code, our results show that the syndrome information from a full encode–decode cycle of the [[4, 2, 2]]
CPC code can be used to increase the output statefidelity by post-selection. Following this, we
generalise CPC codes to other quantum technologies by showing that their structure allows them to be
efficiently compiled using any experimentally realistic native two-qubit gate.We introduce a three-
stageCPCdesign process for the construction of hardware-optimised quantummemories. As a proof-
of-concept example, we apply our design process to an idealised linear seven-qubit ion trap. In the first
stage of the process, we use exhaustive searchmethods tofind a large set of [[7, 3, 3]] codes that saturate
the quantumHamming bound for seven qubits.We then optimise over the discovered set of codes to
meet the hardware and layout demands of the ion trap device.We also discuss how theCPCdesign
process will generalise to larger-scale codes and other qubit technologies.

1. Introduction

Quantumcomputing experiments have nowmatured to the extent towhichwe can realistically expect to see a
medium-scale circuit-model device within the next decade [1, 2]. It is hoped these near-future quantum
computers will be sufficient for simple algorithms, possibly beyondwhat can be solved classically. However, the
fulfilment of these aimswill usually depend upon the efficacy of the adopted quantum error correction (QEC)
code and the ease withwhich it can be compiled onto the chosen quantum technology platform.

Recently, Chancellor et al [3] introduced the coherent parity check (CPC) framework as a toolset for the
construction of a versatile new class ofQEC codes. CPC codes have a canonical structure that allows any
sequence of parity checks to be performed on a quantum register without risk of inducing decoherence. This is
in contrast tomost traditional QECprotocols, where the choice of parity checks is limited to stabilisers of the
encoded quantumdata. The freedom in the choice of parity checks therefore affords theCPC framework
multiple advantages over conventional QEC.

In the original CPCpaper [3], graphicalmethods based on the ZX calculus [4, 5]were used to give a
construction for re-purposing general classical error correction codes forQEC. This opens the possibility of
constructingQEC codes inspired by highly-optimised classical codes, such as low density parity check codes [6].
Furthermore, as the CPC formalism allows for complete freedom in the choice of parity checks, newCPC codes
can be discovered numerically, either via brute-force ormore sophisticated search techniques.

OPEN ACCESS

RECEIVED

20December 2017

REVISED

8May 2018

ACCEPTED FOR PUBLICATION

21May 2018

PUBLISHED

6 June 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018 IOPPublishing Ltd

https://doi.org/10.1088/2058-9565/aac64e
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
mailto:joshua.roffe@durham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aac64e&domain=pdf&date_stamp=2018-06-06
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aac64e&domain=pdf&date_stamp=2018-06-06
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

In this work, we demonstrate a further feature of CPC codeswith regards to their implementation on
physical hardware. In a theoretical setting, QEC codes are usually formulated in terms of idealised controlled-
not (CNOT) gates.However, the native two-qubit entangling gates provided by various qubit technologies are
usually of a different form.Consequently, one of the challenges in realising quantum codes is developing
efficientmethods bywhichQEC circuits can be realised using the native interaction of the chosen experiment.
Here, we show that the symmetric structure of CPC codes enables efficientmapping from the theoretical
representation of the code to the hardware-compiled. In particular we show that CPC codes can be implemented
with any realisticmaximally entangling Clifford native gate,meaning theywill be suitable for deployment across
a broad range of quantumhardware.

As a simplefirst example on real hardware, we implement a [[n=4, k=2, d=2]]CPCquantum code on
the IBMQfive-qubit superconducting device (wherewe have adopted the usual conventionwhereby n
represents the number of physical qubits, k the number of data qubits and d the code distance) [2].We
demonstrate that, for a simple known input state, a version of the [[4, 2, 2]] circuit can be compiled to
accommodate the connectivity constraints of the IBMchip. By analysing the experimental data using quantum
state tomography, we show that the [[4, 2, 2]] code’s syndrome information can be used to improve thefidelity of
the output state by post-selection.

There is currently no preferred qubit technology and thefirst quantum computers will likely be hybrid
devices that interfacemultiple qubit types [7, 8]. In order to realise their full potential, these hybrid schemeswill
require tailor-madeQEC strategies. To this end, we outline a three-stage CPCdesign process for the
construction of hardware-optimisedQECmemories.

As a proof-of-concept example, we demonstrate the use of theCPCdesign process in creating a quantum
code for a seven-qubit linear ion trap. In the first stage of this process, we show that exhaustive search techniques
can be used to discover a large set of [[7, 3, 3]]CPC codes. These [[7, 3, 3]] codes have the highest possible
information density for a non-degenerateQEC code, as dictated by the quantumHamming bound [9].

The second stage of the code design process involves implementing strategies to select the best CPC code
from the discovered set. For the purposes of the ion trap device, we seek to identify the circuits inwhich the total
two-qubit gate count isminimised. This involves consideration of the additional SWAP interactions thatmust be
introduced tomediate interactions between spatially separated qubits.

Thefinal hardware optimisationwe consider in theCPCdesign process is compilation of CPC codeswith a
device’s native two-qubit gate. For the ion trap under consideration, we assume the native interaction is of the
formof amaximally entangling symmetrised phase (SP) gate [10]. A CNOT interaction can be implemented from
an SP gate, but this requires addition of local single-qubit gates which increases the code overhead. As an
example of the native gate compilation, we demonstrate that formany of the [[7, 3, 3]]CPC circuits, constructive
simplifications can be applied to reduce the total number of local corrections required.

The [[7, 3, 3]]CPC codes outlined in this paper should be adaptable tomany existing ion trap experiments
[11–14]. The ability to encode three data qubits in a seven-qubit trapwouldmark an improvement over the
currentmost widely adopted protocol for quantummemories, the surface code, which requires aminimumof
13 qubits per encoded data qubit [15, 16]. There have beenmany proposals for quantum codes promising high
encoding densities [17–21]. TheCPC construction provides a framework to allow for the automated discovery
of high-density codes which are optimised for the requirements of the chosen experiment. Note, however, that
the specificCPC code implementations presented in this work are not yet fault tolerant and thatmaking them
suchwill result in additional overhead. As this work covers quantummemories, we do not include discussion of
encoded computation. Steps towards developing fault tolerant CPC gates are outlined in [3], and this remains an
interesting area for futurework.

The paper is structured as follows. In section 2, we give a detailed introduction to theCPC framework, and
explain how it can be used to construct full QEC codes. This is followed, in section 3, by the presentation of
experimental results obtained by running a simple CPCdetection code on the IBMQquantum computer. In
section 4, we provide an overview of the ion trap hardware for quantum computing. In section 5, we
demonstrate that the fundamental structure of CPC codes allow them to be efficiently compiled using awide
range of native gates. Section 6 describes theCPCdesign process and how it can be used to construct hardware-
optimised [[7, 3, 3]] codes for the ion trap device. Finally, in section 7, we discuss possible improvements to the
CPCdesign process and how itmight be applied in the discovery of larger quantum codes.

2. CPC codes

The signature feature of CPC codes is the ability to implementQEC routines with any sequence of parity checks.
This is possible due to a fail-safe code structure that ensures syndromemeasurements cannot decohere the
register. This freedom in the choice of parity checks gives theCPC frameworkmultiple advantages over

2

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

traditionalQEC techniques. First, it is possible to directly translate the parity checking sequences from classical
codes into aCPC code, which allows the derivation of denseQEC codes that encodemultiple data qubits per
logical block. Second, theCPC framework does not require quantumdata to be initially redundantly encoded.
Third, the space of possible CPC codes can be searched numerically,meaning code discovery can be automated.

In this section, we outline the tools of theCPC framework, starting with the fundamental CPC gadget. This
gadget has a symmetric encode-error-decode structure that amounts to an extendedmeasurement of the identity
operator.We prove that the CPC gadget is inherently non-disturbing and can be implemented using any parity
checking sequence. Following this, we demonstrate howmultiple CPCgadgets can be combined to formQEC
codes. Finally, we introduce the automated search techniques that will be used in theCPC code design process.

2.1. Traditional QEC
Before beginning our presentation of theCPC framework, we briefly outline the key concepts and shortcomings
of conventional stabiliserQEC codes. This will provide a point-of-reference withwhich to compareCPC codes.

The circuit infigure 1 shows the basic structure of a traditional stabiliser code. A register of data qubits, Dyñ∣ ,
is entangledwith a number of blank redundancy qubits, 0 Rñ∣ , via an encoding operation to create a logical qubit

Lyñ∣ . At this stage, the data previously stored solely in Dyñ∣ is distributed across the combinedHilbert space of
data and redundancy qubits [22].

Once the quantum information has been encoded as a logical qubit, errors can be detected bymaking parity
measurements. In practice, this is achieved via the construction shown to the right of the circuit infigure 1. A
parity check  is applied to the logical qubit, and the result copied to an auxillary qubitA, which is prepared in
the conjugate basis byHadamard gatesH. Note that a parity check  is a product of Pauli operators and has
eigenvalues±1 (for the definition of the Pauli group, consult appendix A). The auxillary qubit is thenmeasured
to yield a syndrome. For awell chosen parity check, this syndromemeasurement provides information about
whether the logical qubit has been subject to an error.

It has been shown thatQEC codes based on the above construction can achieve arbitrarily low logical error
rates, provided certain threshold conditions aremet by qubits at the physical level [23]. However, constructing
efficient codes with this approach is difficult owing to limitations on the type of parity check that can
implemented. In order to ensure that the syndromemeasurement of qubitA does not decohere the encoded
quantum information, the parity checkmust stabilise the logical qubit. Formally [24], we canwrite this
requirement as follows

, 1 Î ()

where the stabiliser K K, ,i n = á ¼ ñ is a sub-group of the Pauli group  defined by

K K K K K i j1 , , 0, , , , 2i i L L i j i  y y= ñ = + ñ = ¹ - " Î{ ∣ ∣ ()∣ [] ()} ()

whereK{i, j} are the elements of the stabiliser group and Lyñ∣ is the logical codeword. The challenges of
constructing traditional stabiliser quantum codes are therefore twofold. First, an appropriate encoding
operationmust be built to create the logical qubit. Second, a compatible set of stabiliser parity checks needs to be
discovered so that errors can be checkedwithout compromising the encoded quantumdata. As a result of these
challenges, themajority of existingQEC codes are limited to the simplest case inwhich only a single qubit is
encoded per logical block. Such [[n, 1, d]] codes can be considered quantumanalogues of themost basic classical
repetition codes, and incur high overheads in terms of the number of redundancy qubits necessary to achieve the
desired error suppression rate.

Figure 1.Circuit illustrating the structure of a traditional stabiliser code. A quantumdata register ...D d d dn1 2y y y yñ = ñ∣ ∣ is entangled
with redundancy qubits 0 0 0 ... 0R r r rm1 2ñ = ñ∣ ∣ via an encoding operation to create a logical qubit Lyñ∣ . After encoding, a parity check 
can be performed on the register to determinewhether an error has occurred. The result of this parity check ismeasured via an
auxillary qubitA, which is prepared in the conjugate basis byHadamard gatesH. The slashedwires denote that Dyñ∣ and 0 Rñ∣ are
multi-qubit registers. Themeasurement operator at the end of thewire for qubitA represents ameasurement in the computational
basis.

3

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

2.2. The fundamental CPC gadget
The fundamental CPC gadget, shown infigure 2, is the building block uponwhich all CPC codes are based [3].
The basic premise behind theCPC gadget is that the parity of the quantum register is never explicitlymeasured.
Instead, parity information is stored coherently as quantumdata and compared over time. This ismade possible
by the gadget’s symmetric encode-error-decode structure.

TheCPC gadget takes amulti-qubit register Dyñ∣ and a parity qubit p, prepared in the state 0 pñ∣ , as its input.
The action of the encode stage of the gadget, labelledUenc infigure 2, is to apply the parity operator  to the
register and record the outcome in parity qubit p. Rather thanmeasuring the syndrome immediately, the parity
qubit is kept coherent during await stage inwhich the register is potentially subject to an errorE. Note thatwe
are not yet considering errors that occur on the parity qubit. In section 2.5, we outline howmultiple CPCgadgets
can be combined to allow for error detection on the combined systemof register and parity qubits.

Following thewait stage, the parity qubit is disentangled from the register via a decoder operation, labelled
Udec infigure 2, which is the unitary inverse of the encoder. The encoder applies the parity operator  to the
register and the decoder applies its inverse †. Thefinal syndromemeasurement of parity qubit p tells us
whether the results of these two parity checks differ. For an appropriately chosen parity check, this syndrome
information can indicate whether an error occurred during thewait stage.

To prove its error detection capabilities, it is convenient to rearrange the circuit for theCPC gadget into the
form shown infigure 3. This rewrite is achieved bymoving the error operator E through the parity check
operator  . Both the error gate and the parity check gate are Pauli group operations. A property of the Pauli
group is that its elements either commute or anti-commutewith one another. Consequently, the effect of
pushing the error operator to the front of the circuit is to introduce a global phase E, F() on the register which
is controlled by the parity qubit. This global phase is dependent upon both the parity check and the error
operator, and is defined as follows,

Figure 2.The fundamental CPC gadget illustrating the symmetric encode-error-decode structure. The parity qubit p is prepared in the
conjugate basis byHadamard gates,H. Encode stage: a parity check  , controlled by the parity qubit, is applied to themulti-qubit
register ...D d d dn1 2y y y yñ = ñ∣ ∣ and the result is copied to the parity qubit. The parity qubit is kept coherent throughout thewait stage,
duringwhich an errorE can occur on the register. Decode stage: the register is disentangled from the parity qubit via the application of
the unitary inverse of thefirst parity check †. The final syndromemeasurement of qubit p tells us whether the results of the two
parity checks differ. For appropriately chosen parity checks, this information can be used to detect errors. The slashedwire denotes
that Dyñ∣ is amulti-qubit register.

Figure 3.To prove the non-disturbing nature of the fundamental CPC gadget, it is useful to rearrange the circuit bymoving the error
operator E through thefirst parity check  . Following this rewrite, the controlled parity check operators are adjacent and cancel. In
this form, the CPCgadget can be viewed as ameasurement of the E, DF = () operator on the data register. The value of thefinal
syndromemeasurement depends only uponwhether E commutes with  . The slashedwire denotes that Dyñ∣ is amulti-qubit register.

4

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

E
E

E
,

1 , if , 0

1 , if , 0,
3D

D









F =

+ =
- ¹

⎧⎨⎩() () []
() []

()

where D is the identity operator on the data register and the commutator is given by E E E, • •  = -[] .
Note that, after the rewrite, the controlled parity check operators are adjacent to each other and cancel. The full
mathematical action of theCPC circuitUCPC, can nowbe expressed as follows,

U E E E E0 , 0 , 1 . 4D p D p D pCPC   y y yñ ñ = + F ñ ñ + - F ñ ñ∣ ∣ (()) ∣ ∣ (()) ∣ ∣ ()

Using the definition of the global phase operator E, F() given in equation (3), the output of the CPCgadget
simplifies to

U
E E

E E
0

0 , if , 0

1 , if , 0.
5D p

D p

D p
CPC




y

y
y

ñ ñ =
ñ ñ =

ñ ñ ¹⎪

⎧⎨
⎩∣ ∣

∣ ∣ []
∣ ∣ []

()

From the abovewe can see that eventual syndromemeasurement of parity qubit p depends only uponwhether
 commutes withE. If no error occurs during thewait stage, then E D= and the syndrome ismeasured
deterministically as ‘0’. Likewise, if an error does occur, but it commutes with the parity operator, E, 0 =[] ,
then the syndrome is also ‘0’. Finally, if the error anti-commutes with the parity check, E P, 0¹[] , then the
syndrome ismeasured as ‘1’. A quantum error detection protocol can therefore be constructed from theCPC
gadget by selecting a parity check that anti-commutes with the error to be identified. In the following
subsections, wewill show that CPC gadgets can be combined to create full QEC codeswhich can detect and
localisemultiple error types simultaneously.

TheCPC gadget can be thought of as an extendedmeasurement of the D operator on the data register,
where the sign depends upon the commutation relation between  andE. As the D operator is trivially non-
disturbing for all quantum states, there is no need for CPC codes to encode quantum information as logical
qubits. Furthermore, it is clear from the output of the CPCgadget in equation (5), that the quantumdata register
is completely disentangled from the parity qubit prior to syndromemeasurement. As a result, the only
requirement on the parity checks is that they are Pauli group operators

. 6 Î ()

Recall from equation (1), that for traditional codes, the choice of parity checks is limited to the set of stabilisers of
the encoded logical qubits. TheCPC framework lifts this restriction.

It should be noted that, as the encoders and decoders consists entirely of Clifford operations, CPC codes
form a class of stabiliser codes. A detailed explanation of the correspondence betweenCPC codes and stabiliser
codes can be found inChancellor et al [3]. The specific strength of theCPC framework lies in the fact that the
symmetric encode-error-decode structure provides a generalmethod for creating a stabiliser code using any
sequence of parity checks.

2.3. ACPCgadget for detecting bitflips
Wenowprovide specific examples of CPC gadgets to detect bit flips and phase flips on a two-qubit data register

ABy ñ∣ . Following this, we describe how the two types of CPCgadget can be combined to create a [[4, 2, 2]]
detection code.

In order to design aCPC gadget that will detect single bit flips on the register ABy ñ∣ , we need a parity check
that anti-commutes with the errors in the set X X,X A B = { }. Setting Z ZAB A B = satisfies this requirement to
give the bit-flip CPC gadget depicted infigure 4.Note thatX andZ are Pauli operators which are defined in
appendix A. It is useful to rewrite the circuit infigure 4 in terms of CNOT gates using the gate substitution defined
by the followingmatrix equation

H H• • , 7CZ CNOTq
q

q q q
q

q q
2
1

1 2 2
1

1 2
 = Ä Ä() () ()

where CZ is a controlled-Z gate and q1 and q2 are the input qubits. The resultant circuit is shown infigure 5. In
this form, the operation of theCPC gadget can easily be visualised by considering the propagation of errors
through the decoder. A CNOT gate will propagate a bit-flip error from the control qubit q1 to the target q2 as
follows,

X X X• • . 8CNOT CNOTq
q

q q q
q

q q
2
1

1 2 2
1

1 2
Ä = Ä() ()

Implementing the above propagation rule, the red and blue arrows infigure 5 depict the possible detection
pathways for bit-errors from thewait stage to the parity check qubit.

2.4. ACPCgadget for detecting phaseflips
ACPCgadget that detects errors from the set Z Z,Z A B = { } can be obtained using a parity check of the form

X XAB A B = . Figure 6 depicts the phase-flip CPC gadget expressed in terms of the conjugate-propagator gate

5

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

q
q

2
1L given by

H H• • . 9CNOTq
q

q q q
q

q q2
1

1 2 1
2

1 2
 L = Ä Ä() () ()

The conjugate-propagator gate is a symmetric two-qubit operatorwith the following propagation rule forZ
errors

Z Z X• • . 10q
q

q q q
q

q q2
1

1 2 2
1

1 2
L Ä L  Ä() ()

Phase-flip errors in thewait stage are copied to the parity qubit via a conjugate-propagator gate which converts
theZ error to anX error that can be detected in the computational basis. Figure 6 depicts the possible error
propagation pathways for errors in the phase-flip CPC gadget.

Figure 4.ACPC gadget for detecting single bitflips on a two-qubit data register ABy ñ∣ . The gadget returns a ‘0’ syndromemeasurement
if there is no error and a ‘1’ if a bitflip occurs during thewait stage.

Figure 5.Right: the bit-flip CPC gadget rewritten using the circuit rewrite rule to the left. Expressing the gadget in this form allows for
easy visualisation of the propagation of errors from thewait stage to the parity checkmeasurement. The red and blue arrows show the
two possible bit-flip propagation pathways.

Figure 6.Aphase-flip CPC gadget. Phaseflips on the register A By y ñ∣ can be detected by setting X XA B = . In the above-right, we have
expressed the phase-flip gadget in terms of conjugate-propagator gates, which are defined in the box to the left. The conjugate-
propagator gates are symmetric gates which are designed to copyZ errors fromone qubit to another. The red and blue arrows depict
the possible propagation pathways forZ errors from thewait stage to the parity checkmeasurement.

6

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

2.5. The [[4, 2, 2]] error detection code
Wenow showhow the bit-flip andphase-flipCPCgadgets can be combined to forma full quantumerror detection
code. Figure 7 shows theCPCcircuit formedby combining the bit-flip gadgetwith thephase-flip gadget. By
considering the error propagation rules outlined in theprevious subsections, it can be verified that this circuitwill
detect errorswhich occur on the register qubits ABy ñ∣ , but not errorswhich occur the parity qubits p1 and p2.We
nowshowhow the code canbemodified to enable error detection across all four of the qubits.

The blue arrows infigure 7 show that a phase-flip error on the first parity qubit p1 will propagate errors to the
register in an undetectable way. Fortunately, a detection pathway can be created by applying a conjugate-
propagator gate between the parity qubits at the end of the decoder (fromnowon, wewill refer to these
additional gates as ‘cross-checks’). As shown by the orange arrows infigure 8, this cross-check propagates the
phase-error to the parity check qubit p2 and converts it to anX error that can be picked up by a computational
basismeasurement.With the addition of the cross-check, the circuit becomes a fully functional [[4, 2, 2]]
quantum error detection code. The single-qubit error syndromes are given in table 1, and demonstrate the code
can detect the occurrence ofX,Y andZ errors on any of the 4 qubits.

As the [[4, 2, 2]] code is a detection code, the syndromes do not give us enough information to pinpoint
which qubit the error occurred on. The construction of full error correctingCPC codes, that can both identify
and localise errors, will be outlined in the next section.

2.6. The canonical formofCPC codes
The [[4, 2, 2]] quantum error detection code illustrates the basic principles behind the operation of aCPC code.
The encoder is constructed by combining a bit-flip CPC gadget with a phase-flip CPCgadget. Under this
canonical ordering, errors on the parity qubits are identifiable via the addition of the cross-check operators. A
compact way of representing CPC codes is in terms of adjacencymatrices which describe the connectivity

Figure 7.The circuit formed by combining the bit-flip CPCgadget to the phase-flip CPC gadget. This circuit can detect bothX andZ
errors on qubitsA,B and p2. However, a phase-flip error on qubit p1 will propagate errors to the register without triggering a
syndrome, as shown by the blue arrows. This propagation loophole can be closed through the addition of cross-check operators.

Figure 8.The [[4, 4, 2]]CPCquantumdetection code, formed by combining the bit-flip and phase-flip gadgets. The addition of cross-
check operators ensures that errors do not propagate from the parity qubits to the register in an undetectable way.

7

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

between the register and parity qubits. For example, the adjacencymatrices for the [[4, 2, 2]] code are

ð11Þ

wheremb represents the bit-checks,mp thephase-checks andmc the cross-checks. For thebit-flip andphase-flip
adjacencymatrices,mb andmp, the rows refer to the data qubits and the columns the parity qubits. Looking at the
bit-flipmatrix, we can see that both register qubits connect to parity qubit p1 via CNOT gates in accordancewith the
circuit infigure 8. Likewise,matrixmP tells us that both register qubits are connected to parity qubit p2 via
conjugate-propagator gates. Finally, frommatrixmc, we see that there is a single cross-checkbetweenparity qubits
p1 and p2. The cross-checks result in amatrix that is always symmetric.We follow [3] in representing this as an
upper triangularmatrix, so that thenumber ofnon-zero entries corresponds to the number of two-qubit gates.

We are now in a position to extend theCPC framework to enable the description ofmore general codes. The
canonical formof an [[n, k, d]]CPC code is shown infigure 9. Such codes have k data qubits,

...D D D Dk1 2
y y y yñ = ñ∣ ∣ , andm=n−k parity qubits, 0 0 0 ... 0P p p pm1 2

ñ = ñ∣ ∣ . As with the detection schemes
described previously, the encode stage of a general CPC code involves successive rounds of cross-checks, bit-
checks and then phase-checks. The sequence of gates within each stage of the encoder can be compactly
described in terms of adjacencymatrices of the form

ð12Þ

Figure 9.The canonical formofCPC codes, showing the symmetric encode-error-decode structure. In an [[n, k, d]]CPCcode the
qubits are split into twodistinct types: k data qubits, ...D D D Dk1 2y y y yñ = ñ∣ ∣ , and n−k parity qubits, 0 0 0 ... 0P p p pn k1 2

ñ = ñ-∣ ∣ . The
encoder involves successive rounds of cross-checks (green), bit-checks (blue) and phase-checks (red). The decoder is simply the
unitary inverse of the encoder.

Table 1.The syndrome table for the [[4, 2, 2]]
quantum error detection code. If no errors
occur, the code returns a ‘00’ syndrome. If a
singleX, Y or Z error occurs on any of the four
qubits, a non-zero syndrome is returned.

Error Syndrome

I 0 0p p1 2

X X X Z, , ,A B p p1 2
1 0p p1 2

Z Z Z X, , ,A B p p1 2
0 1p p1 2

Y Y Y Y, , ,A B p p1 2
1 1p p1 2

8

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

where bxy, hxy, cxy are binary values. Asmentioned previously, for simplicity, the cross-checkmatrixmc is always
represented as an upper triangularmatrix.

2.7. Numerical CPC code discovery
Wehave nowoutlined the canonical structure of CPC codes, and shownhow they can be represented in terms of
three adjacencymatrices. TheCPC framework removes the need to start out by redundantly encoding quantum
data, and allowsQECprotocols to be implementedwith any parity check. As such, the CPC framework
essentially reduces the task of derivingQEC codes to a classical decoding problem.

Anew [[n, k, d=?]]CPCcircuit canbe generated simply by selecting a random instance of the adjacency
matrices for ann-qubit codewith kdata qubits. The symmetric encode-error-decode structure of theCPCcodewill
ensure that the randomsequence of parity checks this set of adjacencymatrices represents doesnot decohere the
register. Theonly task necessary to verifywhether the circuit represents aworkingCPCcode is tomeasure the code
distanced. This can bedone by testing the circuitswith all of the errors in the chosen errormodel. If each error
produces a unique syndrome, then the code distance isd�3, and the circuit represents aworkingCPCcode.

In this paperwe only consider quantummemories. As a result, the codes under consideration areClifford
circuits. The code distance can therefore be efficiently verified for small-distance codes using a stabiliser
simulator such as [25, 26]. Alternatively, we have developed an algorithm specifically for calculating the
syndromes of CPC codes, which is based on error propagation rules outlined in sections 2.3 and 2.4. This
algorithm is described in appendix C, and can be implemented in less than 200 lines of Python code.

3. Implementation of the [[4, 2, 2]] code on the IBM5Qdevice

As a simplefirst experimental example of a CPC code, we now consider the compilation and execution of a [[4, 2,
2]] quantumdetection code on a superconducting qubit device. The IBM5Q is a small-scale quantum
computer, built andmaintained by IBMQuantum [2]. The device hasfive programmable superconducting
transmon qubits, and is accessible to the public via the Internet. In [27], the IBM5Qwas shown to allow fault
tolerant preparation of codewords for a [[4, 2, 2]] code. It has also been demonstrated, in [28], that certain [[4, 2,
2]] encoded operations on the IBM5Qhave a lower error rate than the equivalent operation on the device’s raw
qubits. Here, we implement a complete encode–decode cycle of a [[4, 2, 2]]CPCquantummemory using the
IBM5Q.Our aim is to demonstrate that the fidelity of the code’s output state can be improved by post-selection.

3.1. Experimental overview and conditions for success
Ourexperimenton the IBM5Qencodes a single input state 0AB A By ñ = + ñ∣ ∣ using a [[4, 2, 2]]CPCquantummemory
of the typedescribed in section2.5.The 0A B+ ñ∣ state is an easy-to-preparequantumstate that is susceptible tobothbit-
andphase-flip errors, and thereforeprovides a suitable test of the [[4, 2, 2]]CPCcode as aquantummemory.

Ultimately, the condition for success for a quantum code is to test whether the encoded protocol has a lower
logical error rate than the equivalent circuit before encoding. In the case of quantummemory, the circuit that is
encoded is simply an extended identity operation. The usefulness of the [[4, 2, 2]] code could therefore be
assessed by comparing thefidelity of the encoded output to the equivalent output of an unprotected two-qubit
data register. However, the gate-error rates on the IBM5Qhardware are too high for such a comparison to yield
a positive result. This problem is compounded by the fact that the IBMhardware limits the experiment to a
single encode–decode cycle,meaning certain regions of the [[4, 2, 2]] circuit—before the encoder and after the
decoder—are left unprotected. Consequently, the aim of the experiment presented here is restricted to
demonstrating that, whilst not suppressing the logical error rate, the [[4, 2, 2]]CPC code does detect errors.We
nowdescribe themethod bywhich this is achieved.

The compiled [[4, 2, 2]]CPC code is runmultiple timeswith the input state 0AB A By ñ = + ñ∣ ∣ on the IBM5Q
hardware. At the end of eachCPC code cycle, the parity qubits aremeasured to provide a syndrome designed to
indicate if an error has occurred. An approximation to the output state of the register is reconstructed from the
experimental data using quantum state tomography. The quality of this output is quantified by calculating its
fidelity relative to the input state 0A B+ ñ∣ . In this experiment we compare the outputfidelity of the [[4, 2, 2]]
protocol before and after post-selection. In the former, the syndrome information is ignored, whereas in the
latter it is used to determinewhich experimental runs are discarded during post-selection. The condition for
success is that the post-selection should improve the outputfidelity. If this is the case, it will demonstrate that the
[[4, 2, 2]]CPC code is detecting errors and produces useful syndrome information.

3.2. Compiling a [[4, 2, 2]]CPC circuit onto the IBM5Q
Our experiment is run on the IBMQX4 version of the IBM5Q, the technical details for which can be found in
[29]. Figure 10 depicts the ‘bow tie’ layout of the chip. The arrows represent the allowed CNOT operations

9

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

between qubits. The direction of the arrow indicates the preferred CNOT direction, but the operation can be
reversed via the circuit transformation shown infigure 11(a).

The [[4, 2, 2]] code, as depicted infigure 8, has two data qubits {A,B} and two parity qubits {p1, p2}. In this
experiment, the code qubits aremapped onto the physical qubits of the IBMQX4 device as follows:
A Q B Q p Q p Q, , ,3 0 1 2 2 1   { }. The input state becomes 0AB Q Q3 0

y ñ = +ñ Ä ñ∣ ∣ ∣ , and the resultant
circuit is shown infigure 12(a). The two conjugate-propagator gatesmarked in red are not possible on the
IBMQX4, as there is no connectivity between qubitsQ3 andQ1 (see figure 10). The [[4, 2, 2]]CPC circuitmust
therefore bemodified to accommodate this hardware constraint.

Thefirst step in compiling the [[4, 2, 2]] circuit for the IBMQX4 is to rearrange the gates into the order
shown infigure 12(b). This is a departure from the canonical formofCPC codes outlined in section 2.6.
However, it can easily be checked that themodified circuit remains a functional [[4, 2, 2]]CPC code capable of
detecting singleX andZ errors on any of the qubits during thewait-stage.

In the rearranged formof the circuit in figure 12(b), andwhen the input state is 0AB Q Q3 0
y ñ = +ñ Ä ñ∣ ∣ ∣ , it

can be seen that the action of the gates highlighted in green is the identity. The green gates can therefore be
omitted from the circuit without affecting the function of the quantummemory. Following this simplification,
the only operation that remains prohibited by the IMBQX4ʼs connectivity constraints is the red conjugate-
propagator gate betweenQ1 andQ3 in the decoder. Oneway of resolving this problem is to perform a SWAP

operation betweenQ2 andQ1, as shown infigure 12(c). The SWAP gate exchanges the positions of the p1 and p2
parity check qubits, enabling the red conjugate-propagator gate to be performed via a nearest-neighbour
interaction. A SWAP gate is achieved via the application of three CNOT gates (see figure 11(c)), and is therefore an
expensive operation that should be used sparingly. In section 6, we explore how theCPC code design process can
be used tominimise the SWAP gate countwhen compiling larger codes onto quantumhardware.

3.3. A note on fault tolerance for the [[4, 2, 2]] circuit
So far, we have considered a simplifiedmodel of CPC code operation inwhich it is assumed errors only occur
during thewait-stage between the encoder and the decoder. However, we have observed that the error rates for
CNOT operations and readout on the IBMQX4 are of the order 10−2 (daily calibration data can be obtained from
the IBMQwebsite [2]). This realisticallymeans that any quantum codemust be designed to detect errors that
occur at any point in the circuit. To this end,figure 12(d) shows the IMBQX4-compiled [[4, 2, 2]] circuit under a
more general errormodel.

Fault tolerant circuit construction ordinarily necessitates the introduction of additional qubits [30–32].
However, in this particular instance of the [[4, 2, 2]]CPC codewith a known 0Q Q3 0

+ñ Ä ñ∣ ∣ input, it can be

Figure 10.The connectivitymap of the IBMQX4 version of the IBM5Qquantum computer illustrating the ‘bow tie’ layout. The
arrows indicate the allowed CNOT operations and their preferred directions.

Figure 11. (a)The direction of a CNOT operation on the IBMQX4 can be reversed via the addition ofHadamard gates to the inputs and
outputs. (b)The conjugate-propagator gate expressed in terms of a CNOT gate. (c)Realisation of a SWAP gate using three CNOT

operations.

10

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

verified that a single fault at any of the locationsmarked onfigure 12(d)will not propagate amulti-qubit error to
the register without triggering a syndrome. The circuit can therefore be considered to have been hardened
against single-qubit errors in the encode and decode stages of the circuit. It should be noted, however, that this
does not extend the circuit to full fault tolerancewhen implemented on the IBMQX4 chip. State preparation and
measurement errors are not accounted for, nor is the [[4, 2, 2]] code capable of detecting correlated two-qubit
errors thatmight occur after a CNOT gate. Another issue is that the circuit allows certain single-qubit errors to
propagate to the register in an undetectable way. It is not currently possible tomeasure, then reset a qubit on the
IBMQX4 via the public API. As a result, our implementation is restricted to a single encode–decode cycle,
meaning the undetected single-qubit errors will reduce the outputfidelity. However, as outlined in [3], CPC
codes can be expressed in terms of stabiliser codes. Adopting this approach allowsCPC codes to be implemented

Figure 12. Steps for compiling the [[4, 2, 2]]CPCquantummemory onto the IBMQX4 chip. (a)The [[4, 2, 2]]CPC codewith a
0AB A By ñ = + ñ∣ ∣ inputmapped onto the IMBQX4 chip. The red conjugate-propagator gates are not possible according to the

connectivitymap for the IBMQX4 shown infigure 10. (b)Amodified version of the [[4, 2, 2]] circuit inwhich the order of gates in the
encoder and decoder has be rearranged. In this new form, the circuit can be simplified by noting that the action of the gatesmarked in
green is the identity. (c)ASWAP gate can be added to the [[4, 2, 2]] circuit to exchange the p1 and p2 parity qubits. This allows the
‘illegal’ operationmarked in red in the decoder to be performed via a nearest-neighbour interaction. (d)When running the [[4, 2, 2]]
code on a real device, it can no longer be assumed that errors occur only in thewait-stage between the encoder and decoder. For the
[[4, 2, 2]] circuit in question, a single-qubit faultE after any gatewill not propagate amulti-qubit error to the register without triggering
a syndrome.

11

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

using existing syndrome extraction techniques, and enables errors to be decoded overmultiple cycles. Assuming
access to hardware that allows qubit reset, CPC codes implemented in this waywould be tolerant of the single-
qubit errors that propagate to the register.

3.4. Experimental data reconstructionmethods
The IBMQuantum Information Software Kit (QISKIT) [33]was used to prepare the [[4, 2, 2]] experiment for
quantum state tomography on the output qubitsQ0 andQ3. QISKIT quantum tomography tools were used to
create a set of nine circuits from the original [[4, 2, 2]] circuit (depicted infigure 12(c)), each of whichwas
designed tomeasure the output qubitsQ0 andQ3 in a differentmeasurement basis from the list {XX,XY,XZ,YX,
YY,YZ,ZX,ZY,ZZ}. These quantum tomography circuits were then runmultiple times to create a distribution
of results that could be used reconstruct an approximation to the densitymatrix of the output state. TheQISKIT
method used for state reconstruction from the experimental data was the fastmaximum likelihoodmethod for
quantum tomography, a description of which can be found in [34].

The quantum tomography circuits for the [[4, 2, 2]]memorywere run in batches of 8192 shots. After each
batch, theQISKITmaximum likelihoodmethodwas used to reconstruct the densitymatrix ρdd of the directly-
decoded output before post-selection. The syndrome qubits were then inspected to determinewhich of the shots
in the batch should be discarded during post-selection. State reconstructionwas then performed again on the
reduced set to obtain a post-selected densitymatrix ρps. The quality of the directly-decoded and post-selected

output state for each batchwas quantified by calculating thefidelity, F Tr 1 2 1 2 2r r sr=() ([]) , whereσ is the
target densitymatrix. For the chosen input state 0AB Q Q3 0

y ñ = +ñ Ä ñ∣ ∣ ∣ , the target densitymatrix is given by

0 0

0 0 0 0

0 0

0 0 0 0

. 13

1

2

1

2

1

2

1

2

s =

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
()

The purity of the densitymatrices, defined by P Tr 2r r=() [], was also calculated to provide a coherence
measure for the output states.

3.5. Experimental results
The [[4, 2, 2]]CPCquantummemory circuit, depicted infigure 12(c), was run on the IBMQX4device between
the 25th and 27thNovember 2017. A summary of the experimental results for state purity, fidelity and yield can
be found in table 2. Error bars were calculated as one standard deviation of a single run value consisting of 8192
experimental executions of the quantum tomography circuit set. The standard error of themean over all 154
runswas too small to be visible on our plots. Calibration data for the device on each of the three days of the
experiment can be found in appendixD.

A total of 154 batches of 8192 shots were run over the course of the experiment. Figure 13 shows a plot of the
real components of the elements of ddr̄ and psr̄ averaged across the 154 batches. It is immediately clear that the
post-selected densitymatrix psr̄ better preserves the four target elements, whichwe identify as the non-zero
elements in the target stateσ given by equation (13). The bar-chart infigure 14 shows these target elements in
isolation, fromwhich it is apparent that post-selection has the biggest impact in preserving the strength of the
off-diagonal coherences. This can also be seenwhen comparing the purity values, shown in table 2, for ddr̄ and

psr̄ . The directly-decoded densitymatrix ddr̄ has a purity of P 0.52 0.02ddr = (¯) , implying it represents a near-
fullymixed classical ensemblewith a purity of 0.5. In contrast, the post-selected densitymatrix psr̄ has a purity of
P 0.74 0.03psr = (¯) , suggesting it has undergone only partial decoherence.

Table 2.Qualitymetrics for the reconstructed densitymatrices before and
after post-selection. Thefidelity is calculated relative to the target density
matrixσwhich is defined in equation (13). The yield is the proportion of
shots per batch that are retained during the post-selection process. The
errors are calculated as one standard deviation of a single run value
consisting of 8192 experimental shots.

Purity, P r() Fidelity, F(ρ) Yield

Before post-selection, ddr̄ 0.52±0.02 0.62±0.03 100%

After post-selection, psr̄ 0.74±0.03 0.75±0.04 (54±2)%

no. runs: 154 batches of 8192 shots

12

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

Thefidelities of ddr̄ and psr̄ relative to the target state are F 0.62 0.03ddr = (¯) and F 0.75 0.04psr = (¯)
respectively. Thefidelity of the post-selected state is therefore greater than the directly-decoded state with a
confidence level of three standard deviations. From this we can conclude that the [[4, 2, 2]] quantummemory
produces useful syndrome information for protecting a 0AB A By ñ = + ñ∣ ∣ state. A consideration, however, is that
the average yield (the proportion of results retained after post-selection)was (54±2)%averaged over the 154
batches.

Figure 13.Plot of the real components of the densitymatrices ddr̄ and psr̄ corresponding to the experimental output state before and
after post-selection.

Figure 14.Plot of the target elements for ρdd and ρps. The target elements are the non-zero elements in the densitymatrixσ given in
equation (13).

13

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

3.6. Summary of IBM5Qexperiment
The results of our experiment with the IBMQX4device show that the syndrome information produced by a
[[4, 2, 2]]CPCquantummemory can be used to improve the fidelity and purity of the code output. The [[4, 2, 2]]
CPC code is one the simplest quantummemories, and as such, it was possible to compile the circuit for the
IBMQX4device by inspection. In the following sections, we outline aCPCdesign process that provides
automatedmethods for compiling and optimisingmore complex CPC codes onto quantumhardware. As an
example, we demonstrate the utility of the CPCdesign process in the compilation of a customquantummemory
for an idealised seven-qubit ion trap device.

4.Overview of ion trap hardware for quantumcomputing

Ion traps are considered one the leading platforms for quantum computation. Ion-based qubits have long
coherence times, and can be read outwith near 100% efficiency [35]. It has also been proposed thatmultiple ion
trap cells could be networked via auxillary qubit systems to create larger hybrid quantum computers [7]. In such
a hybrid networked architecture, goodQEC codeswill be vital to ensure the quantumdata in each ion trap is
protected.

In this paper, we provide an illustrative example of how theCPCdesign process can be used to create a
bespokeQEC code for a specific ion trap device.We consider a linear ion trapwith seven application qubits. This
scheme has been chosen because several existing ion trap experiments have a similar size and layout [11–14].

We assume that arbitrary single-qubit operations can be performed on any of the ions in the register. It is in
principle possible to implement interactions between spatially separated qubits, for example, by exploiting the
collective vibrationalmodes of the ions as a quantumbus [36]. In practice, however, the fidelity of two-qubit
interactions decreases with separation [37]. For this reason, in our idealisedmodel ion trap, two-qubit gates are
limited to nearest-neighbour interactions.

Under nearest-neighbour constraints, interactions between spatially separated qubits are achieved by
performing SWAP operations tomove quantum information around the trap. These SWAP operations can be
realised either by physically shuttling qubits between zones of the trap [38], or by synthesising SWAP gates from
CNOT interactions [37]. In theCPCdesign process, we showhowCPC codes can be compiledwith SWAP gates to
allow for implementationwith only nearest-neighbour interactions.

We assume that our idealised ion trap has a two-qubit entangling gate that gives rise to a unitary of the form

U Z Z texp i
2

e

1 0 0 0
0 e 0 0
0 0 e 0
0 0 0 1

, 14t
t

t
i 2

i

i

p
= - Ä = p

p

p

-

-
⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
[] ()

where t is a tuning parameter. Such interactions can be realised via geometric phase gate procedures [36, 39, 40].
In this paper, we consider the SP gate, which is one of the simplest possiblemaximally entangling gates that arises
from the above ion trap unitary [10]. The SP native gate is realised by setting the tuning parameter in
equation (14) to tSP=1/2.Up to a global phase, the gate can then be described as amatrix, F, of the form

F

1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

, 15q
q

2
1 =

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ ()

where q1 and q2 are the input qubits to the gate. In section 5, we explicitly showhow a [[4, 2, 2]] detection code
can be efficiently compiledwith the SP native gate of equation (15). Building on this example, we then
demonstrate how efficient compilation is in principle possible for any experimentally realisticmaximally
entangling native gate.

5. CompilingCPC codeswith any realisticmaximally entangling Clifford gate

In our discussion of theCPC framework so far, quantum codes have been expressed in terms of CNOT and
conjugate-propagator gates. This allows for intuitive visualisation of the propagation of errors through the
decoder, and simplifies the calculation of syndrome tables via the techniques described in sections 2.3 and 2.4.
However, in practice, the native two-qubit entangling interaction of a given experiment will be of a different
form. As a result, when compiling aCPC code, additional operations are required to allow CNOT and conjugate-
propagator gates to be synthesised from the native interaction. If the native interaction ismaximally entangling,
this will involve the addition of single-qubit corrections. In this section, we show that the symmetric

14

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

encode-error-decode structure of theCPC framework enables efficientQEC code compilationwith a broad range
of native gates.

5.1. Compiling the [[4, 2, 2]]CPCdetectionwith an ion trap native gate
Herewe show that the [[4, 2, 2]]CPCdetection code, introduced in section 2.5, can be efficiently compiledwith
an ion trap native gate. For the purposes of this example, we adopt an ion trapwith a SP native gate as introduced
in equation (15) in section 4. The SP native gate can be transformed into a CNOT via the application of local
unitary operations to its inputs and outputs. A possiblemapping, inmatrix equation form, is given by

I H P P F I H• • • , 16CNOTq
q

q q q q q
q

q q
2
1

1 2 1 2 2
1

1 2
= Ä Ä Ä() () () ()

where Fq
q
2
1 is thematrix representation of the SP gate defined in equation (14), andP is a phase gate defined as

P diag 1, i= -(). Realising a CNOT gate on ion trap hardware, via the abovemapping, requires the application of
the native gate combinedwith four single-qubit gates, as shown infigure 15(a). Likewise, figure 15(b) shows how
the conjugate-propagator gate can be constructed from the native gate via the addition of six single-qubit
operations.Wewill see that, when the native gates are compiled into aCPC circuit, constructive simplifications
become possible to reduce the total number of single-qubit gates required.

Figure 16 illustrates the steps involved in the compilation and simplification of the [[4, 2, 2]]CPC codewith
the SP native gate. The un-compiled circuit, expressed in terms of CNOT and conjugate-propagator gates, is
shown infigure 16(a). Thefirst step of compilation involves substituting the CNOT and conjugate-propagator
gates with the SP native interaction, via the circuit rewrites rules defined infigure 15. The resultant circuit is
shown infigure 16(b).

Now that the circuit is written in terms of the native gate, circuit simplifications can be applied to reduce the
single-qubit gate count. Infigure 16(b), pairs ofH gates that cancel to the identity are labelled in red. In the
encoder, theH gates labelled in blue are pairedwith their counterparts from the decoder.We can now exploit the
symmetry of theCPC code to further reduce the gate count. The effect of the blueH gates around thewait-stage
is to transformX errors intoZ errors and vice versa, as described by the followingmatrix transformations

H E X H H X H Z
H E Z H H Z H X

• • • • ,
• • • • , 17

= = =
= = =

()
() ()

whereE represents the error that occurs in thewait stage. The [[4, 2, 2]] code candetect bothX andZ errors, as shown
in syndrome table 1 in section2.5.As a result, the blueH gates donot change the errors into a form that cannot be
detected.TheblueH gates can therefore bediscardedwithout affecting the operationof the [[4, 2, 2]] code.

Figure 16(c) shows the compiled [[4, 2, 2]] code following the removal of the unnecessaryH gates. Notice
that both the P gate and the SP gate are described by diagonalmatrices in the computational basis. As a result, we
have the freedom tomoveP gates through the SP native gate as shown infigure 15(c). TwoP gates combine to
form aZ gate as follows P P Z• = . In the circuit infigure 16(c), pairs ofP gates are highlighted in red. AsZ gates
are diagonal in the computational basis, they can also bemoved through the SP gates.

In the circuit infigure 16(d), theZ gates and blue P gates have been pushed to the centre of the circuit. In the
event that no error occurs, theseP gates combine to form aZ error via the relation Z P P•= . However, the
locations of these errors are known, and they can therefore be accounted for in post-processing. If an error does
occur, the effect of symmetric P gates about thewait stage, E, is to transformX errors intoY errors and vice versa,
as described by the followingmatrix transformation rules

P E X P P X P Y
P E Y P P Y P X

• • • • i ,
• • • • i , 18

= = = -
= = = -

() ()
() () ()

Figure 15. (a)A CNOT gate expressed in terms of the SP native gate, which is represented by the connected blue pentagons. Thematrix
form of the SP native gate is given in equation (15). (b)A conjugate-propagator gate expressed in terms of the SP native gate. (c)Both
the phase gate P and the SPnative gate are represented as diagonalmatrices in the computational basis. As a result, theP gate can be
moved freely through the SP native gate.

15

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

where the (−i) global phase does not affect the syndromemeasurement. These transformations are
unproblematic as the [[4, 2, 2]] code can detect bothX andY errors (see syndrome table 1). As the effect of the
blueP gates can be described in terms of single-qubit Clifford operations on the output, they can be removed
from the circuit and accounted for in post-processing. There are alsoP gates highlighted in green, located on the
register qubits at the beginning and end of each error cycle. These gates occur before the first round of CPC
checks, and can therefore be removed from the circuit without affecting thefinal syndrome readout. Finally, the
Z gates located symmetrically about thewait-stage introduce a global phase to the errors. This global phase does
not affect the propagation of errors through the circuit,meaning theZ gates can be removed. It should be noted
that the above simplificationswill result in amodified syndrome table.However, the no-error case will remain
uniquemeaning the function of the code ismaintained.

Figure 16.Compiling the [[4, 2, 2]] detection codewith the SP native gate. (a)The un-compiled [[4, 2, 2]]CPC error detection code
expressed in terms of CNOTand conjugate-propagator gates. (b)The compiled circuit prior to simplification.Note that parts of the
decoder have been hidden to save space. The pairs ofHadamards, labelled red, cancel to the identity. The blueH gates can also be
discardedwithout affecting the operation of the code. (c)The circuit following removal of theH gates. The pairs of red P gates
combine to formZ gates. (d)TheZ gates and blue P gates can bemoved freely through the SP gates to the centre of the circuit. Due to
their symmetry about the error window, theP andZ gates can be omitted from the code. The green P gates do not affect circuit
operation and are also discarded. (e)The compiled [[4, 2, 2]]CPCdetection code following circuit simplication. Only four single-
qubit gates remain in the encoder.

16

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

Thefinal simplified formof [[4, 2, 2]]CPC code compiledwith the SP native gate is shown infigure 16(e).
The single-qubit gate count in the encoder has been lowered from26 gates in the original compiled circuit
(figure 16(b)), to 4 gates infinal circuit (figure 16(e)).

5.2. Requirements for CPC gates
Wehave now shown that the [[4, 2, 2]] code can be efficiently compiledwith the SP native gate.Most of the
single-qubit corrections can be eliminated, either by direct cancellation between adjacentHadamards, or by
moving P gates through the circuit.We now show that efficient CPC code translation, from the idealised CNOT

version to the hardware-compiled version, is possible for a range of native gate types.We begin by outlining the
general requirements for two-qubit gates in aCPC circuit.

In aCPC code, the role of two-qubit interaction gates is to distribute error information from the register to
the parity qubits. For example, CNOT gates propagate bit-errors from their control to target via the rule in
equation (8).More generally, we require that the two-qubit CPC gate, q

q
2
1W , has the ability to change theweight of

an error operator, Eq
i

q
1 2

Ä , such that

E E E• • , 19q
q

q
i

q q
q

q
j

q
k

2
1

1 2 2
1

1 2
W Ä W = Ä() () () ()†

where q1 and q2 are the control and target qubits respectively, andE
i, j, k are non-identity elements of the single-

qubit Pauli group. As both Eq
i

q
1 2

Ä and E Eq
j

q
k

1 2
Ä are Pauli group operators, we see that q

q
2
1W must be aClifford

gate (for an overview of theClifford group see appendix B). CPCquantummemories can be described entirely in
terms of Clifford gates, as their operations are restricted tomanipulating stabiliser states. This allows for efficient
classical simulation. For an example of such a simulation, see theCPC syndrome calculation algorithmwe
outline in appendix C.

Another way of thinking about theCPC interaction gates is in terms of entanglement. In equation (19), it can
be seen that the general CPC gate de-localises error information from the control to the target, suggesting the
operation has the potential to entangle states. Furthermore, we know that elements of the two-qubit stabiliser
states are eithermaximally entangled or separable. AnyClifford entangling gate thatmaps between these states,
and therefore anyCPC interaction, is amaximally entangling operation.

We have now established that CPC gatesmust bemaximally entangling Clifford operations. However,many
experiments will have native gates that do not satisfy these requirements. For example, several qubit technologies
have a native interaction of the form SWAP [41], which is only partially entangling. In these circumstances,
multiple applications of the native gate, in addition to local operations, are required to synthesise the desired
maximally entangling behaviour. It is typically the case that quantum computing experiments will have different
error rates for single-qubit and two-qubit gates [42]. Circuit compilation strategies should therefore aim to
minimise the gate typewith the highest error rate. In the case of ion traps, for example, the two-qubit gates have
lowerfidelities than single-qubit gates [11, 43].

5.3. Circuit simplificationwith anymaximally entanglingClifford gate
Wewill nowoutline general CPC circuit simplification procedures formaximally entangling Clifford gates. It
can be shown that all Clifford entangling gates are local Clifford equivalent to either the CZ or the CZ-SWAP

interaction.With this knowledge, we canwrite allmaximally entangling Clifford gates in terms of a central
kernel, containing either a CZ or CZ-SWAP interaction, supplemented by local Clifford gates (see figure 17(a)).

The single-qubit Clifford group is generated by P andH gates. Any native gate can therefore be constructed
from its by kernel via the addition of local gates generated from combinations ofP andH. TheP gates can be
trivially pushed through the CZ kernel. Likewise, it is possible to push P gates through the CZ SWAP‐ kernels,
although the effect of the SWAP gatemust be taken into account.

In section 6.3we demonstrated the compilation of aCPC code using the SP native gate, which is local
Clifford equivalent to a CZ gate. The exact transformation from CZ kernel to SP gate is shown infigure 17(b). As
the local operations in this case consist ofP†gates, we have the freedommoveP gates through the SP native gate.
Hadamard gatesH, however, restrictmovement, but inmany cases will cancel when the native gate is compiled
into aCPC circuit.

The general procedure for compiling a CPC codewith a given native gate can nowbewritten as follows. First,
eliminate any unnecessaryH gates by identifying cancellations between adjacent CPCgates. Second, determine
the behaviourwhenP gates are pushed through the native gate. As allmaximally entangling Clifford gates have
either a CZ or CZ-SWAP kernel, it is often possible to triviallymoveP gates through each block of the encoder.
Once these simplifications rules have been established, they can be applied systematically to substantially reduce
theCPC circuit gate count.

17

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

6. TheCPC code design process

Thefirst generation of quantum computers will be limited in size to nomore than a couple of hundred qubits
[1, 2]. In this section, we outline a design process for constructing hardware-optimised quantum codeswith the
CPC framework. Bymaximising the encoding density, such bespokeCPC codeswill help early quantum
computers realise their full potential.

To illustrate our design process, the quantumdevice we consider is the seven-qubit linear ion trapwhichwas
introduced in section 4. OurCPCdesign process is split into three stages. (1)CPC code discovery: numerical
search techniques are used tofindCPC codes thatmaximise the quantum encoding density for a seven-qubit
register. (2)Hardware optimisation: the best CPC codes from the discovered set are identified by analysing
which ones have the lowest two-qubit count when implemented on a linear nearest-neighbour architecture.
(3)Native gate compilation: further optimisations aremade by identifying CPC circuits with efficient
translations from the CNOT version of the code to the native gate version, using the circuit simplification
strategies outlined in section 5.

6.1. Stage 1: CPC code discovery
The idealised ion trapwe are considering has seven application qubits.We assume that during thewait stage the
ion trap qubits are subject to a biased depolarising noise channel of the form

p p p p p X X p p Y Y p Z Z1 2 , 20x z x z x x z z r r r r r= - - - + + +[] () ()

where ρ is the single-qubit densitymatrix, and px and pz are the probabilities ofX andZ errors respectively. This
errormodel assumes the ion trap has independent errormechanisms forX andZ errors, butY errors occur only
as a result of successive single-qubit errors of the formXZ andZX1. Similar errormodels have recently been
considered in [44, 45]. For the purposes of our ion trapmodel, we assume that the error probabilities px and pz
are low enough that the probability ofY errors becomes negligibly small. The effective errormodel can then be
written as

p p p X X p Z Z1 . 21x z x z r r r r» - - + +[] () ()

Under the above errormodel for the idle ion trap qubits, the CPCquantummemory only needs to correctX and
Z errors.We choose this noisemodel for our proof-of-concept outline of theCPCdesign process, as it
corresponds to the simplest possible non-classical errormodel. Our aim is to discover non-degenerate quantum
codeswhich produce a unique syndrome for singleX andZ errors on any of the seven qubits in the trap.

Themaximumpossible encoding density of a non-degenerate QEC code is constrained by the quantum
Hamming bound, which states that an [[n, k, d]] codemust satisfy the following inequality

n

j
2 2 , 22

j

d
j k n

0

1 2

 å
=

- ⎛
⎝⎜

⎞
⎠⎟∣ ∣ ()

()

where ∣ ∣ is the size of the single-qubit error set [9]. Aswe are considering onlyX andZ errors in the generic ion
trap under the errormodel described by equation (21), the size of the error set is 2 =∣ ∣ . Under this errormodel,
the quantumHamming bound tells us that themaximumnumber of data qubits that can be encoded in 7
physical qubits is kmax=3. The optimal 7 qubit CPC codewill therefore be of the form [[n=7, k=3, d=3]].
Note that the code distance is d=3, indicating that these [[7, 3, 3]] codes will be able to correct one error per
CPC cycle.

An advantage of theCPC framework lies in the fact that new instances of such optimal codes can be
discovered numerically, either using brute-force ormore sophisticated optimisation techniques [3].We now
demonstrate these strategies in practice, by showing howoptimal [[7, 3, 3]]CPC codes can be discovered via
exhaustive search.

Figure 17. Left: a generalmaximally entanglingCliffordnative gate (red triangles) can be expressed in terms of a kernel supplementedby
local correctionson its inputs and outputs. The kernelwill always beof the form CZ orCZ-SWAP.The local corrections, {A,B,C,D}, are
single-qubitClifford gates and can expressed as products ofH andP gates. Right: the SPnative gate expressed in terms of its CZ kernel.

1
Note that the ion trapwe consider is an idealised proof-of-conceptmodel, and does not correspond to a specific ion trap experiment.

18

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

A [[7, 3, 3]]CPC code has k=3 data qubits and n− k=4 parity qubits. The adjacencymatrices therefore
have the form

m
b b b b
b b b b
b b b b

m
h h h h
h h h h
h h h h

m

c c c
c c

c

, ,

0
0 0
0 0 0
0 0 0 0

, 23

b p

c

11 12 13 14

21 22 23 24

31 32 33 34

11 12 13 14

21 22 23 24

31 32 33 34

12 13 14

23 24

34

= =

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ ()

where bxy, hxy, cxy are binary values. NewCPC circuits can bemade by generating different instances of these
matrices. The single-qubit error syndrome table for each code can be calculated efficiently using a stabiliser
simulator or the algorithmwe describe in appendix C. If the set of syndromes is unique, the respectivematrices
represent a valid [[7, 3, 3]] code.

The number of possible combinations of the adjacencymatrices for CPC circuits of type [[7, 3, d=?]] is 230.
By an exhaustive search, we have discovered that 306, 480 of these permutations (0.03%of the search space) are
working [[7, 3, 3]] codes. These codes have distance d=3, and produce unique syndromes for all single-qubitX
andZ errors across the seven qubits. Of the discovered set, there are 2190 symmetry-inequivalent codes that
cannot be transformed fromone to another by rearranging the qubit order. However, some symmetry-
equivalent code permutations aremore amenable to circuit optimisation than others.Wewill therefore
continue to consider the entire set of 306, 480 codes in theCPCdesign process.

Now that a set of [[7, 3, 3]] circuits has been found, the next stages in theCPCdesign process involves
analysis to determinewhich one of the 306, 480 codes is best suited for implementation on the ion trap device.
Figure 18 shows a histogramof the discovered [[7, 3, 3]] codes, binned by the combined number of CNOT gates
and conjugate-propagator gates in their encoder. This quantity will be referred to as theCPCgate count, and can
be determined by counting the number of non-zero entries across the three adjacencymatrices.

In ion trap hardware, inter-qubit operations are typically themost expensive gate type in terms of their
potential to introduce errors [11, 43]. As a result, the CPC circuits with the lowest CPC gate count aremost
desirable. In the set of [[7, 3, 3]] codes, the shortest circuit encoders have 14CPC gates. This is a 22% reduction in
circuit depth compared to themedian gate count of 18. The number of [[7, 3, 3]] circuits with theminimum
encoder depth of 14 is 864 of which 245 are symmetry inequivalent. Further work is therefore necessary to
narrowdown the code set, and find the optimumquantummemory for the ion trap device.

The encoder length statistics for the [[7, 3, 3]]CPC codes are summarised in table 3. Note that in this simple
first analysis, we have not accounted for any of the constraints imposed by the ion trap’s nearest-neighbour
requirement for two-qubit operations. In the next section, we outline how the [[7, 3, 3]] codes can be compiled
in such a setting through the introduction of additional SWAP gates.

The results in this section demonstrate that the CPC framework provides constructive tools for discovery of
optimal [[7, 3, 3]] codes that saturate the quantumHamming bound. Furthermore, the searchwas performed
using a simple brute-force technique that requires only a basic knowledge of theCPC code structure to
implement. The Python script used to perform the code search is approximately 200 lines long, and required
approximately 4 days to run on aCPUclocked at 3.2 GHzwith 8Gb of RAM.

Figure 18.Ahistogram showing all of the [[7, 3, 3]]CPC codes discovered in stage 1 of theCPCdesign process, binned by encoder
length. TheCPC gate count is the combined total of CNOT and conjugate-propagator gates in the encoder. Themedian length,marked
in red, is 18. In comparison, the shortest [[7, 3, 3]] circuits have a CPCgate count of 14.

19

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

6.2. Stage 2:Hardware optimisation
The second stage of theCPCdesign process involves selecting codes tomeet the demands of the chosen quantum
hardware and its qubit layout. Figure 19(a) shows the idealisedmodel ion trap under consideration, labelledwith
3 data qubits and 4 parity qubits as required by the [[7, 3, 3]] code.Under the restriction of nearest-neighbour
connectivity, interactions between spatially separated qubits can still be realised by performing SWAP operations.
For example, interacting qubitBwith p1 would first require a SWAP gate between qubitsB andC, or qubitsC and
p1. Circuits with fewer long range interactions will require fewer SWAP gates, andwill therefore have a reduced
two-qubit gate count.

There are a number of strategies for calculating the sequences of SWAP operations required to compile a CPC
circuit on a nearest-neighbour architecture. Herewe adopt a simple approach inwhich qubits are always
swapped in the upwards direction. As an example of this, infigure 19(b), qubit p1 is swapped upwards, instead of
qubitB being swapped downwards.More advanced SWAP compilation strategies, that combine upwards and
downwardsmoves, can yield circuits with lower SWAP counts. However, such analysis is computationally
expensive, and can impose a bottleneck in theCPCdesign process. By restricting our approach to upwards SWAP

moves only, an exhaustive search of the [[7, 3, 3]]CPC codes remains possible.
Figure 20 shows the histogramof the SWAP compiled [[7, 3, 3]] codes distributed by the total two-qubit gate

count (CPC gates+ SWAP gates). The optimum [[7, 3, 3]]CPC codewith the shortest encoder is shown in
figure 21(b). The encoder for this circuit includes 14CPCgates, and requires an additional 13 SWAP operations
to be implemented on a linear, nearest-neighbour architecture. The depth of the encoder, in terms of the
number of two-qubit gates, is therefore 27. For comparison, the un-compilied version of this [[7, 3, 3]] code is
shown infigure 21(a).

The results of two-qubit gate count analysis for the [[7, 3, 3]] codes, following compilation onto the nearest-
neighbour hardware, are summarised in table 4. The optimumcircuit has an encoder length of 27, compared to
themedian of 51, a 47% reduction in circuit gate count.Only oneCPC codewas discoveredwith theminimum
encoder length. TheCPC circuit optimisation, with regards to qubit layout, can therefore be considered
complete.

6.3. Stage 3:Native gate compilation
The ion trap under consideration has a native gate that resembles the SP gate introduced in section 4. Thefinal
stage of theCPCdesign process involves systematically applying the SP simplification procedures described in
section 5.1 to each of the 306, 480 discoveredCPC codes. The compilation efficiency of a given code can be
quantified by counting the number of local gates that remain in the simplified circuit. The optimal code for the
ion trap device is then identified as the circuit with the shortest total encoder length, defined by

Table 3. Summary of the exhaustive search for [[7, 3, 3]]CPC codes. The number of CPC gates is defined as
the combined total of CNOT + conjugate-propagator gates in the encoder. The depth reduction is calculated
as the percentage decrease in the encoder length of the smallest circuit relative to themedian.

Encoder gate length (number of CPC gates)

Mininum Median Depth reduction

14 (864 discovered) 18 22%

Size of [[7, 3, d=?]] search space: 1.07×109 circuits
Number of [[7, 3, 3]] codes discovered: 306, 480 (0.03%of search space)
Number of symmetry-inequivalent [[7, 3, 3]] codes: 2190

Figure 19. (a)A schematic of the seven-qubit linear ion trap. Three of the qubits have been labelled as data qubits and four as parity
qubits as required by the [[7, 3, 3]] code. It is assumed that entangling gates can only be performed between nearest-neighbour qubits.
(b)A CNOT gate between spatially separated qubits can be implemented using only nearest-neighbour interactions through the
addition of SWAP gates.

20

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

CPC SWAP LOCAL , 24CPC = + +∣ ∣ ∣ ∣ ∣ ∣ ()

where CPC∣ ∣ is the CPCgate count, SWAP∣ ∣ is the SWAP gate count and LOCAL∣ ∣ is the local gate count.

Figure 20.The distribution of [[7, 3, 3]]CPCcodes binned by two-qubit gate count after compilation onto a nearest-neighbour
architecture. The total gate count is defined as the number of CPCgates+ SWAP gates in the encode stage of the circuit.

Figure 21.Circuit diagrams demonstrating SWAP gate compilation for a nearest-neighbour architecture. (a)The [[7, 3, 3]] codewith
the smallest two-qubit gate count prior to the addition of SWAP gates. (b)The encoder for the same circuit, with SWAP gates included.

Table 4. Summary of the gate-count statistics for the set of [[7, 3, 3]] codes following the SWAP gate
compilation. The two-qubit gate count is defined as the number of CPCgates+ SWAP gates. The
depth reduction is the percentage decrease in gate count of the smallest circuit relative to themedian.

Encoder gate length (number of two-qubit gates)

Mininum Median Depth reduction

27 (1 discovered) 51 47%

Optimumcode:

Encoder length=27 gates; no. CPC gates=14; no. SWAP gates=13

21

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

Table 5 summarises the simplification statistics for the local gate counts when the [[7, 3, 3]]CPC codes are
compiledwith the SP native gate.Without applying any simplifications, themedian local gate count is 92. After
applying the simplification routine, themedian is 10, an 89% reduction in gate count.

The compiled [[7, 3, 3]]CPC circuit with the lowest local gate count after simplification is shown infigure 22.
This circuit is compiled from theCPC codewith the lowest two-qubit gate count, as discovered in the last
subsection and depicted infigure 21.We can therefore identify the compiled [[7, 3, 3]] code infigure 22 as the
optimumcode for our devicewith a total gate count of 34CPC = . For comparison, themedian total gate count
across all 306, 480CPC codeswas 61CPC = . The total reduction in circuit depth for the optimised circuit
relative to themedian is therefore 44%.Note that it will not always be the case that the circuit with the lowest
two-qubit gate count will also be the circuit that compilesmost efficiently. For this reason, the entire discovered
set of [[7, 3, 3]]CPCcodeswere considered in stage 3 of the design process, rather than restricting the analysis to
the single code identified in stage 2.

7.Outlook and conclusion

In this work, we assessed the real-world functionality of CPC codes by implementing full encode–decode cycles
of a [[4, 2, 2]] quantum error detection code on the IBM5Qquantum computer.We then explored the utility of
the CPC framework in deriving larger quantum codes. In particular, we illustrated a design process for the
automated discovery and optimisation of CPC codes by applying it to a seven-qubit ion trap device. In the first
stage of the design process, exhaustive code-searchmethodswere used tofind [[7, 3, 3]]CPCcodes that saturate
the quantumHamming bound for seven qubits. These circuits were thenmodified through the addition of SWAP

gates to allow them to be implemented on a nearest-neighbour architecture. Finally, the circuits were compiled
with a SP native gate. At the end of the design process, the optimumhardware-ready codewith the lowest gate
count of 34CPC = was identified.

The design process outlined for ion trapswill be adaptable to other qubit technologies. In section 5we
demonstrated that the symmetric encode-error-decode structure of CPC codes allows for efficient compilation
with any realisticmaximally entangling Clifford gate. This resultmeans that simplification routines, similar to
those seenwith the ion trap SP gate, will be possible for a broad range of native gates fromdifferent quantum
experiments.

Thefinal circuit in the outline of theCPCdesign process, drawn infigure 22, shows the best CPC code in
terms of total gate count. Here it was assumed, however, that each gate type—CPC, SWAP and local—are equal

Table 5. Summary of the local gate count for the [[7, 3,
3]] following compilationwith the SP native gate.

Local gate count (number of single-qubit gates)

Mininum Median

Before simplification 72 (1 discovered) 92

After simplification 7 (1 discovered) 10

%change 90% 89%

Figure 22.The native gate compiled formof the [[7, 3, 3]]CPCwith the lowest total gate count. Note that the SWAP operations have
been omitted to save space.

22

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

in terms of the overhead they impose on the code implementation. In practice, however, some types of
operationswill bemore expensive than others. For example, in an ion trap setting, it is typically the case that two-
qubit interactions have a lowerfidelity than single-qubit operations [11, 43].When implementing theCPC
design process, such considerations should be taken into account for choosing the optimumcode for the given
device. For example, eachCPC code could be assigned aweighted total gate count, CPC , given by

CPC LOCAL , 25SWAPCPC 1 2 3 g g g= + +∣ ∣ ∣ ∣ ∣ ∣ ()

where CPC , SWAP∣ ∣ ∣ ∣ and LOCAL∣ ∣are the counts for CPC gates, SWAP gates and local gates respectively. The
count for each gate type is weighted by a penalty strength γwhich is based on the gate count.

In the code discovery stage of theCPCdesignprocess for the ion trap device, the aimwas tofindworking [[7, 3,
3]] codes that saturate the quantumHamming bound for sevenqubits. This involved calculating the code distance
for all possible permutations of [[7, 3,d=?]]CPCcodes, a total of 230 circuits. Using the syndrome calculation
algorithmoutlined in appendixC, itwas possible to exhaustively analyse all the circuits in less than aweekon a
desktop computer. In total, the search yielded 306, 480working [[7, 3, 3]] codes (0.03%of the search space).

For aCPC codewith 4 data qubits, the quantumHamming bound tells us that the optimal CPC code is of
type [[9, 4, 3]]. However, there are 250 permutations of this circuits of the form [[9, 4, d=?]], which is an
impractical search space for exhaustivemethods. In the original CPCpaper, it was shown that [[9, 4, 3]] codes
can be discovered simply by randomised search [3]. In future work,more sophisticated techniques, such as
simulated annealing or parallel tempering, could be employed tomore efficiently search for CPC codes.

When searching for large CPC codes, the number of circuits in the search space could be reduced by
considering hardware constraints in advance. For example, for a nearest-neighbour device, each circuit
permutation could be assigned a score on the basis of howmany long range interactions it contains. The code
distancewould then only bemeasured for the circuits with fewer long range interactions. Another optimisation
parameter that could be considered is theweight of the code’s stabilisers, a parameter that is useful tominimise
when constructing fault tolerant circuits. Exhaustive and random search strategies for quantum code discovery
have also been studied in [18, 46]. The particular strength of theCPC framework is that the symmetric encode-
error-decode structure ensures the search is constrained to a space of non-disturbing codes. Investigating
whether optimisedCPC search strategies provide a higher density of good codes compared to other code-search
techniqueswould be an interesting area for future research.

Another feature of theCPC framework is that any classical code can be re-purposed for the bit and phase
checking stages of the code. If such an approach is adopted, only the space of cross-checks needs to be searched
in order to obtain aCPC codewithfixed distance. Owing to the demands ofmodern high-density
communication networks, classical error correction protocols such as low density parity check and turbo codes
have been extensively optimised [6, 47]. At large scales, these codes can be decoded in real time at close to the
theoreticalmaximum rate for information transfer along a noisy channel given by the Shannon limit [48]. The
tools of theCPC framework could help construct quantum versions of low density parity check and turbo codes.
A presentation of theCPC framework in terms of classical factor graph notation can be found in [49].

An important direction for future work is to investigate ways ofmaking CPC circuits fault tolerant. Formost
quantum computing architectures, it is not realistic to assume that the encode and decode stages will be fault-
free, or that errors will only occurwithin a specifiedwait-stage. In section 3 it was shown that a specific
implementation of a [[4, 2, 2]]CPCdetection code can be specially hardened against single-qubit errors
occuring after anymulti-qubit gate in the encoder or decoder.However, further work is required to develop
methods for extending general CPC codes to full fault tolerance. Of particular interest are recent studies into
fault tolerant computing using flag checks, which have a similar construction toCPCparity checks [32, 50].

TheCPC framework liftsmany of the restrictions that have hindered the development of traditionalQEC
codes. In particular, CPC codes have a canonical structure that allows any sequence of parity checks to be
performed on a quantum register without risk of decohering the encoded information. The process of deriving
CPC codes is therefore reduced to a classical decoding problem, allowing for code discovery via numerical
search. This opens up the possibility of constructing customQECprotocols tomeet the hardware and layout
demands of a specific quantum computing experiment.

Acknowledgements

Joschka Roffe was supported by aDurhamDoctoral Studentship (Faculty of Science). Nicholas Chancellor,
DominicHorsman andVivKendonwere supported by EPSRC (grant ref: EP/L022303/1).We acknowledge use
of the IBMQuantumExperience for this work. The views expressed are those of the authors and do not reflect
the official policy or position of IBMor the IBMQuantumExperience team. The quantum circuits in this paper
were drawn using theQPIC package by ThomasDraper and Samuel Kutin [51].

23

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

AppendixA. ThePauli group

The Pauli group on a single-qubit, 1 , is defined as the set of Pauli operators

X X Y Y Z Z, i , , i , , i , , i , A11   =        { } ()

where the±1 and±i terms are included to ensure 1 is closed undermultiplication and thus forms a legitimate
group [52]. Inmatrix form, the four Pauli operators are given by

X Y Z1 0
0 1

, 0 1
1 0

, 0 i
i 0

, 1 0
0 1

. A2 = = = - =
-()() () () ()

The general Pauli group,  , consists of the set of all operators that are formed from tensor products of the
matrices in 1 . For example, the operator

X Y A3  Ä Ä Ä Î ()

is an element of the four-qubit Pauli group.Note that for simplicity, in the context of quantum computing, the
above operator would usually be expressed asX2Y4. The identity operators are omitted, and the remaining
elements are subscriptedwith the label of the qubit they act on.

The elements of the Pauli group have eigenvalues±1,±i}. Another useful property of the Pauli group is that
its elements either commute or anti-commutewith one another.

Appendix B. TheClifford group and stabiliser states

TheClifford group  is defined as the set of operators that normalise the Pauli group such that

U P U P U P P i j• • , , , , , B4i j i jC C C  = Î Î "{ } { } ()†

whereUC Î is a Clifford operator and Pk are elements of the Pauli group. Clifford gates,  , are generated by the
set of three gates H P, ,CNOTá ñ, such that H P, ,CNOT = á ñ [53]. Likewise, single-qubit Clifford gates, 1 , are
generated by the set H P,á ñ, such that H P,1 = á ñ.

The stabiliser states are all the quantum states that can be reached from a blank register, 0 NñÄ∣ , via the
application of Clifford gates and computational basismeasurements. Quantumcircuits consisting only of
Clifford gates acting on stabiliser states can be efficiently classically simulated. The proof of this is given by the
Gottesman–Knill theorem [54]. Although theClifford group is not a universal quantumgate set, it is sufficient
for simulatingmanyQEC circuits and all the quantummemories described in this paper.

AppendixC. Efficient calculation ofCPC code syndrome table

In addition to providing a compact way to describe CPC codes, the adjacencymatrix representation can be
leveraged to create a simple algorithm for calculating syndrome tables, bypassing the need to perform a full
stabiliser simulation.Wewill begin our presentation of this algorithmby considering errors on the data qubits,
which are represented in terms of the row vectorsEd, x andEd, z. For example, in the [[4, 2, 2]] detection code,
depicted infigure 8, a bit-flip error on qubitAwould have the form E 1, 0d x, = (). Likewise, a phase-flip on qubit
Bwould be given by E 0, 1d x, = ().

In aCPC codeX andZ errors on the data qubits are propagated to the parity qubits via gate sequences
described by the adjacencymatricesmb andmp respectively. The syndromes resulting from this propagation can
be calculated bymultiplying the error vector by its corresponding adjacencymatrixmodulo 2. For example, the
syndrome for a bit-flip error on qubitA of the [[4, 2, 2]] code is given by

S E m 1 0
1 0
1 0

1
0

. C5d x d x b, ,= = =() ()· () ()

Thebit-flip error information is propagated to theparity qubit by a CNOT, and the columnvectoron the right gives the
subsequentmeasurementoutcomesof theparity qubitsp1andp2.Our expression therefore tells us that erroron the
dataqubitAproduces the syndrome ‘10’, a result in agreementwith the values given in table 1 in section2.5. Similarly,
the syndromes forphase-flip errors on thedataqubits canbe computedwith the expressionSd,z=Ed,z·mp .

We nowneed amethod for calculating the syndromes for errors occurring on the parity qubits. Again, we
representX andZ errors in terms of two row vectorsEp, x andEp,z. In the case of bit-flip errors, the syndrome is
simply given by Sp,x=Ep,x. This is the case as the bit-flip errors commute through the conjugate-propagator
gates and the CNOT targets, andwill therefore propagate directly to the end of the circuit. Thefinal error type to
consider are phase flips on the parity qubits.

24

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

Figure C1 depicts the propagation of such an error through the decoder of the [[4, 2, 2]] code. To calculate
the syndromes, there are two propagation pathways to be considered. Figure C1 shows thatZ errors can be
propagated to the register by the phase-check conjugate-propagator gates, after which they can be considered as
bit-errors. These bit-flip errors are then propagated to the register, as illustrated by the orange arrows infigure
C1. This propagation pathway can be representedmathematically by the expression E m mp z p

T
b, · · . Note that

we have taken the transpose of the phase-checkmatrix aswe are propagating information from the parity bits to
register. The second pathway to be considered for phase-flip errors on the parity qubits, is the propagation due to
the cross-check operators. As the cross-check operators can act bothways, this pathway is described by the
expression E m mp z c c

T
, +· (). Combining both error propagation pathways, the syndrome expression for

phase-flip errors on the parity qubits is S E m m E m mp z p z p
T

b p z c c
T

, , ,= + +· · · (), where all addition and
multiplication is performedmodulo 2. The full syndrome equation can nowbewritten by summing the
contributions Sd,x, Sd,z, Sp,x and Sp,z to give

S E m E m E E m m E m m mod 2. C6d x b d z p p x p z p
T

b p z c c
T

, , , , ,= + + + + +(· · · · · ()) ()

The above equation allows the syndromes for a given error circuit to be calculated in timeO(n2). It would be
interesting to investigate how this algorithm relates to other efficient stabiliser simulators such as [25, 26].

AppendixD. IMBQX4 calibration data

The experiment on the IBMQX4outlined in section 3was run over three days on 25thNovember 2017, 26th
November and 27thNovember 2017. The calibration data for each of these days can be found below:

{Date:11-25-2017,

Single-qubiterrorrates(10∧−3):

{Q0:0.94,Q1:0.60,Q2:1.12,Q3:1.37,Q4:1.80},
Readouterrorrates(10∧−2):

{Q0:4.10,Q1:5.70,Q2:4.00,Q3:3.30,Q4:5.10},
Two-qubiterrorrates(10∧−2):

{CX1_0:1.88,CX2_0:2.09,CX3_2:1.97,CX2_1:4.28,CX3_4:2.15,CX2_4:3.89}}
{Date:11-26-2017,

Single-qubiterrorrates(10∧−3):

{Q0:0.86,Q1:0.69,Q2:1.12,Q3:1.89,Q4:2.06},
Readouterrorrates(10∧−2):

{Q0:4.10,Q1:4.10,Q2:4.30,Q3:5.30,Q4:7.10},
Two-qubiterrorrates(10∧−2):

{CX1_0:2.31,CX2_0:2.22,CX3_2:2.18,CX2_1:4.80,CX3_4:2.43,CX2_4:3.93}}
{Date:11-27-2017,

Single-qubiterrorrates(10∧−3):

{Q0:0.77,Q1:0.43,Q2:1.20,Q3:1.72,Q4:1.89},
Readouterrorrates(10∧−2):

{Q0:3.70,Q1:4.90,Q2:4.20,Q3:5.30,Q4:5.80},
Two-qubiterrorrates(10∧−2):

{CX1_0:2.01,CX2_0:1.93,CX3_2:2.75,CX2_1:4.47,CX3_4:2.28,CX2_4:4.13}}

FigureC1.The [[4, 2, 2]] code decoder depicting the different propagation pathways forZ errors on the second parity qubit.

25

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

ORCID iDs

Joschka Roffe https://orcid.org/0000-0001-9202-1156
Nicholas Chancellor https://orcid.org/0000-0002-1293-0761
DominicHorsman https://orcid.org/0000-0003-4965-0584
VivKendon https://orcid.org/0000-0002-6551-3056

References

[1] NetworkedQuantum Information Technologies (NQIT)project 2017 https://nqit.ox.ac.uk/
[2] IBMQuantumExperience 2017 https://quantumexperience.ng.bluemix.net/qx/community
[3] ChancellorN, Kissinger A, Roffe J, Zohren S andHorsmanD2016Coherent parity check construction for quantum error correction

arXiv:1611.08012
[4] Coecke B andDuncanR 2011 Interacting quantumobservables: categorical algebra and diagrammaticsNew J. Phys. 13 043016
[5] Coecke B andKissinger A 2017PicturingQuantumProcesses: A First Course inQuantumTheory andDiagrammatic Reasoning

(Cambridge: CambridgeUniversity Press)
[6] MacKayD JC andNeal RM1996Near Shannon limit performance of lowdensity parity check codes Electron. Lett. 32 1645
[7] NickersonN, Li Y andBenjamin S 2013Topological quantum computingwith a very noisy network and local error rates approaching

one percentNat. Commun. 4 1756
[8] Proctor T andKendonV2016Hybrid quantum computingwith ancillasContemp. Phys. 57 459
[9] GottesmanD1996Class of quantum error-correcting codes saturating the quantumHamming bound Phys. Rev.A 54 1862
[10] BallanceC 2014High-fidelity quantum logic inCa+PhDThesisOxfordUniversity
[11] BallanceC J,Harty TP, LinkeNM, SepiolMA andLucasDM2016High-fidelity quantum logic gates using trapped-ion hyperfine

qubitsPhys. Rev. Lett. 117 060504
[12] Randall J,Weidt S, Standing ED, LakeK,Webster SC,MurgiaD F,Navickas T, RothK andHensingerWK2015 Efficient preparation

and detection ofmicrowave dressed-state qubits and qutrits with trapped ions Phys. Rev.A 91 012322
[13] Debnath S, LinkeNM, Figgatt C, LandsmanKA,Wright K andMonroe C2016Demonstration of a small programmable quantum

computerwith atomic qubitsNature 536 63
[14] BrandlMF et al 2016Cryogenic setup for trapped ion quantum computingRev. Sci. Instrum. 87 113103
[15] HorsmanC, Fowler A, Devitt S andVanMeter R 2012 Surface code quantum computing by lattice surgeryNew J. Phys. 14 123011
[16] Fowler AG,MariantoniM,Martinis JM andClelandAN2012 Surface codes: towards practical large-scale quantum computation

Phys. Rev.A 86 032324
[17] Tillich J-P andZemorG2014QuantumLDPC codes with positive rate andminimumdistance proportional to the square root of the

blocklength IEEE Trans. Inf. Theory 60 1193
[18] BrownWand FawziO 2013 Short random circuits define good quantum error correcting codes 2013 IEEE Int. Symp. on Information

Theory (Piscataway, NJ: IEEE) 346–50
[19] Bravyi S andHastingsMB 2014Homological product codesProc. 46thAnnual ACMSymp. onTheory of Computing, STOC ’14 (New

York: ACM) p 273
[20] BreuckmannNP andTerhal BM2016Constructions and noise threshold of hyperbolic surface codes IEEE Trans. Inf. Theory 62 3731
[21] AudouxB andCouvreur A 2015On tensor products of CSS codes arXiv:1512.07081
[22] Shor P 1995 Scheme for reducing decoherence in quantum computermemory Phys. Rev.A 52R2493
[23] GottesmanD1997 Stabilizer codes and quantum error correction PhDThesisCaltech https://thesis.library.caltech.edu/2900/2/

THESIS.pdf
[24] Devitt S J,MunroW J andNemotoK 2013Quantum error correction for beginnersRep. Prog. Phys. 76 076001
[25] Aaronson S andGottesmanD2004 Improved simulation of stabilizer circuits Phys. Rev.A 70 052328
[26] Anders S andBriegelH 2006 Fast simulation of stabilizer circuits using a graph-state representation Phys. Rev.A 73 022334
[27] TakitaM,Cross AW,Córcoles AD, Chow JMandGambetta JM2017 Experimental demonstration of fault-tolerant state preparation

with superconducting qubits Phys. Rev. Lett. 119 180501
[28] Vuillot C 2017Error detection is already helpful on the IBM5Qchip arXiv:1705.08957
[29] 5-qubit backend: IBMQ team, ‘IBMQX4’https://github.com/QISKit/ibmqx-backend-information/blob/master/backends/

ibmqx4/README.md
[30] Shor P 1996 Fault-tolerant quantum computationProc. 37thConf. on Foundations of Computer Science (IEEEComputer Society Press)
[31] SteaneAM1997Active stabilization, quantum computation, and quantum state synthesis Phys. Rev. Lett. 78 2252
[32] ChaoR andReichardt BW2017Quantum error correctionwith only two extra qubits arXiv:1705.02329
[33] IBM,Quantum Information Softare Kit www.qiskit.org
[34] Smolin J A, Gambetta JM and SmithG 2012 Efficientmethod for computing themaximum-likelihood quantum state from

measurements with additiveGaussian noisePhys. Rev. Lett. 108 070502
[35] ActonM,BrickmanK-A,Haljan PC, Lee P J, Deslauriers L andMonroeC 2006Near-perfect simultaneousmeasurement of a qubit

registerQuantum Inf. Comput. 6 465
[36] Cirac J I andZoller P 1995Quantum computations with cold trapped ions Phys. Rev. Lett. 74 4091
[37] TanTR,Gaebler J P, Lin Y,WanY, Bowler R, LeibfriedD andWinelandD J 2015Multi-element logic gates for trapped-ion qubits

Nature 528 380
[38] MonroeC, Raussendorf R, RuthvenA, BrownKR,Maunz P,Duan L-MandKim J 2014 Large-scalemodular quantum-computer

architecturewith atomicmemory and photonic interconnects Phys. Rev.A 89 022317
[39] LeibfriedD et al 2003 Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gateNature 422 412
[40] SørensenA andMølmer K 1999Quantum computationwith ions in thermalmotion Phys. Rev. Lett. 82 1971
[41] LossD andDiVincenzoDP 1998Quantum computationwith quantumdots Phys. Rev.A 57 120
[42] LinkeNM,MaslovD, RoettelerM,Debnath S, Figgatt C, LandsmanKA,Wright K andMonroe C 2017 Experimental comparison of

two quantum computing architectures Proc. Natl Acad. Sci. 114 3305
[43] Harty T P, AllcockDTC, BallanceC J, Guidoni L, JanacekHA, LinkeNM, StaceyDN and LucasDM2014High-fidelity preparation,

gates,memory, and readout of a trapped-ion quantumbitPhys. Rev. Lett. 113 220501

26

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0003-4965-0584
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://nqit.ox.ac.uk/
https://quantumexperience.ng.bluemix.net/qx/community
http://arxiv.org/abs/1611.08012
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1049/el:19961141
https://doi.org/10.1038/ncomms2773
https://doi.org/10.1080/00107514.2016.1152700
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevA.91.012322
https://doi.org/10.1038/nature18648
https://doi.org/10.1063/1.4966970
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/ISIT.2013.6620245
https://doi.org/10.1109/ISIT.2013.6620245
https://doi.org/10.1109/ISIT.2013.6620245
https://doi.org/10.1145/2591796.2591870
https://doi.org/10.1109/TIT.2016.2555700
http://arxiv.org/abs/1512.07081
https://doi.org/10.1103/PhysRevA.52.R2493
https://thesis.library.caltech.edu/2900/2/THESIS.pdf
https://thesis.library.caltech.edu/2900/2/THESIS.pdf
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.73.022334
https://doi.org/10.1103/PhysRevLett.119.180501
http://arxiv.org/abs/1705.08957
https://github.com/QISKit/ibmqx-backend-information/blob/master/backends/ibmqx4/README.md
https://github.com/QISKit/ibmqx-backend-information/blob/master/backends/ibmqx4/README.md
https://doi.org/10.1103/PhysRevLett.78.2252
http://arxiv.org/abs/1705.02329
http://www.qiskit.org
https://doi.org/10.1103/PhysRevLett.108.070502
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1038/nature16186
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1038/nature01492
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1103/PhysRevLett.113.220501

[44] RobertsonA,GranadeC, Bartlett SD and Flammia S T 2017Tailored codes for small quantummemories Phys. Rev. Appl. 8 064004
[45] Tuckett DK, Bartlett SD and Flammia ST 2018Ultrahigh error threshold for surface codeswith biased noisePhys. Rev. Lett. 120

050505
[46] GrasslM2006 Searching for linear codes with largeminimumdistanceAlgorithms andComputation inMathematics vol 19 (Heidelberg:

Springer)
[47] BerrouC andGlavieux A 1996Near optimum error correcting coding and decoding: turbo-codes IEEE Trans. Commun. 44 1261
[48] MacKayD 2003 Information Theory, Inference and Learning Algorithms (Cambridge: CambridgeUniversity Press)
[49] Roffe J, Zohren S,HorsmanD andChancellorN 2018Quantum codes from classical graphicalmodels arXiv:1804.07653
[50] ChamberlandC andBeverlandME2018 Flag fault-tolerant error correctionwith arbitrary distance codesQuantum 2 53
[51] Draper T andKutin SQPIC: quantum circuit diagrams in latex https://github.com/qpic/qpic
[52] NielsenMAandChuang I L 2010QuantumComputation andQuantum Information: 10thAnniversary Edition (Cambridge: Cambridge

University Press)
[53] GottesmanD1998Theory of fault-tolerant quantum computation Phys. Rev.A 57 127
[54] GottesmanD1999TheHeisenberg representation of quantum computersGroup22: Proc. XXII Int. Colloquium onGroupTheoretical

Methods in Physics (Cambridge,MA: International Press) pp 32–43

27

QuantumSci. Technol. 3 (2018) 035010 J Roffe et al

https://doi.org/10.1103/PhysRevApplied.8.064004
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1109/26.539767
http://arxiv.org/abs/1804.07653
https://doi.org/10.22331/q-2018-02-08-53
https://github.com/qpic/qpic
https://doi.org/10.1103/PhysRevA.57.127

	1. Introduction
	2. CPC codes
	2.1. Traditional QEC
	2.2. The fundamental CPC gadget
	2.3. A CPC gadget for detecting bit flips
	2.4. A CPC gadget for detecting phase flips
	2.5. The [[4, 2, 2]] error detection code
	2.6. The canonical form of CPC codes
	2.7. Numerical CPC code discovery

	3. Implementation of the [[4, 2, 2]] code on the IBM 5Q device
	3.1. Experimental overview and conditions for success
	3.2. Compiling a [[4, 2, 2]] CPC circuit onto the IBM 5Q
	3.3. A note on fault tolerance for the [[4, 2, 2]] circuit
	3.4. Experimental data reconstruction methods
	3.5. Experimental results
	3.6. Summary of IBM 5Q experiment

	4. Overview of ion trap hardware for quantum computing
	5. Compiling CPC codes with any realistic maximally entangling Clifford gate
	5.1. Compiling the [[4, 2, 2]] CPC detection with an ion trap native gate
	5.2. Requirements for CPC gates
	5.3. Circuit simplification with any maximally entangling Clifford gate

	6. The CPC code design process
	6.1. Stage 1: CPC code discovery
	6.2. Stage 2: Hardware optimisation
	6.3. Stage 3: Native gate compilation

	7. Outlook and conclusion
	Acknowledgements
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	References

