
Theory Comput Syst (2017) 61:907–944
DOI 10.1007/s00224-017-9757-x

The Complexity of Optimal Design of Temporally
Connected Graphs

Eleni C. Akrida1 ·Leszek Gąsieniec1 ·
George B. Mertzios2 ·Paul G. Spirakis1

Published online: 3 April 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract We study the design of small cost temporally connected graphs, under var-
ious constraints. We mainly consider undirected graphs of n vertices, where each
edge has an associated set of discrete availability instances (labels). A journey from
vertex u to vertex v is a path from u to v where successive path edges have strictly
increasing labels. A graph is temporally connected iff there is a (u, v)-journey for
any pair of vertices u, v, u �= v. We first give a simple polynomial-time algorithm to
check whether a given temporal graph is temporally connected. We then consider the
case in which a designer of temporal graphs can freely choose availability instances
for all edges and aims for temporal connectivity with very small cost; the cost is the
total number of availability instances used. We achieve this via a simple polynomial-
time procedure which derives designs of cost linear in n. We also show that the above
procedure is (almost) optimal when the underlying graph is a tree, by proving a lower
bound on the cost for any tree. However, there are pragmatic cases where one is

A preliminary version of this paper appeared in the 13th Workshop on Approximation and Online
Algorithms, WAOA 2015 [2].

� Eleni C. Akrida
E.Akrida@liverpool.ac.uk

Leszek Gąsieniec
L.A.Gasieniec@liverpool.ac.uk

George B. Mertzios
George.Mertzios@durham.ac.uk

Paul G. Spirakis
P.Spirakis@liverpool.ac.uk

1 Department of Computer Science, University of Liverpool, Liverpool, UK

2 School of Engineering and Computing Sciences, Durham University, Durham, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9757-x&domain=pdf
http://orcid.org/0000-0002-1126-1623
mailto:E.Akrida@liverpool.ac.uk
mailto:L.A.Gasieniec@liverpool.ac.uk
mailto:George.Mertzios@durham.ac.uk
mailto:P.Spirakis@liverpool.ac.uk

908 Theory Comput Syst (2017) 61:907–944

not free to design a temporally connected graph anew, but is instead given a tempo-
ral graph design with the claim that it is temporally connected, and wishes to make
it more cost-efficient by removing labels without destroying temporal connectivity
(redundant labels). Our main technical result is that computing the maximum num-
ber of redundant labels is APX-hard, i.e., there is no PTAS unless P = NP . On the
positive side, we show that in dense graphs with random edge availabilities, there
is asymptotically almost surely a very large number of redundant labels. A tempo-
ral design may, however, be minimal, i.e., no redundant labels exist. We show the
existence of minimal temporal designs with at least n log n labels.

Keywords Temporal graphs · Network design · Temporally connected · Minimal
graph · APX-hard · Random input

1 Introduction and Motivation

A temporal network is, roughly speaking, a network that changes with time. A great
variety of modern and traditional networks are not static and change over time.
For example, social networks, wired or wireless networks may change dynamically,
transport network connections may only operate at certain times, etc. Dynamic net-
works in general have been attracting attention over the past years [6, 9, 10, 13, 27],
exactly because they model real-life applications. In this work, following the model
of [19, 25] and [1], we consider discrete time and restrict our attention to systems
in which only the connections between the participating entities may change but the
entities remain unchanged. So we consider networks, the links of which are available
only at certain discrete time instances, e.g. days or hours. This is a natural assump-
tion when the dynamicity of the system is inherently discrete, e.g., in synchronous
mobile distributed systems that operate in discrete rounds. Moreover, it gives a purely
combinatorial flavour to the resulting models and problems.

In several such dynamic settings, maintaining connections may come at a cost;
consider the transport network example above or an unstable chemical or physical
structure, where energy is required to keep a link available. We define the cost as the
total number of discrete time instances at which the network links become available.
We focus on design issues of temporal networks that are temporally connected; a tem-
poral network is temporally connected if information can travel over time from any
node to any other node following journeys, i.e., paths whose successive edges have
strictly increasing availability time instances. If one has absolute freedom to design a
small cost temporally connected temporal network on an underlying static network,
i.e, choose the edge availabilities, then a reasonable design would be to select a rooted
spanning tree and choose appropriate availabilities to construct time-respecting paths
from the leaves to the root and then from the root back to the leaves. However, in
more complicated scenarios one may not be free to choose edge availabilities arbi-
trarily but instead specific link availabilities might pre-exist for the network; then,
one is able to design a temporally connected temporal network using only the pre-
existing availabilities or a subset of them. Imagine a hostile network on a complete

Theory Comput Syst (2017) 61:907–944 909

graph where availability of a link means a break in its security, e.g., when the guards
change shifts, and only then are we able to pass a message through the link. So, if
we wish to send information through the network, we may only use the times when
the shifts change and it is reasonable to try and do so by using as few of these breaks
as possible. In such scenarios, we may need to first verify that the pre-existing edge
availabilities indeed define a temporally connected temporal network. Then, we may
try to reduce the cost of the design by removing unnecessary (redundant) edge avail-
abilities if possible, without losing temporal connectivity. Consider, again, the clique
network of n vertices with one time availability per edge; it is clearly temporally
connected with cost �(n2). However, it is not straightforward if all these edge avail-
abilities are necessary for temporal connectivity. We resolve here the complexity of
finding the maximum number of redundant labels in any given temporal graph.

1.1 The Model and Definitions

It is generally accepted to describe a network topology using a graph, the vertices and
edges of which represent the communicating entities and the communication oppor-
tunities between them respectively. We consider graphs whose edge availabilities are
described by sets of positive integers (labels), one set per edge.

Definition 1 (Temporal Graph) Let G = (V , E) be a (di)graph. A temporal graph
on G is an ordered triple G(L) = (V , E, L), where L = {Le ⊆ N

∗ : e ∈ E} is an
assignment of labels to the edges (arcs) of G. L is called a labelling of G.

Definition 2 (Time edge) Let e = {u, v} (resp. e = (u, v)) be an edge (resp. arc)
of the underlying (di)graph of a temporal graph and consider a label l ∈ Le. The
ordered triplet (u, v, l) is called time edge.

Note that an undirected edge e = {u, v} is associated with 2 · |Le| time edges,
namely both (u, v, l) and (v, u, l) for every l ∈ Le.

The labels of an edge (arc) e are the discrete time instances at which e is available.
In many networks and in several applications, the availability of links comes at a cost.
For example, in secure networks there is a cost (per discrete time instance) to keep a
link secure. We abstract such considerations by the concept of the cost of a temporal
graph and wish to have temporal graphs of low cost.

Definition 3 (Cost of a labelling) Let G(L) = (V , E, L) be a temporal (di)graph
and L be its labelling. The cost of L is defined as c(L) = ∑

e∈E |Le|.

A basic assumption that we follow here is that when a message or an entity passes
through an available link at time t , then it can pass through a subsequent link only at
some time t ′ > t and only at a time at which that link is available.

Definition 4 (Journey) A temporal path or journey j from a vertex u to a vertex v

((u, v)-journey) is a sequence of time edges (u, u1, l1), (u1, u2, l2), . . . , (uk−1, v, lk),

910 Theory Comput Syst (2017) 61:907–944

such that li < li+1, for each 1 ≤ i ≤ k − 1. We call the last time label, lk , arrival
time of the journey.

Definition 5 (Foremost journey) A (u, v)-journey j in a temporal graph is called
foremost journey if its arrival time is the minimum arrival time of all (u, v)-journeys’
arrival times, under the labels assigned to the underlying graph’s edges. We call this
arrival time the temporal distance, δ(u, v), of v from u.

In this work, we focus on temporally connected temporal graphs, i.e., temporal
graphs that have the following property:

Definition 6 (Property TC) A temporal (di)graph G(L) = (V , E, L) satisfies
the property TC, or equivalently L satisfies TC on G, if for any pair of vertices
u, v ∈ V, u �= v, there is a (u, v)-journey and a (v, u)-journey in G(L). A temporal
(di)graph that satisfies the property TC is called temporally connected.

Example An undirected complete graph, Kn, is temporally connected under any
labelling L with Le �= ∅ for every e ∈ E(Kn). Indeed, there is a (u, v)-journey and
a (v, u)-journey between any u, v ∈ V (Kn), u �= v, namely the time edge (u, v, l)

and the time edge (v, u, l) respectively, for any l ∈ L{u,v}.

Definition 7 (Minimal temporal graph) A temporal graph G(L) = (V , E, L) over
a (strongly) connected (di)graph is minimal if G(L) has the property TC, and the
removal of any label from any Le, e ∈ E, results in a G(L′) that does not have the
property TC.

Definition 8 (Removal profit) Let G(L) = (V , E, L) be a temporally connected
temporal graph. The removal profit r(G, L) is the largest total number of labels that
can be removed from L without violating TC on G.

Here, removal of a label l from L refers to the removal of l only from a particular
edge and not from all edges that are assigned label l, i.e., if l ∈ Le1 ∩ Le2 and we
remove l from both Le1 and Le2 , it counts as two labels removed from L.

Notice that if many edges have the same label, we can encounter trivial cases
of minimal temporal graphs. For example, the complete graph where every edge
appears at time, say t = 5, is minimal but there are no journeys of length larger than
1. To avoid cases where minimality is caused merely due to the assignment of the
same label(s) to many (or all) edges, we will often consider a special sub-category of
(single-labelled) temporal graphs:

Definition 9 (SLSE temporal graphs) A Single-label-single-edge (SLSE) temporal
graph is a temporal graph, each edge of which has a single label and no two edges
have the same label, i.e., each label is assigned to (at most) a single edge. A labelling
that gives an SLSE temporal graph is also called SLSE labelling.

Theory Comput Syst (2017) 61:907–944 911

1.2 Previous Work and our Contribution

In recent years, there is a growing interest in distributed computing systems that are
inherently dynamic. For example, temporal dynamics of network flow problems were
considered in a set of pioneering papers [14, 15, 20, 21]. The model we consider
here is very closely related to the single-labelled model of the seminal paper of [19]
as well as the multi-labelled model of [25]. In [19], the authors consider the case of
one real label per edge and examine how basic graph properties change when we
impose the temporal condition; here, we extend that model by considering multiple
labels per edge but we restrict our focus to integer labels. In [25], the model of [19] is
also extended to many labels per edge and the authors mainly examine the number of
labels needed for a temporal design of a network to guarantee several graph properties
with certainty. The latter also defined the cost notion and, amongst other results, gave
an algorithm to compute foremost journeys which can be used to decide property TC.
However, the time complexity of that algorithm was pseudo-polynomial, as it was
dominated by the cube of the maximum label used in the given labelling.

In fact, the problem of testing whether a dynamic graph is temporally connected
has been studied before in various settings [7, 9, 33]. The authors of [9] propose an
algorithm for computing foremost journeys in a model of evolving graphs, where
nodes and edges are associated with lists of time intervals, representing their exis-
tence over time, and each edge has a traversal time. In a similar setting, [33] studies
temporal reachability graphs, in which a (u, v)-edge is present at time t if (in the
corresponding time-varying graph) there is a (u, v)-journey leaving u after t and
arriving at v after at most some specified time-interval. In [7], the authors investi-
gate discrete-time evolving graphs, for which they compute the transitive closure of
journeys, i.e., a static directed graph whose edges represent potential journeys. The
algorithm they propose depends on the maximum label used, the number of vertices,
and the maximum number of edges that simultaneously exist.

Here, we show that if the designer of a temporal graph can select edge availabilities
freely, then an asymptotically optimal linear-cost (in the size of the graph) design that
satisfies TC can be easily obtained (cf. Section 3). We give a matching lower bound
to indicate optimality, in the case where the underlying graph is a tree. However, there
are pragmatic cases where one is not free to design a temporal graph anew; instead,
one is given a set of possible availabilities per edge with the claim that they satisfy TC
and the constraint that they may only use them or a subset of them for their design. We
also propose a simple algorithm to verify TC in low polynomial time (cf. Section 2).
The given design may also be minimal; we partially characterise minimal designs in
Section 4. On the other hand, there may be some labels of the initial design that can
be removed without violating TC (and also result in a lower cost). In this case, how
many labels can we remove at best? Our main technical result is that this problem is
APX-hard, i.e. it has no PTAS unless P = NP . On the positive side, we show that
in the case of complete graphs and random graphs, if the labels are also assigned at
random, there is aymptotically almost surely a very large number of labels that can
be removed without violating TC. A preliminary version of this work appeared in the
13th Workshop on Approximation and Online Algorithms, WAOA 2015 [2].

912 Theory Comput Syst (2017) 61:907–944

Stochastic aspects and/or survivability of network design were also considered in
[17, 23, 24].

1.2.1 Further related work

Below, we provide a short survey of papers with studies on networks labelled by time
units or segments, in addition to the ones mentioned above.

Labelled Graphs Labelled graphs have been widely used both in Computer Science
and in Mathematics, e.g., [29].

Continuous Availabilities (Intervals) Some authors have assumed the availability
of an edge for a whole time-interval [t1, t2] or multiple such time-intervals and not
just for discrete moments as we assume here. Examples of such studies are [3, 9, 15].

Dynamic Distributed Networks In recent years, there is a growing interest in dis-
tributed computing systems that are inherently dynamic [5, 6, 10, 12, 13, 22, 26, 27,
30, 32].

Distance Labelling A distance labelling of a graph G is an assignment of unique
labels to vertices of G so that the distance between any two vertices can be inferred
from their labels alone [16, 18].

Random Labellings Random temporal networks have been considered before, e.g.,
in [1, 11, 12]. In [11], the authors model opportunistic mobile networks as a type
of random temporal networks, where each edge exists at each time-step with a fixed
probability, and show a small diameter in general for that type of networks. In [12],
the authors examine the speed of information dissemination in a type of dynamic
graphs, where each edge exists at each time-step with some probability depending on
whether it existed in the previous time-step. The Expected Temporal Diameter of the
model of (random) temporal graphs that we consider here was first examined in [1].

2 A Low Polynomial Time Algorithm for Deciding TC

In this section, we propose a simple polynomial-time algorithm which, given a tem-
poral (di)graph G(L) = (V , E, L) and a source vertex s ∈ V , computes a foremost
(s, v)-journey, for every v �= s, if such a journey exists. We conjecture that our
algorithm is optimal.

Theorem 1 Algorithm 1 satisfies the following, for every vertex v ∈ V, v �= s:

(a) If arrival_t ime[v] < +∞, then there exists a foremost journey from s to
v, the arrival time of which is exactly arrival_t ime[v]. This journey can be
constructed by following the parent[v] pointers in reverse order.

(b) If arrival_t ime[v] = +∞, then no (s, v)-journey exists.

Theory Comput Syst (2017) 61:907–944 913

(c) The time complexity of Algorithm 1 is dominated by the sorting time of the set
of time edges.

Proof sketch The algorithm actually considers each existing label in the sequence
of time labels, from the smallest to the largest one. For each label considered, it
computes the foremost journeys from s which arrive at that time1. The algorithm
examines each time edge exactly once.

Corollary 1 The time complexity of Algorithm 1 is O (c(L) · log c(L)).

Proof The time complexity of the algorithm is dominated by the sorting time of
S(L). One can sort S(L) by comparison-based sorting resulting in running time
O(|S(L)| · log |S(L)|) = O (c(L) · log c(L)).

Algorithm 1 Foremost journey algorithm

Input: A temporal (di)graph of vertices, the set of all time
edges of which is denoted by ; a designated source vertex

Output: A foremost -journey from to all , where such a journey
exists; if no -journey exists, then the algorithm reports it.

1: Sort in increasing order of labels; // Note that if is directed,
and 2 if is undirected.

2: Let be the sorted array of time edges according to time labels;
3: // The set of vertices to which has a foremost journey
4:

5: for all do
6:

7:

8: for all time edges in the order given by do
9: if and and then
10:

11:

12:

Conjecture We conjecture that any algorithm that computes journeys out of a vertex
s must sort the time edges by their labels, i.e., we conjecture that Algorithm 1 is
asymptotically optimal with respect to the running time.

Note that Algorithm 1 can even compute foremost (s, v)-journeys, if they exist,
that start from a given time tstart > 0. Simply, one ignores the time edges with labels
smaller than the start time.

1One can prove this by induction.

914 Theory Comput Syst (2017) 61:907–944

Fig. 1 Labelling a star graph in an optimal way

3 Asymptotically Cost-Optimal Design for TC in Undirected Graphs

In this section, we study temporal design issues on connected undirected graphs,
so that the resulting temporal graphs are temporally connected. In this scenario, the
designer has absolute freedom to choose the edge availabilities of the underlying
graph.

Lemma 1 There is an infinite family of graphs Gn of n vertices, for which the cost
of any labelling that satisfies TC is at least 2n − 3.

Proof Consider the star graph of n vertices, n ≥ 3. Let vn be the root and
v1, v2, . . . , vn−1 be the leaves. In any labelling on the star graph, which assigns only
one label to two (or more) edges (vn, vx), (vn, vy), x, y = 1, 2, . . . , n − 1, x �= y,
at least one of the vertices vx, vy cannot reach the other via a journey. Therefore,
any TC satisfying labelling on the star graph must assign at least 2 labels to all
edges of the graph, except possibly on one edge where it assigns a single label.
The TC satisfying labelling which assigns labels 1,3 to all edges except for one
and label 2 to the remaining edge has, therefore, minimum cost, namely 2n − 3
(cf. Fig. 1).

In fact, the result of Lemma 1 is optimal for any tree; it is indeed strictly con-
tained in Theorem 2(a), but the proof of Lemma 1 is significantly simpler. Theorem 2
shows a lower bound for trees and an asymptotically optimal2 way of labelling any
connected undirected graph to satisfy TC.

Theorem 2 (a) For any tree G = (V , E) of n vertices and for any labelling L that
satisfies the property TC on G, the cost of L is c(L) ≥ 2n − 3.

2Any connected undirected graph needs at least n − 1 labels on its edges to be temporally connected, and
we show a TC satisfying labelling of 2n − 3 = �(n) labels.

Theory Comput Syst (2017) 61:907–944 915

(b) Given a connected undirected graph G = (V , E) of n ≥ 2 vertices, we can
design a labelling L of cost c(L) = 2n − 3 that satisfies the property TC on G.
L can be computed in polynomial time.

Proof

(a) We prove the statement by induction on the number of vertices of the tree.

Base Case. It is easy to see that the statement holds for any tree of n ≤ 4
vertices.

Induction Hypothesis. Assume that at least 2n − 3 labels are necessary to
satisfy TC on any tree of n ≤ k vertices, k ∈ N.

Inductive Step. We will show that at least 2(k + 1) − 3 = 2k − 1 labels are
necessary to satisfy TC on any tree of k + 1 vertices.

Let G = (V , E) be an arbitrary tree of k + 1 vertices and let L be an
arbitrary labelling of G that satisfies TC on G. Consider a leaf, u ∈ V , of G

and its unique neighbour, u′ ∈ V . Note that L must assign at least one label
to the edge {u, u′} to “enable” a journey between them. Now, let L′ be the
sub-labelling of L on G \ u. First, we show that, for L to satisfy TC on G, it
must be that L′ satisfies TC on G \ u.

Assume, to the contrary, that L′ does not satisfy TC on G \ u. Then, there
exist two vertices x, x′ ∈ V (G \u) such that the only journey(s) from x to x′
in G(L) go through u; let J be a (x, x′)-journey in G(L). It must be:

J = (
(x, v1, l0), . . . , (vz, u

′, lz), (u′, u, lsmall),

(u, u′, lbig), (u
′, vz′ , lz′), . . . , (vlast , x

′, llast)
)
,

for some v0, . . . , vlast and l0 < . . . < lz < lsmall < lbig < lz′ < . . . < llast

(cf. Fig. 2).
But, then the sub-journey of J which “ignores” the time-edges

(u′, u, lsmall), (u, u′, lbig) is still a (x, x′)-journey in G(L), which contra-
dicts the fact that all (x, x′)-journeys in G(L) go through u. Therefore, L′

Fig. 2 A (x, x′)-journey going through u

916 Theory Comput Syst (2017) 61:907–944

must satisfy TC on G \ u. Since G \ u is a tree of k vertices itself, it must be
that c(L′) ≥ 2k − 3 (by Induction Hypothesis).

If c(L′) ≥ 2k − 2, then (since L assigns at least one label to the edge
{u, u′}), we have c(L) ≥ 2k − 2 + 1 = 2k − 1 and the Theorem holds.

It remains to check the case where c(L′) = 2k − 3 and L′ satisfies TC
on G \ u. L′ must assign at least one label to every edge of G \ u to satisfy
TC on it. Also, it must assign exactly one label to at least one edge {x, x ′} ∈
E(G \ u); if all edges of G \ u had at least two labels under L′, then it would
be c(L′) ≥ 2(k − 1) = 2k − 2. Let lunique be the unique label of the edge
{x, x′}. Also, without loss of generality, assume that x is further from u than
x′ is, i.e., the unique path from u to x goes through x′. For L to enable a
(u, x)-journey in G(L), it must assign to the edge {u, u′} (at least) one label
l that is strictly smaller than lunique. Also, to enable a (x, u)-journey, L must
assign to the edge {u, u′} (at least) one label l′ that is strictly greater than
lunique and, thus, different from label l (cf Fig. 3). So, L assigns to {u, u′} at
least two labels, which makes the cost of L:

c(L) ≥ c(L′) + 2 = 2k − 3 + 2 = 2k − 1

Therefore, in any case, for L to satisfy TC on G, it needs to have cost
c(L) ≥ 2k − 1.

(b) Consider a fixed, but arbitrary, spanning tree T of G and let a node, w, of degree
1 be the root of T . Also let w′ be the single child of w in T and denote by T ′
the subtree of T that is rooted at w′. Let r be the length of the longest path from
w′ to any leaf of T ′, i.e., r is the radius of T ′. We assign labels to the edges of
T as follows:

Going upwards. Any edge of T ′ incident to a leaf gets label 1. Any edge
e = {u, v} of T ′, with d(w′, v) = d(w′, u) + 1, where the subtree T ∗
rooted at v has been labelled going upwards towards w′, gets a label le =
max{all labels in T ∗} + 1 (cf. Fig. 4).

The edge {w,w′} We label the edge {w, w′} of T with the single label r + 1.
Going downwards. Any edge of T ′ incident to w′ gets a label r + 2. Any

edge e of T ′ in a path from w′ to a leaf of T ′, the parent edge3 of which has
been labelled, going downwards, with label l′, gets a label le = l′ + 1.

We can easily implement the above process by topologically ordering the ver-
tices of T in levels using Breadth First Search and implement the “going
upwards” and “going downwards” procedures accordingly. The above method
results in a labelling where:

1. each edge of T has 2 labels, except for the edge {w, w′}, which has a single
label,

3The edge before it in the sequence of edges from the root w′ to the respective leaf.

Theory Comput Syst (2017) 61:907–944 917

Fig. 3 L must assign to {u, u′} at least 2 labels

2. each edge of E \ T has no label and
3. for each ordered pair of vertices u, v ∈ V, u �= v, there is a (u, v)-journey.

To show 3, just notice that one can go from any vertex u ∈ V to any other vertex
v ∈ V , with u, v �= w, by going up in T from u to w′ and then going down in
T from w′ to v via strictly increasing labels, by construction. Finally, to realize
journeys from w to some u ∈ V , one can go down in T , using strictly increasing
labels (starting with the label r + 1), and to realize journeys from some u ∈ V

to w, one can go up in T , using strictly increasing labels (ending with the label
r + 1).

Example Figure 5 shows an example of the procedure described above. Notice that
journeys between all pairs of vertices exist in the resulting temporal graph.

Conjecture We conjecture that for any connected undirected graph G of n vertices
and for any labelling L that satisfies the property TC on G, the cost of L is c(L) ≥
2n − 4.

Notice that the choice of 2n − 4 as the lower bound in the above conjecture is due
to the fact that there are graphs, e.g., a cycle with n = 4 vertices, that can be made
temporally connected using 2n − 4 labels in total (cf. Fig. 6); therefore, the lower
bound 2n − 3 which is shown for trees in Theorem 2(a) cannot be generic.

Fig. 4 Labelling “going upwards” to the root

918 Theory Comput Syst (2017) 61:907–944

Fig. 5 Labelling a connected undirected graph to satisfy TC

4 Minimal Temporal Designs

Suppose now that a temporal graph on a (strongly) connected (di)graph G = (V , E)

is given to a designer with the claim that it satisfies TC. In this scenario, the designer
is allowed to only use the given set of edge availabilities, or a subset of them. If the
given design is not minimal, they may wish to remove as many labels as possible,
thus reducing the cost. Minimality of a design can be verified by running Algorithm 1
(cf. Section 2) for every s ∈ V .

4.1 A Partial Characterisation of Minimal Temporal Graphs

As mentioned earlier, if many edges have the same label, we can encounter trivial
cases of minimal temporal graphs. To avoid such cases, we focus our attention here
to the class of SLSE temporal graphs, in which every edge only becomes available at
one moment in time and no two different edges become available at the same time.
Are there minimal SLSE temporal graphs with non linear (in the size of the graph)
cost? For example, any complete SLSE temporal graph satisfies TC. Are all these

Fig. 6 Labelling a cycle of n = 4 vertices with 2n − 4 = 4 labels to satisfy TC

Theory Comput Syst (2017) 61:907–944 919

�(n2) labels needed for TC, i.e., are there minimal temporal complete graphs? As
we prove in Theorem 4, the answer is negative. However, we give below a mini-
mal temporal graph on n vertices with non-linear in n cost, namely with O(n log n)

labels.

4.1.1 A Minimal Temporal Design of n log n Cost

Definition 10 (Hypercube graph) The k-hypercube graph, commonly denoted Qk ,
is a k-regular graph of 2k vertices and 2k−1 · k edges. The 1-hypercube is the graph
of two vertices and one edge. Recursively, the n-hypercube is produced by tak-
ing two isomorphic copies of the (n − 1)-hypercube and adding edges between the
corresponding vertices.

Definition 11 (Flat) In geometry, a flat is a subset of the n-dimensional space that
is congruent to a Euclidean space of lower dimension, e.g., the flats in the two-
dimensional space are points and lines. In the n-dimensional space, there are flats of
every dimension from 0, i.e., points, to n − 1, i.e., hyperplanes.

Theorem 3 There exists an infinite class of minimal temporal graphs on n vertices
with �(n·log n) edges and �(n·log n) labels, such that different edges have different
labels.

Proof We present a minimal temporal graph on the hypercube graph of n vertices.
Consider Protocol 2 for labelling the edges of G = Qk = (V , E). The temporal
graph, G(L), that this labelling procedure produces on the hypercube is minimal.
Indeed, first we will prove that the temporal graph produced by Protocol 2 satisfies
TC on G = Qk .

Consider vertices u, v ∈ V and the steps described in Protocol 3 to reach v, start-
ing from u, via temporal edges. The procedure described in Protocol 3 gives a journey
from u to v, which is also unique. It suffices to consider the k-bit binary represen-
tation of the vertices of G. Notice that if the hamming distance of the labels of two
vertices u, v ∈ V (G) is exactly m, then to reach v from u via a temporal path in the
temporal graph on G, we need to move through vertices by consecutively swapping
the bits in which u and v differ in the order of dimensions. This way, we maintain the
strictly increasing order of the time labels we use and, swap by swap, we approach
the destination. Note also that swapping only the bits in which u and v differ is the
only way to not violate the increasing order of time labels we use: without loss of
generality, suppose that the j th bit of u is 1 and so is j th bit of v. If, starting from
u, we swap the j th bit to 0, i.e., we use an edge, e, on the j th dimension, then at a
future step, we again need to swap the j th bit back to 1 (otherwise, we never reach
v). However, the two swaps cannot be consecutive, because then we would use edge
e twice and we violate the increasing order of labels. So, we would need to move to
a higher dimension after the first of the two swaps; but, then, we have used labels

920 Theory Comput Syst (2017) 61:907–944

that are larger than all the labels of the j th dimension, so using any edge of the j th

dimension would also violate the increasing order of labels.

Protocol 2 Labelling the hypercube graph,

Consider the dimensions of the hypercube
for 1 do

Let be the list of edges in dimension , in an
arbitrary order;
Let be the (sorted from smallest to largest) list of labels

for do
for do

Assign the (current) first label of to the (current) first edge of ;
Remove the (current) first label of from the list;
Remove the (current) first edge of from the list;

return the produced temporal graph, ;

Protocol 3 A temporal path from to in the temporal graph on

Input: The considered temporal graph on the hypercube , vertices
Output: Array of vertices, which the -journey passes through

Find the flat of the smallest dimension, , which both and lie on;
Consider the increasing order of the dimensions in that flat:
for do

Use the incident edge of that lies on dimension and let be the
other endpoint of that edge;

Since our labelling gives a unique (u, v)-journey, for every u, v ∈ V , and since
all labels assigned to the edges of E are used in the union of all those journeys, the
deletion of any single label will violate TC. Therefore, G(L) is minimal. Finally, note
that the temporal graph G(L) on the hypercube graph G = Qk has n = 2k vertices,
1
2n · log n edges and 1

2n · log n labels.

4.1.2 A minimal temporal design of linear in n cost

In the previous section, we showed that there are graphs of non-linear cost (in the
number of vertices) that are minimal. Here, we show that there are classes of minimal
graphs whose cost is linear in the number of their vertices.

Indeed, as seen in Lemma 1 (Section 3), the star graph of n vertices needs at least
�(n) labels to satisfy TC and, in fact, we present there a TC satisfying labelling
of �(n) labels (cf. Fig. 1). Theorem 2(b) (Section 3) also gives a class of minimal
temporal graphs of linear cost in the number of vertices. Therefore, we have the
following Corollary:

Theory Comput Syst (2017) 61:907–944 921

Corollary 2 There exists an infinite class of minimal temporal graphs on n vertices
with �(n) edges and �(n) labels.

4.1.3 SLSE Cliques of at least 4 vertices are not minimal

The complete graph on n vertices, Kn, with an SLSE labelling L, i.e., a labelling that
assigns a single label per edge, different labels to different edges, is an interesting
case, since Kn(L) always satisfies TC. However, it is not minimal as the theorem
below shows.

Theorem 4 Let n ∈ N, n ≥ 4 and denote by Kn the complete graph on n vertices.
There exists no minimal SLSE temporal graph on Kn(L). In fact, we can remove (at
least) �n

4
 labels from any SLSE labelling on Kn(L) without violating TC.

Proof The proof is divided in two parts, as follows:

(a) We first show that any SLSE labelling on the complete graph on 4 vertices
produces a temporal graph that is not minimal, i.e., the theorem holds for K4.
Consider the six different labels a, b, c, d, x, y assigned by an SLSE labelling
to the edges of K4 as shown in Fig. 7.

Up to their renaming, there are three possible cases for the labels a, b, c, d .
Counting all the cases of alternation, cycle, and entanglement (see below)
would give us all possible 4! = 24 cases.

1. (Alternation) a < b > d < c > a.
It is easy to see that in this case, both diagonals can be removed: v1 can

reach v3 using labels a and then c; v3 can reach v1 using labels d and then
b; v2 can reach v4 using labels a and then b; v4 can reach v2 using labels d

and then c.
2. (Cycle) a < b < d < c.

Here, diagonal x can be removed: v2 can reach v4 using labels a and
then b; v4 can reach v2 using labels d and then c.

Fig. 7 Any SLSE labelling on K4 is not minimal

922 Theory Comput Syst (2017) 61:907–944

3. (Entanglement) a < b < c < d.
This is a more complex case, for which we distinguish the following five

sub-cases:

i) x < b and y < c.
We can remove label a: v1 can reach v2 using labels y and then

c; v2 can reach v1 using labels x and then b.
ii) x < b and y > c.

We can remove label b: v1 can reach v4 using labels a, then
c and then d; v4 can reach v1 using labels x, then c and then y

(notice that x < b < c < y).
iii) x > b and y > c.

We can remove label a: v1 can reach v2 using labels b and then
x; v2 can reach v1 using labels c and then y.

iv) x > b and b < y < c.
We can remove label x: v2 can reach v4 using labels a and then

b; v4 can reach v2 using labels b, then y and then c.
v) x > b and y < b.

We can remove label c: v2 can reach v3 using labels a, then b

and then d; v3 can reach v2 using labels y, then b and then x.

Notice that the coverage of the above five cases is complete (cf. Fig. 8).

(b) Now, consider the complete graph on n ≥ 4 vertices, Kn = (V , E). Parti-
tion V arbitrarily into �n

4 � subsets V1, V2, . . . , V� n
4 �, such that |Vi | = 4, ∀i =

1, 2, . . . , �n
4 � − 1 and |V� n

4 �| ≤ 4. In each 4-clique defined by Vi, i =
1, 2, . . . , �n

4
, we can remove a “redundant” label, as shown in (a). The result-
ing temporal graph on Kn still preserves TC since for every ordered pair of
vertices u, v ∈ V :

• if u, v are in the same Vi , i = 1, 2, . . . , �n
4
, then there is a (u, v)-journey

that uses time edges within the 4-clique on Vi , as proven in (a).

Fig. 8 The six sub-cases cover all possible scenarios of “entanglement”

Theory Comput Syst (2017) 61:907–944 923

• if u ∈ Vi and v ∈ Vj , i �= j , then there is a (u, v)-journey that uses the
(direct) time edge on {u, v}.

4.2 Computing the Removal Profit is APX-hard

Note that it is straightforward to check in polynomial time whether a given L satisfies
TC on a given (di)graph G, by just checking for every possible (ordered) pair (u, v)

of vertices in G whether there is a (u, v)-journey in G(L). Recall that the removal
profit is the largest number of labels that can be removed from a temporally connected
graph without destroying TC. We now show that it is hard to approximate the value
of the removal profit arbitrarily well for an arbitrary graph, i.e., there exists no PTAS4

for this problem, unless P=NP. In our hardness proof below, we consider undirected
graphs.

We prove our hardness result by providing an approximation preserving polyno-
mial reduction from a variant of the maximum satisfiability problem, namely from
the monotone Max-XOR(3) problem. Consider a monotone XOR-boolean formula φ

with variables x1, x2, . . . , xn, i.e., a boolean formula that is the conjunction of XOR-
clauses of the form (xi ⊕xj), where no variable is negated. The clause α = (xi ⊕xj)

is XOR-satisfied by a truth assignment τ if and only if xi �= xj in τ . The number
of clauses of φ that are XOR-satisfied in τ is denoted by |τ(φ)|. If every variable
xi appears in exactly r XOR-clauses in φ, then φ is called a monotone XOR(r) for-
mula. The monotone Max-XOR(r) problem is, given a monotone XOR(r) formula φ,
to compute a truth assignment τ of the variables x1, x2, . . . , xn that XOR-satisfies
the largest possible number of clauses, i.e., an assignment τ such that |τ(φ)| is
maximized. The monotone Max-XOR(3) problem essentially encodes the Max-Cut
problem on 3 -regular (i.e., cubic) graphs, which is known to be APX-hard [4].

Lemma 2 [4] The monotone Max-XOR(3) problem is APX-hard.

Now we provide our reduction from the monotone Max-XOR(3) problem to the
problem of computing r(G, L). Let φ be an arbitrary monotone XOR(3) formula
with n variables x1, x2, . . . , xn and m clauses. Since every variable xi appears in
φ in exactly 3 clauses, it follows that m = 3

2n. We will construct from φ a graph
Gφ = (Vφ, Eφ) and a labelling Lφ of Gφ .

A very high-level description of the construction is as follows. Gφ is composed of
gadgets that represent the variables xi of the formula φ. Each variable xi is assigned
a “source” vertex sxi and three “sink” vertices t

xi

1 , t
xi

2 , t
xi

3 in Gφ ; each of them corre-
sponds to one of the three clauses of φ in which xi appears. The gadgets of Gφ are
connected in such a way that, if (xi ⊕xj) is a clause of φ, then one of the sink vertices
of xi coincides with one of the sink vertices of xj . Furthermore it turns out that, by the
construction, a journey from each source vertex sxi to the corresponding sink vertices
t
xi

1 , t
xi

2 , t
xi

3 represents a truth assignment of the variable xi . Moreover, the number of
clauses of φ that can be satisfied by a truth assignment corresponds bijectively to the

4PTAS stands for Polynomial-Time Approximation Scheme.

924 Theory Comput Syst (2017) 61:907–944

number of time-labels that can be removed from Gφ without destroying TC. Thus
an optimum solution of the monotone Max-XOR(3) problem on φ corresponds to an
optimal removal profit in Gφ .

Now we present the detailed construction of Gφ from the formula φ. First we
construct for every variable xi , where 1 ≤ i ≤ n, the gadget-graph Gφ,i together with
a labelling Lφ,i of its edges, as illustrated in Fig. 9. In this figure, the labels of every
edge in Lφ,i are drawn next to the edge. We call the induced subgraph of Gφ,i on the
4 vertices {sxi , u

xi

0 , w
xi

0 , v
xi

0 } the base of Gφ,i . Moreover, for every p ∈ {1, 2, 3}, we
call the induced subgraph of Gφ,i on the 4 vertices {txi

p , u
xi
p , w

xi
p , v

xi
p } the pth branch

of Gφ,i . Finally, we call the edges {uxi

0 , w
xi

0 } and {wxi

0 , v
xi

0 } the transition edges of the
base of Gφ,i and, for every p ∈ {1, 2, 3}, we call the edges {uxi

p , w
xi
p } and {wxi

p , v
xi
p }

the transition edges of the pth branch of Gφ,i . For every p ∈ {1, 2, 3} we associate
the pth appearance of the variable xi with the pth branch of Gφ,i .

We continue the construction of Gφ,i and Lφ,i as follows. First, we add an
edge between any possible pair of vertices w

xi
p , w

xj
q , where p, q ∈ {0, 1, 2, 3} and

i, j ∈ {1, 2, . . . , n}, and we assign to this new edge e = {wxi
p , w

xj
q } the unique

label Lφ(e) = {7}. The addition of the above described edges is not illustrated in
Fig. 9. Note here that we add this edge {wxi

p , w
xj
q } also in the case where i = j (and

p �= q).
Intuitively, the base of Gφ,i (cf. Fig. 9) corresponds to the variable xi and, for

every p ∈ {1, 2, 3}, the pth branch of Gφ,i , together with the two edges {uxi

0 , u
xi
p }

and {vxi

0 , v
xi
p }, correspond to the clause of φ in which xi appears for the pth time in φ.

Consider now a clause α = (xi ⊕ xj) of φ. Assume that the variable xi (resp. xj)
of α corresponds to the pth (resp. to the qth) appearance of xi (resp. of xj) in φ. Then
we identify the vertices u

xi
p , v

xi
p , w

xi
p , t

xi
p of the pth branch of Gφ,i with the vertices

v
xi
q , u

xi
q , w

xi
q , t

xi
q of the qth branch of Gφ,j , respectively (cf. Fig. 10b). Now we add

an edge between any possible pair of vertices t
xi
p , t

xj
q , i, j ∈ {1, 2, . . . , n}, and p, q ∈

{1, 2, 3}. We assign to this new edge e = {txi
p , t

xj
q } the unique label Lφ(e) = {7}.

Fig. 9 The gadget Gφ,i for the variable xi

Theory Comput Syst (2017) 61:907–944 925

Furthermore, for every i ∈ {1, 2, . . . , n} and every p ∈ {1, 2, 3} we define for
simplicity of notation the temporal paths Pi,p = (sxi , u

xi

0 , u
xi
p , t

xi
p) and Qi,p =

(sxi , v
xi

0 , v
xi
p , t

xi
p).

The intuition behind the composition of the gadget-graphs Gφ,i (cf. Fig. 10b) is
the following. If variable xi is false in a truth assignment τ of φ, then all edges of the
paths Pi,1, Pi,2, Pi,3 keep their labels as in Lφ . Otherwise, if xi is true in τ , then all
edges of the paths Qi,1, Qi,2, Qi,3 keep their labels as in Lφ . Furthermore, depending
on the value of xi in the assignment τ , each of the transition edges {uxi

p , w
xi
p } and

{wxi
p , v

xi
p }, where p ∈ {1, 2, 3}, keeps exactly one of its two labels from Lφ . Consider

now a clause α = (xi ⊕ xj) of φ which corresponds to the pth branch of Gφ,i and to
the qth branch of Gφ,j . Then the only case where both edges {txi

p , u
xi
p } and {txi

p , v
xi
p }

keep their labels from Lφ , is when the two variables xi, xj have equal truth value in
the corresponding truth assignment τ of φ; that is, when the clause α = (xi ⊕ xj) is
not XOR-satisfied by τ . Therefore, intuitively, by a careful counting of the labels it
turns out that, if more clauses can be satisfied by a truth assignment τ , then a TC

(a)

(b)

Fig. 10 a The addition of vertex t0. There exists in Gφ also the edge {t0, wxn

0 } with label Lφ({t0, wxn

0 }) =
{5}. b The gadget for the clause (xi ⊕ xj)

926 Theory Comput Syst (2017) 61:907–944

preserving sub-labelling L of Lφ can be constructed which avoids more labels from
Lφ , and vice versa (cf. Theorem 5).

To finalize the construction of the graph Gφ , we add a new vertex t0 to ensure
the existence of a temporal path between each pair of vertices of Gφ , as fol-
lows. This new vertex t0 is adjacent to vertex w

xn

0 and to all vertices in the set
{sxi , t

xi

1 , t
xi

2 , t
xi

3 , u
xi
p , v

xi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}. First we assign to the edge

{t0, wxn

0 } the unique label Lφ({t0, wxn

0 }) = {5}. Furthermore, for every vertex t
xi
p ,

where 1 ≤ i ≤ n and 1 ≤ p ≤ 3, we assign to the edge {t0, txi
p } the unique

label Lφ({t0, txi
p }) = {5}. Finally, for each of the vertices z ∈ {sxi , u

xi
p , v

xi
p : 1 ≤ i ≤

n, 0 ≤ p ≤ 3} we assign to the edge {t0, z} the unique label Lφ({t0, z}) = {6}. The
addition of the vertex t0 and the labels of the (dashed) edges incident to t0 are illus-
trated in Fig. 10a. Denote the vertex sets A = {sxi , u

xi
p , v

xi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3},

B = {wxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}, and C = {txi

p : 1 ≤ i ≤ n, 1 ≤ p ≤ 3}. Note
that Vφ = A ∪ B ∪ C ∪ {t0}. This completes the construction of the graph Gφ and its
labelling Lφ .

For every i ∈ {1, 2, . . . , n} the graph Gφ,i has 16 vertices. Furthermore, for every
p ∈ {1, 2, 3}, the 4 vertices of the pth branch of Gφ,i also belong to a branch of Gφ,j ,
for some j �= i. Therefore, together with the vertex t0, the graph Gφ has in total
10n + 1 vertices. We now present the auxiliary Lemmas 3–5 which are necessary for
the proof of Theorem 5.

Lemma 3 The labelling Lφ assigns 17
4 n2 + 28n + 1 labels to the edges of Gφ .

Proof The vertex t0 has in total 3 incident edges (to vertices sxi , u
xi

0 , v
xi

0) to every
base of a variable xi of φ, 3 incident edges (to vertices t

xi
p , u

xi
p , v

xi
p , where 1 ≤ p ≤ 3)

to every clause (xi ⊕xj) of φ (i.e., to one branch of xi and one branch of xj), and one
incident edge to vertex w

xn

0 . That is, t0 has in total 3n + 3m + 1 = 3n + 3 · 3
2n + 1 =

15
2 n + 1 incident edges, each of them having one label in Lφ .

Furthermore there exist in total m(m−1)
2 edges among the vertices {txi

p : 1 ≤ i ≤
n, 1 ≤ p ≤ 3}, as well as (n+m)(n+m−1)

2 edges among the vertices {wxi
p : 1 ≤ i ≤

n, 0 ≤ p ≤ 3}, each of them having one label in Lφ . Therefore, since m = 3
2n, Lφ

assigns in total 17
4 n2 − 2n labels for these edges.

Moreover, the labelling Lφ assigns to every variable xi of φ in total 12 labels,
i.e., two labels for each of the transition edges {uxi

0 , w
xi

0 }, {wxi

0 , v
xi

0 } and one label for
each of the edges {{sxi , u

xi

0 }, {sxi , v
xi

0 }, {uxi

0 , u
xi
p }, {vxi

0 , v
xi
p } : 1 ≤ p ≤ 3}.

Finally, Lφ assigns to every clause (xi ⊕ xj) of φ in total 7 labels, i.e., two labels
for each of the transition edges {uxi

p , w
xi
p }, {wxi

p , v
xi
p } and one label for each of the

edges {uxi
p , t

xi
p }, {vxi

p , t
xi
p }, {txi

p , w
xi
p }, where xi is associated with the pth branch

of Gφ,i . That is, Lφ assigns in total 7m = 21
2 n labels for all clauses of φ.

Summarizing, the labelling Lφ assigns to the edges of the graph Gφ a total of(
15
2 n + 1

)
+

(
17
4 n2 − 2n

)
+ 12n + 21

2 n = 17
4 n2 + 28n + 1 labels.

Lemma 4 The labelling Lφ satisfies TC on Gφ .

Theory Comput Syst (2017) 61:907–944 927

Proof We will prove that there exists a temporal path in Lφ between any pair of
vertices of Vφ = A ∪ B ∪ C ∪ {t0}.

For any two vertices b, b′ ∈ B there exists a temporal path from b to b′ and from
b′ to b, due to the edge {b, b′} with label 7. Similarly, for any two vertices c, c′ ∈ C

there exists a temporal path from c to c′ and from c′ to c, due to the edge {c, c′} with
label 7. Let a1, a2 ∈ A. There exists a temporal path from a1 to a2 as follows: start
from a1, follow Pi,p (or Qi,p) upwards until t

xi
p with greatest label 4, then go to t0

with label 5, and finally from t0 to a2 with label 6. In the special case where a1 and a2
lie on the same path Pi,p (resp. Qi,p) and a1 appears before a2 in Pi,p (resp. Qi,p),
there exists clearly a temporal path from a1 to a2 along Pi,p (resp. Qi,p).

Let a ∈ A and b ∈ B. Note that b = w
xi
p for some i ∈ {1, 2, . . . , n} and some

p ∈ {0, 1, 2, 3}. There exists the temporal path from b to a as follows. First follow
the edge {wxi

p , u
xi
p } (with label 1), then follow upwards the path Pi,p until one of

the vertices {txi

1 , t
xi

2 , t
xi

3 } (with maximum label 4), then go to t0 with label 5 and
finally reach a with label 6. Furthermore there exists the temporal path from a to b

as follows. Assume first that a = sxi , for some i ∈ {1, 2, . . . , n}. If b = w
xi

0 then
there exists the temporal path on the edges {sxi , u

xi

0 } (with label 1) and {uxi

0 , w
xi

0 }
(with label 2). If b �= w

xi

0 then there exists the temporal path from sxi to w
xi

0 (with
maximum label 2), followed by the edge {wxi

0 , b} (with label 7). Assume now that
a �= sxi , for every i ∈ {1, 2, . . . , n}. That is, a = u

xi
p or a = v

xi
p , for some i ∈

{1, 2, . . . , n} and some p ∈ {0, 1, 2, 3}. If b = w
xi
p then there exists the temporal path

from a to b on the edge {a, b} (with label 1). If b �= w
xi
p then there exists the temporal

path from a to b through the edges {a,w
xi
p } (with label 1) and {wxi

p , b} (with label 7).
That is, there exists a temporal path in Lφ between any a ∈ A and any b ∈ B.

Let b ∈ B, i.e., b = w
xi
p for some i ∈ {1, 2, . . . , n} and some p ∈ {0, 1, 2, 3}.

Then there exists a temporal path from b to every vertex c ∈ C as follows. If p = 0
then start with the edge {wxi

0 , u
xi

0 } (of label 1), continue upwards with a temporal
path (of maximum label 4) until t

xi

1 ∈ C and then continue to any other vertex c ∈ C

with the edge {txi

1 , c} (of label 7). If p ∈ {1, 2, 3} then reach t
xi
p ∈ C with the edge

{wxi
p , t

xi
p } (of label 1) and continue to any other vertex c ∈ C with the edge {txi

p , c}
(of label 7). That is, there exists a temporal path from any b ∈ B to any vertex of the
set C. Now let c ∈ C, i.e., c = t

xi
p for some i ∈ {1, 2, . . . , n} and some p ∈ {1, 2, 3}.

Then there exists a temporal path from c to every vertex b ∈ B as follows. First reach
the vertex w

xi
p ∈ B with the edge {txi

p , w
xi
p } (of label 1) and then continue to any other

vertex c ∈ C with the edge {wxi
p , c} (of label 7). That is, there exists a temporal path

in Lφ between any b ∈ B and any c ∈ C.
Let a ∈ A, i.e., a ∈ {sxi , u

xi
p , v

xi
p } for some i ∈ {1, 2, . . . , n} and some

p ∈ {0, 1, 2, 3}. Then there exists at least one path from a upwards to a vertex
c ∈ {txi

1 , t
xi

2 , t
xi

3 } (with maximum label 4). Once we have (temporally) reached c

from a, we can (temporally) continue to any other c′ ∈ C through the edge {c, c′}
(of label 7). That is, there exists a temporal path from any a ∈ A to any vertex of C.
Now let c ∈ C, i.e., c = t

xi
p for some i ∈ {1, 2, . . . , n} and some p ∈ {1, 2, 3}. Then

there exists a temporal path from c to every vertex a ∈ A as follows. First reach the
vertex t0 with the edge {txi

p , t0} (of label 5) and then continue to any vertex a ∈ A

with the edge {t0, a} (of label 6). That is, there exists a temporal path in Lφ between
any a ∈ A and any c ∈ C.

928 Theory Comput Syst (2017) 61:907–944

Finally, there exists a temporal path between t0 and every vertex of A∪C ∪{wxn

0 },
since t0 is a neighbour with all these vertices. Let b ∈ B, i.e., b = w

xi
p for some

i ∈ {1, 2, . . . , n} and some p ∈ {0, 1, 2, 3}. Then there exists a temporal path from
w

xi
p to t0 with the edges {wxi

p , u
xi
p } (with label 1) and {uxi

p , t0} (with label 6). On the
other hand, there exists a temporal path from t0 to every vertex b = w

xi
p ∈ B, as

follows. First reach the vertex w
xn

0 with the edge {t0, wxn

0 } (of label 5) and then, if
b �= w

xn

0 , continue with the edge {wxn

0 , b} (of label 7). That is, there exists a temporal
path in Lφ between t0 and any vertex in A ∪ B ∪ C.

Summarizing, there exists a temporal path between any pair of vertices of Vφ =
A ∪ B ∪ C ∪ {t0}, i.e., the labelling Lφ satisfies TC on Gφ .

Lemma 5 Let L ⊆ Lφ be a labelling of the graph Gφ . If L satisfies TC on Gφ , then
L contains:

(a) at least one label for every transition edge {uxi
p , w

xi
p } and {wxi

p , v
xi
p }, where

i ∈ {1, 2, . . . , n} and p ∈ {0, 1, 2, 3},
(b) the label of each edge {txi

p , w
xi
p }, where i ∈ {1, 2, . . . , n} and p ∈ {1, 2, 3},

(c) the labels of all edges of Gφ among the vertices {txi
p : 1 ≤ i ≤ n, 1 ≤ p ≤ 3},

(d) the labels of all edges among the vertices {wxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3},

(e) the label of each edge incident to t0, and
(f) the labels of all edges of the path Pi,p or the labels of all edges of the path Qi,p,

where i ∈ {1, 2, . . . , n} and p ∈ {1, 2, 3}.

Proof

(a) First assume that L does not keep any time label on the transition edge {uxi
p , w

xi
p }

(resp. {wxi
p , v

xi
p }), where i ∈ {1, 2, . . . , n} and p ∈ {0, 1, 2, 3}. Then there does

not exist in L any temporal path from u
xi
p (resp. v

xi
p) to w

xi
p , even if L maintains

all other edge labels from Lφ . This is a contradiction. Therefore L keeps at least
one label on the transition edge {uxi

p , w
xi
p } (resp. {wxi

p , v
xi
p }).

(b) Now assume that L does not contain the label of some edge {txi
p , w

xi
p }, where

i ∈ {1, 2, . . . , n} and p ∈ {1, 2, 3}. Then there does not exist in L any temporal
path from t

xi
p to any vertex w

xj
q ∈ B, even if L maintains all other edge labels

from Lφ . This is a contradiction to the assumption that L satisfies TC on Gφ .
Therefore L contains the label of each edge {txi

p , w
xi
p }, where i ∈ {1, 2, . . . , n}

and p ∈ {1, 2, 3}.
(c) Consider two vertices t

xi
p �= t

xj
q , 1 ≤ i < j ≤ n, 1 ≤ p, q ≤ 3. If L does

not contain the label of the edge {txi
p , t

xj
q }, then there does not exist in L any

temporal path from t
xi
p to t

xj
q , which is a contradiction. Therefore L contains the

labels of all edges of Gφ among the vertices {txi
p : 1 ≤ i ≤ n, 1 ≤ p ≤ 3}.

(d) Assume that L does not contain the label of the edge {wxi
p , w

xj
q }, for some i, j ∈

{1, 2, . . . , n} and p, q ∈ {0, 1, 2, 3}. Then there does not exist in L any temporal
path from w

xi
p to w

xj
q , which is a contradiction. Therefore L contains the labels

of all edges among the vertices {wxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}.

Theory Comput Syst (2017) 61:907–944 929

(e) We now prove that L contains the label of each edge incident to t0. Recall that
the neighbours of t0 in Gφ are exactly the vertices of the set A ∪ C ∪ {wxn

0 }.
Assume L does not have the label of the edge e = {t0, wxn

0 }. Then there exists
no temporal path in L from t0 to any vertex w

xi
p ∈ B, even if L maintains all

other edge labels from Lφ . This is a contradiction to the assumption that L sat-
isfies TC on Gφ . Now assume that there exists a vertex a ∈ A = {sxi , u

xi
p , v

xi
p :

1 ≤ i ≤ n, 0 ≤ p ≤ 3} such that L does not have the label of the edge
e = {t0, a}. Then there does not exist in L any temporal path from vertex t0
to vertex a, which is again a contradiction. Finally assume that there exists a
vertex t

xi
p ∈ C, such that L does not have the label of the edge e = {t0, txi

p }.
Then there does not exist in L any temporal path from vertex u

xi
p to ver-

tex sxi , which is a contradiction. Therefore L contains the label of each edge
incident to t0.

(f) Assume that L misses from Lφ at least one label of the path Pi,p and at least
one label of the path Qi,p , for some i ∈ {1, 2, . . . , n} and p ∈ {1, 2, 3}. Then
there does not exist any temporal path from sxi to t

xi
p , which is a contradiction.

Therefore L contains the labels of all edges of the path Pi,p or the labels of all
edges of the path Qi,p, where i ∈ {1, 2, . . . , n} and p ∈ {1, 2, 3}.

We are now ready to provide the proof of Theorem 5.

Theorem 5 There exists a truth assignment τ of φ with |τ(φ)| ≥ k if and only if
there exists a TC satisfying labelling L ⊆ Lφ of Gφ such that |Lφ \ L| ≥ 9n + k.

Proof (⇒) Assume that there is a truth assignment τ that XOR-satisfies k clauses
of φ. We construct a labelling L of Gφ by removing 9n + k labels from Lφ , as
follows. First we keep in L all labels of Lφ on the edges incident to t0. Furthermore
we keep in L the label {7} of all the edges {txi

p , t
xj
q } and the label {7} of all the edges

w
xi
p w

xj
q . Moreover we keep in L the label {1} of all the edges {txi

p , w
xi
p }. Let now

i = 1, 2, . . . , n. If xi = 0 in τ , we keep in L the labels of the edges of the paths
Pi,1, Pi,2, Pi,3, as well as the label 1 of the edge {vxi

0 , w
xi

0 } and the label 2 of the edge
{wxi

0 , u
xi

0 }. Otherwise, if xi = 1 in τ , we keep in L the labels of the edges of the paths
Qi,1, Qi,2, Qi,3, as well as the label 1 of the edge {uxi

0 , w
xi

0 } and the label 2 of the
edge {wxi

0 , v
xi

0 }.
We now continue the labelling L as follows. Consider an arbitrary clause α =

(xi ⊕ xj) of φ. Assume that the variable xi (resp. xj) of the clause α corresponds
to the pth (resp. to the qth) appearance of variable xi (resp. xj) in φ. Then, by the
construction of Gφ , the pth branch of Gφ,i coincides with the qth branch of Gφ,j ,
i.e., u

xi
p = v

xj
q , v

xi
p = u

xj
q , w

xi
p = w

xj
q , and t

xi
p = t

xj
q (cf. Fig. 10b). Let α be XOR-

satisfied in τ , i.e., xi = xj . If xi = xj = 0 (i.e., xi = 0 and xj = 1) then we keep in
L the label 1 of the edge {vxi

p , w
xi
p } and the label 2 of the edge {wxi

p , u
xi
p }, cf. Fig. 11a.

In the symmetric case, where xi = xj = 1 (i.e., xi = 1 and xj = 0), we keep in

930 Theory Comput Syst (2017) 61:907–944

L the label 1 of the edge {uxi
p , w

xi
p } and the label 2 of the edge {wxi

p , v
xi
p }. Let now

α be XOR-unsatisfied in τ , i.e., xi = xj . Then, in both cases where xi = xj = 0
and xi = xj = 1, we keep in L the label 1 of both edges {vxi

p , w
xi
p } and {wxi

p , u
xi
p },

cf. Fig 11b. This finalizes the labelling L of Gφ . It is easy to check that L satisfies
TC on Gφ .

Summarizing, the labelling L misses in total 6 labels of Lφ for the edges
{{sxi , u

xi

0 }, {sxi , v
xi

0 }, {uxi

0 , w
xi

0 }, {wxi

0 , v
xi

0 }, {uxi

0 , u
xi
p }, {vxi

0 , v
xi
p } : 1 ≤ p ≤ 3, i =

1, 2, . . . , n}. That is, L misses in total 6n labels of Lφ for all variables x1, x2, . . . , xn.
For each of the k XOR-satisfied clauses (xi ⊕xj) of φ, the labelling L misses in total
3 labels of Lφ for the edges {uxi

p , w
xi
p }, {wxi

p , v
xi
p }, {uxi

p , t
xi
p }, {vxi

p , t
xi
p }, {txi

p , w
xi
p },

where xi is associated with the pth branch of Gφ,i . That is, L misses in total 3k

labels of Lφ for all XOR-satisfied clauses. Furthermore, for each of the m − k XOR-
satisfied clauses (xi ⊕ xj) of φ, the labelling L misses in total 2 labels of Lφ for the
edges {uxi

p , w
xi
p }, {wxi

p , v
xi
p }, {uxi

p , t
xi
p }, {vxi

p , t
xi
p }, {txi

p , w
xi
p }, where xi is associated

with the pth branch of Gφ,i . That is, L misses in total 2(m − k) = 3n − 2k labels
of Lφ for all XOR-satisfied clauses. All other labels of Lφ remain in the labelling
L ⊆ Lφ . Therefore, L misses in total 6n + 3k + 3n − 2k = 9n + k labels from Lφ .

(a)

(b)

Fig. 11 The labelling L ⊆ Lφ of the edges of Fig. 10b for the clause α = (xi ⊕ xj) of φ, where
a xi = xj = 0 and b xi = xj = 0

Theory Comput Syst (2017) 61:907–944 931

(⇐) Assume that r(Gφ, Lφ) ≥ 9n + k and let L ⊆ Lφ be a TC preserving
labelling of Gφ with |Lφ \ L| = r(Gφ, Lφ) ≥ 9n + k, i.e., Gφ(L) is minimal. Let
i ∈ {1, 2, . . . , n}. For every p ∈ {1, 2, 3}, L contains by Lemma 5(f) the labels of all
edges of the path Pi,p or the labels of all edges of the path Qi,p. Therefore, there
exist at least two indices p1, p2 ∈ {1, 2, 3} such that L contains the labels of all
edges of the paths Pi,p1 , Pi,p2 or the labels of all edges of the paths Qi,p1 , Qi,p2 .
Without loss of generality let p1 = 1 and p2 = 2 and let L contain the labels
of all edges of the paths Pi,1, Pi,2 (the other cases can be dealt with in the same
way by symmetry). Assume that L also contains the labels of all edges of the path
Qi,3 = (sxi , v

xi

0 , v
xi

3 , t
xi

3). Then we can modify the labelling L to a labelling L′ as
follows. First remove from L the labels of the edges {sxi , v

xi

0 } and {vxi

0 , v
xi

3 } and add
instead the labels of the edges {uxi

0 , u
xi

3 } and {uxi

3 , t
xi

3 } (if they do not exist yet in
L). Furthermore change the labels of the transition edges {vxi

0 , w
xi

0 } and {wxi

0 , u
xi

0 }
to the labels 1 and 2, respectively. Note that in the resulting labelling L′, both edges
{uxi

3 , t
xi

3 } and {vxi

3 , t
xi

3 } are labelled. Furthermore L′ ⊆ Lφ and L′ does not have more
labels than L, and thus |Lφ \ L′| ≥ |Lφ \ L| = r(Gφ, Lφ). Moreover, it is easy
to check that L′ still satisfies TC on Gφ , as L satisfies TC as well. So, it must also
be |Lφ \ L′| = r(Gφ, Lφ), i.e., Gφ(L′) is also minimal. Therefore, we may assume
without loss of generality that for any minimal labelling L ⊆ Lφ , L contains the
labels of all edges of the paths Pi,1, Pi,2, Pi,3 or the labels of all edges of the paths
Qi,1, Qi,2, Qi,3.

From Lemma 5(a), L contains at least 2n + 2m labels on the edges of the form
{uxi

p , w
xi
p } or {wxi

p , v
xi
p }, since there are exactly 2n transition edges on the differ-

ent bases of Gφ and 2m transition edges on the different branches of Gφ . From
Lemma 5(b), L contains m additional labels, one for each branch, more specifi-
cally for the respective edge {txi

p , w
xi
p } of the branch. From Lemma 5(c), L contains

m(m−1)
2 extra labels among the vertices {txi

p : 1 ≤ i ≤ n, 1 ≤ p ≤ 3}. From

Lemma 5(d), L also contains (n+m)(n+m−1)
2 additional labels among the vertices

{wxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}. From Lemma 5(e), L also contains 15

2 n + 1 labels on
the edges incident to t0. Finally, from Lemma 5(f), L contains at least 4n + m addi-
tional labels: for each Gφ,i , L contains at least 4 labels, namely one label on the base
edge {sxi , u

xi

0 } or on the base edge {sxi , v
xi

0 } and, for every p ∈ {1, 2, 3}, one label
on the edge {uxi

0 , u
xi
p } or on the edge {vxi

0 , v
xi
p }; also, for each branch of Gφ , L con-

tains at least 1 label, namely a label on the edge {uxj
p , t

xj
p } or on the edge {vxj

p , t
xj
p },

for some p ∈ {1, 2, 3} and j ∈ {1, 2, . . . , m}.
Notice that all the labels of L mentioned above are on different edges, so no subset

of labels has been accounted for more than once. Therefore, since m = 3n
2 , L contains

at least:

c(L) ≥ 17

4
n2 + 17n + n

2
+ 1 (1)

labels.
Now we construct from the labelling L ⊆ Lφ a truth assignment τ for the formula

φ as follows. For every i ∈ {1, 2, . . . , n}, if L contains the labels of all edges of the
paths Pi,1, Pi,2, Pi,3, then we define xi = 0 in τ . Otherwise, if L contains the labels

932 Theory Comput Syst (2017) 61:907–944

of all edges of the paths Qi,1, Qi,2, Qi,3, then we define xi = 1 in τ . We will prove
that |τ(φ)| ≥ k, i.e., that τ XOR-satisfies at least k clauses of the formula φ.

Let α = (xi ⊕ xj), where i, j ∈ {1, 2, . . . , n}, be a clause of φ that is not XOR-
satisfied by τ in φ. Let xi (resp. xj) be associated with the pth (resp. qth) branch
of Gφ,i (resp. of Gφ,j). Since α is not XOR-satisfied, either xi = xj = 0 or xi =
xj = 1 in τ . If xi = xj = 0 in τ , it follows by the definition of the assignment τ

that the labelling L contains the labels of all edges of the path Pi,p and of the path
Pj,q . Therefore, the pth branch of Gφ,i , which is identified with the qth branch of
Gφ,j , has both edges {txi

p , u
xi
p } ≡ {txj

q , v
xj
q } and {txi

p , v
xi
p } ≡ {txj

q , u
xj
q } labelled under

L, with one label each. The same holds if xi = xj = 1, where all edges of both paths
Qi,p and Qj,q are labelled. So, for all the branches of Gφ that correspond to non-
satisfied clauses of φ by the truth assignment τ , L contains an additional label (to the
ones accounted for by using the result of Lemma 5(f)). The number of clauses that
are not satisfied by τ in φ is exactly m − |τ(φ)| = 3

2n − |τ(φ)|.
Thus, it follows by (1), by adding the extra 3

2n − |τ(φ)|, that L contains in total at
least:

c(L) ≥ 17

4
n2 + 17n + n

2
+ 1 + (

3n

2
− |τ(φ)|)

= 17

4
n2 + 19n + 1 − |τ(φ)|

labels.
Recall now that we have already shown in Lemma 3 that Lφ has a total of 17

4 n2 +
28n + 1 labels. Therefore, we have:

|Lφ \ L| = c(Lφ) − c(L) ≤ 9n + |τ(φ)|.
However, by our initial assumption:

|Lφ \ L| = r(Gφ, Lφ) ≥ 9n + k.

Therefore 9n + k ≤ |Lφ \ L| ≤ 9n + |τ(φ)|, and thus |τ(φ)| ≥ k, i.e., the
truth assignment τ satisfies at least k clauses of φ. This completes the proof of the
theorem.

The next corollary follows immediately by Theorem 5.

Corollary 3 Let OPTmon-Max-XOR(3)(φ) the greatest number of clauses that can
be simultaneously XOR-satisfied by a truth assignment of φ. Then r(Gφ, Lφ) =
9n+OPT mon-Max-XOR(3)(φ).

Proof Let τ be a truth assignment that satisfies k =OPTmon-Max-XOR(3)(φ) clauses
of φ. Then there exists by Theorem 5 a TC satisfying labelling L ⊆ Lφ of
Gφ such that |Lφ \ L| ≥ 9n + k. Thus, since r(Gφ, Lφ) ≥ |Lφ \ L|, it fol-
lows that r(Gφ, Lφ) ≥ 9n+OPTmon-Max-XOR(3)(φ). Conversely, let L ⊆ Lφ be a
labelling of Gφ such that |Lφ \ L| = r(Gφ, Lφ). Then there exists by Theorem
5 a truth assignment τ that satisfies at least r(Gφ, Lφ) − 9n clauses of φ . Thus
OPTmon-Max-XOR(3)(φ) ≥ r(Gφ, Lφ) − 9n, which completes the proof.

Theory Comput Syst (2017) 61:907–944 933

Using Theorem 5 and Corollary 3, we are now ready to prove the main theorem
of this section.

Theorem 6 The problem of computing r(G, L) on an undirected temporally con-
nected graph G(L) is APX-hard.

Proof Denote by OPTmon-Max-XOR(3)(φ) the greatest number of clauses that can be
simultaneously XOR-satisfied by a truth assignment of φ. The proof is done by an
L-reduction [31] from the monotone Max-XOR(3) problem, i.e. by an approximation
preserving reduction which linearly preserves approximability features. For such a
reduction, it suffices to provide a polynomial-time computable function g and two
constants α, β > 0 such that:

• r(Gφ, Lφ) ≤ α·OPTmon-Max-XOR(3)(φ), for any monotone XOR(3) formula φ,
and

• for any TC satisfying labelling L ⊆ Lφ of Gφ , g(L) is a truth assignment for φ

and OPTmon-Max-XOR(3)(φ)−|g(L)| ≤ β · (r(Gφ, Lφ)−|Lφ \L|), where |g(L)|
is the number of clauses of φ that are satisfied by g(L).

We will prove the first condition for α = 13. Note that a random truth
assignment XOR-satisfies each clause of φ with probability 1

2 , and thus there
exists an assignment τ that XOR-satisfies at least m

2 clauses of φ. Therefore
OPTmon-Max-XOR(3)(φ) ≥ m

2 = 3
4n, and thus n ≤ 4

3 OPT mon-Max-XOR(3)(φ). Now
Corollary 3 implies that:

r(Gφ, Lφ) = 9n + OPTmon-Max-XOR(3)(φ)

≤ 9 · 4

3
OPTmon-Max-XOR(3)(φ) + OPTmon-Max-XOR(3)(φ) (2)

= 13 · OPTmon-Max-XOR(3)(φ)

To prove the second condition for β = 1, consider an arbitrary labelling L ⊆ Lφ

of Gφ . As described in the (⇐)-part of the proof of Theorem 5, we construct in
polynomial time a truth assignment g(L) = τ that satisfies at least |Lφ \ L| − 9n

clauses of φ, i.e. |g(L)| = |τ(φ)| ≥ |Lφ \ L| − 9n. Then:

OPTmon-Max-XOR(3)(φ) − |g(L)| ≤ OPTmon-Max-XOR(3)(φ) − |Lφ \ L| + 9n

= r(Gφ, Lφ) − 9n − |Lφ \ L| + 9n (3)

= r(Gφ, Lφ) − |Lφ \ L|
This completes the proof of the Theorem.

Note In fact, we have also shown (Theorem 5) that the problem of computing the
removal profit is NP-hard in the strong sense, since all numbers used in the reduction
are constant integers.

Open Problem Is there a polynomial-time constant factor approximation algorithm
to compute r(G, L)?

934 Theory Comput Syst (2017) 61:907–944

4.3 Temporally connected random labellings have high removal profit

In this section, we show that dense graphs with random labels have the property
TC and have a very high removal profit asymptotically almost surely. More specifi-
cally, we consider the complete graph and the Erdös-Renyi model of random graphs,
Gn,p and we examine whether we can delete labels from such temporal graphs and
continue preserving TC.

The (single-labelled) model of temporal graphs that we consider here is that of
uniform random temporal graphs [1].

Definition 12 [1] A uniform random temporal graph is a graph G on n vertices,
n ∈ N, each edge of which receives exactly one label uniformly at random from a set
{1, 2, . . . , α}, α ∈ N and the selection of the label of an edge is independent from
the selection of the label of any other edge.

4.3.1 High removal profit in the complete graph

Theorem 7 In the uniform random temporal graph where the underlying graph G is
the complete graph (clique) of n vertices and α ≥ 4, we can delete all but �(n log n)

labels without violating TC, with probability at least 1 − 1
n2 .

Proof First, note that any set {1, 2, . . . , α} of α consecutive natural numbers
can be partitioned into 4 disjoint almost equal subsets of consecutive numbers,
A1, A2, A3, A4. Indeed, let α = 4k + v, where k ∈ N and v ∈ {1, 2, 3, 4}.

For v = 0, we use A1 = {1, . . . , k}, A2 = {k + 1, . . . , 2k}, A3 = {2k +
1, . . . , 3k}, A4 = {3k + 1, . . . , 4k}.

For v = 1, we use A1 = {1, . . . , k}, A2 = {k + 1, . . . , 2k}, A3 = {2k +
1, . . . , 3k}, A4 = {3k + 1, . . . , 4k + 1}.

For v = 2, we use A1 = {1, . . . , k}, A2 = {k+1, . . . , 2k}, A3 = {2k+1, . . . , 3k+
1}, A4 = {3k + 2, . . . , 4k + 2}.

For v = 3, we use A1 = {1, . . . , k}, A2 = {k + 1, . . . , 2k + 1}, A3 = {2k +
2, . . . , 3k + 2}, A4 = {3k + 3, . . . , 4k + 3}.

In any of the above four cases, each particular edge of the clique Kn receives a
single random label l, with:

Pr[l ∈ Ai] ≥ k

4k + 3
, ∀i = 1, 2, 3, 4

Since k ≥ 1 (because α ≥ 4), we have k
4k+3 ≥ 1

7 . So, we get the following Lemma:

Lemma 6 For each particular edge e of Kn and for the label l that it receives, it
holds that Prob[l ∈ Ai] ≥ k

4k+3 , ∀i = 1, 2, 3, 4.

Now, colour green(g), yellow(y), blue(b) and red(r) the edges that are assigned a
label in A1, A2, A3 and A4 respectively.

Theory Comput Syst (2017) 61:907–944 935

Fig. 12 Temporal router of a clique

Definition 13 A temporal router (cf. Fig. 12) of a clique G = Kn = (V , E) is a
subgraph R = (VR, ER) of G, with 2γ log n+1 vertices, γ being a constant such that
γ ≥ 4 · 1

log2
2500
2499

, with the following properties (all logarithms are with base 2 here):

a) VR is the union of a particular vertex v0 (called the centre of R) and two
equisized vertex sets Vin and Vout , each of γ log n vertices, and

b) R is the induced subgraph of G formed from VR (so it is a clique itself).

Note that R has |ER| = 2γ log n + (2γ log n)·(2γ log n−1)
2 edges.

Let w, w′ be any two vertices of the clique that are not in VR . We consider the
edges connecting w to Vin and the edges connecting w′ to Vout ; using those edges and
the edges of R, there are γ log n edge-disjoint paths of length 4 (each) connecting w

and w′. Let us call those paths special paths and note that every such path uses edges
of the form {w, vin}, {vin, v0}, {v0, vout }, {vout , w

′}, where vin ∈ Vin and vout ∈ Vout

(cf. Fig. 13).
Each special path P = (w, vin, v0, vout , w

′) connecting w and w′ becomes a
(w, w′)-journey if the label l1 of {w, vin} is in A1, the label l2 of {vin, v0} is in A2,
the label l3 of {v0, vout } is in A3, and the label l4 of {vout , w

′} is in A4. Then, the

probability that P is a journey is at least
(

1
7

)4
, due to independence of the labels’

selection.

Fig. 13 A special path connecting w and w′

936 Theory Comput Syst (2017) 61:907–944

Since all special paths that connect w and w′ are edge-disjoint, the probability that
none of them is a (w, w′)-journey is:

Pr[no special path is a (w, w′)-journey] =
(

1 − 1

74

)γ log n

<

(

1 − 1

2500

)γ log n

= n−γ log 2500
2499 .

Therefore, we have:

Lemma 7 For any two particular vertices w, w′ of V \VR , the probability that there

is a special path P from w to w′ that is a (w, w′)-journey is at least 1 − n−γ log2
2500
2499 .

Now, we consider only the edges and labels of R and, for each w ∈ V \ VR , we
consider only the edges connecting w to each vertex of R; the sparsified graph G′ =
(V , E′) has, thus, |E′| = (2γ log n+1)·2γ log n

2 + (n − (2γ log n + 1)) · (2γ log n+1) =
�(n log n + log2 n) = �(n log n) edges. We will show that we need only consider
the edges (and labels) of G′ to maintain T C in G, i.e., that G′ itself is temporally
connected, with probability at least 1 − 1

n2 .
Consider any pair, w, w′, of vertices of the uniform random temporal graph on Kn

and a temporal router R. Also, consider the graph G′ as described above, with the
labelling implied by the uniform random labelling on the clique. If w, w′ ∈ VR , then
they are directly connected via a labelled edge in G′ and thus a journey exists both
ways between them. If w ∈ VR and w ∈ V \ VR , then again there is a direct labelled
edge in G′ connecting w and w′, so there is a journey between them either way.

It remains to examine the existence in G′ of journeys between pairs of vertices
w, w′, w �= w′, none of which is in VR; there are at most n2 such pairs of vertices.
Under the random labelling on G, let E1 be the event that there exists a pair w, w′ ∈
V \ VR such that there is no (w, w′)-journey via a special path through R. Also, let
E2 be the event that for a specific pair w, w′ ∈ V \ VR , there is no (w, w′)-journey
via a special path through R. Then,

Pr[E1] ≤ n2Pr[E2] (by the Union Bound).

So, we have:

Pr[G′ is not temporally connected] ≤ n2n−γ log2
2500
2499 .

Note that Lemma 7 gives an upper bound on the probability of the event E2. Set γ

to be γ ≥ 4 · 1
log2

2500
2499

. Then, we have:

Pr[G′ is not temporally connected] ≤ n−2.

4.3.2 High removal profit in dense random Erdös-Renyi graphs

In this section, we consider the underlying graph G = (V , E) to be an instance of

the Erdös-Renyi graph model, Gn,p, with n ≥ 14 and p ≥ 7
(

γ ln n
n

) 1
7
, γ ≥ 24.

Theory Comput Syst (2017) 61:907–944 937

Definition 14 (Erdös-Renyi graphs) An instance of Gn,p is formed when for every
pair of vertices u, v among a total number of n vertices, the edge {u, v} is chosen to
exist with probability p independently of any other edge.

We will also use the Multiplicative Chernoff bound, as described below:

Fact Chernoff Bound [28] Suppose X1, . . . , Xn are independent random variables
taking values in {0, 1}. Let X denote their sum and let μ = E[X] denote the sum’s
expected value. Then, for 0 < δ < 1:

Pr[X > (1 + δ)μ] ≤ e− δ2μ
3 , and

Pr[X ≤ (1 − δ)μ] ≤ e− δ2μ
2 .

Notice that Gn,p is almost surely connected for any p ≥ 2 ln n
n

[8]. As in the pre-
vious section, we consider here a uniform random temporal graph on G, i.e., we
consider each edge of G to receive exactly one label uniformly at random from a set
{1, 2, . . . , α}, with α ≥ 4. The selection of the label of an edge is independent of
the selection of the label of any other edge. Also, the label selection process is inde-
pendent of the process of selection of edges in Gn,p. As in Theorem 7, we consider
partitioning {1, 2, . . . , α} into four consecutive subsets, A1, A2, A3, A4, of consec-
utive positive integers, where each subset is of size either �α

4
 or �α
4
 + 1; such a

partition is always possible. Now colour green(g), yellow(y), blue(b) and red(r) the
edges that are assigned a label in A1, A2, A3 and A4, respectively. As in Lemma 6,
we have:

Lemma 8 For each particular edge of G and for the label l that it receives, it holds
that Prob[l ∈ Ai] ≥ 1

7 , ∀i = 1, 2, 3, 4.

In such instances of Gn,p, we cannot assume the existence of cliques such as the
clique of the temporal router used in the previous section. Indeed, even for very dense
instances of Gn,p, with p = 1

2 , the largest clique is at most of size 2 ln n [8].
In order to “sparsify” labelled instances G of Gn,p, by removing labels without

violating TC, we need to guarantee the existence of much sparser routing subsets of
G.

Definition 15 Given two vertices v1, v2 of Gn,p, a temporal router, R(v1, v2), in an
instance I of Gn,p is a subgraph of I that has vertices v1, v2 and additional vertices
a1, . . . , ak and b1, . . . , bk so that:

• v1 connects directly to each ai, bi, i = 1, . . . , k,
• v2 connects directly to each ai, bi, i = 1, . . . , k,
• each pair ai, bi is directly connected, i = 1, . . . , k,
• each edge {ai, bi} receives a green label, i = 1, . . . , k,
• each edge {ai, v1} receives a yellow label, i = 1, . . . , k,
• each edge {v1, bi} receives a blue label, i = 1, . . . , k,

938 Theory Comput Syst (2017) 61:907–944

Fig. 14 Temporal router R(v1, v2) for k = 1

• each edge {v2, ai} receives a blue label, i = 1, . . . , k,
• each edge {bi, v2} receives a yellow label, i = 1, . . . , k.

Figures 14 and 15 show a temporal router R(v1, v2) for k = 1 and k = 2
respectively.

Note 1 A temporal router R(v1, v2) in an instance I of Gn,p is temporally connected
since:

• any ai can reach any bj , via a journey through v1, i.e., (ai, v1, bj) is a journey,
• any bi can reach any aj , via a journey through v2, i.e., (bi, v2, aj) is a journey,
• any ai can reach any aj �= ai , via a journey through bi and then v2, i.e.,

(ai, bi, v2, aj) is a journey,
• any bi can reach any bj �= bi , via a journey through ai and then v1, i.e.,

(bi, ai, v1, bj) is a journey,
• v1 can reach v2, via any ai , i.e., (v1, ai, v2) is a journey,
• v2 can reach v1, via any bi , i.e., (v2, bi, v1) is a journey, and
• all other (temporal) connections are direct.

Fig. 15 Temporal router R(v1, v2) for k = 2

Theory Comput Syst (2017) 61:907–944 939

Definition 16 We denote by Ri and call it the ith theta subgraph of R(v1, v2) the
labelled subgraph of R(v1, v2) induced by the vertices v1, v2, ai , and bi , for some
i = 1, . . . , k (cf. Fig. 16).

Note that the following Lemma holds:

Lemma 9 Let I be an instance of Gn,p with a uniform random labelling from the set
{1, 2, . . . , α}, α ≥ 4. Fix two vertices v1, v2 and 2k vertices ai, bi, i = 1, . . . , k, in
I . Then, for each particular i = 1, . . . , k, the probability that the subgraph induced
by the vertices v1, v2, ai, bi is a theta subgraph is:

Pr[Ri exists in I] ≥
(p

7

)5

Proof Each edge of Ri is realized in Gn,p with probability p and receives the correct
type of label (green, yellow, blue, or red) with probability at least 1

7 . Note also that
the edges of different theta subgraphs Ri and Rj , i �= j , are disjoint. Thus, in Gn,p,
the random experiments of each of the theta subgraphs Ri appearing are independent
from each other and each succeeds with probability at least

(p
7

)5.

Now, consider the set of vertices V \ {v1, v2} and partition it into two almost equal
sets V1 and V2; note that |Vi | ≥ �n

2
−2 ≥ n
3 = n′, i = 1, 2 (since n ≥ 14). Consider

a pairing of n′ vertices of V1 to n′ vertices of V2 and let the n′ different pairs be the
possible pairs of vertices ai, bi in a theta subgraph Ri . By Lemma 9 and since the
random experiments are independent, the number of appearances of Ri is at least the
number of successes in a Bernoulli distribution of n′ trials, with success probability
(p

7

)5 per trial. Therefore, by the Chernoff bound, we have the following Lemma:

Lemma 10 Consider an instance I of a Gn,p that has been labelled uniformly at
random and fix two vertices v1, v2 in I . The probability that there is a temporal router

Fig. 16 The ith theta subgraph, Ri

940 Theory Comput Syst (2017) 61:907–944

R(v1, v2) consisting of at least k = n′
2

(p
7

)5 = n
6

(p
7

)5
theta subgraphs Ri is at least

1 − e− 1
8 n′(p

7)
5 = 1 − e− n

24 (
p
7)

5
.

Corollary 4 Note that, again by the Chernoff bound, k asymptotically almost surely

does not exceed 3
2n′ (p

7

)5
, since Pr[k >

(
1 + 1

2

)
E(k)] ≤ e− n

36 (
p
7)

5
.

We now condition on the event, E1, that the instance I of a labelled Gn,p has a

temporal router R(v1, v2) of at least k = n
6

(p
7

)5 theta subgraphs. By Lemma 10, we
know that:

Pr[Ē1] ≤ e− n
24 (

p
7)

5
.

Given that R(v1, v2) exists, any vertex u that is not in R(v1, v2) can reach any vertex
u′ that is also not in R(v1, v2) through R(v1, v2) via a journey, if u connects to some
ai directly with a green edge, and bi connects to u′ directly with a red edge. Then,
(u, ai, v1, bi, u

′) is a journey.
The probability of the edge {u, ai} being green and the edge {bi, u

′} being red, for
any i, is

(p
7

)2 and it is independent of edge experiments inside R(v1, v2). So, we have:

Lemma 11 Condition on the event E1 of the existence of R(v1, v2) in Gn,p with at

least k = n
6

(p
7

)5
theta subgraphs. Let u, u′ be any two (different) vertices of G that

are not in R(v1, v2). Then:

Pr[there exists a (u, u′)-journey through R(v1, v2)] ≥ 1 −
(

1 − (
p

7
)2

)k

Proof For the vertices u, u′ as described above and any one of the k possible journeys
of the form (u, ai, v1, bi, u

′), the probability that such a journey fails (i.e., is not
realized) is at most 1 − (p

7

)2. Therefore, given E1, we have:

Pr[there exists no (u, u′)-journey through R(v1, v2)] ≤
(

1 − (
p

7
)2

)k

Let E2 be the event that given k pairs of vertices ai, bi in a possible R(v1, v2), each
vertex pair u, u′, with u �= u′ and u, u′ �∈ V (R(v1, v2)), satisfies the following: there
is at least one pair of vertices ai, bi such that u connects to ai with a green edge and
u′ connects to bi with a red edge.

Notice that Ē2 is the event that there is a pair of vertices u, u′ that are not in
R(v1, v2) that fails to connect as described above. Since the number of possible pairs
of vertices u, u′ is less than n2, we have:

Pr[Ē2] ≤ n2
(

1 − (
p

7
)2

)k

≤ n2e−k(
p
7)2

= e−k(
p
7)2+2 ln n

Theory Comput Syst (2017) 61:907–944 941

Now, condition on E1 and on E2 (given E1). Then, for each vertex u �∈
V (R(v1, v2)), keep one of its green edges (to some ai) and one of its red edges (to
the corresponding bi), since by E2, those exist. Then, remove all edges of I except
for the edges of R(v1, v2) and the two edges we keep for every vertex that is not in
R(v1, v2). Notice that the resulting labelled subgraph of I is temporally connected,
since:

a) R(v1, v2) is temporally connected itself, by construction,
b) any u �∈ V (R(v1, v2)) has a journey via R(v1, v2) to any other u′ ∈ V in the

graph,
c) any ai or bj can reach any u �∈ V (R(v1, v2)) via a journey through v1(using

first a green edge, if we start from a bj vertex, and then using a yellow, a blue
and a red edge to reach u), and

d) v1 and v2 can reach any u �∈ V (R(v1, v2)) via a journey through some vertex bi

(using first a blue -or yellow, respectively- edge to bi , and then a red edge to u).

The temporally connected instance I of Gn,p after the removal of redundant edges
as described above has a number of labelled edges (i.e., time-edges) that is at most
2n + �(k). Since k = n

6

(p
7

)5, I has at most �(n + np5) labels after the removal of
the redundant edges.

Recall that we require p ≥ 7
(

γ ln n
n

) 1
7
, γ ≥ 24. Therefore, we get the following:

Theorem 8 Consider a Gn,p, with p ≥ 7
(

γ ln n
n

) 1
7
, for some γ ≥ 24, labelled

uniformly at random. Then, any instance I ofGn,p needs only�(n+np5) time-edges

to be temporally connected, with probability at least 1 − 2e− γ
24 ln n.

Proof Any instance I of Gn,p becomes temporally connected by using at most �(n+
np5) edges (and, thus, labels) as described above, with probability at least:

Pr[E1] · Pr[E2|E1] ≥
(

1 − e− n
24 (

p
7)

5) ·
(

1 − e−k(
p
7)2+2 ln n

)
. (4)

Since p ≥ 7
(

γ ln n
n

) 1
7

and k = n
6

(p
7

)5, we have:

k
(p

7

)2 = n

6
·
(p

7

)7

≥ n

6
· γ ln n

n

= γ ln n

6
. (5)

Therefore, from relations (4) and (5), we have:

Pr[E1] · Pr[E2|E1] ≥
(

1 − e− n
24 (

p
7)

5) ·
(

1 − e− γ ln n
6 +2 ln n

)

≥
(

1 − e− n
24 (

p
7)

7) ·
(

1 − e− γ ln n
6 +2 ln n

)
(6)

942 Theory Comput Syst (2017) 61:907–944

Again, since p ≥ 7
(

γ ln n
n

) 1
7
, we have that:

(p
7

)7 ≥ γ ln n
n

, so relation (6) becomes:

Pr[E1] · Pr[E2|E1] ≥
(

1 − e− n
24

γ ln n
n

)
·
(

1 − e− γ ln n
6 +2 ln n

)

≥ 1 − e− γ ln n
6 +2 ln n − e− n

24 · γ ln n
n

= 1 − e− ln n(γ
6 −2) − e− γ

24 ·ln n

= 1 − n−(γ
6 −2) − n− γ

24 . (7)

Now, since γ ≥ 24, we have that γ
6 −2 ≥ γ

24 . Therefore, from relation (7), we get:

Pr[E1] · Pr[E2|E1] ≥ 1 − 2n− γ
24

= 1 − 2e− γ
24 ln n.

Note that for the sparsest possible Gn,p here, i.e., for p = 7
(

γ ln n
n

) 1
7
, we

need only �(n + n
2
7 (ln n)

5
7) = �(n) edges (and, thus, labels) to satisfy TC, with

probability at least 1 − 2e− γ
24 ln n, γ ≥ 24.

5 Conclusions and Further Research

In this work, we study the complexity of testing and designing issues of nearly cost-
optimal temporal networks that are temporally connected. It remains an open problem
to provide a polynomial-time constant factor approximation algorithm for the compu-
tation of the removal profit in a given temporally connected temporal graph. Further
research could also investigate the complexity of computing the removal profit in
special classes of graphs, e.g., planar graphs or the grid. Extensions of this research
also include the study of the interval temporal networks model, where edges can be
available for continuous intervals of time, as well as a more in-depth study of models
of random temporal networks.

Acknowledgements The authors wish to thank the anonymous reviewers for their comments and sug-
gestions that helped correct the initial manuscript and improve the quality of the work. We wish to give
special thanks to the reviewers for the suggestion of the theoretical proof of Theorem 4(a), which now
replaces the program code previously used in the proof.

This work was supported in part by:

(i) the School of EEE/CS and its NeST initiative at the University of Liverpool
(i) the FET EU IP Project MULTIPLEX under contract No. 317532, and
(i) the EPSRC Grant EP/K022660/1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/

Theory Comput Syst (2017) 61:907–944 943

References

1. Akrida, E.C., Gąsieniec, L., Mertzios, G.B., Spirakis, P.G.: Ephemeral networks with random
availability of links: diameter and connectivity. In: Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA) (2014)

2. Akrida, E.C., Gąsieniec, L., Mertzios, G.B., Spirakis, P.G.: On temporally connected graphs of small
cost. In: Proceedings of the 13th Workshop on Approximation and Online Algorithms (WAOA) (2015)

3. Akrida, E.C., Spirakis, P.G.: On verifying and maintaining connectivity of interval temporal networks.
In: Bose, P., Gasieniec, L.A., Römer, K., Wattenhofer, R. (eds.) Algorithms for Sensor Systems - 11th
International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSEN-
SORS 2015, September 17–18, 2015, Revised Selected Papers, Lecture Notes in Computer Science,
vol. 9536, pp. 142–154. Springer, Patras, Greece (2015). doi:10.1007/978-3-319-28472-9_11

4. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Proceedings of the
Third Italian Conference on Algorithms and Complexity, CIAC ’97, pp. 288–298. Springer, London,
UK (1997). http://dl.acm.org/citation.cfm?id=648256.752884

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively
mobile finite-state sensors. Distrib. Comput., 235–253 (2006)

6. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple
random walk on evolving graphs). In: Proceedings of the 35th International Colloquium on Automata,
Languages and Programming (ICALP), pp. 121–132 (2008)

7. Barjon, M., Casteigts, A., Chaumette, S., Johnen, C., Neggaz, Y.M.: Testing Temporal Connectivity
in Sparse Dynamic Graphs. arXiv:1404.7634 (2014)

8. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
9. Bui-Xuan, B.M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in

dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)
10. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic

networks. Int. J. Parallel Emergent Distrib. Syst. (IJPEDS) 27(5), 387–408 (2012)
11. Chaintreau, A., Mtibaa, A., Massoulié, L., Diot, C.: The diameter of opportunistic mobile networks.

In: Kurose, J., Schulzrinne, H. (eds.) Proceedings of the 2007 ACM Conference on Emerging Network
Experiment and Technology, CoNEXT 2007, New York, NY, USA, December 10–13, 2007, p. 12.
ACM (2007). doi:10.1145/1364654.1364670

12. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of edge-markovian
evolving graphs. SIAM J. Discret. Math. (SIDMA) 24(4), 1694–1712 (2010)

13. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity of information
spreading in dynamic networks. In: Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 717–736 (2013)

14. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36(6), 1600–1630 (2007).
doi:10.1137/S0097539703427215

15. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett.
23(3-5), 71–80 (1998)

16. Gavoille, C., Peleg, D., Perennes, S., Raz, R.: Distance labeling in graphs. In: Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 210–219 (2001)

17. Gupta, A., Krishnaswamy, R., Ravi, R.: Online and stochastic survivable network design. SIAM J.
Comput. 41(6), 1649–1672 (2012). doi:10.1137/09076725X

18. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM J.
Comput. 34(1), 23–40 (2004)

19. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks.
In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), pp. 504–513
(2000)

20. Klinz, B., Woeginger, G.J.: One, two, three, many, or: complexity aspects of dynamic network flows
with dedicated arcs. Oper. Res. Lett. 22(4-5), 119–127 (1998). doi:10.1016/S0167-6377(98)00009-1

21. Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time - a general model
based on measure theory. Math. Meth. OR 73(3), 301–337 (2011). doi:10.1007/s00186-011-0357-2

22. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings
of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pp. 513–522 (2010)

23. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order
constraints. SIAM J. Comput. 39(3), 1062–1087 (2009). doi:10.1137/070700620

http://dx.doi.org/10.1007/978-3-319-28472-9_11
http://dl.acm.org/citation.cfm?id=648256.752884
http://arxiv.org/abs/1404.7634
http://dx.doi.org/10.1145/1364654.1364670
http://dx.doi.org/10.1137/S0097539703427215
http://dx.doi.org/10.1137/09076725X
http://dx.doi.org/10.1016/S0167-6377(98)00009-1
http://dx.doi.org/10.1007/s00186-011-0357-2
http://dx.doi.org/10.1137/070700620

944 Theory Comput Syst (2017) 61:907–944

24. Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable network design. SIAM
J. Comput. 42(6), 2217–2242 (2013). doi:10.1137/110854461

25. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization sub-
ject to connectivity constraints. In: Proceedings of the 40th International Colloquium on Automata,
Languages and Programming (ICALP), Part II, pp. 657–668 (2013)

26. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Protocols. Synthesis
Lectures on Distributed Computing Theory Morgan & Claypool Publishers (2011)

27. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computation in possibly
disconnected synchronous dynamic networks. In: OPODIS, pp. 269–283 (2012)

28. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press (2005). https://books.google.co.uk/books?id=0bAYl6d7hvkC

29. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics,
vol. 23. Springer (2002)

30. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings
of the 2005 Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 104–110
(2005)

31. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J.
Comput. Syst. Sci. 43(3), 425–440 (1991). doi:10.1016/0022-0000(91)90023-X

32. Scheideler, C.: Models and techniques for communication in dynamic networks. In: Proceedings of
the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS), vol. 2285, pp.
27–49 (2002)

33. Whitbeck, J., Dias de Amorim, M., Conan, V., Guillaume, J.L.: Temporal reachability graphs. In:
Proceedings of the 18th Annual International Conference on Mobile Computing and Networking,
Mobicom ’12, pp. 377–388. ACM, New York, NY, USA (2012). doi:10.1145/2348543.2348589

http://dx.doi.org/10.1137/110854461
https://books.google.co.uk/books?id=0bAYl6d7hvkC
http://dx.doi.org/10.1016/0022-0000(91)90023-X
http://dx.doi.org/10.1145/2348543.2348589

	The Complexity of Optimal Design of Temporally Connected Graphs
	Abstract
	Introduction and Motivation
	The Model and Definitions
	Example

	Previous Work and our Contribution
	Further related work
	Labelled Graphs
	Continuous Availabilities (Intervals)
	Dynamic Distributed Networks
	Distance Labelling
	Random Labellings

	A Low Polynomial Time Algorithm for Deciding TC
	Conjecture

	Asymptotically Cost-Optimal Design for TC in Undirected Graphs
	Example
	Conjecture

	Minimal Temporal Designs
	A Partial Characterisation of Minimal Temporal Graphs
	A Minimal Temporal Design of n logn Cost
	A minimal temporal design of linear in n cost
	SLSE Cliques of at least 4 vertices are not minimal

	Computing the Removal Profit is APX-hard
	Note
	Open Problem

	Temporally connected random labellings have high removal profit
	High removal profit in the complete graph
	High removal profit in dense random Erdös-Renyi graphs
	Fact Chernoff Bound mitzenmacher2005probability

	Conclusions and Further Research
	Acknowledgements
	Open Access
	References

